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Vision 
To be a Centre of Excellence in computer science and engineering 

education and training to meet the challenging needs of the industry and 

society. 

 

Mission 
 
 To impart quality education through well-designed curriculum in tune 

with the growing software needs of the industry. 

 To serve our students by inculcating in them problem solving, 

leadership, teamwork skills and the value of commitment to quality, 

ethical behavior & respect for others.  

 To foster industry-academia relationship for mutual benefit and growth.  

Program Educational Objectives 
 
PEO1: Identify, analyze, formulate and solve Computer Science and 

Engineering    problems both independently and in a team 

environment by using the appropriate modern tools. 

 
PEO2: Manage software projects with significant technical, legal, ethical, 

social, environmental and economic considerations. 

 
PEO3: Demonstrate commitment and progress in lifelong learning, professional 

development, leadership  and Communicate effectively with 

professional clients and the public. 
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HANDOUT ON FORMAL LANGUAGES AND AUTOMATA THEORY 

Class & Sem. : II B.Tech – II Semester                                                             Year      : 2018-19 
Branch :  CSE Credits :  3 
========================================================================= 

1. Brief History and Scope of the Subject 
Computer science has two major components:  

1) the fundamental ideas and models underlying computing,  

2) Engineering techniques for the design of computing systems, both 

hardware and software, especially the application of theory to design.  

This subject is intended as an introduction to the first area, the fundamental 

ideas underlying computing. 

Theoretical computer science had its beginnings in a number of diverse 

fields: biologists studying models for neuron nets, electrical engineers 

developing switching theory as a tool to hardware design, mathematicians 

working on the foundations of logic, and linguists investigating grammars for 

natural languages. Out of these studies came models that are central to 

theoretical computer science.  

The notions of finite automata and regular expressions (Units 1, 2 and 3) 

were originally developed with neuron nets and switching circuits in mind. 

Recently, they have served as useful tools in the design of lexical analyzers, 

the part of a compiler that groups characters into tokens-indivisible units 

such as variable names and keywords. A number of compiler-writing 

systems automatically transform regular expressions into finite automata for 

use as lexical analyzers. A number of other uses for regular expressions and 

finite automata have been found in text editors, pattern matching, various 

text-processing and file-searching programs, and as mathematical concepts 

with application to other areas, such as logic. 

The notion of a context-free grammar and the corresponding pushdown 

automaton (Units 4 and 5) has aided immensely the specification of 

programming languages and in the design of parsers-another key portion of 
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a compiler. Formal specifications of programming languages have replaced 

extensive and often incomplete or ambiguous descriptions of languages. 

Understanding the capabilities of the pushdown automaton has greatly 

simplified parsing. In early compilers, parser design is a difficult problem, 

and many of the early parsers were quite inefficient and unnecessarily 

restrictive. Based on context-free-grammar-based techniques, parser design 

is no longer a problem, and parsing occupies only a few percent of the time 

spent in typical compilation. 

In Unit 6, we deal with Turing machines and one of the fundamental 

problems of computer science; there are algorithms for computing 

functions. There are functions that are simply not computable; that is, there 

is no computer program that can ever be written. 

 
2. Pre-Requisites 

 Mathematical Foundation of Computer Science 

3. Course Objectives: 

 To introduce the classification of machines by their power to recognize 

languages and to solve problems in computing. 

 To familiarize how to employ deterministic and non-deterministic 

machines. 

 Course Outcomes: 
CO1: compare the automata based on their recognizing power. 

CO2: design finite automata for regular languages. 

CO3: reduce DFA by applying minimization algorithm. 

CO4: write regular expressions for regular languages or for DFA by applying 

Arden’s theorem. 

CO5: generate grammar for CFL’s. 

CO6: use algorithm to simplify grammar. 

CO7: design PDA‘s for context free languages. 

CO8: design Turing Machine for the phrase-structured languages. 
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4. Program Outcomes: 
Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, 

engineering fundamentals, and an engineering specialization to the solution 

of complex engineering problems. 

2. Problem analysis: Identify, formulate, review research literature, and 

analyze complex engineering problems reaching substantiated conclusions 

using first principles of mathematics, natural sciences, and engineering 

sciences. 

3. Design/development of solutions: Design solutions for complex 

engineering problems and design system components or processes that 

meet the specified needs with appropriate consideration for the public 

health and safety, and the cultural, societal, and environmental 

considerations. 

4. Conduct investigations of complex problems: Use research-based 

knowledge and research methods including design of experiments, analysis 

and interpretation of data, and synthesis of the information to provide valid 

conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, 

resources, and modern engineering and IT tools including prediction and 

modeling to complex engineering activities with an understanding of the 

limitations. 

6. The engineer and society: Apply reasoning informed by the contextual 

knowledge to assess societal, health, safety, legal and cultural issues and 

the consequent responsibilities relevant to the professional engineering 

practice. 

7. Environment and sustainability: Understand the impact of the 

professional engineering solutions in societal and environmental contexts, 

and demonstrate the knowledge of, and need for sustainable development. 
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8. Ethics: Apply ethical principles and commit to professional ethics and 

responsibilities and norms of the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a 

member or leader in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering 

activities with the engineering community and with society at large, such as, 

being able to comprehend and write effective reports and design 

documentation, make effective presentations, and give and receive clear 

instructions. 

11. Project management and finance: Demonstrate knowledge and 

understanding of the engineering and management principles and apply 

these to one’s own work, as a member and leader in a team, to manage 

projects and in multidisciplinary environments. 

12. Life-long learning: Recognize the need for, and have the preparation and 

ability to engage in independent and life-long learning in the broadest 

context of technological change. 

5. Mapping of Course Outcomes with Program Outcomes: 
 1 2 3 4 5 6 7 8 9 10 11 12 

CO1 H H   H        
CO2  H L  H        
CO3 H  L  H        
CO4 M H           
CO5  H M  M        
CO6 M            
CO7 M H L  M        
CO8 M H L  M        

 
6. Prescribed Text Books 
1. John E.Hopcroft, Rajeev Motwani & Jeffrey D.Ullman J.D., “Introduction to 

Automata Theory Languages and Computation”, 3rd edition, Pearson 
Education. 

2. Lewis H.R., Papdimitriou, “Elements of Theory of Computation”, 2nd edition, 
PHI. 
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7. Reference Books 
1. Daniel I.A. Cohen, John Wiley, “Introduction to languages and the Theory of 

Computation”. 

2. Sipser, Thomson, “Introduction to Theory of Computation”, 2nd edition. 

3. Mishra and Chandrashekaran, “Theory of computer science - Automata, Languages, and 

Computation”, 2nd edition, PHI. 

4. K.Krithivasan and R.Rama; Introduction to Formal Languages, Automata Theory and 

Computation; Pearson Education, 2009. 
 

8. URLs and Other E-Learning Resources 
1. Basis for a Mathematical TOC: http://www-formal.stanford.edu/jmc/basis1.pdf   

2. Finite Automta: 

http://www.cs.odu.edu/~toida/nerzic/390teched/regular/fa/intr_2_fa.html 

3. PDA: https://brilliant.org/wiki/pushdown-automata/  

4. Turing Machine: http://plato.stanford.edu/entries/turing-machine 
 

9. Digital Learning Materials: 

  http://nptel.ac.in/courses/106104028/  
  http://nptel.ac.in/courses/106104148/ 
 http://nptel.ac.in/courses/106106049/ 

 
10. Lecture Schedule / Lesson Plan 

 

Topic 
No. of Periods 

Theory Tutorial 

UNIT –1: Fundamentals 

Strings, Alphabet, Language, Operations on strings 1 

1 Operations on languages, Finite State System 1 

Finite Automaton Model 1 

Acceptance of strings and languages 1 

2 
Deterministic finite automaton 2 

Non deterministic finite automaton 2 

Transition diagrams, language recognizers and applications of Finite Automata 2 
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Total 10+3(T) 

UNIT – 2: Finite Automata 

NFA with ε transitions – significance, acceptance of a language by a ε –NFA  1 

 

1 

 

Equivalence between NFA with and without ε transitions  2 

Minimization of FSM 2 

NFA to DFA conversion 1 

equivalence between two FSM‘s 1 

Finite automata with  outputs - Moore  machine, Mealy machines 1 

1 Moore to Mealy Coversion-examples 1 

Mealy to Moore conversion-examples 1 

Total 10+2(T) 

UNIT – 3:  Regular Languages 

Regular Sets, Identity Rules 1 
1 

Regular expressions 2 

Construction of finite Automata for a given regular expressions 1 

 
1 

Construction of  regular expression  for a given finite Automata 1 

Pumping lemma of regular sets 1 

Closure properties of regular sets, applications of regular languages. 1 

Total 7+2(T) 

UNIT – 4:  Grammar Formalism 

Chomsky hierarchy of languages 1 

1 

 

Regular grammars - right linear and left linear grammars-examples 1 

Equivalence between regular linear grammar and FA 1 

Equivalence between FA and regular grammar 1 

Context free grammar-examples 2 
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Derivation- Rightmost and leftmost derivation of strings, sentential forms, 
Derivation trees 

2 1 

Total 8+2(T) 

UNIT – 5:  Context Free Grammars 

Ambiguity in context free grammars 1 

 

1 

Minimization of Context Free Grammars 1 

Chomsky normal form 1 

Greibach normal form 2 

Pumping Lemma for Context Free Languages 1 

Enumeration of Properties of CFL (proofs not required), applications of 
CFLs 

1 

Push down automata, model of PDA 1 

1 Design of PDA 2 

Applications of PDA 1 

Total 11+2(T) 

UNIT – 6: Turing Machine 

Turing Machine, model 1 
1 

Design of TM 2 

Types of Turing Machines 1 

1 

 

Computable functions 1 

Recursively enumerable languages, Recursive languages 1 

Decidability of problems 1 

Undecidability of posts correspondence problem 1 

Total 8+2(T) 

Total No.of Periods: 54 13(T) 
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FORMAL LANGUAGES AND AUTOMATA THEORY 
 

UNIT-I 

Objective: 

 To introduce the classification of machines by their power to recognize 

languages and to solve problems in computing. 

 To familiarize how to employ deterministic and non-deterministic finite 

automata. 

Syllabus:  
Strings, alphabet, language, operations, finite state machine, finite automaton 

model, acceptance of strings and languages, deterministic finite automaton and 

non deterministic finite automaton, transition diagrams and language 

recognizers. 

Learning Outcomes: 
Students will be able to: 

 Understand the basic definitions like alphabet, string, language and their 

operations. 

 Understand the model of FA. 

 Design DFA and NFA for the given regular language. 

 Test the designed DFA and NFA for the set of strings that belongs to L 

and for the set of strings that doesn’t belongs to L. 
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Learning Material 
Alphabet: 
An alphabet is a finite, nonempty set of symbols. It is denoted by ∑. 

Example:   
∑= {0, 1} is binary alphabet consisting of the symbols 0 and 1. 

∑= {a, b, c ...z} is lowercase English alphabet.   
 

Powers of an Alphabet 
If Σ is an alphabet, we can express the set of all strings of a certain length from 

that alphabet by using the exponential notation. It is denoted by Σ k - the set of 

strings of length k. 

Example:  
Σ0 = {ε}, regardless of what alphabet Σ is. ε is the only string of length 0. 

If Σ = {0, 1} then, 

Σ1 = {0, 1}  

Σ2 = {00, 01, 10, 11}  

Σ3 = {000, 001, 010, 011, 100, 101, 110, 111} 

The set of all strings over an alphabet Σ is denoted by Σ*. Σ* = Σ0 ∪ Σ1 ∪ Σ2 ∪ . .  

For example, {0, 1}* = {ε, 0, 1, 00, 01, 10, 11, 000, .....}  

The symbol ∗ is called Kleene star and is named after the mathematician and 

logician Stephen Cole Kleene. 

The symbol + is called Positive closure i.e.  Σ+ = Σ1 ∪ Σ2 ∪ . . .  

 
 
 
String:  
A string (or word) is a finite sequence of symbols chosen from some alphabet.  

The letters u, v, w, x, y and z are used to denote string. 

Example: 
If Σ = {a, b, c} then abcb is a string formed from that alphabet. 

Σ∗ = Σ+ ∪ { ε 
} 
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 The length of a string w, denoted |w|, is the number of symbols 

composing the string. 

