
Formal Languages and Automata Theory 1

II Year –II-Semester 2018-19 CSE

GUDLAVALLERU ENGINEERING COLLEGE
(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521356.

Department of Computer Science and Engineering

HANDOUT

on

FORMAL LANGUAGES AND AUTOMATA THEORY

Formal Languages and Automata Theory 2

II Year –II-Semester 2018-19 CSE

Vision
To be a Centre of Excellence in computer science and engineering

education and training to meet the challenging needs of the industry and

society.

Mission

 To impart quality education through well-designed curriculum in tune

with the growing software needs of the industry.

 To serve our students by inculcating in them problem solving,

leadership, teamwork skills and the value of commitment to quality,

ethical behavior & respect for others.

 To foster industry-academia relationship for mutual benefit and growth.

Program Educational Objectives

PEO1: Identify, analyze, formulate and solve Computer Science and

Engineering problems both independently and in a team

environment by using the appropriate modern tools.

PEO2: Manage software projects with significant technical, legal, ethical,

social, environmental and economic considerations.

PEO3: Demonstrate commitment and progress in lifelong learning, professional

development, leadership and Communicate effectively with

professional clients and the public.

Formal Languages and Automata Theory 3

II Year –II-Semester 2018-19 CSE

HANDOUT ON FORMAL LANGUAGES AND AUTOMATA THEORY

Class & Sem. : II B.Tech – II Semester Year : 2018-19
Branch : CSE Credits : 3
===

1. Brief History and Scope of the Subject
Computer science has two major components:

1) the fundamental ideas and models underlying computing,

2) Engineering techniques for the design of computing systems, both

hardware and software, especially the application of theory to design.

This subject is intended as an introduction to the first area, the fundamental

ideas underlying computing.

Theoretical computer science had its beginnings in a number of diverse

fields: biologists studying models for neuron nets, electrical engineers

developing switching theory as a tool to hardware design, mathematicians

working on the foundations of logic, and linguists investigating grammars for

natural languages. Out of these studies came models that are central to

theoretical computer science.

The notions of finite automata and regular expressions (Units 1, 2 and 3)

were originally developed with neuron nets and switching circuits in mind.

Recently, they have served as useful tools in the design of lexical analyzers,

the part of a compiler that groups characters into tokens-indivisible units

such as variable names and keywords. A number of compiler-writing

systems automatically transform regular expressions into finite automata for

use as lexical analyzers. A number of other uses for regular expressions and

finite automata have been found in text editors, pattern matching, various

text-processing and file-searching programs, and as mathematical concepts

with application to other areas, such as logic.

The notion of a context-free grammar and the corresponding pushdown

automaton (Units 4 and 5) has aided immensely the specification of

programming languages and in the design of parsers-another key portion of

Formal Languages and Automata Theory 4

II Year –II-Semester 2018-19 CSE

a compiler. Formal specifications of programming languages have replaced

extensive and often incomplete or ambiguous descriptions of languages.

Understanding the capabilities of the pushdown automaton has greatly

simplified parsing. In early compilers, parser design is a difficult problem,

and many of the early parsers were quite inefficient and unnecessarily

restrictive. Based on context-free-grammar-based techniques, parser design

is no longer a problem, and parsing occupies only a few percent of the time

spent in typical compilation.

In Unit 6, we deal with Turing machines and one of the fundamental

problems of computer science; there are algorithms for computing

functions. There are functions that are simply not computable; that is, there

is no computer program that can ever be written.

2. Pre-Requisites

 Mathematical Foundation of Computer Science

3. Course Objectives:

 To introduce the classification of machines by their power to recognize

languages and to solve problems in computing.

 To familiarize how to employ deterministic and non-deterministic

machines.

 Course Outcomes:
CO1: compare the automata based on their recognizing power.

CO2: design finite automata for regular languages.

CO3: reduce DFA by applying minimization algorithm.

CO4: write regular expressions for regular languages or for DFA by applying

Arden’s theorem.

CO5: generate grammar for CFL’s.

CO6: use algorithm to simplify grammar.

CO7: design PDA‘s for context free languages.

CO8: design Turing Machine for the phrase-structured languages.

Formal Languages and Automata Theory 5

II Year –II-Semester 2018-19 CSE

4. Program Outcomes:
Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution

of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and

analyze complex engineering problems reaching substantiated conclusions

using first principles of mathematics, natural sciences, and engineering

sciences.

3. Design/development of solutions: Design solutions for complex

engineering problems and design system components or processes that

meet the specified needs with appropriate consideration for the public

health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based

knowledge and research methods including design of experiments, analysis

and interpretation of data, and synthesis of the information to provide valid

conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and

modeling to complex engineering activities with an understanding of the

limitations.

6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and

the consequent responsibilities relevant to the professional engineering

practice.

7. Environment and sustainability: Understand the impact of the

professional engineering solutions in societal and environmental contexts,

and demonstrate the knowledge of, and need for sustainable development.

Formal Languages and Automata Theory 6

II Year –II-Semester 2018-19 CSE

8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering

activities with the engineering community and with society at large, such as,

being able to comprehend and write effective reports and design

documentation, make effective presentations, and give and receive clear

instructions.

11. Project management and finance: Demonstrate knowledge and

understanding of the engineering and management principles and apply

these to one’s own work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and

ability to engage in independent and life-long learning in the broadest

context of technological change.

5. Mapping of Course Outcomes with Program Outcomes:
 1 2 3 4 5 6 7 8 9 10 11 12

CO1 H H H
CO2 H L H
CO3 H L H
CO4 M H
CO5 H M M
CO6 M
CO7 M H L M
CO8 M H L M

6. Prescribed Text Books
1. John E.Hopcroft, Rajeev Motwani & Jeffrey D.Ullman J.D., “Introduction to

Automata Theory Languages and Computation”, 3rd edition, Pearson
Education.

2. Lewis H.R., Papdimitriou, “Elements of Theory of Computation”, 2nd edition,
PHI.

Formal Languages and Automata Theory 7

II Year –II-Semester 2018-19 CSE

7. Reference Books
1. Daniel I.A. Cohen, John Wiley, “Introduction to languages and the Theory of

Computation”.

2. Sipser, Thomson, “Introduction to Theory of Computation”, 2nd edition.

3. Mishra and Chandrashekaran, “Theory of computer science - Automata, Languages, and

Computation”, 2nd edition, PHI.

4. K.Krithivasan and R.Rama; Introduction to Formal Languages, Automata Theory and

Computation; Pearson Education, 2009.

8. URLs and Other E-Learning Resources
1. Basis for a Mathematical TOC: http://www-formal.stanford.edu/jmc/basis1.pdf

2. Finite Automta:

http://www.cs.odu.edu/~toida/nerzic/390teched/regular/fa/intr_2_fa.html

3. PDA: https://brilliant.org/wiki/pushdown-automata/

4. Turing Machine: http://plato.stanford.edu/entries/turing-machine

9. Digital Learning Materials:

 http://nptel.ac.in/courses/106104028/
 http://nptel.ac.in/courses/106104148/
 http://nptel.ac.in/courses/106106049/

10. Lecture Schedule / Lesson Plan

Topic
No. of Periods

Theory Tutorial

UNIT –1: Fundamentals

Strings, Alphabet, Language, Operations on strings 1

1 Operations on languages, Finite State System 1

Finite Automaton Model 1

Acceptance of strings and languages 1

2
Deterministic finite automaton 2

Non deterministic finite automaton 2

Transition diagrams, language recognizers and applications of Finite Automata 2

Formal Languages and Automata Theory 8

II Year –II-Semester 2018-19 CSE

Total 10+3(T)

UNIT – 2: Finite Automata

NFA with ε transitions – significance, acceptance of a language by a ε –NFA 1

1

Equivalence between NFA with and without ε transitions 2

Minimization of FSM 2

NFA to DFA conversion 1

equivalence between two FSM‘s 1

Finite automata with outputs - Moore machine, Mealy machines 1

1 Moore to Mealy Coversion-examples 1

Mealy to Moore conversion-examples 1

Total 10+2(T)

UNIT – 3: Regular Languages

Regular Sets, Identity Rules 1
1

Regular expressions 2

Construction of finite Automata for a given regular expressions 1

1

Construction of regular expression for a given finite Automata 1

Pumping lemma of regular sets 1

Closure properties of regular sets, applications of regular languages. 1

Total 7+2(T)

UNIT – 4: Grammar Formalism

Chomsky hierarchy of languages 1

1

Regular grammars - right linear and left linear grammars-examples 1

Equivalence between regular linear grammar and FA 1

Equivalence between FA and regular grammar 1

Context free grammar-examples 2

Formal Languages and Automata Theory 9

II Year –II-Semester 2018-19 CSE

Derivation- Rightmost and leftmost derivation of strings, sentential forms,
Derivation trees

2 1

Total 8+2(T)

UNIT – 5: Context Free Grammars

Ambiguity in context free grammars 1

1

Minimization of Context Free Grammars 1

Chomsky normal form 1

Greibach normal form 2

Pumping Lemma for Context Free Languages 1

Enumeration of Properties of CFL (proofs not required), applications of
CFLs

1

Push down automata, model of PDA 1

1 Design of PDA 2

Applications of PDA 1

Total 11+2(T)

UNIT – 6: Turing Machine

Turing Machine, model 1
1

Design of TM 2

Types of Turing Machines 1

1

Computable functions 1

Recursively enumerable languages, Recursive languages 1

Decidability of problems 1

Undecidability of posts correspondence problem 1

Total 8+2(T)

Total No.of Periods: 54 13(T)

Formal Languages and Automata Theory 10

II Year –II-Semester 2018-19 CSE

FORMAL LANGUAGES AND AUTOMATA THEORY

UNIT-I

Objective:

 To introduce the classification of machines by their power to recognize

languages and to solve problems in computing.

 To familiarize how to employ deterministic and non-deterministic finite

automata.

Syllabus:
Strings, alphabet, language, operations, finite state machine, finite automaton

model, acceptance of strings and languages, deterministic finite automaton and

non deterministic finite automaton, transition diagrams and language

recognizers.

Learning Outcomes:
Students will be able to:

 Understand the basic definitions like alphabet, string, language and their

operations.

 Understand the model of FA.

 Design DFA and NFA for the given regular language.

 Test the designed DFA and NFA for the set of strings that belongs to L

and for the set of strings that doesn’t belongs to L.

Formal Languages and Automata Theory 11

II Year –II-Semester 2018-19 CSE

Learning Material
Alphabet:
An alphabet is a finite, nonempty set of symbols. It is denoted by ∑.

Example:
∑= {0, 1} is binary alphabet consisting of the symbols 0 and 1.

∑= {a, b, c ...z} is lowercase English alphabet.

Powers of an Alphabet
If Σ is an alphabet, we can express the set of all strings of a certain length from

that alphabet by using the exponential notation. It is denoted by Σ k - the set of

strings of length k.

Example:
Σ0 = {ε}, regardless of what alphabet Σ is. ε is the only string of length 0.

If Σ = {0, 1} then,

Σ1 = {0, 1}

Σ2 = {00, 01, 10, 11}

Σ3 = {000, 001, 010, 011, 100, 101, 110, 111}

The set of all strings over an alphabet Σ is denoted by Σ*. Σ* = Σ0 ∪ Σ1 ∪ Σ2 ∪ . .

For example, {0, 1}* = {ε, 0, 1, 00, 01, 10, 11, 000,}

The symbol ∗ is called Kleene star and is named after the mathematician and

logician Stephen Cole Kleene.

The symbol + is called Positive closure i.e. Σ+ = Σ1 ∪ Σ2 ∪ . . .

String:
A string (or word) is a finite sequence of symbols chosen from some alphabet.

The letters u, v, w, x, y and z are used to denote string.

Example:
If Σ = {a, b, c} then abcb is a string formed from that alphabet.

Σ∗ = Σ+ ∪ { ε
}

Formal Languages and Automata Theory 12

II Year –II-Semester 2018-19 CSE

 The length of a string w, denoted |w|, is the number of symbols

composing the string.

 Example:
 The string abcb has length 4.

 The empty string denoted by ε, is the string consisting of zero symbols.

Thus |ε| =0.

Operations on strings:

 Concatenation of strings
The concatenation of two strings is the string formed by writing the first,

followed by the second, with no intervening space. Concatenation of

strings is denoted by ◦.

That is, if w and x are strings, then wx is the concatenation of these two

strings.

Example:
The concatenation of dog and house is doghouse.

Let x=0100101 and y= 1111 then x ◦ y=01001011111

 String Reversal
Reversing a string means writing the string backwards.

It is denoted by wR

Example:
Reverse of the string abcd is dcba.

Note: If w= wR, then that string is called palindrome.

 Substring
 A substring is a part of a string.

Example:
If abcd is string then possible substrings are ε,a,b,c,d,ab,bc,cd,abc,bcd

are proper substrings for the given string

 A prefix of a string is any number of leading symbols of that string.

A suffix of a string is any number of trailing symbols.

Example:

Formal Languages and Automata Theory 13

II Year –II-Semester 2018-19 CSE

String abc has prefixes ε, a, ab, and abc; its suffixes are ε, c, bc, and

abc.

A prefix or suffix of a string, other than the string itself, is called a

proper prefix or suffix.

Language:
A (formal) language is a set of strings of symbols from someone alphabet. It is

denoted by L. We denote this language by ∑*.

 The empty set, Ø, and the set consisting of the empty string {ε} are

languages.

Example:
 If ∑= {a}, then ∑* = {ε, a, aa, aaa, ...}.

 If ∑ = {0, 1}, then ∑* = {ε, 0, 1, 00, 01, 10, 11, 000,...}.

Operations on languages:

 Union
If L1 and L2 are two languages over an alphabet ∑.Then the union of L1

and L2 is denoted by L1 U L2.

Example:
L1={0,01,011} and L2={001}, then L1 U L2={0,01,011,001}

 Intersection
If L1 and L2 are two languages over an alphabet ∑.Then the intersection

of L1 and L2 is denoted by L1 ∩ L2.

Example:
 L1= {0, 01,011} and L2= {01}, then L1 ∩ L2= {01}

 Complementation
L is a language over an alphabet ∑, then the complement of L denoted by

L', is the language consisting of those strings that are not in L over the

alphabet.

Example:
If ∑={a,b} and L={a,b,aa}, then

L'= ∑*-L = {ε,a,b,aa,bb,ab.........} - {a,b,aa} = {ε,bb,ab,ba.........}

Formal Languages and Automata Theory 14

II Year –II-Semester 2018-19 CSE

 Concatenation
Concatenation of two languages L1 and L2 is the language L1 o L2 ,each

element of which is a string formed by combining one string of L1 with

another string of L2.

Example:
L1={bc,bcc,cc}and L2={cc,ccc},then L1oL2 =

{bccc,bcccc,bcccccc,cccc,ccccc}

 Reversal
If L is language, then LR is obtained by reversing the corresponding

string in L. This operation is similar to the reversal of a string.

LR ={wR | w ∈ L}

Example:
 If L= {0, 011, 0111}, then LR = {0, 110, 1110}

 Kleene Closure
The Kleene closure (or just closure) of L, denoted L*, is the set

 ∞

L * = U Li

 i=0

 Positive Closure

The positive closure of L, denoted L+, is the set

 ∞

L + = U Li

 i=1

That is, L* denotes words constructed by concatenating any number of

words from L.

L+ is the same, where ε, is excluded.

Formal Languages and Automata Theory 15

II Year –II-Semester 2018-19 CSE

Note: L+ contains ε if and only if L does.

Example:
Let L1 = {10, 1}

L * = L0 U L1 U L2.................. = {ε, 1, 10, 11, 111, 1111 ,..........}
 L + = L1 U L2 U L3...................= {1, 10, 11, 111, 1111...........}

Finite Automaton:

 A finite automaton (FA) consists of a finite set of states and a set of

transitions from state to state that occur on input symbols chosen from an

alphabet ∑.

 For each input symbol there is exactly one transition out of each state

(possibly back to the state itself).

 One state, usually denoted q0 is the initial state, in which the automaton

starts. Some states are designated as final or accepting states.

 Formally, a finite automaton is denoted by a 5-tuple (Q, ∑, δ, qo, F), where

 Q is a finite set of states.

 ∑ is a finite input alphabet.

 δ is the transition function mapping Q x ∑ to Q i.e., δ (q,a) is a state

for each state q and input symbol a.

 qo ∈ Q is the initial state.

 F ⊆ Q is the set of final states. It is assumed here that there may be

 more than one final state.

Transition Diagram:

 A transition diagram is a directed graph associated with an FA in which the

vertices of the graph correspond to the states of the FA.

 If there is a transition from state q to state p on input a, then there is an arc

labelled a from state q to state p in the transition diagram.

State is denoted by

Formal Languages and Automata Theory 16

II Year –II-Semester 2018-19 CSE

Transition is denoted by

Initial state is denoted by

Final state is denoted by

Transition Table:
A tabular representation in which rows correspond to states, columns

correspond to inputs and entries correspond to next states.

Finite Automata Model:

 Block diagram of a finite automaton

The various components are explained as follows:

 (i) Input tape:

 The input tape is divided into squares, each square containing a single

symbol from the input alphabet ∑.