 Example: 
 The string abcb has length 4. 

 The empty string denoted by ε, is the string consisting of zero symbols. 

Thus |ε| =0. 

Operations on strings: 

 Concatenation of strings 
The concatenation of two strings is the string formed by writing the first, 

followed by the second, with no intervening space. Concatenation of 

strings is denoted by ◦. 

That is, if w and x are strings, then wx is the concatenation of these two 

strings.   

Example: 
The concatenation of dog and house is doghouse.  

Let x=0100101 and y= 1111 then x ◦ y=01001011111 

 String Reversal 
Reversing a string means writing the string backwards. 

It is denoted by wR 

Example: 
Reverse of the string abcd is dcba. 

Note: If w= wR, then that string is called palindrome. 

 Substring 
            A substring is a part of a string. 

Example: 
If  abcd is string then possible substrings are ε,a,b,c,d,ab,bc,cd,abc,bcd  

are proper substrings for the given string  

      A prefix of a string is any number of leading symbols of that string. 

A suffix of a string is any number of trailing symbols.  

Example: 
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String abc has prefixes ε, a, ab, and abc; its suffixes are ε, c, bc, and 

abc.  

A prefix or suffix of a string, other than the string itself, is called a 

proper prefix or suffix. 

Language: 
A (formal) language is a set of strings of symbols from someone alphabet. It is 

denoted by L. We denote this language by ∑*.  

 The empty set, Ø, and the set consisting of the empty string {ε} are 

languages. 

Example: 
 If ∑= {a}, then ∑* = {ε, a, aa, aaa, ...}.  

 If ∑ = {0, 1}, then ∑* = {ε, 0, 1, 00, 01, 10, 11, 000,...}. 

Operations on languages: 

 Union 
If L1 and L2 are two languages over an alphabet ∑.Then the union of L1 

and L2 is denoted by L1 U L2. 

Example: 
L1={0,01,011} and  L2={001}, then L1 U L2={0,01,011,001} 

 Intersection 
If L1 and L2 are two languages over an alphabet ∑.Then the intersection 

of L1 and L2 is denoted by L1 ∩ L2. 

Example: 
      L1= {0, 01,011} and L2= {01}, then L1 ∩ L2= {01} 

 Complementation 
L is a language over an alphabet ∑, then the complement of L denoted by 

L', is the language consisting of those strings that are not in L over the 

alphabet. 

Example: 
If ∑={a,b} and L={a,b,aa}, then  

L'= ∑*-L = {ε,a,b,aa,bb,ab.........} - {a,b,aa} = {ε,bb,ab,ba.........} 
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 Concatenation 
Concatenation of two languages L1 and L2 is the language L1 o L2 ,each 

element of which is a string formed by combining one string of L1 with 

another string of L2. 

Example:               
L1={bc,bcc,cc}and L2={cc,ccc},then L1oL2 = 

{bccc,bcccc,bcccccc,cccc,ccccc} 

 Reversal 
If L is language, then LR    is obtained by reversing the corresponding 

string in L. This operation is similar to the reversal of a string. 

LR   ={wR  | w  ∈ L} 

Example: 
     If L= {0, 011, 0111}, then LR   = {0, 110, 1110} 

 Kleene Closure 
The Kleene closure (or just closure) of L, denoted L*, is the set 

  

           ∞ 

L * =    U   Li 

          i=0 

 

 Positive Closure  

The positive closure of L, denoted L+, is the set 

           ∞ 

L + =    U   Li 

          i=1 

 

That is, L* denotes words constructed by concatenating any number of 

words from L. 

L+ is the same, where ε, is excluded.  
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Note: L+ contains ε if and only if L does.  

Example: 
Let L1 = {10, 1}  

L * = L0 U L1 U L2.................. = {ε, 1, 10, 11, 111, 1111 ,..........} 
                L + = L1 U L2 U L3...................= {1, 10, 11, 111, 1111...........} 

Finite Automaton: 

 A finite automaton (FA) consists of a finite set of states and a set of 

transitions from state to state that occur on input symbols chosen from an 

alphabet ∑.  

 For each input symbol there is exactly one transition out of each state 

(possibly back to the state itself).  

 One state, usually denoted q0 is the initial state, in which the automaton 

starts. Some states are designated as final or accepting states. 

      Formally, a finite automaton is denoted by a 5-tuple (Q, ∑, δ, qo, F), where 

 Q is a finite set of states. 

 ∑ is a finite input alphabet. 

 δ is the transition function mapping Q x ∑  to Q i.e., δ (q,a) is a state 

for each     state q and input symbol a. 

 qo ∈ Q is the initial state. 

 F ⊆ Q is the set of final states. It is assumed here that there may be 

 more than one final state. 

 
Transition Diagram: 

 A transition diagram is a directed graph associated with an FA in which the 

vertices of the graph correspond to the states of the FA.  

 If there is a transition from state q to state p on input a, then there is an arc 

labelled a from state q to state p in the transition diagram.  

 

State is denoted by  
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Transition is denoted by  

 

Initial state is denoted by  

 

Final state is denoted by  

 

Transition Table: 
A tabular representation in which rows correspond to states, columns 

correspond to inputs and entries correspond to next states. 

Finite Automata Model: 

  
  Block diagram of a finite automaton 

The various components are explained as follows: 

 (i) Input tape:  

 The input tape is divided into squares, each square containing a single 

symbol from the input alphabet ∑.  

 The end squares of the tape contain the endmarker ¢ at the left end and 

the endmarker $ at the right end.  

 The absence of endmarkers indicates that the tape is of infinite length. 

The left-to-right sequence of symbols between the two endmarkers is the 

input string to be processed.  

(ii) Reading head:  

 The head examines only one square at a time and can move one square 

either to the left or to the right.  
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 For further analysis, we restrict the movement of the R-head only to the 

right side.  

(iii) Finite control: The input to the finite control will usually be the symbol 

under the R-head, say a, and the present state of the machine, say q, to give 

the following outputs:  

 A motion of R-head along the tape to the next square (in some a null 

move, i.e. the R-head remaining to the same square is permitted) 

 The next state of the finite state machine given by δ(q, a). 

Acceptance of  String by a Finite Automaton: 
The FA accepts a string x if the sequence of transitions corresponding to the 

symbols of x leads from the start state to an accepting state and the entire 

string has to be consumed, i.e., a string x is accepted by a finite automaton M 

= (Q, ∑, δ, qo, F)  
 

if δ (q0, x) =q for some q  ∈  

F.  

 

This is basically the acceptability of a string by the final state.  

Note: A final state is also called an accepting state. 
Transition function δ and for any two input strings x and y,  

 

 
 
Example: 
Consider the finite state machine whose transition function δ is given in the 

form of a transition table. Here Q = {q0, q1, q2, q3},∑={0,1}, F={q0}.Give the entire 

sequence of states for the input string 110101. 

 

 

δ (q, xy) = δ (δ (q, x), 
y) 
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δ (q0, 110101) = δ(q1,10101) 
  = δ(q0,0101) 
  = δ(q2,101) 
  = δ(q3,01) 
  = δ(q1,1) = q0 

q0 is final state, therefore given string is accepted by  finite 
automata. 

Deterministic finite automaton: 
Formally, a deterministic finite automaton can be represented by a 5-tuple M= 

(Q, ∑, δ, qo, F), 
where 

 Q is a finite set of states. 

 ∑ is a finite input alphabet. 

 δ is the transition function mapping Q x ∑  to Q i.e., δ (q,a) is a state for 

each state q and input symbol a. 

 qo ∈ Q is the initial state. 

 F ⊆ Q is the set of final states. It is assumed here that there may be 

more than one final state. 

Steps to design a DFA: 
1. Understand the language for which the DFA has to be designed and write 

the language for the set of strings starting with minimum string that are 

accepted by FA. 

State 
Input 

0 1 

 q2 q1 

q1 q3 q0 

 

q2 q0 q3 

q3 q1 q2 

q0 
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2. Draw transition diagram for the minimum length string. 

3. Obtain the possible transitions to be made for each state on each input 

symbol. 

4. Draw the transition table. 

5. Test DFA with few strings that are accepted and few strings that are 

rejected by the given language. 

6. Represent DFA with tuples. 

Examples 
1. Design DFA that accepts all strings which starts with ‘1’ over the 

alphabet {0,1} 
Step 1: Understand the language for which the DFA has to be designed 

and write the language for the set of strings starting with minimum 

string that is accepted by FA. 

 L = {1, 10, 11, 100, 110, 101, 111, .........................................} 

 
 Step 2: Draw transition diagram for the minimum length string. 

 

  
Step 3: Obtain the possible transitions to be made for each state on each 

input symbol. 

     
 Step 4: Draw the transition table. 
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Step 5: Test DFA with few strings that are accepted and few strings that 

are rejected by the given language. 

Case i) Let w=1001 ∈ L 

δ(q0,1001) = δ(q1,010)  

        = δ(q1,10) = δ(q1,0) = q1 

q1 is final state and the entire string has been consumed i.e., given string 

is accepted by DFA. 

Case ii) Let w=0001 ∉ L 

δ(q0,0001) = δ(q2,001)  

                = δ(q2,10) 

               = δ(q2,0) 

               = q2 

q2 is not final state and the entire string has been consumed i.e., given 

string is rejected by DFA. 

 Step 6: Represent DFA with tuples. 

DFA, M= (Q, ∑, δ, qo, F) 
where Q = {q0, q1, q2} 

   ∑ = { 0,1 } 

   δ: δ(q0,0)=q2 

       δ(q0,1)=q1 

       δ(q1,0)=q1 

       δ(q1,1)=q1 

State 
Input 

0 1 

q0 q2 q1 

q1 q1 q1 

q2 q2 q2 

q1 
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       δ(q2,0)=q2 

    δ(q2,1)=q2 

  q0 – initial state 

   F – final state = { q1} 

 

2. Design DFA that accepts all strings which contains ‘00’ as substring 
over the alphabet {0,1} 

Step 1: Understand the language for which the DFA has to be designed 

and write the language for the set of strings starting with minimum 

string that is accepted by FA. 

 

L={00,100,000,001,1100,1000,0100,1001,0001,11000,11100,................} 

 Step 2: Draw transition diagram for the minimum length string. 

     
Step 3 : Obtain the possible transitions to be made for each state on 

each input symbol. 

  

 
 
 
 
 
 Step 4: Draw the transition table. 
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State 
Input 

0 1 

q0 q1 q0 

 q2 q0 

q2 q2 q2 

Step 5: Test DFA with few strings that are accepted and few strings that 

are rejected by the given language. 

Case i) Let w = 1001 ∈ L 

 δ(q0,1001) = δ(q0,001)  

                = δ(q1,01) 

         = δ(q2,1) 

                   = q2 

q2 is final state and the entire string has been consumed i.e., given 

string is accepted by DFA. 

Case ii) Let w=1011 ∉ L 

δ(q0,1011) = δ(q0,011)  

                  = δ(q1,11) 

                = δ(q0,1) 

                  = q0 

   

q0 is not final state and the entire string has been consumed i.e., given 

string is rejected by DFA. 

 Step 6: Represent DFA with tuples. 

DFA, M= (Q, ∑, δ, qo, F) 
where Q = {q0, q1, q2} 

   ∑ = { 0,1 } 

   δ: δ(q0,0)=q1 

       δ(q0,1)=q0 

q1 
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       δ(q1,0)=q2 

       δ(q1,1)=q0 

       δ(q2,0)=q2 

    δ(q2,1)=q2 

  q0 – initial state 

   F – final state = { q2 } 

Nondeterministic finite automaton (NDFA/NFA): 
A nondeterministic finite automaton is a 5-tuple (Q, ∑, δ, qo, F), where 

 Q is a finite nonempty set of states;  

 ∑  is a finite nonempty set of inputs;  

 δ  is the transition function mapping from Q x ∑ into 2Q which is the 

power set of Q, the set of all subsets of Q;  

 qo ∈ Q is the initial state; and  

 F ⊆ Q is the set of final states 

Steps to design a NFA: 
1. Understand the language for which the NFA has to be designed and write 

the language for the set of strings starting with minimum string that is 

accepted by FA. 

2. Draw transition diagram for the minimum length string. 

3. Obtain the possible transitions to be made for each state on each input 

symbol. 

4. Draw the transition table. 

5. Test NFA with few strings that are accepted and few strings that are 

rejected by the given language. 