 The end squares of the tape contain the endmarker ¢ at the left end and

the endmarker $ at the right end.

 The absence of endmarkers indicates that the tape is of infinite length.

The left-to-right sequence of symbols between the two endmarkers is the

input string to be processed.

(ii) Reading head:

 The head examines only one square at a time and can move one square

either to the left or to the right.

Formal Languages and Automata Theory 17

II Year –II-Semester 2018-19 CSE

 For further analysis, we restrict the movement of the R-head only to the

right side.

(iii) Finite control: The input to the finite control will usually be the symbol

under the R-head, say a, and the present state of the machine, say q, to give

the following outputs:

 A motion of R-head along the tape to the next square (in some a null

move, i.e. the R-head remaining to the same square is permitted)

 The next state of the finite state machine given by δ(q, a).

Acceptance of String by a Finite Automaton:
The FA accepts a string x if the sequence of transitions corresponding to the

symbols of x leads from the start state to an accepting state and the entire

string has to be consumed, i.e., a string x is accepted by a finite automaton M

= (Q, ∑, δ, qo, F)

if δ (q0, x) =q for some q ∈

F.

This is basically the acceptability of a string by the final state.

Note: A final state is also called an accepting state.
Transition function δ and for any two input strings x and y,

Example:
Consider the finite state machine whose transition function δ is given in the

form of a transition table. Here Q = {q0, q1, q2, q3},∑={0,1}, F={q0}.Give the entire

sequence of states for the input string 110101.

δ (q, xy) = δ (δ (q, x),
y)

Formal Languages and Automata Theory 18

II Year –II-Semester 2018-19 CSE

δ (q0, 110101) = δ(q1,10101)
 = δ(q0,0101)
 = δ(q2,101)
 = δ(q3,01)
 = δ(q1,1) = q0

q0 is final state, therefore given string is accepted by finite
automata.

Deterministic finite automaton:
Formally, a deterministic finite automaton can be represented by a 5-tuple M=

(Q, ∑, δ, qo, F),
where

 Q is a finite set of states.

 ∑ is a finite input alphabet.

 δ is the transition function mapping Q x ∑ to Q i.e., δ (q,a) is a state for

each state q and input symbol a.

 qo ∈ Q is the initial state.

 F ⊆ Q is the set of final states. It is assumed here that there may be

more than one final state.

Steps to design a DFA:
1. Understand the language for which the DFA has to be designed and write

the language for the set of strings starting with minimum string that are

accepted by FA.

State
Input

0 1

 q2 q1

q1 q3 q0

q2 q0 q3

q3 q1 q2

q0

Formal Languages and Automata Theory 19

II Year –II-Semester 2018-19 CSE

2. Draw transition diagram for the minimum length string.

3. Obtain the possible transitions to be made for each state on each input

symbol.

4. Draw the transition table.

5. Test DFA with few strings that are accepted and few strings that are

rejected by the given language.

6. Represent DFA with tuples.

Examples
1. Design DFA that accepts all strings which starts with ‘1’ over the

alphabet {0,1}
Step 1: Understand the language for which the DFA has to be designed

and write the language for the set of strings starting with minimum

string that is accepted by FA.

 L = {1, 10, 11, 100, 110, 101, 111, ...}

 Step 2: Draw transition diagram for the minimum length string.

Step 3: Obtain the possible transitions to be made for each state on each

input symbol.

 Step 4: Draw the transition table.

Formal Languages and Automata Theory 20

II Year –II-Semester 2018-19 CSE

Step 5: Test DFA with few strings that are accepted and few strings that

are rejected by the given language.

Case i) Let w=1001 ∈ L

δ(q0,1001) = δ(q1,010)

 = δ(q1,10) = δ(q1,0) = q1

q1 is final state and the entire string has been consumed i.e., given string

is accepted by DFA.

Case ii) Let w=0001 ∉ L

δ(q0,0001) = δ(q2,001)

 = δ(q2,10)

 = δ(q2,0)

 = q2

q2 is not final state and the entire string has been consumed i.e., given

string is rejected by DFA.

 Step 6: Represent DFA with tuples.

DFA, M= (Q, ∑, δ, qo, F)
where Q = {q0, q1, q2}

 ∑ = { 0,1 }

 δ: δ(q0,0)=q2

 δ(q0,1)=q1

 δ(q1,0)=q1

 δ(q1,1)=q1

State
Input

0 1

q0 q2 q1

q1 q1 q1

q2 q2 q2

q1

Formal Languages and Automata Theory 21

II Year –II-Semester 2018-19 CSE

 δ(q2,0)=q2

 δ(q2,1)=q2

 q0 – initial state

 F – final state = { q1}

2. Design DFA that accepts all strings which contains ‘00’ as substring
over the alphabet {0,1}

Step 1: Understand the language for which the DFA has to be designed

and write the language for the set of strings starting with minimum

string that is accepted by FA.

L={00,100,000,001,1100,1000,0100,1001,0001,11000,11100,................}

 Step 2: Draw transition diagram for the minimum length string.

Step 3 : Obtain the possible transitions to be made for each state on

each input symbol.

 Step 4: Draw the transition table.

Formal Languages and Automata Theory 22

II Year –II-Semester 2018-19 CSE

State
Input

0 1

q0 q1 q0

 q2 q0

q2 q2 q2

Step 5: Test DFA with few strings that are accepted and few strings that

are rejected by the given language.

Case i) Let w = 1001 ∈ L

 δ(q0,1001) = δ(q0,001)

 = δ(q1,01)

 = δ(q2,1)

 = q2

q2 is final state and the entire string has been consumed i.e., given

string is accepted by DFA.

Case ii) Let w=1011 ∉ L

δ(q0,1011) = δ(q0,011)

 = δ(q1,11)

 = δ(q0,1)

 = q0

q0 is not final state and the entire string has been consumed i.e., given

string is rejected by DFA.

 Step 6: Represent DFA with tuples.

DFA, M= (Q, ∑, δ, qo, F)
where Q = {q0, q1, q2}

 ∑ = { 0,1 }

 δ: δ(q0,0)=q1

 δ(q0,1)=q0

q1

Formal Languages and Automata Theory 23

II Year –II-Semester 2018-19 CSE

 δ(q1,0)=q2

 δ(q1,1)=q0

 δ(q2,0)=q2

 δ(q2,1)=q2

 q0 – initial state

 F – final state = { q2 }

Nondeterministic finite automaton (NDFA/NFA):
A nondeterministic finite automaton is a 5-tuple (Q, ∑, δ, qo, F), where

 Q is a finite nonempty set of states;

 ∑ is a finite nonempty set of inputs;

 δ is the transition function mapping from Q x ∑ into 2Q which is the

power set of Q, the set of all subsets of Q;

 qo ∈ Q is the initial state; and

 F ⊆ Q is the set of final states

Steps to design a NFA:
1. Understand the language for which the NFA has to be designed and write

the language for the set of strings starting with minimum string that is

accepted by FA.

2. Draw transition diagram for the minimum length string.

3. Obtain the possible transitions to be made for each state on each input

symbol.

4. Draw the transition table.

5. Test NFA with few strings that are accepted and few strings that are

rejected by the given language.

6. Represent NFA with tuples.

Examples:

1. Design NFA that accepts all strings which contains ‘00’ as substring
over the alphabet {0,1}

Formal Languages and Automata Theory 24

II Year –II-Semester 2018-19 CSE

 Step 1: Understand the language for which the NFA has to be designed

and write the language for the set of strings starting with minimum

string that is accepted by FA

L={00,100,000,001,0100,1100,1000,1001,0001,11000,11100,.............}

Step 2: Draw transition diagram for the minimum length string.

Step 3: Obtain the possible transitions to be made for each state on each

input symbol. 0, 1

Step 4: Draw the transition table.

State
Input

0 1

q0 {q0,q1} q0

q1 q2 -

q2 q2 q2

Step 5: Test NFA with few strings that are accepted and few strings that

are rejected by the given language.

Case i) Let w=0100 ∈ L

 δ(q0,0100) = δ({q0,q1},100)

 = δ (q0, 00)

 = δ ({q0, q1},0)

 = {q0, q1, q2}

q2 is final state and the entire string has been consumed i.e., given string

is accepted by NFA.

q1

Formal Languages and Automata Theory 25

II Year –II-Semester 2018-19 CSE

Case ii) Let w=1011 ∉ L

δ(q0,1011) = δ(q0,011)

 = δ({q0,q1},11)

 = δ(q0,1)

 = q0

q0 is not final state and the entire string has been consumed i.e., given

string is rejected by NFA.

 Step 6: Represent NFA with tuples.

NFA, M= (Q, ∑, δ, qo, F)
where Q = {q0, q1, q2}

 ∑ = { 0,1 }

 δ: δ(q0,0)={q0,q1}

 δ(q0,1) = q0

 δ(q1,0) = q2

 δ(q1,1) = Ø

 δ(q2,0) = q2

 δ(q2,1) = q2

 q0 – initial state

 F – final state = { q2 }

2. Design NFA that accepts strings which contains either two
consecutive 0’s or two consecutive 1’s.

Step 1: Understand the language for which the NFA has to be designed

and write the language for the set of strings starting with minimum

string that is accepted by FA.

L={00,11,100,001,110,011,111,000,0100,1011,..............}

 Step 2: Draw transition diagram for the minimum length string.

Formal Languages and Automata Theory 26

II Year –II-Semester 2018-19 CSE

Step 3: Obtain the possible transitions to be made for each state on each

input symbol.

 Step 4: Draw the transition table.

State
Input

0 1

q0 {q0,q3} {q0,q1}

q1 - q2

 q2 q2

q3 q4 -

 q4 q4

Step 5: Test NFA with few strings that are accepted and few strings that

are rejected by the given language.

q2

q4

Formal Languages and Automata Theory 27

II Year –II-Semester 2018-19 CSE

Case i) Let the input, w = 01001 ∈ L

δ(q0,0) = {q0,q3}

δ(q0,01) = δ(δ(q0,0),1) = δ({q0,q3},1) = δ(q0,1) ∪ δ(q3,1) = {q0,q1}

Similarly, we compute

δ(q0,010) = {q0,q3}, δ(q0,0100) = {q0,q3,q4}

and

δ(q0,01001) = {q0,q1,q4}

 final state

After the entire string is consumed, the FA is in the state q4.

As q4 is the final state, the string is a accepted by FA

Case ii) Let w = 010 ∉ L

δ(q0,010) = δ ({q0,q3},10)

 = δ({q0,q1},0)

 = {q0,q3}

There is no path to the final state after the entire string is consumed. So

the string is rejected by FA.

 Step 6: Represent NFA with tuples.

NFA, M= (Q, ∑, δ, qo, F)
where Q = {q0, q1, q2, q3,q4}

 ∑ = { 0,1 }

 δ: δ(q0,0)={q0,q3}

 δ(q0,1)= {q0,q1}

 δ(q1,0)= Ø

Formal Languages and Automata Theory 28

II Year –II-Semester 2018-19 CSE

 δ(q1,1)=q2

 δ(q2,0)=q2

 δ(q2,1)=q2

 δ(q3,0)=q4

 δ(q3,1)= Ø

 δ(q4,0)=q4

 δ(q4,1)=q4

 q0 – initial state

 F – final state = { q2,q4 }

Note: The minimal state DFA, accepting all strings over the alphabet {0, 1}

where the nth symbol in every string from the right end is a 1, has 2n states.

Language recognizers:
A language recognizer is a device that accepts valid strings produced in a given

language. Finite state automata are formalized types of language recognizers.

The language accepted by Finite Automata M designated L(M) is the set {x |

δ(q0,x) is in F}.

Applications of FA:

 Used in Lexical analysis phase of a compiler to recognize tokens.

 Used in text editors for string matching.

 Software for designing and checking the behavior of digital circuits.

Limitations of FA:

 FA’s will have finite amount of memory.

 The class of languages recognized by FA s is strictly the regular set.

There are certain languages which are non regular i.e. cannot be

recognized by any FA.

Differences between NFA and DFA:

S.No NFA DFA

1
A nondeterministic finite

automaton is a 5-tuple

A deterministic finite automaton

can be represented by a 5-tuple

Formal Languages and Automata Theory 29

II Year –II-Semester 2018-19 CSE

M= (Q, ∑, δ, qo, F), where

δ: Q x ∑ into 2Q.

M= (Q, ∑, δ, qo, F), where
δ: Q x ∑ to Q.

2

NFA is the one in which there

exists many paths for a specific

input from current state to next

state.

DFA is a FA in which there is only

one path for a specific input from

current state to next state.

3 NFA is easier to construct. DFA is more difficult to construct.

4 NFA requires less space. DFA requires more space.

5
Time required for executing an

input string is more.

Time required for executing an

input string is less.

Formal Languages and Automata Theory 30

II Year –II-Semester 2018-19 CSE

UNIT-I
Assignment-Cum-Tutorial Questions

SECTION-A

 Objective Questions

1. The prefix of abc is []
A) c B) bc C) b D) ε
2. ∑*=∑+ U ε [True | False]
3. Alphabet is ___________________. []
A) Finite collection of strings. B) Finite collection of symbols.
C) Finite collection of languages. D) All the above.
4. A ________ of a string is any number of leading symbols of that string.
5. ___________ is a directed graph associated with an FA in which the vertices

of the graph correspond to the states of the FA.
6. The transition function for NFA is a mapping function given as

_____________.
7. The transition function for DFA is a mapping function given as

______________.
8. A = {a, b, c}. Power set of A= ______________.
9. FA has []
A) Unlimited memory B) no memory at all
C) Limited memory D) none of the above.

10. Number of states requires to accept string ends with 10. []

A) 3 B) 2 C) 1 D) can’t be represented.

11. Consider the finite automaton in the following figure

What is the set of reachable states for the input string 0011? []

A) {q0, q1, q2} B) {q0, q1} C) {q0, q1, q2, q3} (D) {q3}

12. Given the language L = {ab, aa, baa}, which of the following strings are in L*?
1) abaabaaabaa 2) aaaabaaaa 3) baaaaabaaaab 4) baaaaabaa[]

A) 1,2and3 B) 2,3and4 C) 1,2and4 D) 1, 3 and 4

13. In the automaton below, s is the start state and t is the only final state.

Formal Languages and Automata Theory 31

II Year –II-Semester 2018-19 CSE

Consider the strings u = abbaba, v = bab, and w = aabb. Which of the following
statements is true? []

A) The automaton accepts u and v but not w
B) The automaton accepts each of u,v and w
C) The automaton rejects each of u,v and w
 D) The automaton accepts u but rejects v and w
14. If the final states and non-final states in the DFA below are interchanged, then

which of the
 following languages over the alphabet {a,b} will be accepted by the new DFA?

A) Set of all strings that do not end with ab []
B) Set of all strings that begin with either an a or a b
C) Set of all strings that do not contain the substring ab,
D) All the above

15. What is the minimum number of states in the NFA accepting the language
{a, ab}?

A) 3 B) 2 C)1 D) 4 []

16. The smallest finite automation which accepts the language {x | length of x
is divisible by 3} has []

A) 2 states B) 3 states C) 4 states D) 5 states
17. The below DFA accepts the set of all strings over {0,1} that []

 a) begin either with 0 or 1 b) end with 0

 c) end with 00 d) contain the substring 00

Formal Languages and Automata Theory 32

II Year –II-Semester 2018-19 CSE

18. Consider a DFA over ∑={a,b} accepting allstrings which have number of a’s
divisible by 6 and number of b’s divisible by 8. What is the number of states
that the DFA will have?

[]
A) 8 B) 14 C) 15 D) 48

SECTION-B

 SUBJECTIVE QUESTIONS

1. Define string and alphabet.

2. Explain operations on strings and languages.

3. Define Positive Closure and Kleene Closure.

4. Define (i) Finite Automaton(FA) (ii)Transition diagram

5. Explain the model of FA.

6. Write the differences between NFA and DFA.

7. What is the difference between empty language and null string?

8. Which of the following Finite Automaton is having ambiguity and why?

 i) NFA ii) DFA

9. Draw the Finite state machine for accepting the languages � and Ø.

10. From the given transition table. Check whether the following strings are
accepted or not.
i) 101101
ii) 000000

Q/∑ 0 1

 q2 q1

q1 q3 q0

q2 q0 q3

q3 q1 q2

11. Construct DFA accepting the set of all strings beginning with 101.
12. Design a DFA for a language which contains strings of a’s & b’s and each

string ends with aab.
13. Describe the words w in the language L accepted by the automaton in

q0

Formal Languages and Automata Theory 33

II Year –II-Semester 2018-19 CSE

14. Design DFA accepting the set of all strings that begin with 01 and end with

11.
15. a) Design a DFA to accept the following language. L = {w: |w| mod 3 = 0} on

Σ = {a}

b) Design DFA accepting the language whose binary interpretation is

divisible by 5 over the alphabet {0, 1}.

16. Design a DFA to accept strings of a’s and b’s having even number of a’s and

b’s.

17. Design a DFA that accepts all strings over Σ={0,1} that do not contain 101

as a substring.

18. Design NFA that accepts the language of strings over Σ ={0,1} such that

some two 0’s are separated by a string whose length is 4i, for some i ≥0.

19. Design a NFA to accept strings of 0’s & 1’s such that each string ends with

00.

20. For the NFA given below;

i. Check whether the string axxaxxa is accepted or not

ii. Give atleast two transition paths

SECTION-C

 QUESTIONS AT THE LEVEL OF GATE

1. Consider the following Deterministic Finite Automata

Formal Languages and Automata Theory 34

II Year –II-Semester 2018-19 CSE

 Which of the following is true? []

 A) It only accepts strings with prefix as “aababb”
 B) It only accepts strings with substring as “aababb”
 C) It only accepts strings with suffix as “aababb”
 D) None of the above
2. The possible number of states of a deterministic finite automaton that

accepts a regular language
 L = {w1aw2 | w1,w2 ∈{a,b}* ,|w1| = 2, w2>=3} is ______
 [GATE 2017 set-2]
3. Let w be any string of length n in {0, 1}*. Let L be the set of all substrings of

w. What is the number of states in a non-deterministic finite automaton
that accepts L? []

A)n-1 B)n C)n+1 D)2n-1
 [GATE2010]

4. Consider the machine M:

 [GATE 2005]
The language recognized by M is: []

a) {w Є {a,b}* | every a in w is followed by exactly two b’s}
b) {w Є {a,b}* | every a in w is followed by at least two b’s}
c) {w Є {a,b}* | w contains the substring ‘abb’}
d) {w Є {a,b}* | w does not contain ‘aa’ as a substring}

5. The following finite state machine accepts all those binary strings in which
the number of 1’s and 0’s are respectively []
 [GATE 2004]

a) divisible by 3 and 2 b) odd and even
c) even and odd d) divisible by 2 and 3

Formal Languages and Automata Theory 35

II Year –II-Semester 2018-19 CSE

6. Consider the following deterministic finite state automaton M.

 [GATE 2003]
Let S denote the set of seven bit binary strings in which the first, the fourth,
and the last bits are 1. The number of strings in S that are accepted by M is
 []

(A) 1 (B) 5 (C) 7 (D) 8
7. Consider the NFA M shown below.

Let the language accepted by M be L. Let L1 be the language accepted by the
NFA M1, obtained by changing the accepting state of M to a non-accepting
state and by changing the non-accepting state of M to accepting states.
Which of the following Statements is true? []
 A) L1 = {0,1}* – L B) L1={0,1}*
 C) L1 ⊆ L D) L1 = L

8. Construct a finite state machine that accepts the language, over {0,1} of all
strings that contain neither the substring 00 nor the substring 11.
 [Gate 2000]

9. What can be said about a regular language L over {a} whose minimal finite
state automaton has two states? []
 [Gate 2000]
 A) L must be {an | n is odd}

 B) L must be {an | n is even}
 C) L must be {an | >=0}
 D) Either L must be {an | n is odd}, or L must be {an | n is even}

Formal Languages and Automata Theory 1

II Year –II-Semester 2018-19 CSE

UNIT – II

Objective:
To familiarize how to employ non-deterministic finite automata with ε transitions

and finite automata with outputs.

Syllabus:
Finite Automata:
NFA with ε transitions - significance, acceptance of languages, equivalence between

NFA with and without ε transitions, NFA to DFA conversion, minimization of FSM,

equivalence between two FSM‘s, finite automata with output-Moore and Mealy

machines, applications of FA.

Learning Outcomes:
Students will be able to:

 Convert NFA to DFA and NFA with epsilon transitions to NFA without

Epsilon transitions.

 Minimize the given DFA.

 Test whether the two DFA’s are equivalent or not.

 Design Moore and Mealy Machines

NFA with ε transitions:
An ε -NFA is a tuple (Q, Σ, δ, qo, F)

where

 Q is a set of states,

 Σ is the alphabet,

 δ is the transition function that maps each pair consisting of a state and a

symbol in Σ ∪ { ε } to a subset of Q,

 q0 is the initial state,

 F ⊂ Q is the set of final (or accepting) states.

Significance of ε-NFA:
It becomes very difficult or many times it seems to be impossible to draw directly

NFA or DFA.

Formal Languages and Automata Theory 2

II Year –II-Semester 2018-19 CSE

Example:

String acceptance by ε –NFA

 Fig:1

Transition Table:

Q/∑ a b ε

q0 - - {q1,q2}

q1 q3 - -

q2 - q4 -

 q1 - -

 - q2 -

q4

q3

Formal Languages and Automata Theory 3

II Year –II-Semester 2018-19 CSE

Example:

Check whether the string ‘bbb’ is accepted or not for the above automaton.

 ε b b b
q0 q2 q4 q2 q4

 ε q1

As q4 is the final state, the given string is accepted by the given ε –NFA.

ε –NFA to NFA Conversion:
Step 1: Find the ε-closure for all states in the given ε-NFA.

ε-closure (q) denotes the set of all states p such that there is a path from q to p

labelled ε.

Step 2: Find the extended transition function for all states on all input symbols for
the given ε-NFA.

δ' (q,a)= ε-closure(δ (δ'(q, ε),a))

Step 3: Draw the transition table or diagram from the extended transition function

(NFA)

Step 4: F is the set of final states of NFA, whose ε -closure contains the final state

of ε -NFA.

Step 5: To check the equivalence of ε -NFA and NFA, the string accepted by ε -NFA

should be accepted by NFA.

Example:
1. Convert NFA with ε-moves into an equivalent NFA without ε-moves.

Formal Languages and Automata Theory 4

II Year –II-Semester 2018-19 CSE

Step 1: Find the ε-closure for all states in the given ε-NFA.

 ε -CLOSURE (q0) = {q0, q1, q2}

 ε -CLOSURE (q1) = {q1, q2}

 ε -CLOSURE (q2) = {q2}

Step 2: Find the extended transition function for all states on all input symbols for

the given ε-NFA.

 δ' (q0,0) = ε-closure(δ (δ'(q0, ε),0))

 = ε-closure(δ {q0, q1, q2},0)

 = ε-closure(δ(q0, 0) U δ (q1,0) Uδ (q2,0))

 = ε-closure(q0 U Ø U Ø)

 = {q0, q1, q2}

 δ' (q0,1) = ε-closure(δ (δ'(q0, ε),1))

 = ε-closure(δ {q0,q1, q2},1)

 = ε-closure(δ (q0,1) U δ(q1,1) U δ(q2,1))

 = ε-closure(Ø U q1 U Ø)

 ={q1,q2}

 δ' (q0,2) = ε-closure(δ (δ'(q0, ε),2))

 = ε-closure(δ { q0,q1, q2},2)

 = ε-closure(δ (q0,2) U δ (q1,2) Uδ (q2,2))

 = ε-closure(q2 U Ø)

 ={q2}

 δ' (q1,0) = ε-closure(δ (δ'(q1, ε),0))

 = ε-closure(δ {q1, q2},0)

 = ε-closure(δ (q1,0) Uδ (q2,0))

 = ε-closure(Ø)

 ={ Ø }

 δ' (q1,1) = ε-closure(δ (δ'(q1, ε),1))

 = ε-closure(δ {q1, q2},1)

 = ε-closure(δ (q1,1) Uδ (q2,1))

 = ε-closure(q1)

 ={q1, q2 }

 δ (q1,2) = ε-closure(δ (δ'(q1, ε),2))

 = ε-closure(δ {q1, q2},2)

Formal Languages and Automata Theory 5

II Year –II-Semester 2018-19 CSE

 = ε-closure(δ (q1,2) Uδ (q2,2))

 = ε-closure(q2)

 ={q2}

 δ (q2,0) = ε-closure(δ (δ'(q2, ε),0))

 = ε-closure(δ (q2,2))

 = ε-closure(Ø)

 ={ Ø}

 δ (q2,1) = ε-closure(δ (δ'(q2, ε),1))

 = ε-closure(δ (q2,1))

 = ε-closure(Ø)

 ={ Ø }

 δ (q2,2) = ε-closure(δ (δ'(q2, ε),2))

 = ε-closure(δ (q2,2))

 = ε-closure(q2)

 ={ q2}

Step 3: Draw the transition table or diagram from the extended transition function
(NFA)

State
Inputs

0 1 2

q0 {q0, q1, q2} {q1, q2} q2

q1 Ø {q1, q2} q2

*q2 Ø Ø q2

Step 4: F is the set of final states of NFA, whose ε -closure contains the final state
of ε -NFA.

State
Inputs

0 1 2

 {q0, q1, q2} {q1, q2} q2

 Ø {q1, q2} q2

 Ø Ø q2

q0

q1

q2

Formal Languages and Automata Theory 6

II Year –II-Semester 2018-19 CSE

Step 5: To check the equivalence of ε -NFA and NFA, the string accepted by ε -NFA
should be accepted by NFA.

String acceptance by ε-NFA:
Let w=001

 0 0 ε 1 ε
q0 q0 q0 q1 q1 q2

As q2 is the final state, the string is accepted by the given ε-NFA.

String acceptance by NFA:
If w=001
 0 0 1

q0 q0 q0 q1
 0 0 q1 1 q2

 0 q1 0 q2

 q2

As q1 and q2 are final states, the string is accepted by the NFA.

NFA to DFA Conversion:

Step 1: First take the starting state of NFA as the starting state of DFA.

Step 2: Apply the inputs on initial state and represent the corresponding states in
the transition table.

Step 3: For each newly generated state, apply the inputs and represent the
corresponding states in the transition table.

Step 4: Repeat step 3 until no more new states are generated.

Step 5: The states which contain any of the final states of the NFA are the final
states of the equivalent DFA.
Step 6: Represent the transition diagram from the constructed table.
Step7: To check the equivalence of NFA and DFA, the string accepted by NFA
should be accepted by DFA.
Step 8: Write the tuple representation for the obtained DFA.

Note: If the NFA has n states, the resulting DFA may have up to 2n states, an
exponentially larger number, which sometimes makes the construction impractical
for large NFAs.

Example:
1. Construct DFA equivalent to the NFA M=({q0,q1},{0,1}, δ,q0,{q1})
 where δ(q0,0) = {q0,q1} δ(q0,1) = {q1} δ(q1,0) = Ø δ(q1,1) = {q0,q1}

Formal Languages and Automata Theory 7

II Year –II-Semester 2018-19 CSE

Step 1: First take the starting state of NFA as the starting state of DFA

Q/∑ 0 1
[q0]

Step 2: Apply the inputs on initial state and represent the corresponding states in
the transition table.

Q/∑ 0 1
[q0] [q0,q1] [q1]

Step 3: For each newly generated state, apply the inputs and represent the
corresponding states in the transition table.

Q/∑ 0 1
[q0] [q0,q1] [q1]

[q0,q1] [q0,q1] [q0,q1]
[q1] Ø [q0,q1]

Step 4: Stop the procedure as there are no more new states being generated.

Step 5: The states which contain any of the final states of the NFA are the final
states of the equivalent DFA.
q1 is the final state in NFA. q1 is included in the state [q0,q1] and [q1]. So [q0,q1] and
[q1] are the final states of the DFA.

Q/∑ 0 1
[q0] [q0,q1] [q1]

 [q0,q1] [q0,q1]

Ø [q0,q1]

Step 6: Represent the transition diagram from the constructed table.

Step 7: To check the equivalence of NFA and DFA, the string accepted by NFA
should be accepted by DFA.

[q0,q1]

[q1]

Formal Languages and Automata Theory 8

II Year –II-Semester 2018-19 CSE

 Let w=1110 be the string accepted by NFA.
Acceptability by NFA:

 1 q1 0 Ø
 1 q1 0 q0
q0 1 q1 1 q0
 1 q0 0 q1
 1 q1
 0 Ø

Acceptability by DFA:
 1 1 1 0
δ([q0],1110) = δ([q1],110) [q0] [q1] [q0,q1] [q0,q1] [q0,q1]

 = δ([q0,q1],10)

 = δ([q0,q1],0)

 = [q0,q1] � F

Step 8: Write the tuple representation from the obtained DFA.
 DFA M' = (Q,∑, δ,q0,F)
 where Q = {[q0], [q0,q1], [q1] }

 ∑ = {0, 1}

 δ - transition function

 [q0] - initial state
 F = {[q0], [q0,q1]}

Minimization of Finite Automata:
Two states ql and q2 are equivalent (denoted by q1 ≡ q2) if both δ(q1, x) and δ(q2, x)

are final states. or both of them are nonfinal states for all x � ∑*.

Two states q1 and q2 are k-equivalent (k ≥ 0) if both δ(q1, x) and δ(q2, x) are final

states or both nonfinal states for all strings x of length k or less. In particular, any

two final states are 0-equivalent and any two nonfinal states are also 0-equivalent.

Construction of Minimum Automaton:
Step 1: (Construction of π0)· By definition of 0-equivalence, π0 ={Q10, Q20 } where

Q10 is the set of all final states and Q20 =Q - Q10.

Step 2: (Construction of πk+1 from πk).

Formal Languages and Automata Theory 9

II Year –II-Semester 2018-19 CSE

 Let Qik be any subset in πk . If q1 and q2 are in Qik , they are (k + 1)-

equivalent provided δ (q1,a) and δ(q2,a) are k-equivalent.

 Find out whether δ (q1, a) and δ (q2, a) are in the same equivalence class in

πk for every a � ∑. If so q1 and q2 are (k + 1)-equivalent.

 In this way, Qik is further divided into (k + 1)-equivalence classes. Repeat

this for every Qik in πk to get all the elements of πk+1.

Step 3: Construct πn for n = 1, 2, until πn = πn+1.

Step 4: (Construction of minimum automaton). For the required minimum state

automaton, the states are the equivalence classes obtained in step 3. i.e. the

elements of πn The state table is obtained by replacing a state q by the

corresponding equivalence class [q].

Example:
Construct a minimum state automaton equivalent to the finite automaton.

Solution:
It will be easier if we construct the transition table.

Formal Languages and Automata Theory 10

II Year –II-Semester 2018-19 CSE

Step 1: Construction of π0

 π0 = {Q10, Q20 }

 where Q10 = F = {q2} Q20 = Q- Q10

 ∴ π0 = {{q2}, {q0,q1,q3,q4,q5,q6,q7}}

Step 2: The {q2} in π0 cannot be further partitioned. So, Q11 = {q2}.

Compare q0 with q1, q3,q4,q5,q6 and q7.

Consider qo and q1 � Q20.

 The entries under the 0- column corresponding to qo and q1 are q1 and q6;

they lie in Q20.

 The entries under the 1-column are q5 and q2. q2 � Q10 and q5 � Q20.

Therefore qo and q1 are not 1- equivalent.

Q/∑ 0 1

q0 q1 q5

q1 q6 q2

Consider q0 and q3

Q/∑ 0 1

q0 q1 q5

q3 q2 q6

Formal Languages and Automata Theory 11

II Year –II-Semester 2018-19 CSE

The entries under the 0- column corresponding to qo and q3 are q1 and q2; q1 �

Q20 and q2 � Q10. The entries under the 1-column are q5 and q6; they lie in Q20.

Therefore qo and q3 are not 1- equivalent

Similarly, qo is not 1-equivalent to q5 and q7.

Consider q0 and q4

Q/∑ 0 1

q0 q1 q5

q4 q7 q5

 The entries under the 0- column corresponding to qo and q4 are q1 and q7;

they lie in Q20.

 The entries under the 1-column are q5 and q5; they lie in Q20. Therefore qo

and q1 are 1- equivalent.

Similarly, qo is 1-equivalent to q6.

{qo. q4, q6} is a subset in π1.

So, Q21 = {q0,q4,q6}

 Repeat the construction by considering q1 and anyone of the state's q3, q5,

q7. Now, q1 is not 1-equivalent to q3 or q5 but 1-equivalent to q7.

Hence, Q31 = {q1,q7}.

 The elements left over in Q20are q3 and q5. By considering the entries under

the 0-column and the 1-column, we see that q3 and q5 are 1-equivalent.

So Q41 = {q3, q5}.

Therefore, π1 = {{q2}. {qo, q4, q6}. {q1, q7}, {q3, q5}}

Step 3: Construct πn for n = 1, 2, until πn = πn+1.
 Calculate 2-equivalent, π2.

 π2 = {{q2}, {qo,q4}, {q6}, {q1,q7}, {q3,q5}}

Similarly calculate 3-equivalent, π3.

 π3 = {{q2}, {qo,q4}, {q6}, {q1,q7},{q3,q5}}

Formal Languages and Automata Theory 12

II Year –II-Semester 2018-19 CSE

As π2 = π3, π2 gives us the equivalence classes.

Step 4: Construction of minimum automaton.

 M' = (Q',{0,1},δ',q0',F')

 where Q' = {[q2]. [q0, q4], [q6], [q1, q7], [q3, q5]}

 q0' = [q0, q4]

 F' = [q2]

 δ' is given by

Equivalence between two FSM’s:
Let M and M’ be two FSM’s over ∑ .We construct a comparison table consisting of

n+1 columns where n is the number of input symbols.

Step 1: 1st column consisting of a pair of states of form (q, q’) where q belongs to M

and q’ belongs M’.

Step 2: If (q, q’) appears in the same row of 1st column then the corresponding

entry in a column (a belongs to ∑) is (r,r’) where (r,r’) are pair from q and q’ on a.