6. Represent NFA with tuples. 

 
Examples:  

1. Design NFA that accepts all strings which contains ‘00’ as substring 
over the alphabet {0,1} 
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 Step 1:  Understand the language for which the NFA has to be designed 

and write the language for the set of strings starting with minimum 

string that is accepted by FA 

L={00,100,000,001,0100,1100,1000,1001,0001,11000,11100,.............} 

Step 2: Draw transition diagram for the minimum length string. 

   
Step 3: Obtain the possible transitions to be made for each state on each 

input symbol.              0, 1             

                                    
           

Step 4: Draw the transition table. 

State 
Input 

0 1 

q0 {q0,q1} q0 

q1 q2 - 

q2 q2 q2 

 
Step 5: Test NFA with few strings that are accepted and few strings that 

are rejected by the given language. 

Case i) Let w=0100 ∈ L 

 δ(q0,0100) = δ({q0,q1},100)  

        = δ (q0, 00) 

        = δ ({q0, q1},0) 

                = {q0, q1, q2} 

q2 is final state and the entire string has been consumed i.e., given string 

is accepted by NFA. 

q1 



Formal Languages and Automata Theory 25 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

Case ii) Let w=1011 ∉ L 

δ(q0,1011) = δ(q0,011)  

                 = δ({q0,q1},11) 

                           = δ(q0,1) 

                                    = q0 

q0 is not final state and the entire string has been consumed i.e., given 

string is rejected by NFA. 

 Step 6: Represent NFA with tuples. 

NFA, M= (Q, ∑, δ, qo, F) 
where Q = {q0, q1, q2} 

   ∑ = { 0,1 } 

   δ: δ(q0,0)={q0,q1} 

       δ(q0,1) = q0 

       δ(q1,0) = q2 

       δ(q1,1) =  Ø 

       δ(q2,0) = q2 

    δ(q2,1) = q2 

  q0 – initial state 

   F – final state = { q2 } 

 

2. Design NFA that accepts strings which contains either two 
consecutive 0’s or two consecutive 1’s. 

 

Step 1: Understand the language for which the NFA has to be designed 

and write the language for the set of strings starting with minimum 

string that is accepted by FA. 

L={00,11,100,001,110,011,111,000,0100,1011,..............} 

 Step 2: Draw transition diagram for the minimum length string. 
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Step 3: Obtain the possible transitions to be made for each state on each   

input symbol. 

 
    Step 4: Draw the transition table. 

  

State 
Input 

0 1 

q0 {q0,q3} {q0,q1} 

q1 - q2 

 q2 q2 

q3 q4 - 

 q4 q4 

 
Step 5: Test NFA with few strings that are accepted and few strings that 

are rejected by the given language. 

q2 

q4 
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Case i) Let the input, w = 01001 ∈ L 

δ(q0,0) = {q0,q3} 

δ(q0,01) = δ(δ(q0,0),1) = δ({q0,q3},1) = δ(q0,1) ∪ δ(q3,1) = {q0,q1} 

 

Similarly, we compute 

δ(q0,010) = {q0,q3},  δ(q0,0100) = {q0,q3,q4} 

and 

δ(q0,01001) = {q0,q1,q4} 

           final state 

After the entire string is consumed, the FA is in the state q4. 

As q4 is the final state, the string is a accepted by FA 

 

 
Case ii) Let w = 010 ∉ L 

δ(q0,010) = δ ({q0,q3},10) 

      = δ({q0,q1},0) 

     = {q0,q3} 

There is no path to the final state after the entire string is consumed. So 

the string is rejected by FA. 

 Step 6: Represent NFA with  tuples. 

NFA, M= (Q, ∑, δ, qo, F) 
where Q = {q0, q1, q2, q3,q4} 

   ∑ = { 0,1 } 

   δ: δ(q0,0)={q0,q3} 

       δ(q0,1)= {q0,q1} 

       δ(q1,0)= Ø 
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       δ(q1,1)=q2 

       δ(q2,0)=q2 

    δ(q2,1)=q2 

         δ(q3,0)=q4 

                δ(q3,1)= Ø 

    δ(q4,0)=q4 

    δ(q4,1)=q4 

   q0 – initial state 

   F – final state = { q2,q4 } 

Note: The minimal state DFA, accepting all strings over the alphabet {0, 1} 

where the nth symbol in every string from the right end is a 1, has 2n states. 

Language recognizers: 
A language recognizer is a device that accepts valid strings produced in a given 

language. Finite state automata are formalized types of language recognizers. 

The language accepted by Finite Automata M designated L(M) is the set {x | 

δ(q0,x) is in F}. 

Applications of FA: 

 Used in Lexical analysis phase of a compiler to recognize tokens. 

 Used in text editors for string matching. 

 Software for designing and  checking the behavior of digital circuits. 

Limitations of FA: 

 FA’s will have finite amount of memory. 

 The class of languages recognized by FA s is strictly the regular set. 

There are certain languages which are non regular i.e. cannot be 

recognized by any FA. 

Differences between NFA and DFA: 

S.No NFA DFA 

1 
A nondeterministic finite 

automaton is a 5-tuple  

A deterministic finite automaton 

can be represented by a 5-tuple 
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M= (Q, ∑, δ, qo, F), where  

δ: Q x ∑ into 2Q. 

M= (Q, ∑, δ, qo, F), where  
δ: Q x ∑ to Q. 
 

2 

NFA is the one in which there 

exists many paths for a specific 

input from current state to next 

state. 

DFA is a FA in which there is only 

one path for a specific input from 

current state to next state. 

3 NFA is easier to construct. DFA is more difficult to construct. 

4 NFA requires less space. DFA requires more space. 

5 
Time required for executing an 

input string is more. 

Time required for executing an 

input string is less. 
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UNIT-I 
Assignment-Cum-Tutorial Questions 

 
 

SECTION-A 

 Objective Questions 

1. The prefix of abc is        [ ] 
A) c   B) bc      C) b        D) ε 
2. ∑*=∑+ U ε               [True | False] 
3. Alphabet is ___________________.             [ ] 
A) Finite collection of strings.  B) Finite collection of symbols. 
C) Finite collection of languages. D) All the above. 
4. A ________ of a string is any number of leading symbols of that string. 
5. ___________ is a directed graph associated with an FA in which the vertices 

of the graph correspond to the states of the FA. 
6. The transition function for NFA is a mapping function given as 

_____________. 
7. The transition function for DFA is a mapping function given as 

______________. 
8. A = {a, b, c}. Power set of A= ______________. 
9. FA has             [ ] 
A) Unlimited memory   B) no memory at all 
C)  Limited memory   D) none of the above. 

10. Number of states requires to accept string ends with 10.   [        ] 

A) 3   B) 2    C) 1   D) can’t be represented.  

11. Consider the finite automaton in the following figure            

 
What is the set of reachable states for the input string 0011? [      ] 

A) {q0, q1, q2}  B) {q0, q1} C) {q0, q1, q2, q3}  (D) {q3}    

12. Given the language L = {ab, aa, baa}, which of the following strings are in L*?  
1) abaabaaabaa    2) aaaabaaaa 3) baaaaabaaaab 4) baaaaabaa[ ]  

A) 1,2and3  B) 2,3and4  C) 1,2and4  D) 1, 3 and 4 

13. In the automaton below, s is the start state and t is the only final state. 
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Consider the strings u = abbaba, v = bab, and w = aabb. Which of the following 
statements is true?        [ ] 

A) The automaton accepts u and v but not w 
B) The automaton accepts each of u,v and w 
C) The automaton rejects each of u,v and w 
 D) The automaton accepts u but rejects v and w 
14. If the final states and non-final states in the DFA below are interchanged, then 

which of the 
 following languages over the alphabet {a,b} will be accepted by the new DFA?          

                       
 
A)  Set of all strings that do not end with ab    [ ] 
B) Set of all strings that begin with either an a or a b 
C) Set of all strings that do not contain the substring ab, 
D) All the above 
 

15. What is the minimum number of states in the NFA accepting the language 
{a, ab}? 

A) 3   B) 2   C)1  D) 4   [         ] 

16. The smallest finite automation which accepts the language {x | length of x 
is  divisible by 3} has        [ ] 

A) 2 states  B) 3 states  C) 4 states D) 5 states 
17. The below DFA accepts the set of all strings over {0,1} that [     ]          
          

 
        a) begin either with 0 or 1 b) end with 0   

     c) end with 00   d) contain the substring 00 
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18. Consider a DFA over ∑={a,b} accepting allstrings which have number of a’s 
divisible by 6 and number of b’s divisible by 8. What is the number of states 
that the DFA will have? 

[        ] 
A) 8   B) 14  C) 15  D)  48    

  
SECTION-B 

 SUBJECTIVE QUESTIONS 

1. Define string and alphabet. 

2. Explain operations on strings and languages. 

3.  Define Positive Closure and Kleene Closure.  

4. Define (i) Finite Automaton(FA) (ii)Transition diagram 

5. Explain the model of FA. 

6. Write the differences between NFA and DFA. 

7. What is the difference between empty language and null string? 

8. Which of the following Finite Automaton is having ambiguity and why? 

 i) NFA ii) DFA 

9. Draw the Finite state machine for accepting the languages � and Ø.  

10. From the given transition table. Check whether the following strings are 
accepted or not.  
i) 101101            
ii) 000000  

Q/∑ 0 1 

 q2 q1 

q1 q3 q0 

q2 q0 q3 

q3 q1 q2 

11. Construct DFA accepting the set of all strings beginning with 101.   
12.  Design a DFA for a language which contains strings of a’s & b’s and each 

string ends with aab. 
13. Describe the words w in the language L accepted by the automaton in 

q0 
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14. Design DFA accepting the set of all strings that begin with 01 and end with 

11. 
15. a) Design a DFA to accept the following language. L = {w: |w| mod 3 = 0} on 

Σ = {a} 

b) Design DFA accepting the language whose binary interpretation is 

divisible by 5 over the alphabet {0, 1}. 

16. Design a DFA to accept strings of a’s and b’s having even number of a’s and 

b’s. 

17. Design a DFA that accepts all strings over Σ={0,1} that do not contain 101 

as a substring. 

18.  Design NFA that accepts the language of strings over Σ ={0,1} such that 

some two 0’s are separated by a string whose length is 4i, for some i ≥0. 

19.  Design a NFA to accept strings of 0’s & 1’s such that each string ends with 

00. 

20. For the NFA given below;  

i. Check whether the string axxaxxa is accepted or not  

ii. Give atleast two transition paths 

   
 

SECTION-C 
 

 QUESTIONS AT THE LEVEL OF GATE 
 

1. Consider the following Deterministic Finite Automata 
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  Which of the following is true?     [        ] 

 A) It only accepts strings with prefix as “aababb” 
 B) It only accepts strings with substring as “aababb” 
 C) It only accepts strings with suffix as “aababb” 
 D) None of the above 
2. The  possible number of states of a deterministic finite automaton that 

accepts a regular language 
            L = {w1aw2 | w1,w2 ∈{a,b}* ,|w1| = 2, w2>=3} is ______                       
                                                                                         [GATE 2017 set-2] 
3. Let w be any string of length n in {0, 1}*. Let L be the set of all substrings of 

w. What is the number of states in a non-deterministic finite automaton 
that accepts L?         [     ]          

A)n-1  B)n  C)n+1  D)2n-1   
      [GATE2010] 

4. Consider the machine  M:       

 [GATE 2005 ] 
The language recognized by M is:      [ ] 
     
a) {w Є {a,b}* | every a  in w is followed by exactly two b’s} 
b) {w Є {a,b}* | every a  in w is followed by at least  two b’s} 
c) {w Є {a,b}* |  w contains the substring ‘abb’} 
d) {w Є {a,b}* | w does not contain  ‘aa’ as a substring}     

5. The following finite state machine accepts all those binary strings in which 
the number of 1’s and 0’s are respectively      [     ]         
          [GATE 2004] 

 

a) divisible by 3 and 2  b) odd and even 
c) even and odd   d) divisible by 2 and 3  
 



Formal Languages and Automata Theory 35 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

6. Consider the following deterministic finite state automaton M.

    [GATE 2003] 
Let S denote the set of seven bit binary strings in which the first, the fourth, 
and the last bits are 1. The number of strings in S that are accepted by M is 
           [      ] 

(A) 1  (B) 5  (C) 7  (D) 8 
7. Consider the NFA M shown below. 