Formal Languages and Automata Theory 13

II Year –II-Semester 2018-19 CSE

Step 3: A table is constructed by starting with a pair of initial states q0, q0’ of M

and M’. We complete construction by considering the pairs in 2nd and subsequent

columns which are not in the 1st column.

(i) if we reach a pair (q,q’) such that q is final states of M and q’ is non-final

state of M’ i.e. terminate contruction and conclude that M and M’ are not

equivalent.

(ii) if construction is terminated when no new element appears in 2nd and

subsequent columns which are not in 1st column. Conclude that M and M’

are equivalent.

Example:
Check whether the given two finite automata’s are equivalent or not.

Solution:
q1 is initial state of M1 and q4 is initial state of M2 ,make them a pair and place it

in 1st row of the transition table.

Comparison table

Q/∑ c d

(q1,q4) (q1,q4) (q2,q5)

(q2,q5) (q3,q4)

Here q3 is non-final state and q4 is final state.

Therefore, we stop constructing comparison table and conclude that the two given

Finite Automata’s are not equivalent.

Moore Machine
A Moore machine is a six tuple (Q, ∑, ∆, δ, q0, λ)
where

Formal Languages and Automata Theory 14

II Year –II-Semester 2018-19 CSE

 Q is a set of states,

 Σ is the alphabet,

 δ is the transition function that maps each pair consisting of a state and a

symbol in Σ to Q i.e. .Q X Σ -> Q

 q0 is the initial state,

 ∆ is output alphabet

 λ is a mapping from Q to ∆ giving the output associated with each state

Note: For a Moore machine if the input string is of length n, the output string is of

length n + 1. The first output is λ (qo) for all output strings.

Mealy Machine
A Mealy machine is a six tuple (Q, ∑, ∆, δ, q0, λ)
where

 Q is a set of states,

 Σ is the alphabet,

 δ is the transition function that maps each pair consisting of a state and a

symbol in Σ to Q i.e. .Q X Σ -> Q

 ∆ is output alphabet

 q0 is the initial state,

 λ maps Q x ∑ to ∆ i.e., λ(q,a) gives the output associated with the transition

from state q on input a

Note: In the case of a Mealy machine if the input string is of length n , the output

string is also of the same length n.

Example:

 The given transition diagram is moore machine because each state is

associated with output.

 In the below diagram q0 is representing 0 output, q1 is is representing 1

output and q2 is representing 2 output.

λ (q0) =0 λ (q1)=1 λ (q2)=2

Formal Languages and Automata Theory 15

II Year –II-Semester 2018-19 CSE

w=011 the output is 0010

q0 0 q0 1 q1 1 q0 Transitions

0 0 1 0 Outputs

Example:
 The given transition diagram is mealy machine because output depends on

present state and present input.
 In the below diagram

λ (q0,0)= 0 λ (q1,0)= 2 λ (q2,0)= 0
λ (q0,1)= 1 λ (q1,1)= 0 λ (q2,1)= 2

w=011 the output is 010

q0 0 q0 1 q1 1 q0 Transitions

 0 1 0 Outputs

Example:

1. Design Moore machine to determine the residue mod 3 for each binary
string treated as a binary integer.

Moore machine calculating residue mod 3

Moore Table

Present
State

Next State Output
0 1

Formal Languages and Automata Theory 16

II Year –II-Semester 2018-19 CSE

q 0 q0 q1 0

q1 q2 q0 1

q2 q1 q2 2

Tuple Representation:

Q={q0,q1,q2} ∆={0,1,2} ∑={0,1}

q0={q0}

λ :λ (q0)=0 δ: δ(q0,0) = q0 δ(q0,1) = q1

 λ (q1)=1 δ(q1,0) = q2 δ(q1,1) = q0

 λ (q2)=2 δ(q2,0) = q1 δ(q2,1)= q2

Example:
1. Design Mealy machine to determine the residue mod 3 for each binary
string treated as a binary integer.

 Mealy Table:

Present
State

Next State Next State
0 Output 1 Output

q 0 q0 0 q1 1

q1 q2 2 q0 0

q2 q1 1 q2 2

Tuple Representation:
Q={q0,q1,q2} ∆={0,1,2} ∑={0,1}

q0={q0}

λ: λ (q0,0)=0 δ: δ(q0,0) = q0 δ(q0,1) = q1

Formal Languages and Automata Theory 17

II Year –II-Semester 2018-19 CSE

 λ (q0,1)=1 δ(q1,0) = q2 δ(q1,1) = q0

 λ (q1,0)=2 δ(q2,0) = q1 δ(q2,1)= q2

 λ (q1,1)=0

 λ (q2,0)=1

 λ (q2,1)=2

Moore to Mealy Conversion:
If M1= (Q,∑,∆,δ,q0, λ) is a Moore machine, then there is a Mealy machine M2
equivalent to Ml.

Procedure:

 Let M2 = (Q,∑,∆,δ,q0, λ') and define λ' (q, a) to be λ (δ (q, a)) for all states q

and input symbols a.

 Then M l and M2 enter the same sequence of states on the same input, and

with each transition M2 emits the output that Ml associates with the state

entered.

Example:

Construct a Mealy Machine which is equivalent to the Moore machine given
by table below.

Present
State

Next State Output
0 1

q 0 q3 q1 0

q1 q1 q2 1

q2 q2 q3 0

q3 q3 q 0 0

Solution:
λ' (q, a) to be λ(δ (q, a))

λ' (q0,0) =λ(δ (q0, 0)) λ' (q0,1) =λ(δ (q0, 1))

 =λ (q3) =λ (q1)

 =0 =1

λ' (q1,0) =λ(δ (q1, 0)) λ' (q1,1) =λ(δ (q1, 1))

 =λ (q1) =λ (q2)

Formal Languages and Automata Theory 18

II Year –II-Semester 2018-19 CSE

 =1 =0

λ' (q2,0) =λ(δ (q2, 0)) λ' (q1,1) =λ(δ (q2, 1))

 =λ (q2) =λ (q3)

 =0 =0

λ' (q3,0) =λ(δ (q3, 0)) λ' (q3,1) =λ(δ (q3, 1))

 =λ (q3) =λ (q0)

 =0 =0

Mealy Table:

Present
State

Next State Next State
0 output 1 Output

q 0 q3 0 q1 1

q1 q1 1 q2 0

q2 q2 0 q3 0

q3 q3 0 q 0 0

Mealy to Moore Conversion:
If M1= (Q, Σ, Δ, δ, λ, q0) is a Mealy machine, then there is a Moore machine M2

equivalent to Ml.
Procedure:

 Determine the number of different output associated with qi in the next state

column.

 We split qi into different states according to different output associated with

it

For example: q2 is associated with two different outputs 0 and 1, so we split

q2 into q20 and q21.

Example:

Construct Moore machine for the given mealy machine.

Formal Languages and Automata Theory 19

II Year –II-Semester 2018-19 CSE

Solution:
 We get two states (q1 and q2) that are associated with different outputs (0

and 1). so we split both states into q10 , q11 and q20, q21.

 Whole row of q1 is copied to q10, q11 and whole row of q2 is copied to q20 and

q21 of the sample transition table of mealy machine.

 The outputs of the next state columns of q1 and q2 are depend on the

previous output. For ex. in the first row, q1 becomes q11 because the out of q1

is 1 in the fourth row, q2 becomes q21 because the output of the q2 is 1 and

in the subsequent column q2 becomes q20 because the output of q2 in that

column was 0. and so on

Formal Languages and Automata Theory 20

II Year –II-Semester 2018-19 CSE

UNIT-II
Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1. What is the complement of the language accepted by the NFA shown below?
 []

2. NFA with ε can increase the processing time of NFA [True/False]
3. _______________ of a state is the set of states that can be reached by ε-

transitions.
4. The number of states in DFA is __________ the number of states in NFA for the

same language. []
(A) greater than (B) less than (C) equal to (D) none

5. Given a Non-deterministic Finite Automaton (NFA) with states p and r as initial
states and final states respectively and transition table as given below:

The minimum number of states required in Deterministic Finite Automaton
(DFA) equivalent to NFA is []
(A) 5 (B) 4 (C) 3 (D) 2

6. The output in ___________ machine is associated with transition. []
(A) Moore (B) Mealy (C) both (D) DFA

7. The two states q1 and q2 are said to be __________________ if both δ(q1,a) and
(q2,a) reach final states or both of them reach non final states for all a∈ ∑.

8. For a Moore machine if the input string is of length n, the output string is of
length n + 1. [True/False]

9. In a Mealy machine if the input string is of length n, the output string is of
length ___________.
 (A) n (B) n+1 (C) 2n (D) n+2

10. Choose incorrect statement. []
(A) Moore and Mealy machines are FSM’s with output capability.
(B) Any given Moore machine has an equivalent Mealy Machine.
(C) Any given Mealy machine has an equivalent Moore Machine.

Formal Languages and Automata Theory 21

II Year –II-Semester 2018-19 CSE

(D) Moore Machine in not a FSM.

11. All Moore Machine have an equivalent Finite Automata. [True/False]
12. Which of the following statement is true? []

(A) A Mealy machine has no terminating state
(B) A Moore machine has no terminating state
(C) Converting from Mealy into Moore machine and vice versa is possible
(D) All of these

13. The output alphabet in Moore machine can be represented formally as
(A) ∆ (B)∑ (C) δ (D) λ []

14. Consider the table []

Present
State

Next State
0 1
state output state output

q0 q0 0 q1 1

q1 q2 2 q0 0

q2 q1 1 q2 2

 If the initial state is q0. What is the output sequence for the string 101?

(A) 0012 (B) 122 (C) 112 (D) 0122

SECTION-B
 SUBJECTIVE QUESTIONS
1. Consider the following finite automaton with �-moves Obtain equivalent

automaton without �-moves.

2. Construct NFA for the set of strings in (0+1)* such that some two 0’s are

separated by a string whose length is 4i, for some i≥0.
3. Construct a NFA without ∈ for the following NFA with ∈.

Formal Languages and Automata Theory 22

II Year –II-Semester 2018-19 CSE

4. Define ε-closure. Find the ε-closures of the each state in the following ε-NFA.

5. Construct an equivalent DFA for a NDFA M = ({q1, q2, q3}, q1, q3) where δ is

given by
 δ(q1,0)={ q2,q3 }, δ(q1,1)={ q1 },
 δ(q2,0)={ q1,q2 }, δ(q2,1)= ∅
 δ(q3,0)={ q2} , δ(q3,1)={ q1,q2 }

6. Construct an equivalent DFA for the following NFA

7. Verify whether the following FA is equivalent?

8. Find the equivalence between M1 & M2

Formal Languages and Automata Theory 23

II Year –II-Semester 2018-19 CSE

9. Construct the minimum state automaton equivalent to the transition diagram

10. Construct a minimum state automaton equivalent to a given automaton M

whose transition table is defined by table

11. Explain about the finite automata with outputs in detail.
12. Construct a Mealy machine which is equivalent to the Moore machine

defined by table

13. Construct a Moore machine equivalent to the Mealy machine M defined by

Formal Languages and Automata Theory 24

II Year –II-Semester 2018-19 CSE

14. Design a Mealy machine that uses its states to remember the last symbol read
and emits output ‘y’ whenever current input matches to previous one, and
emits n otherwise

15. Design a Moore machine to determine the residue mod 4 for each binary
string treated as integers.

16. Construct a Moore machine that takes set of all strings over {a,b} as input and
prints ‘1’ as output for every occurrence of ‘ab’ as a substring.

17. Construct a Mealy machine which can output EVEN or ODD according as the
total number of 1’s encountered is even or odd. The input symbols are 0 and
1.

18. Give Mealy and Moore machines for the following process: For input from
(0+1)*, if the input ends in 101, output A; If the input ends in 110 output B;
otherwise output C.

SECTION-C
QUESTIONS AT THE LEVEL OF GATE

1. Let denote the transition function and denote the extended transition
function of the ε-NFA whose transition table is given below:

 [GATE 2017(Set 2)]

Then (q2,aba) is []
(A) ∅ (B) {q0,q1,q3} (C) {q0,q1,q2} (D) {q0,q2,q3}

2. A deterministic finite automation (DFA)D with alphabet ={a,b} is given below

 [GATE 2011]
Which of the following finite state machines is a valid minimal DFA which
accepts the same language as D? []

Formal Languages and Automata Theory 25

II Year –II-Semester 2018-19 CSE

3. Consider the following finite state automaton []

The minimum state automaton equivalent to the above FSA has the following
number of states [GATE 2007]

 (A) 1 (B)2 (C) 3 (D)4
4. The following diagram represents a finite state machine which takes as input a

binary number from the least significant bit. [GATE 2005]

 Which one of the following is true? []
 (A) It computes 1’s complement of the input number

 (B) It computes 2’s complement of the input number
 (C) It increments the input number
 (D) It decrements the input number

5. The finite state machine described by the following state diagram with A as
starting state, where an arc label is x/y and x stands for 1-bit input and y
stands for 2-bit output [] [GATE 2002]

Formal Languages and Automata Theory 26

II Year –II-Semester 2018-19 CSE

 (A) Outputs the sum of the present and the previous bits of the input
 (B) Outputs 01 whenever the input sequence contains 11
 (C) Outputs 00 whenever the input sequence contains 10
 (D) None of the above

6. Given an arbitrary non-deterministic finite automaton(NFA) with N states, the
maximum number of states in an equivalent minimized DFA is atleast
(A) N2 (B) 2N (C) 2N (D) N! [] [GATE 2001]

Formal Languages and Automata Theory 1

II Year –II-Semester 2018-19 CSE

UNIT-III

Objective:
To familiarize how to employ regular expressions.

Syllabus:
Regular sets, regular expressions, identity rules, construction of finite

Automata for a given regular expressions and its inter conversion, pumping

lemma of regular sets, closure properties of regular sets (proofs not

required),applications of regular languages.
Learning Outcomes:
Students will be able to:

 understand the regular sets and how to represent the regular

expressions.

 construct finite Automata for a given regular expression and viceversa.

 list closure properties of regular languages.

 understand the different applications of regular languages.

Learning Material
Regular set:
A language is a regular set (or just regular) if it is the set accepted by some

finite automaton.

Example:
L= {0, 1, 10, 00, 01, 11, 000, 101, } is a regular set representing

any no of 0’s and any no of 1’s.

Regular expression:

The languages accepted by finite automata are easily described by simple

expressions called regular expressions.

Let Σ be an alphabet. The regular expressions over Σ and the sets that they

denote are defined recursively as follows.

1) Ø is a regular expression and denotes the empty set.

2) ε is a regular expression and denotes the set { ε }.

Formal Languages and Automata Theory 2

II Year –II-Semester 2018-19 CSE

3) For each a in Σ, a is a regular expression and denotes the set {a}.

4) If r and s are regular expressions denoting the languages R and S,

respectively, then

 (r + s), (rs), and (r*) are regular expressions that denote the sets R U S, RS,

and R*, respectively.

Some Examples on Regular expressions

1.Write regular expressions for each of the following languages over
∑={0, 1}.

a) The set representing {00}.

 00
b) The set representing all strings of 0's and 1's.

 (0+1)*
c) The set of all strings representing with at least two consecutive 0’s.

 (0 + 1)*00(0 + 1)*
d) The set of all strings ending in 011.

 (0 + 1)*011
e) The set of all strings representing any number of 0's followed by any

number of 1’s followed by any number of 2's.

 0*1*2*
f) The set of all strings starting with 011.

 011 (0 + 1)*
2.Write regular expressions for each of the following languages over
∑={a, b}.

 a) The set of all strings ending with either a or bb.

 (a+b)* (a + bb)
 b) The set of strings consisting of even no. of a’s followed by odd no. of

b’s.
 (aa)*(bb)*b

 c) The set of strings representing even number of a’s.

 (b* a b* a b*) * + b*

Formal Languages and Automata Theory 3

II Year –II-Semester 2018-19 CSE

Identity Rules Related to Regular Expressions

Given r, s and t are regular expressions, the following identities hold:

 ∅* = ε

 ε* = ε

 r+ = rr* = r*r

 r*r* = r*

 (r*)* = r*

 r + s = s + r

 (r + s) + t = r + (s + t)

 (rs)t = r(st)

 r(s + t) = rs + rt

 (r + s)t = rt + st

 (ε + r)* = r*

 (r + s)* = (r*s*)* = (r* + s*)* =(r+s*)*

 r + ∅ = ∅ + r = r

 r ε = ε r = r

 ∅ L = L ∅ = ∅

 r + r = r

 ε + rr* = ε + r*r = r*

Construction of Finite automata for a given regular expression

Formal Languages and Automata Theory 4

II Year –II-Semester 2018-19 CSE

Equivalence of Finite Automata and Regular Expressions

 The languages accepted by finite automata are precisely the

languages denoted by regular expressions.

 For every regular expression there is an equivalent NFA with ε -

transitions.

 For every DFA there is a regular expression denoting its language.

Let r be a regular expression. Then there exists an NFA with ε -
transitions that accept L(r).
Zero operators:
The expression r must be ε, Ø, or a for some a in Σ. The NFA’s for zero

operators are

One or more operators:

Let r have i operators. There are three cases depending on the form of r.