 
Let the language accepted by M be L. Let L1 be the language accepted by the 
NFA M1, obtained by changing the accepting state of M to a non-accepting 
state and by changing the non-accepting state of M to accepting states. 
Which of the following Statements is true?     [ ]         
               A) L1 = {0,1}* – L  B) L1={0,1}*     
              C) L1 ⊆ L   D) L1 = L                               

8. Construct a finite state machine that accepts the language, over {0,1} of all 
strings that contain neither the substring  00 nor the substring 11.   
                                    [Gate 2000] 

9. What can be said about a regular language L over {a} whose minimal finite 
state automaton has two states?      [      ]   
                                                                                              [Gate 2000]  
     A) L must be {an | n is odd}  

         B)  L must be {an | n is even} 
 C) L must be {an | >=0}  
 D)  Either L must be  {an | n is odd}, or L must be  {an | n is even} 
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UNIT – II 

Objective: 
To familiarize how to employ non-deterministic finite automata with ε transitions 

and finite automata with outputs. 

Syllabus: 
Finite Automata: 
NFA with ε transitions - significance, acceptance of languages, equivalence between 

NFA with and without ε transitions, NFA to DFA conversion, minimization of FSM, 

equivalence between two FSM‘s, finite automata with output-Moore and Mealy 

machines, applications of FA. 

 
Learning Outcomes: 
Students will be able to: 

 Convert NFA to DFA and NFA with epsilon transitions to NFA without 

Epsilon transitions.  

 Minimize the given DFA. 

 Test whether the two DFA’s are equivalent or not. 

 Design Moore and Mealy Machines 

NFA with ε transitions: 
An   ε -NFA is a tuple (Q, Σ, δ, qo, F)  

where 

 Q is a set of states, 

 Σ is the alphabet,  

 δ is the transition function that maps each pair consisting of a state and a 

symbol in Σ ∪ { ε } to a subset of Q,  

 q0 is the initial state, 

  F ⊂ Q is the set of final (or accepting) states. 

Significance of ε-NFA: 
It becomes very difficult or many times it seems to be impossible to draw directly 

NFA or DFA. 
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Example:   
 

  
  

          

String acceptance by ε –NFA 

                  

         Fig:1 

Transition Table: 

Q/∑ a b ε 

q0 - - {q1,q2} 

q1 q3 - - 

q2 - q4 - 

 q1 - - 

 - q2 - 

 
q4 

q3 
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Example: 

Check whether the string ‘bbb’ is accepted or not for the above automaton. 

                          ε              b            b             b  
q0            q2            q4       q2            q4  

                          ε      q1 

 
As q4 is the final state, the given string is accepted by the given ε –NFA. 
 
 
 
ε –NFA to NFA Conversion: 
Step 1: Find the ε-closure for all states in the given ε-NFA. 

  

ε-closure (q) denotes the set of all states p such that there is a path from q to p 

labelled ε. 

Step 2: Find the extended transition function for all states on all input symbols for 
the given ε-NFA. 

 
δ' (q,a)= ε-closure(δ (δ'(q, ε),a)) 

 
 
Step 3: Draw the transition table or diagram from the extended transition function 

(NFA) 

 

Step 4: F is the set of final states of NFA, whose ε -closure contains the final state 

of ε -NFA. 

 
Step 5: To check the equivalence of ε -NFA and NFA, the string accepted by ε -NFA 

should be accepted by NFA. 

 
Example: 
1. Convert NFA with ε-moves into an equivalent NFA without ε-moves. 
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Step 1: Find the ε-closure for all states in the given ε-NFA. 

    ε -CLOSURE (q0) = {q0, q1, q2} 

    ε -CLOSURE (q1) = {q1, q2} 

    ε -CLOSURE (q2) = {q2} 

 
Step 2: Find the extended transition function for all states on all input symbols for 

the given ε-NFA. 

         δ' (q0,0) = ε-closure(δ (δ'(q0, ε),0)) 

                      = ε-closure(δ {q0, q1, q2},0) 

                      = ε-closure(δ(q0, 0) U δ (q1,0) Uδ (q2,0)) 

                       = ε-closure(q0 U Ø U Ø)  

                      = {q0, q1, q2} 

                  

         δ' (q0,1) = ε-closure(δ (δ'(q0, ε),1)) 

                     = ε-closure(δ {q0,q1, q2},1) 

                     = ε-closure(δ (q0,1) U δ(q1,1) U δ(q2,1)) 

                      = ε-closure(Ø U q1 U Ø)  

                     ={q1,q2}  
       

       δ' (q0,2) = ε-closure(δ (δ'(q0, ε),2)) 

                   = ε-closure(δ { q0,q1, q2},2) 

                   = ε-closure(δ (q0,2) U δ (q1,2) Uδ (q2,2)) 

                    = ε-closure(q2 U Ø)  

                   ={q2} 
  

      δ' (q1,0) = ε-closure(δ (δ'(q1, ε),0)) 

                  = ε-closure(δ {q1, q2},0) 

                  = ε-closure(δ (q1,0) Uδ (q2,0)) 

                   = ε-closure(Ø)  

                  ={ Ø } 
 

      δ' (q1,1) = ε-closure(δ (δ'(q1, ε),1)) 

                  = ε-closure(δ {q1, q2},1) 

                  = ε-closure(δ (q1,1) Uδ (q2,1)) 

                   = ε-closure(q1)  

                  ={q1, q2 } 
 

     δ (q1,2) = ε-closure(δ (δ'(q1, ε),2)) 

                = ε-closure(δ {q1, q2},2) 
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                = ε-closure(δ (q1,2) Uδ (q2,2)) 

                = ε-closure(q2)  

                ={q2} 
 

      δ (q2,0) = ε-closure(δ (δ'(q2, ε),0)) 

                 = ε-closure(δ (q2,2)) 

                 = ε-closure(Ø) 

                 ={ Ø} 
 

     δ (q2,1)  = ε-closure(δ (δ'(q2, ε),1)) 

                  = ε-closure(δ (q2,1)) 

                 = ε-closure(Ø) 

                 ={ Ø } 
 

     δ (q2,2) = ε-closure(δ (δ'(q2, ε),2)) 

                 = ε-closure(δ (q2,2)) 

                 = ε-closure(q2) 

                 ={ q2} 
 

Step 3: Draw the transition table or diagram from the extended transition function 
(NFA) 

State 
Inputs 

0 1 2 

q0 {q0, q1, q2} {q1, q2} q2 

q1 Ø {q1, q2} q2 

*q2 Ø Ø q2 
 
 

Step 4: F is the set of final states of NFA, whose ε -closure contains the final state 
of ε -NFA. 

State 
Inputs 

0 1 2 

 {q0, q1, q2} {q1, q2} q2 

 Ø {q1, q2} q2 

 Ø Ø q2 

 

q0 

q1 

q2 
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Step 5: To check the equivalence of ε -NFA and NFA, the string accepted by ε -NFA 
should be accepted by NFA. 
 
String acceptance by ε-NFA: 
Let w=001 

             0          0            ε    1      ε 
q0         q0          q0        q1         q1         q2 

 
As q2 is the final state, the string is accepted by the given ε-NFA. 
 
String acceptance by NFA: 
If w=001 
  0             0                1  

q0              q0             q0                  q1  
                      0           0      q1        1      q2 

                   0          q1   0    q2   

                            q2 

As q1 and q2 are final states, the string is accepted by the NFA. 
 

NFA to DFA Conversion: 

Step 1: First take the starting state of NFA as the starting state of DFA. 

Step 2: Apply the inputs on initial state and represent the corresponding states in 
the transition   table. 

Step 3: For each newly generated state, apply the inputs and represent the 
corresponding states in the transition   table. 

Step 4: Repeat step 3 until no more new states are generated. 

Step 5: The states which contain any of the final states of the NFA are the final 
states of the equivalent DFA. 
Step 6: Represent the transition diagram from the constructed table. 
Step7: To check the equivalence of NFA and DFA, the string accepted by NFA 
should be accepted by DFA. 
Step 8: Write the tuple representation for the obtained DFA. 
 
Note:  If the NFA has n states, the resulting DFA may have up to 2n states, an 
exponentially larger number, which sometimes makes the construction impractical 
for large NFAs. 

Example: 
1. Construct DFA equivalent to the NFA M=({q0,q1},{0,1}, δ,q0,{q1})  
    where   δ(q0,0) = {q0,q1}          δ(q0,1) = {q1}        δ(q1,0) = Ø          δ(q1,1) = {q0,q1} 



Formal Languages and Automata Theory 7 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE

 

Step 1: First take the starting state of NFA as the starting state of DFA 

Q/∑ 0 1 
[q0]   

 

Step 2: Apply the inputs on initial state and represent the corresponding states in 
the transition   table. 

Q/∑ 0 1 
[q0] [q0,q1] [q1] 

 

Step 3: For each newly generated state, apply the inputs and represent the 
corresponding states in the transition   table. 

Q/∑ 0 1 
[q0] [q0,q1] [q1] 

[q0,q1] [q0,q1] [q0,q1] 
[q1] Ø [q0,q1] 

 

Step 4: Stop the procedure as there are no more new states being generated. 

Step 5: The states which contain any of the final states of the NFA are the final 
states of the equivalent DFA. 
q1 is the final state in NFA. q1 is included in the state [q0,q1] and [q1]. So [q0,q1] and 
[q1] are the final states of the DFA. 
 

Q/∑ 0 1 
[q0] [q0,q1] [q1] 

 [q0,q1] [q0,q1] 

 
Ø [q0,q1] 

Step 6: Represent the transition diagram from the constructed table. 

                                    

Step 7: To check the equivalence of NFA and DFA, the string accepted by NFA  
should be accepted by DFA. 

[q0,q1] 

[q1] 
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 Let w=1110 be the string accepted by NFA. 
Acceptability by NFA: 
 
     1 q1 0 Ø 
   1 q1   0 q0 
q0 1 q1   1 q0  
   1 q0   0 q1 
     1 q1 
  0 Ø 

Acceptability by DFA: 
           1         1                  1               0 
δ([q0],1110) = δ([q1],110)           [q0]       [q1]        [q0,q1]       [q0,q1]       [q0,q1] 

                    = δ([q0,q1],10) 

                    = δ([q0,q1],0) 

                    = [q0,q1] � F 

Step 8: Write the tuple representation from the obtained DFA. 
 DFA M' = (Q,∑, δ,q0,F) 
 where Q = {[q0], [q0,q1], [q1] } 

  ∑ = {0, 1} 

  δ - transition function 

  [q0] - initial state 
  F = {[q0], [q0,q1]} 
 

Minimization of Finite Automata: 
Two states ql and q2 are equivalent (denoted by q1 ≡ q2) if both δ(q1, x) and δ(q2, x) 

are final states. or both of them are nonfinal states for all x � ∑*. 

 

Two states q1 and q2  are k-equivalent  (k ≥ 0) if both δ(q1, x) and δ(q2, x) are final 

states or both  nonfinal states for all strings x of length k or less. In particular, any 

two final states are 0-equivalent and any two  nonfinal states are also 0-equivalent. 

Construction of Minimum Automaton: 
Step 1: (Construction of π0)· By definition of 0-equivalence, π0 ={Q10, Q20 } where 

Q10 is the set of all final states and Q20 =Q - Q10. 

 

Step 2: (Construction of πk+1 from πk).  
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 Let Qik be any subset in πk . If q1 and q2 are in Qik , they are (k + 1)-

equivalent provided   δ (q1,a) and δ(q2,a) are k-equivalent.  

 Find out whether δ (q1, a) and δ (q2, a) are in the same equivalence class in 

πk for every a � ∑. If so q1 and q2 are (k + 1)-equivalent.  

 In this way, Qik is further divided into (k + 1)-equivalence classes. Repeat 

this for every Qik in πk to get all the elements of πk+1. 
 

Step 3: Construct πn for n = 1, 2, .... until πn = πn+1. 
 

Step 4: (Construction of minimum automaton). For the required minimum state 

automaton, the states are the equivalence classes obtained in step 3. i.e. the 

elements of  πn The state table is obtained by replacing a state q by the 

corresponding equivalence class [q]. 

 

Example: 
Construct a minimum state automaton equivalent to the finite automaton. 