Case 1: Union (r = rl + r2.)
There are NFA’s M1 = (Q1, ∑1, δ1, q1, {f1}) and M2=(Q2, ∑2, δ2, q2, {f2})
with L(M1) = L(r1) and L(M2) = L(r2).

Construct

M = (Q1 ∪ Q2 ∪ {q0, f0}, ∑1 ∪ ∑2, δ, q0, {f0}) where δ is defined by

i) δ (q0, ε) = {q1,q2}

ii) δ (q, a) = δ1(q ,a) for q in Q1-{f1} and a in ∑1 ∪ { ε }

iii) δ (q, a) = δ2(q ,a) for q in Q2-{f2} and a in ∑2 ∪ { ε }

iv) δ (f1, ε) = δ1(f2, ε) = { f0 }

Formal Languages and Automata Theory 5

II Year –II-Semester 2018-19 CSE

L(M) = L(M1) ∪ L(M2)

Case 2: Concatenation (r = r1 r2).

Let M1 and M2 be as in Case 1 and construct M = (Q1 ∪ Q2, ∑1 ∪ ∑2, δ,
q1, {f2})

where δ is defined by

i) δ (q, a) = δ1(q ,a) for q in Q1-{f1} and a in ∑1 ∪ { ε }

ii) δ (f1, ε) = {q2}

iii) δ (q, a) = δ2(q ,a) for q in Q2 and a in ∑2 ∪ { ε }

L(M) ={xy| x is in L(M1) and y is in L(M2)} and L(M) = L(M1)L(M2)

Case 3: Closure (r = r1*)

Let M1 = (Q1, ∑1, δ1, q1, {f1}) and L(M1) = r1.

Construct M = (Q1 ∪ {q0,f0}, ∑1 , δ, q0, {f0}), where δ is defined by

i) δ (q0, ε) = δ (f1, ε) = {q1,f0}

ii) δ (q, a) = δ1(q ,a) for q in Q1-{f1} and a in ∑1 ∪ { ε }

Formal Languages and Automata Theory 6

II Year –II-Semester 2018-19 CSE

Example:
1. Construct an NFA for the regular expression 01*+1

Regular expression is of the form r1 + r2, where r1 =01* and r2 = 1.
The automaton for r2 is

Express r1 as r3 and r4, where r3=0 and r4= 1*

The automaton for r3 is

r4 is r5* where r5=1

The NFA for r5 is

To construct an NFA for r4 = r5* use the construction of closure. The

resulting NFA for r4 is

Formal Languages and Automata Theory 7

II Year –II-Semester 2018-19 CSE

Then, for r1 = r3 r4 use the construction of concatenation.

Finally, use the construction of union to find the NFA for r = r1 + r2

Construction of regular expressions for the given finite Automata:
Arden’s Theorem
Let P and Q be two regular expressions over Σ,and if P does not contain

epsilon, then R=Q+RP has a unique solution R=QP*.

Procedure:
Assume the given finite automata should not contain any epsilons.

Step 1: Find the reachability for each and every state in given Finite

automata.

Reachability of a state is the set of states whose edges enter into that state.

Step 2: For the initial state of finite automata ,add epsilon to the

reachability equation.

Step 3: Solve the equations by using Arden’s Theorem.

Step 4: Substitute the results of each state equation into the final state

equation,to get the regular expression for the given DFA.

Formal Languages and Automata Theory 8

II Year –II-Semester 2018-19 CSE

 Example:
1. Construct regular expression for the given finite automaton.

 The given Finite Automata is not having any �’s(epsilons).

Step 1: Find the reachability for each and every state in given Finite

automata.

Reachability of a state is the set of states whose edges enter into that state.

 q0=q0 0 1
 q1= q0 1 + q10 + q2 1 2
 q2= q1 1 + q20 3
Step 2: For the initial state of finite automata, add epsilon to the

reachability equation.

 q0=q0 0 + �
Step 3: Solve the equations by using Arden’s Theorem.

 After applying arden’s theorem for equation 3

 q2=q1 10* 4
 Substitute equation 4 in equation 2

 q1= q0 1 + q10+q1 10*
 q1= q0 1 + q1(0+10*) 5
 Apply arden’s theorem on equation 5

 q1= q01 (0+10*)* 6
 Apply arden’s theorem on equation 1

 q0=q0 0 + �

 q0= � 0* 7
 Substitute equation 7 in equation 6

 q1= � 0* 1 (0+10*)* 8

Step 4: Substitute the results of each state equation into the final state

equation, to get the regular expression for the given DFA.

Formal Languages and Automata Theory 9

II Year –II-Semester 2018-19 CSE

 q2= � 0* 1 (0+10*)* 10*
Therefore, the regular expression for the given DFA is 0* 1 (0+10*)* 10*.

Pumping Lemma for Regular Sets:

 Pumping lemma, which is a powerful tool for proving certain

languages non-regular.

 It is also useful in the development of algorithms to answer certain

questions concerning finite automata, such as whether the language

accepted by a given FA is finite or infinite.

Lemma

Let L be a regular set. Then there is a constant n such that if z is any word

in L, and |z| > n, we may write z=uvw in such a way that |uv| ≤ n, v ≥ 1,

and for all i> 0, uviw is in L. Furthermore, n is no greater than the number

of states of the smallest FA accepting L.

Example:
The set L = {0i2 | i is an integer, i ≥ 1], which consists of all strings of
0’s whose length is a perfect square, is not regular.
Assume L is regular and let n be the integer in the pumping lemma.

Let z = 0n2.

By the pumping lemma, 0n2may be written as uvw, where 1 ≤ |v| ≤ n and

uviw is in L for all i. Let i = 2, n2 < |uv2w| < n2 + n < (n+1)2.

That is, the length of uv2w lies properly between n2 and (n +1)2, and is thus

not a perfect square.

Thus uv2w is not in L, a contradiction.

We conclude that L is not regular.

Closure Properties of Regular Sets:

 The regular sets are closed under union, concatenation, and Kleene

closure.

 The class of regular sets is closed under complementation. That is, if L

is a regular set and L ⊆ ∑*, then ∑* - L is a regular set.

 The regular sets are closed under intersection.

 The class of regular sets is closed under substitution.

Formal Languages and Automata Theory 10

II Year –II-Semester 2018-19 CSE

 The class of regular sets is closed under homomorphism and inverse

homomorphism.

 The class of regular sets is closed under quotient with arbitrary sets.

Formal Languages and Automata Theory 11

II Year –II-Semester 2018-19 CSE

UNIT-III
Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1. The languages accepted by finite automata are easily described by simple

expressions called____________.

2. A language is a _________________ if it is the set accepted by some finite

automaton.

3. What is the solution for equation R=Q+RP (if P and Q are RE and P does

not contain ε)? []

(a) R=QP* (b) R=QP (c) R=PQ* (d) R=P*Q*

4. ∅ + R =_____________.

5. ∅* =__________________.

6. ε*=_______________.

7. ε + r r*=r* [True / False]

8. Pumping lemma is generally used for proving []

 (a) a given grammar is regular

 (b) a given grammar is not regular

 (c) whether two given regular expressions are equivalent

 (d) none of the above

9. Regular sets are closed under []

 (a) Union (b) concatenation

 (c) Kleene closure (d) All of the above

10. a + b denotes the set_____________________. []

 (a) {a, b} (b) {ab} (c) { a } (d) {b}

11. The set of all strings of {0, 1} having exactly two 0’s is []

 (a) 1*01*01* (b) {(0+1) *} (c) {11+0}* (d) {00+11}*

12. The regular expression to represent all strings with length atmost 2 over

{a,b} is_______.

 (a) ε (b) ε+(a+b)+(a+b).(a+b) (c) (a+b) (d) (a+b).(a+b)

Formal Languages and Automata Theory 12

II Year –II-Semester 2018-19 CSE

13. Which one of the following languages over the alphabet {0 ,1} is

described by the regular expression: (0+1)*0(0+1)*0(0+1)*? []

 (a) The set of all strings containing the substring 00.

 (b) The set of all strings containing atmost two 0’s.

 (c) The set of all strings containing atleast two 0’s.

 (d) The set of all strings that begin and end with either 0 or 1.

14. Consider the languages L1 = � and L2 = {0}. Which one of the following

represents L1 L2 * + L1* []

(A) { � } (B) Ø (C) 0* (D) { � ,0}

15. What is the regular expression for the given DFA?

.

 (a) (0+1)* (b) 0(0+1)* (c) 0 (d) (0+1)*0

16. Which of the following languages are not regular? []

 (a) L= an | n>=1 (b) L=anbm | n,m>=1 (c) anbn | n>=1 (d) a2n | n>=0

17. What is the regular expression for the given DFA? []

 (a) 0*1+ (b) 0*1* (c) 1*0* (d) 1*0+

SECTION-B
 SUBJECTIVE QUESTIONS
1. Define regular set and regular expression.

2. State Arden’s Theorem.

3. List the closure properties of Regular Languages.

4. Explain pumping lemma for regular languages with an example.

5. Write the regular expression for all strings ending in 1101 over the

alphabet {0, 1}.

6. Design a ε-NFA for the regular expression a*bc | ab* |c*.

Formal Languages and Automata Theory 13

II Year –II-Semester 2018-19 CSE

7. Construct NFA with ε-moves for the regular expression 10+(0+11)0*1

8. Construct Finite automata for the regular expression 1(01+10)*00.

9. What is pumping lemma for regular sets? Show that the language

L={anbncn | n>=1 } is not regular.

10. Construct finite automation to accept the regular expression (0+1)*

(00+11)(0+ 1)*.

11. Using pumping lemma, show the following language is not regular:

L= {w � {0,1}*|the number of 0’s in w is a perfect square}

12. Construct the regular expression for the following DFA.

13. Construct regular expression for the following DFA.

14. Construct regular expression for the given DFA.

SECTION-C
QUESTIONS AT THE LEVEL OF GATE
1. The number of states in the minimum sized DFA that accepts the

language defined by the regular expression (0+1)*(0+1)(0+1)* is_____________.

 [GATE 2016 Set-B]
2. Which of the regular expressions given below represent the following

DFA? [] [GATE 2014 Set-1]

Formal Languages and Automata Theory 14

II Year –II-Semester 2018-19 CSE

 I) 0*1(1+00*1)*

 II) 0*1*1+11*0*1

 III) (0+1)*1

 (a) I and II only (b) I and III only

 (c) II and III only (d) I, II and III only

3. Consider the languages L1 = Ø and L2 = {a}. Which one of the following

represents L1 L2 * U L1* [] [GATE2013]
(a) { � } (b) Ø (c) a* (d) { � ,a}

4. Let L = {w ∈ (0 + 1)*|w has even number of 1s}, i.e. L is the set of all bit

strings with even number of 1s. Which one of the regular expressions

below represents L? [][GATE 2010]
(a) (0*10*1)* (b) 0*(10*10*) *

 (c) 0*(10*1*)*0* (d) 0*1(10*1)*10*
5. The language accepted by this automaton is given by the regular

expression [][GATE 2007]
 (a) b*ab*ab*ab* (b) (a+b)* (c) b*a(a+b)* (d) b*ab*ab*

6. Consider the language L=(111+11111)*.The minimum number of states in

any DFA accepting this language is: [] [GATE 2006]
 (a)3 (b) 5 (c) 8 (d) 9

Formal Languages and Automata Theory 1

II Year –II-Semester 2018-19 CSE

UNIT-IV

Objective:
To understand regular grammars and context free grammars.

Syllabus:
Chomsky hierarchy of languages, Regular grammars- right linear and left

linear grammars, Equivalence between regular linear grammar and FA and

its inter conversion, Context free grammar, derivation trees, Sentential

forms, right most and left most derivation of strings

Learning Outcomes:
Students will be able to:

 understand Chomsky hierarchy of languages.

 understand and construct the regular grammar for the given regular

language or regular expression.

 convert Regular Grammar into equivalent DFA and viceversa.

 construct Context free grammar for the given language.

 construct right most, left most derivation and derivation trees for the

given string and grammar.
 Learning Material

Chomsky hierarchy of languages:
The four classes of languages are often called the Chomsky hierarchy, after

Noam Chomsky, who defined these classes as potential models of natural

languages.

Formal Languages and Automata Theory 2

II Year –II-Semester 2018-19 CSE

Chomsky classifies the grammar into four types:

Grammar Languages Automaton
Production
rules

Type 0

Recursively

enumerable/

Phrase

Structured

Turing

machines
αβ

Type 1
Context-

sensitive

Linear-bound

automata

αβ

|α|<=|β|

Type 2 Context-free
Push-down

automata
Aα

Type 3 Regular

Finite-state

automata

A w

A wB

A Bw

Regular Grammar:

A right- or left-linear grammar is called a regular grammar.

Right-Linear Grammar:
If all productions of a grammar are of the form A  wB or A  w, where A

and B are variables and w is a (possibly empty) string of terminals, then we

say the grammar is right-linear.

Example:
Represent the language 0(10)* by the right-linear grammar.
The language generated by the given Regular Expression is

L = {0, 010, 01010, 0101010,}

Right-Linear Grammar:

S0A

Formal Languages and Automata Theory 3

II Year –II-Semester 2018-19 CSE

A10A | ε

Left-Linear Grammar:
If all productions are of the form A  Bw or A  w, we call it left-linear.

Example:
Represent the language 0(10)* by the left-linear grammar.
The language generated by the given Regular Expression is

L = {0, 010, 01010, 0101010,}

Left-Linear Grammar:

SS10 | 0

Equivalence of regular grammars and finite automata:

A language is regular if and only if it has a left-linear grammar and if and

only if it has a right-linear grammar.

Construction of a Regular Grammar for a given DFA:
Let M = ({q0, q1... qn} , ∑, δ, qo, F). We construct G as G = ({A0, A1,,

An},∑, P, A0)
where P is defined by the following rules:

(i) Ai  aAj is included in P if δ(qi, a) = qj ∉ F.

(ii) Ai  aAj and Ai  a are included in P if δ(qi, a) = qj ∈ F.

Note: We can construct only right linear grammar for the given DFA.

If we want to construct left linear grammar for the given DFA, reverse the

edges of the given DFA and interchange initial and final states.

Example:
1. Construct regular grammar (right linear grammar) for the given

DFA.

Given M= ({q0,q1}, {a,b}, δ, qo, {q1})
Construct G= ({A0,A1}, {a,b} ,P, A0) where P is given by

(i) Ai  aAj is included in P if δ(qi, a) = qj ∉ F.

 δ(q0, a) = q0 ∉ F ⇒ A0aA0

Formal Languages and Automata Theory 4

II Year –II-Semester 2018-19 CSE

(ii) Ai  aAj and Ai  a are included in P if δ(qi, a) = qj ∈ F.

 δ(q0, b) = q1∈ F ⇒ A0bA1 and A0b

δ(q1, a) = q1∈ F ⇒ A1aA1 and A1a

δ(q1, b) = q1∈ F ⇒ A1bA1 and A1b

∴ P is given by

A0aA0, A0bA1, A0b

A1aA1, A1a, A1bA1, A1b

Steps to convert Finite Automata to Left Linear Grammar:
Step 1: Reverse all the edges of the given automata and interchange initial

state and final states.

Step 2: Represent the productions using Left Linear Grammar.

Example:
2. Construct left linear grammar for the given DFA.

Step 1: Reverse all the edges of the given automata and interchange

initial state and final states.

 Step 2: Represent the productions using Left Linear Grammar.

 BBa BAa

 BBb Ba

Construction of a DFA for a given Regular Grammar:

Let G = ({A0, A1,, An},∑, P, A0). We construct a DFA M whose

(i) states correspond to variables.

(ii) initial state corresponds to A0.

(iii) transitions in M correspond to productions in P. As the last

production applied in any derivation is of the form Ai a, the

Formal Languages and Automata Theory 5

II Year –II-Semester 2018-19 CSE

corresponding transition terminates at a new state, and this is the

unique final state.

We define M as ({q0, q1... qn, qf} , ∑, δ, qo, {qf}) where δ is defined as

follows:

(i) Each production AiaAj induces a transition from qi to qj with

label a,

(ii) Each production Ak a induces a transition from qk to qf with

label a.

Example:
1. G= ({A0, A1}, {a,b} ,P, A0) where P consists of A0aA1, A1bA1,
A1a, A1bA0. Construct a DFA M accepting L(G).

A0aA1 induces a transition from q0 to q1 with label a.

A1 bA1 induces a transition from q1 to q1 with label b.

 A1bA0 induces a transition from q1 to q0 with label b.

A1a induces a transition from q1 to qf with label a.

M = ({q0, q1, qf} , ∑, δ, qo, {qf}), where q0 and qf correspond to A0 and A1

respectively and qf is the new final state introduced.

2. Construct Finite Automata for the grammar which consists of the
productions
 A aB | bA | b
 B aC | bB
 C aA | bC | a

Formal Languages and Automata Theory 6

II Year –II-Semester 2018-19 CSE

Context-Free Grammar:
A context-free grammar (CFG or just grammar) is denoted G = (V, T, P, S),

where

 V and T are finite sets of variables and terminals, respectively.

 P is a finite set of productions; each production is of the form A  α,

where A is a variable and α is a string of symbols from (V ∪ T)*.

 S is a special variable called the start symbol.

The language generated by G [denoted L(G)] is {w | w is in T* and }.