  

Solution: 
It will be easier if we construct the transition table. 



Formal Languages and Automata Theory 10 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

   

 

Step 1: Construction of π0 

 π0 = {Q10, Q20 } 

          where Q10 = F = {q2}   Q20 = Q- Q10 

         ∴ π0 = {{q2}, {q0,q1,q3,q4,q5,q6,q7}} 

Step 2: The {q2} in π0 cannot be further partitioned. So, Q11 = {q2}.  

Compare q0 with q1, q3,q4,q5,q6 and q7. 

 

Consider qo and q1 � Q20.  

 The entries under the 0- column corresponding to qo and q1 are q1 and q6; 

they lie in Q20.  

 The entries under the 1-column are q5 and q2. q2 � Q10 and q5 � Q20. 

Therefore qo and q1 are not 1- equivalent. 

 
Q/∑ 0 1 

q0 q1 q5 

q1 q6 q2 

Consider q0 and q3 

Q/∑ 0 1 

q0 q1 q5 

q3 q2 q6 
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The entries under the 0- column corresponding to qo and q3 are q1 and q2; q1 � 

Q20 and q2 � Q10. The entries under the 1-column are q5 and q6; they lie in Q20. 

Therefore qo and q3 are not 1- equivalent 

Similarly, qo is not 1-equivalent to q5 and q7. 

Consider q0 and q4 

Q/∑ 0 1 

q0 q1 q5 

q4 q7 q5 

 The entries under the 0- column corresponding to qo and q4 are q1 and q7; 

they lie in Q20.  

 The entries under the 1-column are q5 and q5; they lie in Q20. Therefore qo 

and q1 are 1- equivalent. 

Similarly, qo is 1-equivalent to q6. 

{qo. q4, q6} is a subset in π1.  

So, Q21 = {q0,q4,q6} 

 

 Repeat the construction by considering q1 and anyone of the state's q3, q5, 

q7.  Now, q1  is not 1-equivalent to q3 or q5 but 1-equivalent to q7.  

Hence, Q31 = {q1,q7}.   

 The elements left over in Q20are q3 and q5. By considering the entries under 

the 0-column and the 1-column, we see that q3 and q5 are 1-equivalent.  

So Q41 = {q3, q5}.  

Therefore,  π1 = {{q2}. {qo, q4, q6}. {q1, q7}, {q3, q5}} 

 
Step 3: Construct πn for n = 1, 2, .... until πn = πn+1. 
 Calculate 2-equivalent, π2. 

 π2 = {{q2}, {qo,q4}, {q6}, {q1,q7}, {q3,q5}} 

Similarly calculate 3-equivalent, π3. 

 π3 = {{q2}, {qo,q4}, {q6}, {q1,q7},{q3,q5}} 
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As π2 = π3, π2 gives us the equivalence classes. 

Step 4: Construction of minimum automaton. 

        M' = (Q',{0,1},δ',q0',F') 

       where Q' = {[q2]. [q0, q4], [q6], [q1, q7], [q3, q5]} 

       q0' = [q0, q4] 

        F' = [q2] 

                 δ' is given by  

   

   
 
 
 
Equivalence between two FSM’s: 
Let M and M’ be two FSM’s over ∑ .We construct a comparison table consisting of 

n+1 columns  where n is the number of input symbols. 

Step 1: 1st column consisting of a pair of states of form (q, q’) where q belongs to M 

and q’ belongs M’. 

Step 2: If (q, q’) appears in the same row of 1st column then the corresponding 

entry in a column (a belongs to ∑) is (r,r’) where (r,r’) are pair from q and q’ on a. 
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Step 3: A table is constructed by starting with a pair of initial states q0, q0’ of M 

and M’. We complete construction by considering the pairs in 2nd and subsequent 

columns which are not in the 1st column. 

(i) if we reach a pair (q,q’) such that q is final states of M and q’ is non-final 

state of M’ i.e. terminate contruction and conclude that M and M’ are not 

equivalent. 

(ii) if construction is terminated when no new element appears in 2nd and 

subsequent columns which are not in 1st column. Conclude that M and M’ 

are equivalent.   

Example: 
Check whether the given two finite automata’s are equivalent or not. 

 

Solution: 
q1 is initial state of M1 and q4 is initial state of M2 ,make them a pair and place it 

in 1st row of the transition table. 

Comparison table 

Q/∑ c d 

(q1,q4) (q1,q4) (q2,q5) 

(q2,q5) (q3,q4)  

Here q3 is non-final state and q4 is final state. 

Therefore, we stop constructing comparison table and conclude that the two given 

Finite Automata’s are not equivalent.  

Moore Machine 
A Moore machine is a six tuple (Q, ∑, ∆, δ, q0, λ) 
where  
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  Q is a set of states, 

 Σ is the alphabet,  

 δ is the transition function that maps each pair consisting of a state and a 

symbol in Σ to Q  i.e. .Q X  Σ -> Q     

 q0 is the initial state, 

 ∆ is output alphabet 

 λ is a mapping from Q to ∆ giving the output associated with each state 

Note: For a Moore machine if the input string is of length n, the output string is of 

length n + 1. The first output is λ (qo) for all output strings. 

Mealy Machine 
A Mealy machine is a six tuple (Q, ∑, ∆, δ, q0, λ) 
where 

 Q is a set of states, 

 Σ is the alphabet,  

 δ is the transition function that maps each pair consisting of a state and a 

symbol in Σ to Q i.e. .Q X  Σ -> Q     

 ∆ is output alphabet 

 q0 is the initial state, 

 λ maps Q x ∑ to ∆  i.e., λ(q,a) gives the output associated with the transition 

from state q on input a 

Note: In the case of a Mealy machine if the input string is of length n , the output 

string is also of the same length n. 

Example: 

 The given transition diagram is moore machine because each state is 

associated with output. 

 In the below diagram q0 is representing 0 output, q1 is is representing 1 

output and q2 is representing 2 output. 

λ (q0) =0        λ (q1)=1       λ (q2)=2 

 



Formal Languages and Automata Theory 15 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE

w=011 the output is 0010 

q0 0 q0        1         q1           1          q0    Transitions 

 

0   0    1        0    Outputs 

Example: 
 The given transition diagram is mealy machine because output depends on 

present state and present input.  
 In the below diagram  

λ (q0,0 )= 0  λ (q1,0 )= 2  λ (q2,0 )=  0 
λ (q0,1)=  1  λ (q1,1)= 0  λ (q2,1 )=   2 
 

 

w=011 the output is 010 

q0 0 q0        1          q1           1          q0    Transitions 

 

     0    1  0      Outputs 

Example: 

1. Design Moore machine to determine the residue mod 3 for each binary 
string treated as a binary integer. 

 

Moore machine calculating residue mod 3 

Moore Table 

Present 
State 

Next State Output 
0 1 
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q 0 q0 q1 0 

q1 q2 q0 1 

q2 q1 q2 2 
 

Tuple Representation: 

Q={q0,q1,q2}         ∆={0,1,2}    ∑={0,1} 

q0={q0}    

λ :λ (q0)=0   δ:  δ(q0,0) = q0   δ(q0,1) = q1 

    λ (q1)=1    δ(q1,0) = q2   δ(q1,1) = q0 

   λ (q2)=2    δ(q2,0) = q1   δ(q2,1 )= q2 

 

Example: 
1. Design Mealy machine to determine the residue mod 3 for each binary 
string treated as a binary integer. 

 

 Mealy Table: 

Present 
State 

Next State Next State 
0 Output 1 Output 

q 0 q0 0 q1 1 

q1 q2 2 q0 0 

q2 q1 1 q2 2 
 
Tuple Representation: 
Q={q0,q1,q2}         ∆={0,1,2}       ∑={0,1} 

q0={q0}    

λ: λ (q0,0)=0   δ:  δ(q0,0) = q0   δ(q0,1) = q1 
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    λ (q0,1)=1    δ(q1,0) = q2   δ(q1,1) = q0 

   λ (q1,0)=2    δ(q2,0) = q1   δ(q2,1 )= q2 

   λ (q1,1)=0 

   λ (q2,0)=1 

   λ (q2,1)=2 

Moore to Mealy Conversion: 
If M1= (Q,∑,∆,δ,q0, λ) is a Moore machine, then there is a Mealy machine M2 
equivalent to Ml. 
 

Procedure: 

 Let M2 = (Q,∑,∆,δ,q0, λ' ) and define λ' (q, a) to be λ (δ (q, a)) for all states q 

and input symbols a.  

 Then M l and M2 enter the same sequence of states on the same input, and 

with each transition M2 emits the output that Ml associates with the state 

entered. 

Example: 

Construct a Mealy Machine which is equivalent to the Moore machine given 
by table below. 

Present 
State 

Next State Output 
0 1 

q 0 q3 q1 0 

q1 q1 q2 1 

q2 q2 q3 0 

q3 q3 q 0 0 
 

Solution: 
λ' (q, a) to be λ(δ (q, a)) 

λ' (q0,0 ) =λ(δ (q0, 0))    λ' (q0,1) =λ(δ (q0, 1)) 

   =λ (q3)       =λ (q1) 

  =0                                               =1 

λ' (q1,0) =λ(δ (q1, 0))   λ' (q1,1) =λ(δ (q1, 1)) 

   =λ (q1)       =λ (q2) 
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  =1                                        =0 

λ' (q2,0) =λ(δ (q2, 0))   λ' (q1,1) =λ(δ (q2, 1)) 

   =λ (q2)       =λ (q3) 

   =0                                        =0 

λ' (q3,0) =λ(δ (q3, 0))   λ' (q3,1) =λ(δ (q3, 1)) 

    =λ (q3)       =λ (q0) 

    =0                                        =0 

Mealy Table: 

Present 
State 

Next State Next State 
0 output 1 Output 

q 0 q3 0 q1 1 

q1 q1 1 q2 0 

q2 q2 0 q3 0 

q3 q3 0 q 0 0 
 

Mealy to Moore Conversion: 
If M1= (Q, Σ, Δ, δ, λ, q0) is a Mealy machine, then there is a Moore machine M2 

equivalent to Ml. 
Procedure: 

 Determine the number of different output associated with qi in the next state 

column. 

 We split qi into different states according to different output associated with 

it 

For example: q2 is associated with two different outputs 0 and 1, so we split 

q2 into q20       and q21. 

Example:  

Construct Moore machine for the given mealy machine. 
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Solution: 
 We get two states (q1 and q2) that are associated with different outputs (0 

and 1). so we split both states into q10 , q11 and q20, q21. 

 Whole row of q1 is copied to q10, q11 and whole row of q2 is copied to q20 and 

q21 of the sample transition table of mealy machine. 

 The outputs of the next state columns of q1 and q2 are depend on the 

previous output. For ex. in the first row, q1 becomes q11 because the out of q1 

is 1 in the fourth row, q2 becomes q21 because the output of the q2 is 1 and 

in the subsequent column q2 becomes q20 because the output of q2 in that 

column was 0. and so on 
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UNIT-II 
Assignment-Cum-Tutorial Questions 

 

SECTION-A 

Objective Questions  

1. What is the complement of the language accepted by the NFA shown below? 
           [ ] 

  
2. NFA with ε can increase the processing time of NFA           [True/False] 
3. _______________ of a state is the set of states that can be reached by ε-

transitions. 
4. The number of states in DFA is __________ the number of states in NFA for the 

same language.         [ ] 
(A) greater than  (B) less than  (C) equal to  (D) none  

5. Given a Non-deterministic Finite Automaton (NFA) with states p and r as initial 
states and final states respectively and transition table as given below: 

 
The minimum number of states required in Deterministic Finite Automaton 
(DFA) equivalent to NFA is       [ ] 
(A) 5     (B) 4    (C) 3    (D) 2 

6. The output in ___________ machine is associated with transition. [ ] 
(A) Moore   (B) Mealy   (C) both  (D) DFA 

7. The two states q1 and q2 are said to be __________________ if both δ(q1,a) and 
(q2,a) reach final states or both of them reach non final states for all a∈ ∑. 

8. For a Moore machine if the input string is of length n, the output string is of 
length n + 1.             [True/False] 

9. In a Mealy machine if the input string is of length n, the output string is of 
length ___________. 
 (A) n   (B) n+1  (C) 2n   (D) n+2 

10. Choose incorrect statement.       [ ] 
(A) Moore and Mealy machines are FSM’s with output capability. 
(B) Any given Moore machine has an equivalent Mealy Machine. 
(C) Any given Mealy machine has an equivalent Moore Machine. 
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(D) Moore Machine in not a FSM. 
 

11. All Moore Machine have an equivalent Finite Automata.    [True/False]   
12. Which of the following statement is true?     [ ] 

(A) A Mealy machine has no terminating state 
(B) A Moore machine has no terminating state 
(C) Converting from Mealy into Moore machine and vice versa is possible 
(D) All of these 

13. The output alphabet in Moore machine can be represented formally as  
(A) ∆  (B)∑   (C) δ  (D) λ   [ ] 

14. Consider the table        [ ]
    

Present 
State 

Next State 
0 1 
state output state output 

q0 q0 0 q1 1 

q1 q2 2 q0 0 

q2 q1 1 q2 2 

      
    If the initial state is q0. What is the output sequence for the string 101? 

(A) 0012  (B) 122  (C) 112  (D) 0122 
 

SECTION-B 
 SUBJECTIVE QUESTIONS 
1. Consider the following finite automaton with �-moves Obtain equivalent 

automaton without �-moves.  

 
2. Construct NFA for the set of strings in (0+1)* such that some two 0’s are 

separated by a string whose length is 4i, for some i≥0. 
3. Construct a NFA without ∈ for the following NFA with ∈.  
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4. Define ε-closure. Find the ε-closures of the each state in the following ε-NFA. 

 
5. Construct an equivalent DFA for a NDFA M = ({q1, q2, q3}, q1, q3) where  δ is 

given by 
     δ(q1,0)={  q2,q3  },             δ(q1,1)={  q1 }, 
     δ(q2,0)={  q1,q2  },             δ(q2,1)= ∅ 
     δ(q3,0)={  q2} ,                  δ(q3,1)={  q1,q2 } 

 
6. Construct an equivalent DFA for the following NFA 

 
7. Verify whether the following FA is equivalent? 

 
8. Find the equivalence between M1 & M2  
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9. Construct the minimum state automaton equivalent to the transition diagram  

 
10. Construct a minimum state automaton equivalent to a given automaton M  

whose transition table is defined by table 

 
11. Explain about the finite automata with outputs in detail. 
12. Construct a Mealy machine which is equivalent to the Moore machine           

defined by table 

 
13. Construct a Moore machine equivalent to the Mealy machine M defined by  
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14. Design a Mealy machine that uses its states to remember the last symbol read 
and emits output ‘y’ whenever current input matches to previous one, and 
emits n otherwise 

15. Design a Moore machine to determine the residue mod 4 for each binary 
string treated as integers. 

16. Construct a Moore machine that takes set of all strings over {a,b} as input and 
prints ‘1’ as output for every occurrence of ‘ab’ as a substring. 

17. Construct a Mealy machine which can output EVEN or ODD according as the 
total number of 1’s encountered is even or odd. The input symbols are 0 and 
1. 

18. Give Mealy and Moore machines for the following process: For input from 
(0+1)*, if the input ends in 101, output A; If the input ends in 110 output B; 
otherwise output C. 
 

SECTION-C 
QUESTIONS AT THE LEVEL OF GATE  

1. Let  denote the transition function and denote the extended transition         
function of the ε-NFA whose transition table is given below:               

   [GATE 2017(Set 2)] 

Then (q2,aba) is        [ ] 
(A) ∅  (B) {q0,q1,q3}  (C) {q0,q1,q2}  (D) {q0,q2,q3} 
 

2. A deterministic finite automation (DFA)D with alphabet ={a,b} is given below 

     [GATE 2011] 
Which of the following finite state machines is a valid minimal DFA which 
accepts the same language as D?      [   ] 
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3. Consider the following finite state automaton    [ ] 

 
The minimum state automaton equivalent to the above FSA has the following   
number of states       [GATE 2007 ] 

     (A) 1   (B)2   (C) 3    (D)4 
4.   The following diagram represents a finite state machine which takes as input a 

binary number from the least significant bit.   [GATE 2005] 

 
    Which one of the following is true?     [ ] 
 (A) It computes 1’s complement of the input number 

 (B) It computes 2’s complement of the input number 
 (C) It increments the input number 
 (D) It decrements the input number 
 

5. The finite state machine described by the following state diagram with A as 
starting state, where an arc label is x/y and x stands for 1-bit input and y 
stands for 2-bit output     [ ]  [GATE 2002]  
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    (A) Outputs the sum of the present and the previous bits of the input  
    (B) Outputs 01 whenever the input sequence contains 11 
    (C) Outputs 00 whenever the input sequence contains 10 
    (D) None of the above 
 

6. Given an arbitrary non-deterministic finite automaton(NFA) with N states, the 
maximum number of states in an equivalent  minimized DFA is atleast   
(A) N2 (B) 2N  (C) 2N  (D) N!  [ ]   [GATE 2001] 
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UNIT-III 

Objective: 
To familiarize how to employ regular expressions. 

Syllabus:  
Regular sets, regular expressions, identity rules, construction of finite 

Automata for a given regular expressions and its inter conversion, pumping 

lemma of regular sets, closure properties of regular sets (proofs not 

required),applications of regular languages. 
Learning Outcomes: 
Students will be able to: 

 understand the regular sets and how to represent the regular 

expressions. 

 construct finite Automata for a given regular expression and viceversa. 

 list closure properties of regular languages. 

 understand the different applications of regular languages. 

 
Learning Material 
Regular set: 
A language is a regular set (or just regular) if it is the set accepted by some 

finite automaton. 

Example: 
L= {0, 1, 10, 00, 01, 11, 000, 101,  .................} is a regular set representing 

any no of 0’s and any no of 1’s.  

Regular expression: 

The languages accepted by finite automata are easily described by simple 

expressions called regular expressions.  

Let Σ be an alphabet. The regular expressions over Σ and the sets that they 

denote are defined recursively as follows.  

1) Ø is a regular expression and denotes the empty set.  

2)  ε is a regular expression and denotes the set { ε }.  
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3) For each a in Σ, a is a regular expression and denotes the set {a}.  

4) If r and s are regular expressions denoting the languages R and S, 

respectively, then 

 (r + s), (rs), and (r*) are regular expressions that denote the sets R U S, RS, 

and R*, respectively. 
 

Some Examples on Regular expressions 

1.Write regular expressions for each of the following languages over 
∑={0, 1}. 

a) The set representing {00}.  

   00  
b) The set representing all strings of 0's and 1's. 

   (0+1)* 
c) The set of all strings representing with at least two consecutive 0’s.  

 (0 + 1)*00(0 + 1)* 
d) The set of all strings ending in 011. 

   (0 + 1)*011 
e) The set of all strings representing any number of 0's followed by any 

number of 1’s followed by any number of 2's. 

 0*1*2* 
f) The set of all strings starting with 011. 

   011 (0 + 1)* 
2.Write regular expressions for each of the following languages over 
∑={a, b}. 

     a) The set of all strings ending with either a or bb. 

   (a+b)* (a + bb) 
     b) The set of strings consisting of even no. of a’s followed by odd no. of   

b’s. 
  (aa)*(bb)*b 

     c) The set of strings representing even number of a’s.  

 (b* a  b*  a b*) * + b*    
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Identity Rules Related to Regular Expressions 

Given r, s and t are regular expressions, the following identities hold: 

 ∅* = ε 

 ε* = ε 

 r+ = rr* = r*r 

 r*r* = r* 

 (r*)* = r* 

 r + s = s + r 

 (r + s) + t = r + (s + t) 

 (rs)t = r(st) 

 r(s + t) = rs + rt 

 (r + s)t = rt + st 

 (ε + r)* = r* 

 (r + s)* = (r*s*)* = (r* + s*)* =(r+s*)* 

 r + ∅ = ∅ + r = r 

 r ε = ε r = r 

 ∅ L = L ∅ = ∅ 

 r + r = r 

 ε + rr* = ε + r*r = r* 

Construction of Finite automata for a given regular expression  
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Equivalence of Finite Automata and Regular Expressions 

 The languages accepted by finite automata are precisely the 

languages denoted by regular expressions.  

 For every regular expression there is an equivalent NFA with ε -

transitions. 

 For every DFA there is a regular expression denoting its language. 

 
Let r be a regular expression. Then there exists an NFA with ε -
transitions that accept L(r). 
Zero operators: 
The expression r must be ε, Ø, or a for some a in Σ. The NFA’s for zero 

operators are 

 
 
One or more operators: 

Let r have i operators. There are three cases depending on the form of r. 

Case 1:  Union (r = rl + r2.) 
There are NFA’s M1 = (Q1, ∑1, δ1, q1, {f1}) and M2=(Q2, ∑2, δ2, q2, {f2}) 
with L(M1) = L(r1) and L(M2) = L(r2). 

Construct 

M = (Q1 ∪ Q2 ∪ {q0, f0},  ∑1 ∪ ∑2, δ, q0, {f0}) where δ is defined by 

i) δ (q0, ε) = {q1,q2} 

ii) δ (q, a) = δ1(q ,a) for q in Q1-{f1} and a in ∑1 ∪ { ε } 

iii) δ (q, a) = δ2(q ,a) for q in Q2-{f2} and a in ∑2 ∪ { ε } 

iv) δ (f1, ε) = δ1(f2, ε) = { f0 } 
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L(M) = L(M1) ∪ L(M2) 

 

Case 2: Concatenation (r = r1 r2). 

Let M1 and M2 be as in Case 1 and construct M = (Q1 ∪ Q2,  ∑1 ∪ ∑2, δ, 
q1, {f2})  

where δ is defined by 

i) δ (q, a) = δ1(q ,a) for q in Q1-{f1} and a in ∑1 ∪ { ε } 

ii) δ (f1, ε) = {q2} 

iii) δ (q, a) = δ2(q ,a) for q in Q2 and a in ∑2 ∪ { ε } 

L(M) ={xy| x is in L(M1) and y is in L(M2)} and L(M) = L(M1)L(M2)    

 

Case 3: Closure (r = r1*) 

Let M1 = (Q1, ∑1, δ1, q1, {f1}) and L(M1) = r1.  

Construct M = (Q1 ∪ {q0,f0},  ∑1 , δ, q0, {f0}), where δ is defined by 

i) δ (q0, ε) = δ (f1, ε) = {q1,f0} 

ii) δ (q, a) = δ1(q ,a) for q in Q1-{f1} and a in ∑1 ∪ { ε } 
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Example: 
1. Construct an NFA for the regular expression 01*+1  

Regular expression is of the form r1 + r2, where r1 =01* and r2 = 1. 
The automaton for r2 is  

 

Express r1 as r3 and r4, where r3=0 and r4= 1* 

The automaton for r3 is 

           

r4 is r5*  where  r5=1 

The NFA for r5 is  

         

To construct an NFA for r4 = r5*   use the construction of closure. The 

resulting NFA  for r4 is 
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Then, for r1 = r3 r4 use the construction of concatenation.  

 

Finally, use the construction of union to find the NFA for r = r1 + r2 

 
 
Construction of  regular expressions for the given  finite Automata: 
Arden’s Theorem 
Let P and Q be two regular expressions over Σ,and if P does not contain 

epsilon, then R=Q+RP has a unique solution R=QP*. 

Procedure: 
Assume the given finite automata should not contain any epsilons. 

Step 1: Find the reachability for each and every state in given Finite 

automata. 

Reachability of a state is the set of states whose edges enter into that state.  

Step 2: For the initial state of finite automata ,add epsilon to the 

reachability equation. 

Step 3: Solve the equations by using Arden’s Theorem. 

Step 4: Substitute the results of each state equation into the final state 

equation,to get the regular expression for the given DFA. 
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  Example: 
1. Construct regular expression for the given finite automaton. 

 
    The given Finite Automata is not having any �’s( epsilons). 

 
Step 1: Find the reachability for each and every state in given Finite 

automata. 

Reachability of a state is the set of states whose edges enter into that state.  

 q0=q0 0     1 
 q1= q0 1 + q10 + q2 1  2 
 q2= q1 1 + q20   3 
Step 2: For the initial state of finite automata, add epsilon to the 

reachability equation. 

 q0=q0 0 + �  
Step 3: Solve the equations by using Arden’s Theorem. 