That is, a string is in L(G) if:

1) The string consists solely of terminals.

2) The string can be derived from S.

We call L a context-free language (CFL) if it is L(G) for some CFG G.

Note: C language is an example for Context Free Language.
Examples:

1. Write CFG for the language L= {an bn | n>=1}.

L= {ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb, ………….}

G = ({S}, {a, b}, P, S)

P: S -> aSb | ab

 (Or)

 S -> aSB

 S -> aB

 B -> b

2. Write CFG for the language L= {an bm | n , m >=1}.

L= {a, b, ab, aab, abb,aabb, aaabbb, aaaabbbb,

aaaaabbbbb,………………………}

G = ({S, A, B}, {a, b}, P, S)

P: S -> AB

A -> aA | a

B -> bB | b

Formal Languages and Automata Theory 7

II Year –II-Semester 2018-19 CSE

3. Write CFG for the language L={aa,ab,ba,bb}

G = ({S, A}, {a, b}, P, S)

P: S -> AA

A -> a | b

4. Write CFG for the language L= { an | n>=0}.

L= { ε, a, aa, aaa, aaaa, aaaaa, aaaaaa,………………………}

G = ({A}, {a}, P, A)

P: A -> aA | ε

5. Write CFG for the regular expression (a+b)*.

L= { ε, a, b, aa, ab , ba, bb, aaa,abb,aba,………………………}

G = ({S}, {a, b}, P, S)

P: S -> aS | bS | ε

6. Write CFG to generate all strings of {a, b} whose length is atleast 2.

L= { aa, ab , ba, bb, aaa,abb,aba,………………………}

G = ({S, A, B}, {a, b}, P, S)

P: S -> AAB

 A -> a | b

 B -> aB | bB | ε

7. Write CFG to generate all strings of {a, b} whose length is atmost 2.

L= { ε , a,b, aa, ab , ba, bb}

G = ({S, A}, {a, b}, P, S)

P: S -> AA

 A -> a | b | ε

8. Write CFG to generate palindromes over {a, b}.

L= { ε , a,b, aa,bb,aba,bab,aaaa,abba,………………}

G = ({S}, {a, b}, P, S)

P: S -> aSa | bSb

 S -> a | b | ε

 9. Write CFG to generate equal number of a’s and b’s.

L= { ab, ba,aabb, abab, bbaa,baba,………………………}

G = (V, T, P, S), where V = {S, A, B}, T = {a, b},S and P .

P: S -> aB A -> bAA

Formal Languages and Automata Theory 8

II Year –II-Semester 2018-19 CSE

S -> bA B ->b

A ->a B ->bS

A ->aS B -> aBB

Sentential Form:
A string of terminals and variables α is called a sentential form if

Derivation:
Derivation is the process of applying productions repeatedly to expand non-

terminals in terms of terminals or non-terminals, until there are no more

non-terminals.

A derivation can be either Leftmost derivation or Right most
derivation.
Leftmost derivation:
If at each step in a derivation a production is applied to the leftmost

variable, then the derivation is said to be leftmost.

Example:
Consider the grammar G = ({S, A}, {a, b}, P, S), where P consists of

S aAS | a

A SbA|SS|ba

The corresponding leftmost derivation is

S => aAS => aSbAS => aabAS => aabbaS => aabbaa.

Rightmost derivation:
A derivation in which the rightmost variable is replaced at each step is said

to be rightmost.

Example:
Consider the grammar G = ({S, A}, {a, b}, P, S), where P consists of

S aAS | a

A SbA|SS|ba

The corresponding rightmost derivation is

S => aAS => aAa => aSbAa => aSbbaa => aabbaa.

Formal Languages and Automata Theory 9

II Year –II-Semester 2018-19 CSE

Note:“If w is in L(G) for CFG G, then w has at least one parse tree, and

corresponding to a particular parse tree, w has a unique leftmost and a

unique rightmost derivation.”

Derivation Trees (or) Parse tree:
The derivations in a CFG can be represented using trees. Such trees

representing derivations are called derivation trees.

Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) tree for G if:

1) Every vertex has a label, which is a symbol of V ∪ T ∪ {ε}.

2) The label of the root is S.

3) If a vertex is interior and has label A, then A must be in V.

4) If n has label A and vertices n1, n2, n3, ..., nk are the sons of vertex

n, in order from the left, with labels X1, X2,, Xk, respectively,

then AX1X2Xk must be a production in P.

5) If vertex n has label ε, then n is a leaf and is the only son of its

father.

Example:
Consider the grammar G = ({S, A}, {a, b], P, S), where P consists of

S aAS | a
A SbA|SS|ba

Construct a derivation tree for the string “aabbaa”
A derivation tree is a natural description of the derivation of a particular

sentential form of the grammar G. If we read the labels of the leaves from left

to right, we have a sentential form. We call this string the yield of the

derivation tree.

S => aAS => aSbAS => aabAS => aabbaS => aabbaa.

Note: Some leaves could be labelled by ε.

Formal Languages and Automata Theory 10

II Year –II-Semester 2018-19 CSE

UNIT-IV
Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1. The C language is []
a) A context free language b) A context sensitive language
c) A regular language d) None

2. Every regular grammar is context free grammar. (True | False)

3. The finite automata accepts the following language: []
 a) Context free language b) regular language
 c) Context sensitive language d) all of the above

4. Context-free grammar can be recognized by []
 a) Finite Automata b) Linear bounded Automata
 c) Push down Automata d) both (b) and (c)

5. The language accepted by a Turing Machine: []
 a) Type 0 b) Type 1 c) Type 2 d) Type 3

6. Match the following

1. Context Free Language a. Turing Machine []
2. Recursively Enumerable b. Finite Automata []
3. Regular Language c. Linear Bounded Automata []
4. Context Sensitive Language d. Push Down Automata []

7. For every right linear grammar, there will be an equivalent FA.

[True/ False]
8. Recursively Enumerable language is also called as _________________.

9. A context free grammar is []
 a) Type 0 b) Type 1 c) Type 2 d) Type 3

10. Which word can be generated by S->d| bA ,A->d |ccA []
 a) bccccd b) aabccd c) ababccd d) abbbd

11. Which of the following strings is in the language defined by grammar

 S 0A , A 1A | 0A | 1 []
 a) 01100 b) 00101 c) 10011 d) 11111

12. Recognize the CFL for the given CFG. []

 S-> aB| bA,
 A-> a|aS|bAA,
 B-> b|bS|aBB

 a) strings contain equal number of a's and equal number of b's.
 b) strings contain odd number of a's and odd number of b's.

Formal Languages and Automata Theory 11

II Year –II-Semester 2018-19 CSE

 c) strings contain odd number of a's and even number of b's.
 d) strings contain even number of a's and even number of b's
13. Given the following productions of a grammar: []

SaA| aBB AaaA | ε B bB| bbC C B
Which of the following is true?

a) The language corresponding to the given grammar is a set of even
number of a’s.

b) The language corresponding to the given grammar is a set of odd
number of a’s.

c) The language corresponding to the given grammar is a set of even
number of a’s followed by odd number of b’s.

d) The language corresponding to the given grammar is a set of odd
number of a’s followed by even number of b’s.

14. A regular grammar for the language L={ anbm | n is even and m is
even} is []

 a) SaSb | X; XbXa | ε b) SaaS | X; X bSb| ε
c) SaSb | X; X Xab| ε d) SaaS | X; X bbX|ε

15. Which of the regular expressions corresponds to this grammar?

S AB | AS A a | aA Bb
a) (aa)*b b) aa*b c) (ab)* d) a(ab)* []

16. Identify the language generated by the following grammar []
SaS | bS | abA
AaA | bA | ε

a) L= x | ab is a substring of x, x ∈{a,b}*
b) L= x | a is a substring of x, x ∈{a,b}*
c) L= x | b is a substring of x, x ∈{a,b}*
d) L= x | ba is a substring of x, x ∈{a,b}*

17. The CFG SaS | bS | a | b is equivalent to the regular expression

a) (a*+b)* b) (a+b)* c) (a+b) (a+b)* d) (a+b)(a+b) []

18. The regular grammar for the given FA is []

a) AaA | bB | a c) AaA | bB | b

BbA | aB | b BbA | aB | a
b) AaA | bB | ε d) AbA | aB | a

BbA | aB | ε BaA | bB | b

Formal Languages and Automata Theory 12

II Year –II-Semester 2018-19 CSE

SECTION-B
 SUBJECTIVE QUESTIONS
1. Show the Venn diagram of Chomsky hierarchy language and their

counterpart automata.

2. Define Regular grammar with an example.

3. Define Context Free Grammar with an example.

4. What is sentential form? Explain with an example.

5. Explain derivation tree with an example.

6. Define LMD and RMD.

7. Show that id+id*id can be generated by two distinct derivation trees for
the grammar

 E  E+E | E*E | (E) | id

8. Design CFG for odd palindromes?

9. Let G be the grammar
 S aB | bA
 A a | aS | bAA
 B  b | bS | aBB.
 For the string aaabbabbba find a
 i. Left most derivation
 ii. Right most derivation
 iii. Parse Tree

10. Obtain the right linear grammar for the following FA.

11. Obtain a Right Linear Grammar for the language L = {an bm | n>=2 ,

m>=3}

12. Obtain the left linear grammar for (11+01)*101.

13. Convert the following DFA to Regular grammar

14. Is the following grammar ambiguous?
 S AB|aaB
 A> a|Aa
 Bb

Formal Languages and Automata Theory 13

II Year –II-Semester 2018-19 CSE

15. Find the language generated by the following grammar.
 SSS Saa Sε

16. Draw a derivation tree for the string abaaba for the CFG given by G

where P = {SaSa SbSb Sa ⃒ b ⃒Є }

17. Obtain a right linear grammar and left linear grammar for the following

FA.

SECTION-C
QUESTIONS AT THE LEVEL OF GATE

1. G1: S aS |B, Bb | bB [GATE 2016]

 G2: SaA | bB; A aA |B | � , B  bB | �

Which one of the following pairs of languages is generated by G1 and G2,
respectively? []

a) {ambn | m > 0 or n > 0 } and { ambn | m > 0 and n > 0}

b) {ambn | m > 0 and n > 0 } and { ambn | m > 0 or n > =0}

c) {ambn | m >= 0 or n > 0} and { ambn | m > 0 and n > 0 }

d) {ambn | m >= 0 and n > 0 } and { ambn | m > 0 or n > 0}

2. S  aSa | bSb | a | b [] [GATE 2009]
The language generated by the above grammar over the alphabet {a, b} is
the of

a) all palindromes
b) all odd length palindromes
c) strings that begin and
d) all even length palindromes end with the same symbol

3. Consider the CFG with {S,A,B} as the non-terminal alphabet {a,b} as the

terminal alphabet,S as the start symbol and the following set of
production rules: [GATE 2007]

 S  aB S  bA
 B  b A  a
 B  bS A  aS

Formal Languages and Automata Theory 14

II Year –II-Semester 2018-19 CSE

 B aBB S  bAA
Which of the following strings is generated by the grammar? []
a) aaaabb b) aabbbb c) aabbab d) abbbba
4. How many derivation trees are there for the grammar in Question 3?
a) 1 b) 2 c) 3 d) 4 []

5. [GATE 2006]

6. Consider the regular grammar: [GATE 2005]

S→Xa|Ya
X→Za
Z→Sa| �
Y→Wa
W→Sa

where S is the starting symbol, the set of terminals is {a} and the set of non-
terminals is {S, W, X, Y, Z}.
We wish to construct a deterministic finite automaton (DFA) to recognize the
same language. What is the minimum number of states required for the
DFA? []

a) 2 b) 3 c)4 d)5

Formal Languages and Automata Theory 1

II Year –II-Semester 2018-19 CSE

UNIT-V

Objective:
To understand and design push down automata’s for a given Context free

language.

Syllabus:
Ambiguity in context free grammars, minimization of Context Free

Grammars, Chomsky normal form, Greibach normal form, pumping lemma

for Context Free Languages, closure properties of CFL (proofs not required),

applications of CFLs

Push down automata:
Push down automata, model of PDA, design of PDA.
Learning Outcomes:
Students will be able to:

 understand ambiguity in context free grammars.

 minimize the given context free grammar.

 apply Chomsky and Greibach Normal Forms on context free

grammars.

 understand and design PDA for given context free languages.

Learning Material

Ambiguity in context free grammars:
A context-free grammar G is said to be ambiguous if it has two parse trees

for some word.

(or)

A word which has more than one leftmost derivation or more than one

rightmost derivation is said to be ambiguous.

Note: A CFL for which every CFG is ambiguous is said to be an inherently

ambiguous CFL.

Formal Languages and Automata Theory 2

II Year –II-Semester 2018-19 CSE

Example:
G = ({S}, {a, b, +, *}, P. S), where P consists of SS+S | S*S | a | b

 We have two derivation trees for a + a * b

Two derivation trees for a + a * b

Minimization of Context Free Grammars:

1) Elimination of useless symbols.

2) Elimination of ε –Productions.

3) Elimination of Unit Productions.

Elimination of Useless Symbols:

Let G=(V, T, P, S) be a grammar. A symbol X is useless if it is not involved in

derivation.

(or)

A symbol X is useless if there is no way of getting a terminal string from it.

Example:
Consider the grammar

SAB | a

A a

We find that no terminal string is derivable from B. We therefore eliminate B

and the production S  AB.

Then the grammar is

Sa

Aa

Formal Languages and Automata Theory 3

II Year –II-Semester 2018-19 CSE

We find that only S and a appear in sentential forms. Thus ({S}, {a}, {S  a},

S) is an

equivalent grammar with no useless symbols.

Elimination of ε –Productions:
A production of the form A  ε, where A is a variable, is called a null

production.

If L = L(G) for some CFG G = (V, T, P, S), then L - { ε } is L(G') for a CFG G'

with no useless symbols or ε -productions.

Example:
Consider the grammar

A0B1 | 1B1

B0B | 1B | ε

Remove ε-productions from the grammar.

B ε is the null production.

The new productions after elimination of ε are

 A0B1 | 1B1| 01 | 11

B0B | 1B | 0 | 1

Elimination of Unit Productions:
A production of the form AB whose right-hand side consists of a single

variable is called a unit production.

All other productions, including those of the form A a and ε -productions,

are nonunit productions.

Example:
Consider the grammar

S0A | 1B | C

A0S | 00

B1 | A

C01

Remove unit production from the grammar.

SC and BA are the unit productions

Formal Languages and Automata Theory 4

II Year –II-Semester 2018-19 CSE

The new productions after elimination of unit productions are

S0A | 1B | 01

A0S | 00

B1 | 0S | 00

C01

C is a useless symbol. So eliminate C production.

The final set of productions are

S0A | 1B | 01

A0S | 00

B1 | 0S | 00

Chomsky Normal Form :(CNF)
Any context-free language without ε is generated by a grammar in which all

productions are of the form ABC or A a. Here, A, B, and C, are variables

and a is a terminal.

Step 1: Simplify the grammar.

 a) Eliminate ε –productions

 b) Eliminate unit productions

 c) Eliminate Useless symbols.

The given grammar does not contain ε –productions, unit productions and

useless symbols.

It is in optimized form.

Step 2: Consider a production in P,of the form A->X1X2X3.....Xm where

m>=2.If Xi is a terminal a, introduce a new variable Ca and a production Ca-

>a.Then replace Xi by Ca.

Step 3: Consider a production A->B1B2B3.....Bm where m>=3,create new

variables D1,D2,....Dm-2 and replace A->B1B2B3...Bm by the set of productions

{A->B1D1,D1->B2D2,..........Dm-3->Bm-2 Dm-2,Dm-2->Bm-1Bm }

Formal Languages and Automata Theory 5

II Year –II-Semester 2018-19 CSE

Example:
Consider the grammar ({S, A, B}, {a, b}, P, S) that has the productions:

S bA | aB

AbAA | aS | a

B aBB | bS | b

Find an equivalent grammar in CNF.

Step 1: Simplify the grammar.

 a) Eliminate ε –productions

 b) Eliminate unit productions

 c) Eliminate Useless symbols.

The given grammar does not contain ε –productions, unit productions and

useless symbols.

It is in optimized form.

Step 2: The only productions already in proper form are A a and Bb.

So we may begin by replacing terminals on the right by variables, except in

the case of the productions A  a and B  b.

S  bA is replaced by S CbA and Cb b.

Similarly, A aS is replaced by A  CaS and Ca a; A bAA is replaced by

ACbAA; S aB is replaced by SCaB;

BbS is replaced by B CbS, and B  aBB is replaced by B CaBB.

In the next stage, the production ACbAA is replaced by A  CbD1 and D1

AA, and the production BCaBB is replaced by B CaD2 and D2 BB.

Step 3: The productions for the grammar in CNF are :

S CbA | CaB D1 AA

A  CaS | CbD1 | a D2 BB

B CbS | CaD2 | b Ca a

 Cb b

Formal Languages and Automata Theory 6

II Year –II-Semester 2018-19 CSE

Greibach Normal Form:
Every context-free language L without e can be generated by a grammar for

which every production is of the form A  aα, where A is a variable, a is a

terminal, and α is a (possibly empty) string of variables.

Lemma 1: Define an A-production to be a production with variable A on the

left. Let G = (V, T, P, S) be a CFG. Let A  α1Bα2 be a production in P and

Bβ1 | β2| ……|βr be the set of all B-productions. Let G1 = (V, T, P1, S)

be obtained from G by deleting the production A  α1Bα2 from P and

adding the productions A α1β1α2 | α1β2α2 | ……| α1βrα2. Then L(G) =

L(G1).

Lemma 2: Let G = (V, T, P, S) be a CFG. Let AAα1 | Aα2 | ……| Aαr be

the set of A-productions for which A is the leftmost symbol of the right-hand

side. Let A  β1 | β2| ……|βs be the remaining A-productions. Let G1 = (V

U {B}, T, P1, S) be the CFG formed by adding the variable B to V and

replacing all the A-productions by the productions:

Then L(G1) = L(G).

Example:
Convert to Greibach normal form the grammar

G=i{A1,A2,A3}, {a, b}, P A1),

where P consists of the following:

Formal Languages and Automata Theory 7

II Year –II-Semester 2018-19 CSE

We now apply Lemma 2 to the productions

Formal Languages and Automata Theory 8

II Year –II-Semester 2018-19 CSE

Formal Languages and Automata Theory 9

II Year –II-Semester 2018-19 CSE

Pumping Lemma for CFL's:
Let L be any CFL. Then there is a constant n, depending only on L, such

that if z is in L and | z | ≥ n, then we may write z = uvwxy such that

Example:
Consider the language L = {aibici | ≥ 1}. Suppose L were context free and let

n be the constant.

Consider z = anbncn. Write z = uvwxy so as to satisfy the conditions of the

pumping lemma.

Since |vwx| ≤ n, it is not possible for vx to contain instances of a’s and c’s,

because the rightmost a is n + 1 positions away from the leftmost c.

If v and x consist of a’s only, then uwy (the string uviwxiy with i = 0) has n

b’s and n c’s but fewer than n a’s since |vx| ≥ 1.

Thus, uwy is not of the form aibici. But by the pumping lemma vwy is in L, a

contradiction.

The cases where v and x consist only of b’s or only of c’s are disposed of

similarly.

If vx has a’s and b’s, then uwy has more c’s than a’s or b’s, and again it is

not in L.

If vx contains b’s and c’s, a similar contradiction results.

We conclude that L is not a context-free language.

Closure Properties of CFL’s:

 Context-free languages are closed under union, concatenation and

Kleene closure.

 The context-free languages are closed under substitution.

 The CFL’s are closed under homomorphism.

 The CFL’s are not closed under intersection.

 The CFL’s are not closed under complementation.

Formal Languages and Automata Theory 10

II Year –II-Semester 2018-19 CSE

Applications of the pumping lemma:
The pumping lemma can be used to prove a variety of languages not to be

context free, using the same "adversary" argument as for the regular set

pumping lemma.

Push down automata:

Moves:

Model of PDA:

 Pushdown automaton has a read-only input tape, an input alphabet a

finite state control, a set of final states, and an initial state as in the

case of an FA.

Formal Languages and Automata Theory 11

II Year –II-Semester 2018-19 CSE

 In addition to these, it has a stack called the pushdown store. It is a

read-write pushdown store as we can add elements to PDS or remove

elements from PDS.

 A finite automaton is in some state and on reading, an input symbol

moves to a new state.

 The pushdown automaton is also in some state and on reading an

input symbol and the topmost symbol in PDS, it moves to a new state

and writes (adds) a string of symbols in PDS.

Instantaneous description:
Instantaneous description (ID) is the configuration of a PDA at a given

instant. We define an ID to be a triple (q, w, γ), where q is a state, w a string

of input symbols, and γ a string of stack symbols.

Formal Languages and Automata Theory 12

II Year –II-Semester 2018-19 CSE

Accepted Languages:

Example:
Design a PDA that accepts {wwR | w in (0+1)*}

L = { ε, 0, 1, 00, 11, 0110, 1001,}

Let M= (Q, ∑, Г, δ, q0, Z0, F) be the PDA

Consider M = ({q1, q2}, {0, 1}, {0, 1, Z0}, δ, q1, Z0, Ø)

 δ(q1,0,Z0)={(q1,0Z0)}

 δ(q1,1,Z0)={(q1,1Z0)}

 δ(q1,0,0)={(q1,00),(q2, ε)}

 δ(q1,1,0)={(q1,10)}

 δ(q1,0,1)={(q1,01)}

 δ(q1,1,1)={(q1,11),(q2, ε)}

 δ(q2,0,0)={(q2, ε)}

 δ(q2,1,1)={(q2, ε)}

 δ(q1,ε,Z0)={(q2, ε }

 δ(q2,ε,Z0)={(q2, ε)}

Deterministic PDA:
The PDA is deterministic in the sense that at most one move is possible from

any ID.

Formally we say a PDA M is deterministic if:

Formal Languages and Automata Theory 13

II Year –II-Semester 2018-19 CSE

Equivalence of PDA's and CFL's :

CFG to PDA Conversion
If L is a context-free language, then there exists a PDA M such that L = N(M).

Procedure:

Let L=L(G), where G=(VN, Σ,P,S) is a context free grammar.

We construct a PDA M as

 M= ((q), Σ, VN U Σ, Z0,q, δ, Ø)

Where δ is defined by the following rules:

R1: δ (q, ε,A) = {(q, α) | A -> α is in P}

R2: δ (q,a,a) = { (q, ε)} for every a in Σ.

Example:

Construct a pda M equivalent to the following context free grammar:

S->0BB

B->0S|1S|0.

Test whether 0104 is in N(M).

Solution:

Define pda A as follows:

A=(({q},{0,1},{S,B,0,1}, δ,q, Z0, Ø)

δ is defined by the following rules:

R1: δ(q, ε, S)={(q,0BB)}

R2: δ(q, ε, B)={(q,0S),(q,0S),(q,0)}

Formal Languages and Automata Theory 14

II Year –II-Semester 2018-19 CSE

R3: δ(q, 0,0)={(q, ε)}

R4: δ(q, 1,1)={(q, ε)}

String Checking

 (q,0104,S)

 ⊢ (q, 0104, 0BB) by Rule R1

 ⊢ (q, 104, BB) by Rule R3

 ⊢ (q, 104,1SB) by Rule R2 since (q,1S)∈ α(q, ∧, B)

 ⊢ (q, 04, SB) by Rule R4

 ⊢ (q, 04, 0BBB) by Rule R1

 ⊢ (q, 03,BBB) by Rule R3

 ⊢* (q, 03,000) by Rule R2 since (q,0) ∈ α(q, ∧, B)

 ⊢* (q, ε , ε) by Rule R3

Formal Languages and Automata Theory 15

II Year –II-Semester 2018-19 CSE

UNIT-V

Assignment-Cum-Tutorial Questions
A. Objective Questions

1. Grammar that produce more than one Parse tree for same word is:

a) Ambiguous b) Unambiguous []

c) Complementation d) Concatenation Intersection

2. For every grammar there will an equivalent grammar in CNF.

[True/False]

3. The derivation trees of strings generated by a context free grammar in

Chomsky Normal Form are always binary trees [True |False]

4. Which of the following conversion is not possible (algorithmically)?

a) Regular grammar to Context-free grammar []

b) Nondeterministic FSA to Deterministic FSA

c) Nondeterministic PDA to Deterministic PDA

d) All of the above

5. CFL’s are not closed intersection and complementation. [True | False]

6. CFL’s are closed under []

 a) union b) concatenation c) closure d) All

7. The grammar G with the productions []

A → AA | (a) | ε is an

a) Ambiguous grammar b) Unambiguous grammar

c) Grammar d) None

8. Identify the useless symbol in the grammar given below. []

 S->AB | C A->a B-> BC C->b

a) S b) A c) B d) C

9. Find an equivalent reduced grammar for the given grammar. []

S-> 0 | 1 | ε S-> 0S0 | 1S1

a) S->0 | 1 ,S->0S0 |1S1 | 0 | 1 b) S->0 | 1 ,S->SS|0S1 | 1S1

c) S-> 0 | 1, S->00 |11 d) None

Formal Languages and Automata Theory 16

II Year –II-Semester 2018-19 CSE

10. Which one of the following is a Chomsky Normal Form grammar?

[]

(i) A->BC |a (ii) A->aA |a |b (iii) A->BCD |a, B->a, C->c, D->d

a) (i) only b) (i) and (iii) c) (ii) and (iii) d) (i),(ii) and (iii)

11. Which one of the following is not a Greibach Normal form grammar?

 []

 (i) S->a |bA |aA |bB (ii) S->a |aA|AB (iii) S->a | A| aA

 A->a A->a A->a

 B->b B->b

a) (i) and (ii) b) (i) and (iii) c) (ii) and (iii) d)(i),(ii) and (iii)

12. L={ 0n 12n |n>=1} is []

 a) regular b) context-free but not regular

c) context-free but regular d) None

13. Recognize the language accepted by the PDA with the following

moves []

 δ (q0,a,Z0)=(q0,aZ0) , δ (q0,a,a)=(q0,aa)

 δ (q0,b,a)=(q1, ε) , δ (q1,b,a)=(q1, ε)

 δ (q1,c,Z0)=(q2, Z0) , δ (q2,c,Z0)=(q2, Z0)

a) L={anbncn | n, m>=1} b) L={anbncm | n, m>=1}

c) L={ambncn | n, m>=1} d) L={ambncm | n, m>=1}

14. The grammars G1 and G2 are

G1: S -> 0S0| 1S1 | 0|1| ε

G2: is S -> as |asb| X, X -> Xa | a.

 Which is the correct statement? []

 a) G1 is ambiguous, G2 is unambiguous

 b) G1 is unambiguous, G2 is ambiguous

 c) Both G1 and G2 are ambiguous

 d) Both G1 and G2 are unambiguous

Formal Languages and Automata Theory 17

II Year –II-Semester 2018-19 CSE

B. Descriptive questions
1. What is an ambiguous grammar? Explain with an example.

2. Define Useless symbol and give example.

3. What is an Null production and Unit producation? Explain with an

example.

4. List the applications of CFG.

5. List the closure properties of CFL.

6. Explain pumping lemma for CFL’s with an example.

7. Explain the model of PDA.

8. Show that the grammar is ambiguous.
S → 0A | 1B
A → 0AA | 1S | 1
B → 1BB | 0S | 0

9. Convert the following grammar in to GNF
S XA |BB
B b |SB

X b
10. Design PDA for L={wcwr | w � (0+1)* }
11. Design PDA for the language L = { an bn+m cm | n,m >= 1 }
12. What is the language generated by the grammar G=(V,T,P,S) where

P={S->aSb, S->ab}?
13. For the following grammar :

S -> ABC | BbB , A-> aA | BaC|aaa , B-> bBb| a|D ,C->CA|AC ,D-> ε
i. Eliminate ε-productions.
ii. Eliminate any unit productions in the resulting grammar.
iii. Eliminate any useless symbols in the resulting grammar.
iv. Put the resulting grammar in Chomsky Normal Form

14. Find a CFG, without ε productions, unit productions and useless
productions equivalent to the grammar defined by

SABaC
A BC
B b|ε
C D|ε
D d

Formal Languages and Automata Theory 18

II Year –II-Semester 2018-19 CSE

15. Obtain the PDA for the given regular language: L= {wwr|w is in
(0+1)*}.

16. Convert the following Grammar into CNF.
S → AbcD / abc
A → aASB / d
B → b/ cb
D → d

17. Consider the grammar ({S, A, B}, {a, b}, P, S) that has the
productions:

SbA | aB
A bAA | aS | a
BaBB | bS | b

 Find an equivalent grammar in CNF.
18. Show that L= {an b n c n ⃒ n≥ 0} is not a context free language.

C. Gate Questions

1. Identify the language generated by the following grammar, Where S is
the start variable. [] [Gate 2017]

 S->XY

 X->aX |a

 Y->aYb |epsilon

A) {am bn |m>=n, n>0} B) {ambn |m>=n, n>=0}

C) {am bn |m>n, n>=0} D) {ambn |m>n, n>0}

2. Consider the following statements about the context free grammar
 G = {S → SS, S → ab, S → ba, S → Ε} [] [Gate 2006]

 I. G is ambiguous

 II. G produces all strings with equal number of a’s and b’s

 III. G can be accepted by a deterministic PDA.

Which combination below expresses all the true statements about G?
a) I only b) I and III only
c) I and II only d) I, II and III

3. Consider the languages: [] [Gate 2005]
 L1 = {wwR | w belongs {0,1}*}

Formal Languages and Automata Theory 19

II Year –II-Semester 2018-19 CSE

 L2 = {w#wR | w belongs {0,1}*},where # is a special symbol

 L3 = {ww | w belongs {0,1}*}
 Which one of the following is TRUE?
a) L1 is a deterministic CFL b) L2 is a deterministic CFL
c) L3 is a CFL, but not a deterministic CFL d) L3 is a deterministic CFL

4. If L1 is context free language and L2 is a regular language which of the

following is/are false? [] [Gate 1999]
a) L1-L2 is not context free b) L1 ∩ L2 is context free
c) ~L1 d) ~L2

5. Let LD be the set of all languages accepted by a PDA by final state and L
E the set of all languages accepted by empty stack. Which of the
following is true? [] [Gate 1999]

a) LD = L E b) LD ⊂ L E c) L E ⊃ LD d) None of the above

6. Context-free languages are closed under: [] [Gate1998]

 a) Union, Intersection b) Union, Kleene closure
 c) Intersection, complement d) Complement, Kleene closure

Formal Languages and Automata Theory 1

II.B.Tech-I-Semester A.Y.2018-19 CSE

UNIT VI

Objective:

To understand and design Turing Machines for the given recursively enumerable languages.

Syllabus:

Turing Machine: Turing Machine, model, Design of TM, Types of Turing Machines, Computable

functions, Recursively enumerable languages, church‘s hypothesis.

Computability Theory: Decidability of problems, universal Turing Machine, Undecidability of posts

correspondence problem, Turing reducibility, definition of P and NP problems, NP complete and NP hard

problems.

Learning Outcomes:

Students will be able to:

 understand turing machine and its model.

 design Turing Machine’s for Recursively Enumerable languages.

 define P and NP class of problems.

 define decidability and undecidability of problems.

Formal Languages and Automata Theory 2

II.B.Tech-I-Semester A.Y.2018-19 CSE

Learning Material

Turing Machine:

A Turing machine (TM) is denoted by

The Turing Machine Model:

 The basic model has a finite control, an input tape that is divided into cells, and a tape head that

scans one cell of the tape at a time.

 The tape has a leftmost cell but is infinite to the right. Each cell of the tape may hold exactly one

of a finite number of tape symbols.

 Initially, the n leftmost cells, for some finite n ≥ 0, hold the input, which is a string of symbols

chosen from a subset of the tape symbols called the input symbols.

 The remaining infinity of cells each hold the blank, which is a special tape symbol that is not an

input symbol.

Moves of Turning Machine

In one move the Turing machine, depending upon the symbol scanned by the tape head and the state of

the finite control,

1) changes state,

2) prints a symbol on the tape cell scanned, replacing what was written there, and

Formal Languages and Automata Theory 3

II.B.Tech-I-Semester A.Y.2018-19 CSE

3) moves its head left or right one cell.

Note : The difference between a Turing machine and a two-way finite automaton lies in the former's

ability to change symbols on its tape.

Instantaneous description (ID):

 Instantaneous description of the Turing machine M is denoted by α1qα2.

 Here q, the current state of M, is in Q; α1α2 is the string in Г* that is the contents of the tape up to

the rightmost nonblank symbol or the symbol to the left of the head, whichever is rightmost.

(Observe that the blank B may occur in α1α2.).

 The tape head is assumed to be scanning the leftmost symbol of α2, or if α2 = ε, the head is

scanning a blank.

Acceptance by Turning Machine

The language accepted by M, denoted L(M), is the set of those words in ∑* that cause M to enter a final

state when placed, justified at the left, on the tape of M, , with M in state q0, and the tape head of M at

the leftmost cell.

Formally, the language accepted by M = (Q,∑,Г,δ,q0,B,F) is

Example:

Design a TM to accept the language L = {0n1n | n≥1}.

Initially, the tape of M contains 0n1n followed by infinity of blanks.

Repeatedly, M replaces the leftmost 0 by X, moves right to the leftmost 1, replacing it by Y,, moves left

to find the rightmost X, then moves one cell right to the leftmost 0 and repeats the cycle.

If, however, when searching for a 1, M finds a blank instead, , then M halts without accepting.

If, after changing a 1 to a Y, M finds no more 0's, then M checks that no more 1's remain, accepting if

there are none.

Formal Languages and Automata Theory 4

II.B.Tech-I-Semester A.Y.2018-19 CSE

The function δ

Transition Diagram

String Verfication by Turning Machine

A computation of M

Types of Turing Machines:

i) Two-way infinite tape:

A Turing machine with a two-way infinite tape is denoted by M = (Q,∑,Г,δ,q0,B,F). As its name

implies, the tape is infinite to the left as well as to the right. We denote an ID of such a device as for

the one-way infinite TM. We imagine, however, that there is an infinity of blank cells both to the left

and right of the current nonblank portion of the tape.