 After applying arden’s theorem for equation 3 

  q2=q1 10*   4  
 Substitute  equation 4 in equation 2 

  q1= q0 1 + q10+q1 10*  
  q1= q0 1 + q1(0+10*)   5 
 Apply arden’s theorem on equation 5   

  q1= q01 (0+10*)*     6 
 Apply arden’s theorem on equation 1 

  q0=q0 0 + � 

  q0= � 0*   7 
 Substitute equation 7 in equation 6 

  q1= � 0* 1 (0+10*)*  8  

Step 4: Substitute the results of each state equation into the final state 

equation, to get the regular expression for the given DFA. 
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  q2= � 0* 1 (0+10*)* 10* 
Therefore, the regular expression for the given DFA is 0* 1 (0+10*)* 10*. 
 

Pumping Lemma for Regular Sets: 

 Pumping lemma, which is a powerful tool for proving certain 

languages non-regular. 

 It is also useful in the development of algorithms to answer certain 

questions concerning finite automata, such as whether the language 

accepted by a given FA is finite or infinite. 
 

Lemma  

Let L be a regular set. Then there is a constant n such that if z is any word 

in L, and |z| > n, we may write z=uvw in such a way that |uv| ≤ n, v ≥ 1, 

and for all i> 0, uviw  is in L. Furthermore, n is no greater than the number 

of states of the smallest FA accepting L. 
 

Example: 
The set L = {0i2 | i is an integer, i ≥ 1], which consists of all strings of 
0’s whose length is a perfect square, is not regular.  
Assume L is regular and let n be the integer in the pumping lemma. 

Let z = 0n2. 

By the pumping lemma, 0n2may be written as uvw, where 1 ≤ |v| ≤ n and 

uviw is in L for all i.  Let i = 2, n2 < |uv2w| < n2 + n < (n+1)2.  

That is, the length of uv2w lies properly between n2 and (n +1)2, and is thus 

not a perfect square.  

Thus uv2w is not in L, a contradiction.  

We conclude that L is not regular. 
 

Closure Properties of Regular Sets: 

 The regular sets are closed under union, concatenation, and Kleene 

closure. 

 The class of regular sets is closed under complementation. That is, if L 

is a regular set and L ⊆ ∑*, then ∑* - L is a regular set. 

 The regular sets are closed under intersection. 

 The class of regular sets is closed under substitution. 
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 The class of regular sets is closed under homomorphism and inverse 

homomorphism. 

 The class of regular sets is closed under quotient with arbitrary sets. 
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UNIT-III 
Assignment-Cum-Tutorial Questions 

 

SECTION-A 

Objective Questions  

1. The languages accepted by finite automata are easily described by simple 

expressions called____________. 

2. A language is a _________________ if it is the set accepted by some finite 

automaton. 

3.  What is the solution for equation R=Q+RP (if P and Q are RE and P does 

not contain ε)?             [ ]                 

(a) R=QP*      (b) R=QP     (c) R=PQ*     (d) R=P*Q* 

4. ∅ + R =_____________. 

5. ∅* =__________________. 

6. ε*=_______________. 

7. ε + r r*=r*     [ True / False]     

8. Pumping lemma is generally used for proving    [ ] 

  (a) a given grammar is regular     

  (b) a given grammar is not regular 

  (c) whether two given regular expressions are equivalent    

  (d) none of the above   
 

9. Regular sets are closed under                         [  ]     

   (a) Union      (b) concatenation    

   (c) Kleene closure     (d) All of the above 
 

10. a + b denotes the set_____________________.    [  ]     

   (a) {a, b}  (b) {ab}  (c) { a }  (d) {b} 

11. The set of all strings of {0, 1} having exactly two 0’s is    [ ]           

   (a) 1*01*01*  (b) {(0+1) *}    (c) {11+0}*      (d) {00+11}*  

12. The regular expression to represent all strings with length atmost 2 over 

{a,b} is_______. 

   (a) ε  (b) ε+(a+b)+(a+b).(a+b)  (c) (a+b)  (d) (a+b).(a+b) 
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13. Which one of the following languages over the alphabet {0 ,1} is 

described by the regular expression: (0+1)*0(0+1)*0(0+1)*?  [ ] 

 (a) The set of all strings containing the substring 00.  

 (b) The set of all strings containing atmost two 0’s.  

 (c) The set of all strings containing atleast two 0’s.  

 (d) The set of all strings that begin and end with either 0 or 1.  

14. Consider the languages L1 = � and L2 = {0}. Which one of the following 

represents L1 L2 * + L1*       [ ]                        

(A) { � }    (B) Ø   (C) 0*  (D) { � ,0} 

15. What is the regular expression for the given DFA? 

.  

 (a) (0+1)*  (b) 0(0+1)*  (c) 0  (d) (0+1)*0 

16. Which of the following languages are not regular?   [ ] 

 (a) L= an | n>=1 (b) L=anbm | n,m>=1 (c) anbn | n>=1 (d) a2n | n>=0 

17. What is the regular expression for the given DFA?   [ ] 

    
     (a) 0*1+  (b) 0*1*  (c) 1*0*  (d) 1*0+ 
 

SECTION-B 
 SUBJECTIVE QUESTIONS  
1. Define regular set and regular expression. 

2. State Arden’s Theorem. 

3. List the closure properties of Regular Languages. 

4. Explain pumping lemma for regular languages with an example. 

5. Write the regular expression for all strings ending in 1101 over the 

alphabet {0, 1}. 

6. Design a ε-NFA for the regular expression a*bc | ab* |c*. 
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7. Construct NFA with ε-moves for the regular expression 10+(0+11)0*1 

8. Construct Finite automata for the regular expression 1(01+10)*00. 

9. What is pumping lemma for regular sets? Show that the language 

L={anbncn | n>=1 } is not regular. 

10. Construct finite automation to accept the regular expression (0+1)* 

(00+11)(0+ 1)*.  

11. Using pumping lemma, show the following language is not regular:  

L= {w � {0,1}*|the number of 0’s in w is a perfect square} 

12. Construct the regular expression for the following DFA. 

 
 

13. Construct regular expression for the following DFA. 

 
14. Construct regular expression for the given DFA. 

 

SECTION-C 
QUESTIONS AT THE LEVEL OF GATE  
1. The number of states in the minimum sized DFA that accepts the 

language defined by the regular expression (0+1)*(0+1)(0+1)* is_____________.

          [GATE 2016 Set-B] 
2. Which of the regular expressions given below represent the following 

DFA?       [ ] [GATE 2014 Set-1] 
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          I) 0*1(1+00*1)* 

         II) 0*1*1+11*0*1 

        III) (0+1)*1 

   (a) I and II only    (b) I and III only   

   (c) II and III only      (d) I, II and III only 

3. Consider the languages L1 = Ø and L2 = {a}. Which one of the following 

represents L1 L2 * U  L1*   [ ]     [GATE2013]                       
(a) { � }   (b) Ø    (c) a*   (d) { � ,a} 

4. Let L = {w ∈ (0 + 1)*|w has even number of 1s}, i.e. L is the set of all bit 

strings with even number of 1s. Which one of the regular expressions 

below represents L?      [ ][GATE 2010] 
(a) (0*10*1)*    (b) 0*(10*10*) *    

   (c) 0*(10*1*)*0*              (d) 0*1(10*1)*10*    
5. The language accepted by this automaton is given by the regular 

expression       [ ][GATE 2007] 
 (a) b*ab*ab*ab*  (b) (a+b)*  (c)  b*a(a+b)* (d) b*ab*ab* 

         
6. Consider the language L=(111+11111)*.The minimum number of states in  

any DFA accepting this language is:      [     ]    [GATE 2006] 
       (a)3        (b) 5       (c) 8       (d) 9 
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UNIT-IV 

Objective: 
To understand regular grammars and context free grammars. 

Syllabus: 
Chomsky hierarchy of languages, Regular grammars- right linear and left 

linear grammars, Equivalence between regular linear grammar and FA and 

its inter conversion, Context free grammar, derivation trees, Sentential 

forms, right most and left most derivation of strings 

Learning Outcomes: 
Students will be able to: 

 understand Chomsky hierarchy of languages. 

 understand and construct the regular grammar  for the given regular 

language or regular expression. 

 convert Regular Grammar into equivalent DFA and viceversa. 

 construct Context free grammar for the given language. 

 construct right most, left most derivation and derivation trees for the 

given string and grammar. 
 Learning Material 

Chomsky hierarchy of languages: 
The four classes of languages are often called the Chomsky hierarchy, after 

Noam Chomsky, who defined these classes as potential models of natural 

languages. 
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Chomsky classifies the grammar into four types: 

Grammar Languages Automaton 
Production 
rules 

Type 0 

Recursively 

enumerable/ 

Phrase 

Structured 

Turing 

machines 
αβ 

Type 1 
Context-

sensitive 

Linear-bound 

automata 

αβ 

|α|<=|β| 

Type 2 Context-free 
Push-down 

automata 
Aα 

Type 3 Regular 

Finite-state 

automata 

 

A w 

A wB 

A Bw 

  

Regular Grammar: 

A right- or left-linear grammar is called a regular grammar. 
 

Right-Linear Grammar: 
If all productions of a grammar are of the form A  wB or A  w, where A 

and B are variables and w is a (possibly empty) string of terminals, then we 

say the grammar is right-linear. 

Example: 
Represent the language 0(10)* by the right-linear grammar. 
The language generated by the given Regular Expression is  

L = {0, 010, 01010, 0101010, .......} 

Right-Linear Grammar: 

S0A 
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A10A | ε 

 

Left-Linear Grammar: 
If all productions are of the form A  Bw or A  w, we call it left-linear. 

Example: 
Represent the language 0(10)* by the left-linear grammar. 
The language generated by the given Regular Expression is  

L = {0, 010, 01010, 0101010, .......} 

Left-Linear Grammar: 

SS10 | 0 

Equivalence of regular grammars and finite automata: 

A language is regular if and only if it has a left-linear grammar and if and 

only if it has a right-linear grammar. 

Construction of a Regular Grammar for a given DFA: 
Let M = ({q0, q1... qn} , ∑, δ, qo, F). We construct G as G = ({A0, A1, ...., 

An},∑, P, A0) 
where P is defined by the following rules: 

(i) Ai  aAj is included in P if δ(qi, a) = qj ∉ F. 

(ii) Ai  aAj and Ai  a are included in P if δ(qi, a) = qj ∈ F. 

Note: We can construct only right linear grammar for the given DFA. 

If we want to construct left linear grammar for the given DFA, reverse the 

edges of the given DFA and interchange initial and final states. 

Example: 
1. Construct regular grammar (right linear grammar) for the given 

DFA. 

 
Given M= ({q0,q1}, {a,b}, δ, qo, {q1}) 
Construct G= ({A0,A1}, {a,b} ,P, A0) where P is given by 

(i) Ai  aAj is included in P if δ(qi, a) = qj ∉ F. 

  δ(q0, a) = q0 ∉ F ⇒ A0aA0 
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(ii) Ai  aAj and Ai  a are included in P if δ(qi, a) = qj ∈ F. 

  δ(q0, b) = q1∈ F ⇒ A0bA1 and A0b 

δ(q1, a) = q1∈ F ⇒ A1aA1 and A1a 

δ(q1, b) = q1∈ F ⇒ A1bA1 and A1b 

∴ P is given by  

A0aA0,  A0bA1,  A0b 

A1aA1,  A1a,   A1bA1,  A1b 

Steps to convert Finite Automata to Left Linear Grammar: 
Step 1: Reverse all the edges of the given automata and interchange initial 

state and final states. 

Step 2: Represent the productions using Left Linear Grammar. 

Example: 
2. Construct left linear grammar for the given DFA. 

 
Step 1: Reverse all the edges of the given automata and interchange 

initial state and final states. 

 

    
 Step 2: Represent the productions using Left Linear Grammar. 

  BBa   BAa 

  BBb   Ba 

Construction of a DFA for a given Regular Grammar: 

Let G = ({A0, A1, ...., An},∑, P, A0). We construct a DFA M whose  

(i) states correspond to variables.  

(ii) initial state corresponds to A0. 

(iii) transitions in M correspond to productions in P. As the last 

production applied in any derivation is of the form Ai a, the 
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corresponding transition terminates at a new state, and this is the 

unique final state. 