Formal Languages and Automata Theory 5

II.B.Tech-I-Semester A.Y.2018-19 CSE

ii) Multitape Turing machines:

A multitape Turing machine consists of a finite control with k tape heads and k tapes; each tape is

infinite in both directions.. On a single move, depending on the state of the finite control and the

symbol scanned by each of the tape heads, the machine can:

1) change state;

2) print a new symbol on each of the cells scanned by its tape heads;

3) move each of its tape heads,, independently, one cell to the left or right, or keep it stationary.

Initially, the input appears on the first tape, and the other tapes are blank.

iii) Nondeterministic Turing machines:

A nondeterministic Turing machine is a device with a finite control and a single, one-way infinite

tape. For a given state and tape symbol scanned by the tape head, the machine has a finite number of

choices for the next move. Each choice consists of a new state, a tape symbol to print, and a direction

of head motion. Note that the nondeterministic TM is not permitted to make a move in which the next

state is selected from one choice, and the symbol printed and/or direction of head motion are selected

from other choices. The nondeterministic TM accepts its input if any sequence of choices of moves

leads to an accepting state.

Formal Languages and Automata Theory 6

II.B.Tech-I-Semester A.Y.2018-19 CSE

iv) Multidimensional Turing machines:

The device has the usual finite control, but the tape consists of a k-dimensional array of cells infinite

in all 2k directions, for some fixed k. Depending on the state and symbol scanned, the device changes

state, prints a new symbol, and moves its tape head in one of 2k directions, either positively or

negatively, along one of the k axes. Initially, the input is along one axis, and the head is at the left end

of the input. At any time, only a finite number of rows in any dimension contain nonblank symbols,

and these rows each have only a finite number of nonblank symbols.

v) Multihead Turing machines:

A k-head Turing machine has some fixed number,,k, of heads. The heads are numbered 1 through k,,

and a move of the TM depends on the state and on the symbol scanned by each head.. In one move,

the heads may each move independently left,, right, or remain stationary.

vi) Off-line Turing machines:

An off-line Turing machine is a multitape TM whose input tape is read-only. Usually we surround the

input by endmarkers, ⊄ on the left and $ on the right. The Turing machine is not allowed to move the

input tape head off the region between ⊄ and $.

Recursive function: a function which calls itself directly or indirectly and terminates after finite number

of steps.

Total recursive function

 A function is called total recursive function if it is defined for all its arguments.

 Let f(a1,a2.....,a) be a function and defined on function g(b1,b2,....,bm), then f is total function if

every element of f is assigned to some unique element of function g.

Formal Languages and Automata Theory 7

II.B.Tech-I-Semester A.Y.2018-19 CSE

 From the definition it is clear that total recursive function is the subset of partial recursive

function.

 All those partial functions for which TM halts are called total recursive functions.

Partial recursive function

 A function is called partial recursive function if it is defined for some of its arguments.

 Let f(a1,a2.....,a) be a function and defined on function g(b1,b2,....,bm), then f is partial function if

some elements of f is assigned to almost one element of function g.

 Partial recursive function are turing computable.It means that there exist a turing machine for

every partial recursive function.

Recursively enumerable languages

A language that is accepted by a Turing machine is said to be recursively enumerable (r.e.).

 Recursively enumerable languages are equivalent to the class of partial recursive functions.

Recursive Language:

A subclass of the r.e. sets, called the recursive sets, which are those languages accepted by at least one

Turing machine that halts on all inputs.

Church's Hypothesis:

The assumption that the intuitive notion of "computable function" can be identified with the class of

partial recursive functions is known as Church's hypothesis or the Church-Turing thesis.

Decidable and undecidable problems:

 A problem whose language is recursive is said to be decidable.

 A problem is undecidable if there is no algorithm that takes as input an instance of the problem

and determines whether the answer to that instance is "yes" or "no."

Formal Languages and Automata Theory 8

II.B.Tech-I-Semester A.Y.2018-19 CSE

Post's Correspondence Problem:

An instance of Post's Correspondence Problem (PCP) consists of two lists, A = w1,, ..., wk and B = x1, ...

, xk, of strings over some alphabet ∑. This instance of PCP has a solution if there is any sequence of

integers i1, i2, .. ., im, with m ≥1, such that ,wi1, wi2,…, wim = xi1, xi2,… xim

.

The sequence i1,…,im is a solution to this instance of PCP.

Example 1:

Let ∑ = {0, 1}. Let A and B be lists of three strings each, as defined

In this case PCP has a solution. Let m = 4, i1 = 2,i2 =1, i3 = 1, and i4 = 3. Then W2W1W1W3 =

X2X1X1X3 = 101111110.

Example 2: Show that PCP problem with 2 lists

X=(b,bab3,ba) and y=(b3,ba,a) has a solution.

 Given lists are x=(b,bab3,ba) y=(b3,ba,a)

The instances of PCP is as follows

 List X List Y

i Xi Yi

1 a b3

2 bab3 ba

3 ba a

Formal Languages and Automata Theory 9

II.B.Tech-I-Semester A.Y.2018-19 CSE

In this case PCP is as follows

X2x1x1x3=y2y1y1y3=bab3bbba

The solution sequence is 2113 PCP has a solution.

Example 3: Prove that PCP with two lists X =(01,1,1) Y=(0101,10,11) has no solution.

sol) Instance of PCP is given as

 List X List Y

i Xi Yi

1 01 0101

2 1 10

3 1 11

Where X1=01 Y1=0101

 X2=1 Y2=10

 X3=1 Y3=11

For any i |Xi| < |Yi|The last Y is having strings of greater lengths. So to get same string for same

sequences of x1,x2,x3 and y1,y2,y3 is difficult.

We cannot get solution sequence. Therefore the given PCP is having no solution.

Turing Reducibility:

Language Ll is reduced to L2 by finding an algorithm that mapped strings in L1 to strings in L2 and

strings not in L1 to strings not in L2. This notion of reducibility is often called many-one reducibility.

 A more general technique is called Turing reducibility, and consists simply of showing that L1 is

recursive in L2.

If L1 is many-one reducible to L2, then surely L1 is Turing-reducible to L2.

Formal Languages and Automata Theory 10

II.B.Tech-I-Semester A.Y.2018-19 CSE

P and NP problems:

The languages recognizable in deterministic polynomial time form a natural and important class, the class

Ui≥1 DTIME(ni), which we denote by P. It is an intuitively appealing notion that P is the class of

problems that can be solved efficiently.

There are a number of important problems that do not appear to be in P but have efficient

nondeterministic algorithms. These problems fall into the class Ui≥1 NTIME(ni), which we denote by NP.

NP complete and NP hard problems:

Let l be a class of languages.

A language L is complete for l with respect to polynomial-time reductions if L is in l, and every language

in l is polynomial-time reducible to L.

L is NP-complete if L is complete for NP with respect to log-space reductions.

L is hard for l with respect to polynomial-time reductions if every language in l is polynomial-time

reducible to L, but L is not necessarily in l.

L is NP-hard if L is hard for NP with respect to log-space reductions.

HALTING PROBLEM

The problem of determining whether a program halts on a given input is undecidable.This is to say that

no program can correctly code halts.There is no algorithm for deciding halting problem

NP

P

NC

NP

Formal Languages and Automata Theory 11

II.B.Tech-I-Semester A.Y.2018-19 CSE

Halting problem is simply not solvable.

Let K0= Turing acceptable language.

A problem that can be solved by an algorithm is called solvable.

A problem that cannot be solved by an algorithm called unsolvable.

An algorithm that solves a problem is called a decision procedure.

The most famous of the unsolvable problems is the problems described by Ko.It is generally called

halting problem for turing machine to determine for arbitrary given turing machine M and input

w,whether M will eventually halt on input W.

Closure properties of recursive languages

 Union: If L1 and If L2 are two recursive languages, their union L1∪L2 will also be recursive

because if TM halts for L1 and halts for L2, it will also halt for L1∪L2.

 Concatenation: If L1 and If L2 are two recursive languages, their concatenation L1.L2 will also be

recursive.

 Kleene Closure: If L1is recursive, its kleene closure L1* will also be recursive.

 Intersection and complement: If L1 and If L2 are two recursive languages, their intersection L1 ∩

L2 will also be recursive.

Closure properties of recursively enumerable languages

 Recursively enumerable languages are not closed under complementation

 If L is recursively enumerable language, its kleene closure L* will also be recursively enumerable

language.

 If L1 and If L2 are two recursively enumerable languages, their concatenation L1.L2 will also be

recursively enumerable languages.

 If L1 and If L2 are two recursively enumerable languages, their union L1 ∪ L2 will also be

recursively enumerable languages.

 If L1 and If L2 are two recursively enumerable languages, their union L1 ∩ L2 will also be

recursively enumerable languages.

Formal Languages and Automata Theory 12

II.B.Tech-I-Semester A.Y.2018-19 CSE

 Assignment-Cum-Tutorial Questions

A. Questions testing the understanding / remembering level of students

 I) Objective Questions

1. The move function of Turing Machine is ________________.

2. The language accepted by a Turning machine is called ________________language.

3. Recursively enumerable languages are equivalent to the class of ________________ functions.

4. Recursively enumerable languages are closed under complementation. [True |False]

5. The set of all recursive languages is a subset of the set of all recursively enumerable languages.

 [True |False]

6. Phrase structured languages are accepted by TM. [True | False]

7. The power of Non-deterministic Turning machine and deterministic Turning Machine are same.

 [True | False]

8. A problem whose language is recursive is called _________________________.

9. Recursive languages are []

a. a). A proper subset of CFL b). Always recognizable by PDA

b. c). Also called Type 0 languages d). Recognizable by TM

 10. Phrase structured languages are also called as Type 0 languages. [True |False]

II) Descriptive questions

1. Define Turning Machine. Explain about model of Turning Machine

2. Explain about types of turing machines.

3. Write short notes on halting problem of a Turing Machine.

4. Discuss Church’s Hypothesis?

5. Write short notes on P and NP problems and give examples.

6. Write short notes on NP Complete and NP hard problems and give examples.

7. Discuss in details about Turing Reducibility.

8. List properties of recursive and recursively enumerable languages.

9. What is post correspondence problem? Explain with an example

Formal Languages and Automata Theory 13

II.B.Tech-I-Semester A.Y.2018-19 CSE

B. Question testing the ability of students in applying the concepts.

I) Multiple Choice Questions:

1. Which of the following languages are accepted by a Turning Machine? []

 (i) L= {an bn | n>=0}

 (ii) L= {an b2n c2n |n>=0}

 (iii) The set of palindromes over alphabet {a,b}

a) Only (i) b) Only (ii) c) (i) and (iii) d) (i), (ii) and (iii)

2. A single tape Turing Machine M has three states q0, q1 and q2, of which q0 is the starting state. The

tape alphabet of M is {0, 1, B} and its input alphabet is {0, 1}. The symbol B is the blank symbol used to

indicate end of an input string. The transition function of M is described in the following table

 0 1 B

q0 q0,1,R q0,0,R q1,B,L

q1 q1,0,L q1,1,L q2,B,R

 Which of the following statements is true about M ? []

a) M halts after computing 1’s complement of a binary number

b) M halts after computing 2’s complement of a binary number

c) M halts after reversing of a binary number

d) None

3. A single tape Turing Machine M has four states q0, q1, q2 and q3, of which q0 is the starting state. The

tape alphabet of M is {0, 1, B} and its input alphabet is {0, 1}. The symbol B is the blank symbol used to

indicate end of an input string. The transition function of M is described in the following table

 0 1 B

q0 q0,0,R q0,1,R q1,B,L

q1 q1,0,L q2,1,L

q2 q2,1,L q2,0,L q3,B,R

Formal Languages and Automata Theory 14

II.B.Tech-I-Semester A.Y.2018-19 CSE

Which of the following statements is true about M ? []

a. M halts after computing 1’s complement of a binary number

b. M halts after computing 2’s complement of a binary number

c. M halts after reversing of a binary number

d. None

he given table represents a Turing machine which accepts     



a) even number of 1’s

b) odd number of 1’s

c) even number of 1’s and odd number of 1’s

d) even number of 1’s or odd number of 1’s

5. The transitions of a Turing Machine are given below []

δ (q0,1) = (q0,1,R)

δ (q0,B) = (q1,1,R)

δ (q1,B) = (q2,B,R)

The input on the tape is q011B then the output on the tape is []

a) 111Bq2B b) 1111Bq2B c) 111Bq1B d) 1111Bq1B

II) Problems

1. Design TM for the language L={an bncn |n>=1}

2. Design TM for the language L = { an bmcn+m | n,m >= 1 }

3. Design a Turing machine that accepts the language L ={ WWR / W�(0+1)* and

WR is reverse of W}

4. Consider the TM described by the transition table given below. Represent the processing of

Formal Languages and Automata Theory 15

II.B.Tech-I-Semester A.Y.2018-19 CSE

a) 011 b) 0011 using ID’s. Which of the strings are accepted by TM?

5. Design TM for subtraction of two numbers.

6. Show that the following post correspondence problem has a solution and give the solution.

i ListA ListB

1 11 11

2 100 001

3 111 11

C. GATE/NET/SLET

1. Which of the following statements is/are FALSE? GATE CS 2013 []
1. For every non-deterministic Turing machine, there exists an equivalent deterministic Turing
 machine.
2. Turing recognizable languages are closed under union and complementation.
3. Turing decidable languages are closed under intersection and complementation.
4. Turing recognizable languages are closed under union and intersection.

a)1 and 4 only b) 1 and 3 only c) 2 only d)3 only

 2. Which of the following is true for the language GATE CS 2008 []
a) It is not accepted by a Turing Machine
b) It is regular but not context-free
c) It is context-free but not regular
d) It is neither regular nor context-free, but accepted by a Turing machine

Formal Languages and Automata Theory 16

II.B.Tech-I-Semester A.Y.2018-19 CSE

3. Let L1 be a recursive language. Let L2 and L3 be languages that are []
 recursively enumerable but not recursive. Which of the following statements is not necessarily true?
(A) L2 – L1 is recursively enumerable. (B) L1 – L3 is recursively enumerable
(C) L2 ∩ L1 is recursively enumerable (D) L2 ∪ L1 is recursively enumerable

GATE CS 2010
a)A b)B c)C d)D

4. If L and L' are recursively enumerable, then L is GATE CS 2008 []

a) regular b) context-free
c) Context-sensitive d) recursive

5. Let L1 be a recursive language, and let L2 be a recursively enumerable but not a recursive language.
Which one of the following is TRUE? GATE-CS-2005 []

L1' --> Complement of L1
L2' --> Complement of L2

a) L1' is recursive and L2' is recursively enumer­able
b) L1' is recursive and L2' is not recursively enumerable
c) L1' and L2' are recursively enumerable
d) L1' is recursively enumerable and L2' is recursive

6. Consider the following types of languages: GATE-CS-2016 (Set 2)
L1 Regular, L2: Context-free,
L3: Recursive, L4: Recursively enumerable.

 Which of the following is/are TRUE? []
I. L3' U L4 is recursively enumerable II. L2 U L3 is recursive
III. L1* U L2 is context-free IV. L1 U L2' is context-free
a) I only b) I and III only c) I and IV only d) I, II and III only

7. A single tape Turing Machine M has two states q0 and q1, of which q0 is the starting state.

The tape alphabet of M is {0, 1, B} and its input alphabet is {0, 1}. The symbol B is the blank symbol

used to indicate end of an input string. The transition function of M is described in the following table

 GATE-CS-2003 []

 0 1 B

 q0 q1, 1, R q1, 1, R Halt

 q1 q1, 1, R q0, 1, L q0, B, L

The table is interpreted as illustrated below. The entry (q1, 1, R) in row q0 and column 1 signifies that if

M is in state q0 and reads 1 on the current tape square, then it writes 1 on the same tape square, moves its

Formal Languages and Automata Theory 17

II.B.Tech-I-Semester A.Y.2018-19 CSE

tape head one position to the right and transitions to state q1. Which of the following statements is true

about M ?

a) M does not halt on any string in (0+1)+

b) M does not halt on any string in (00+1)+

c) M halts on all string ending in a 0

d) M halts on all string ending in a 1

8. Which of the following is true? GATE-CS-2002 []

a) The complement of a recursive language is recursive.

b) The complement of a recursively enumerable language is recursively enumerable.

c) The complement of a recursive language is either recursive or recursively enumerable.

d) The complement of a context-free language is context-free

9. Define languages L0 and L1 as follows : GATE-CS-2003 []

L0 = {< M, w, 0 > | M halts on w}

L1 = {< M, w, 1 > | M does not halts on w}

Here < M, w, i > is a triplet, whose first component. M is an encoding of a Turing Machine, second

component, w, is a string, and third component, i, is a bit. Let L = L0 ∪ L1. Which of the following is

true?

a) L is recursively enumerable, but L' is not

b) L' is recursively enumerable, but L is not

c) Both L and L' are recursive

d) Neither L nor L' is recursively enumerable

10. Nobody knows yet if P = NP. Consider the language L defined as follows:

GATE-CS-2003 []

Which of the following statements is true ?

a) L is recursive

b) L is recursively enumerable but not recursive

c) L is not recursively enumerable

d) Whether L is recursive or not will be known after we find out if P = NP