We define M as ({q0, q1... qn, qf} , ∑, δ, qo, {qf}) where δ is defined as 

follows: 

(i) Each production AiaAj induces a transition from qi to qj with 

label a, 

(ii) Each production Ak a induces a transition from qk to qf with 

label a. 

Example: 
1. G= ({A0, A1}, {a,b} ,P, A0) where P consists of A0aA1, A1bA1, 
A1a, A1bA0.     Construct a DFA M accepting L(G). 
 

A0aA1 induces a transition from q0 to q1 with label a.  

A1 bA1 induces a transition from q1 to q1 with label b. 

 A1bA0 induces a transition from q1 to q0 with label b.  

A1a induces a transition from q1 to qf with label a. 

 
M = ({q0, q1, qf} , ∑, δ, qo, {qf}), where q0 and qf correspond to A0 and A1 

respectively and qf is the new final state introduced. 

 
2. Construct Finite Automata for the grammar which consists of the 
productions 
 A aB | bA | b 
 B aC | bB 
 C aA | bC | a 
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Context-Free Grammar: 
A context-free grammar (CFG or just grammar) is denoted G = (V, T, P, S), 

where 

 V and T are finite sets of variables and terminals, respectively. 

 P is a finite set of productions; each production is of the form A  α, 

where A is a variable and α is a string of symbols from (V ∪ T)*. 

 S is a special variable called the start symbol. 

The language generated by G [denoted L(G)] is {w | w is in T* and }. 

That is, a string is in L(G) if: 

1) The string consists solely of terminals. 

2) The string can be derived from S. 

We call L a context-free language (CFL) if it is L(G) for some CFG G.  

Note: C language is an example for Context Free Language. 
Examples: 

1. Write CFG for the language L=  {an bn  | n>=1}. 

L= {ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb, ………….} 

G = ({S}, {a, b}, P, S) 

P: S -> aSb | ab 

  (Or) 

 S -> aSB 

 S -> aB 

 B -> b 

 

2. Write CFG for the language L= {an bm  | n , m >=1}. 

L= {a, b, ab, aab, abb,aabb, aaabbb, aaaabbbb, 

aaaaabbbbb,………………………} 

G = ({S, A, B}, {a, b}, P, S) 

P: S -> AB 

A -> aA | a 

B -> bB | b 
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3. Write CFG for the language L={aa,ab,ba,bb} 

G = ({S, A}, {a, b}, P, S) 

P: S -> AA 

A -> a | b 

4. Write CFG for the language L= { an  | n>=0}. 

L= { ε, a, aa, aaa, aaaa, aaaaa, aaaaaa,………………………} 

G = ({A}, {a}, P, A) 

P: A -> aA | ε 

5. Write CFG for the regular expression (a+b)*. 

L= { ε, a, b, aa, ab , ba, bb, aaa,abb,aba,………………………} 

G = ({S}, {a, b}, P, S) 

P: S -> aS | bS | ε 

6. Write CFG to generate all strings of {a, b} whose length is atleast 2. 

L= { aa, ab , ba, bb, aaa,abb,aba,………………………} 

G = ({S, A, B}, {a, b}, P, S) 

P: S -> AAB 

 A -> a | b 

 B -> aB | bB | ε 

7. Write CFG to generate all strings of {a, b} whose length is atmost 2. 

L= { ε  , a,b, aa, ab , ba, bb} 

G = ({S, A}, {a, b}, P, S) 

P: S -> AA 

 A -> a | b | ε 

8. Write CFG to generate palindromes over {a, b}. 

L= { ε  , a,b, aa,bb,aba,bab,aaaa,abba,………………} 

G = ({S}, {a, b}, P, S) 

P: S -> aSa | bSb 

 S -> a | b | ε 

     9. Write CFG to generate equal number of a’s and b’s. 

L= { ab, ba,aabb, abab, bbaa,baba,………………………} 

G = (V, T, P, S), where V = {S, A, B}, T = {a, b},S  and P . 

P:  S -> aB     A ->  bAA 
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S -> bA     B ->b 

A ->a        B ->bS 

A ->aS      B -> aBB 

Sentential Form: 
A string of terminals and variables α is called a sentential form if   

 
Derivation: 
Derivation is the process of applying productions repeatedly to expand non-

terminals in terms of terminals or non-terminals, until there are no more 

non-terminals. 

A derivation can be either Leftmost derivation or Right most 
derivation. 
Leftmost derivation: 
If at each step in a derivation a production is applied to the leftmost 

variable, then the derivation is said to be leftmost. 

Example: 
Consider the grammar G = ({S, A}, {a, b}, P, S), where P consists of 

S aAS | a 

A SbA|SS|ba 

The corresponding leftmost derivation is  

S => aAS => aSbAS => aabAS => aabbaS => aabbaa.   

Rightmost derivation: 
A derivation in which the rightmost variable is replaced at each step is said 

to be rightmost. 

Example: 
Consider the grammar G = ({S, A}, {a, b}, P, S), where P consists of 

S aAS | a 

A SbA|SS|ba 

The corresponding rightmost derivation is 

S => aAS => aAa => aSbAa => aSbbaa => aabbaa. 
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Note:“If w is in L(G) for CFG G, then w has at least one parse tree, and 

corresponding to a particular parse tree, w has a unique leftmost and a 

unique rightmost derivation.” 

Derivation Trees (or) Parse tree: 
The derivations in a CFG can be represented using trees.  Such trees 

representing derivations are called derivation trees. 

Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) tree for G if: 

1) Every vertex has a label, which is a symbol of V ∪ T ∪ {ε}. 

2) The label of the root is S. 

3) If a vertex is interior and has label A, then A must be in V. 

4) If n has label A and vertices n1, n2, n3, ..., nk are the sons of vertex 

n, in order from the left, with labels X1, X2, ......., Xk, respectively, 

then AX1X2 .......Xk  must be a production in P. 

5) If vertex n has label ε, then n is a leaf and is the only son of its      

father. 

Example: 
Consider the grammar G = ({S, A}, {a, b], P, S), where P consists of 

S aAS | a 
A SbA|SS|ba 

Construct a derivation tree for the string “aabbaa” 
A derivation tree is a natural description of the derivation of a particular 

sentential form of the grammar G. If we read the labels of the leaves from left 

to right, we have a sentential form. We call this string the yield of the 

derivation tree. 

 
 

S => aAS => aSbAS => aabAS => aabbaS => aabbaa. 

Note: Some leaves could be labelled by ε. 
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UNIT-IV 
Assignment-Cum-Tutorial Questions 

 

SECTION-A 

Objective Questions  

1. The C language is         [ ] 
a) A context free language   b) A context sensitive language 
c) A regular language   d) None 

 
2. Every regular grammar is context free grammar.   (True | False) 
 
3. The finite automata accepts the following language:   [ ] 
    a) Context free language   b) regular language 
    c) Context sensitive language  d) all of the above 

 
4. Context-free grammar can be recognized by    [ ] 
    a) Finite Automata    b) Linear bounded Automata  
    c) Push down Automata   d) both (b) and (c) 

 
5. The language accepted by a Turing Machine:    [ ] 
    a) Type 0  b) Type 1   c) Type 2  d) Type 3 

 
6. Match the following 

1. Context Free Language  a. Turing Machine   [ ] 
2. Recursively Enumerable  b. Finite Automata  [ ] 
3. Regular Language   c. Linear Bounded Automata  [ ] 
4. Context Sensitive Language d. Push Down Automata   [ ] 

 
7. For every right linear grammar, there will be an equivalent FA. 

[True/ False] 
8. Recursively Enumerable language is also called as _________________. 
 
9. A context free grammar is        [ ] 
   a) Type 0   b) Type 1  c) Type 2  d) Type 3 
 
10. Which word can be generated by S->d| bA ,A->d |ccA  [ ] 
   a) bccccd   b) aabccd  c) ababccd  d) abbbd 

 
11. Which of the following strings is in the language defined by grammar 

     S 0A ,   A 1A | 0A | 1     [ ] 
    a) 01100   b) 00101  c) 10011  d) 11111 

 
12. Recognize the CFL for the given CFG.     [ ] 

  S-> aB| bA,  
  A-> a|aS|bAA,  
  B-> b|bS|aBB 

     a) strings contain equal number of a's and equal number of b's. 
     b) strings contain odd number of a's and odd number of b's. 
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      c) strings contain odd number of a's and even number of b's. 
      d) strings contain even number of a's and even number of b's 
13. Given the following productions of a grammar:    [ ] 

SaA| aBB AaaA | ε   B bB| bbC C B  
Which of the following is true? 

a) The language corresponding to the given grammar is a set of even   
number of a’s. 

b) The language corresponding to the given grammar is a set of odd 
number of a’s. 

c) The language corresponding to the given grammar is a set of even 
number of a’s followed by odd number of b’s. 

d) The language corresponding to the given grammar is a set of odd 
number of a’s followed by even number of b’s. 
 

14. A regular grammar for the language L={ anbm | n is even and m is         
even} is         [ ] 

         a) SaSb | X; XbXa | ε  b) SaaS | X; X bSb| ε 
c) SaSb | X; X Xab| ε  d) SaaS | X; X bbX|ε 

 
15. Which of the regular expressions corresponds to this grammar?  

S AB | AS     A a | aA   Bb 
a) (aa)*b  b) aa*b  c) (ab)* d) a(ab)* [ ] 
 

16. Identify the language generated by the following grammar [     ] 
SaS | bS | abA 
AaA | bA | ε 

a) L= x | ab is a substring of x, x ∈{a,b}* 
b) L= x | a is a substring of x, x ∈{a,b}* 
c) L= x | b is a substring of x, x ∈{a,b}* 
d) L= x | ba is a substring of x, x ∈{a,b}* 

 
17. The CFG  SaS | bS | a | b is equivalent to the regular expression 

a) (a*+b)* b) (a+b)*  c) (a+b) (a+b)* d) (a+b)(a+b)    [ ] 
 

18. The regular grammar for  the given FA is    [     ] 

 
a) AaA | bB | a   c) AaA | bB | b   

BbA | aB | b     BbA | aB | a  
b) AaA | bB | ε   d) AbA | aB | a 

BbA | aB | ε      BaA | bB | b 
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SECTION-B 
 SUBJECTIVE QUESTIONS 
1.  Show the Venn diagram of Chomsky hierarchy language and their 

counterpart automata.  

2. Define Regular grammar with an example. 

3. Define Context Free Grammar with an example. 

4. What is sentential form? Explain with an example. 

5. Explain derivation tree with an example. 

6. Define LMD and RMD. 

7. Show that id+id*id can be generated by two distinct derivation trees for 
the grammar 

     E  E+E | E*E | (E) | id 

8. Design CFG for odd palindromes?  

9. Let G be the grammar  
 S aB | bA  
 A a | aS | bAA  
 B  b | bS | aBB.  
 For the string aaabbabbba find a  
 i. Left most derivation  
 ii. Right most derivation  
 iii. Parse Tree  

10. Obtain the right linear grammar for the following FA. 

     
11. Obtain a Right Linear Grammar for the language L = {an bm | n>=2 , 

m>=3} 
 
12. Obtain the left linear grammar for (11+01)*101. 

13.  Convert the following DFA to Regular grammar 

 
 
14. Is the following grammar ambiguous?  
 S AB|aaB  
 A> a|Aa   
 Bb 
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15. Find the language generated by the following grammar. 
 SSS  Saa  Sε 
 
16. Draw a derivation tree for the string abaaba for the CFG given by G   

where P = {SaSa  SbSb  Sa ⃒ b ⃒Є } 
 
17. Obtain a right linear grammar and left linear grammar for the following 

FA. 

  
  

SECTION-C 
QUESTIONS AT THE LEVEL OF GATE 

1. G1: S aS |B,  Bb | bB      [GATE 2016] 

 G2: SaA | bB; A aA |B | � , B  bB | � 

Which one of the following pairs of languages is generated by G1 and G2, 
respectively?         [ ] 

a) {ambn | m > 0 or n > 0 }  and { ambn | m > 0 and n > 0} 

b) {ambn | m > 0 and n > 0 } and { ambn | m > 0 or n > =0} 

c) {ambn | m >= 0 or n > 0}  and { ambn | m > 0 and n > 0 } 

d) {ambn | m >= 0 and n > 0 } and  { ambn | m > 0 or n > 0}   

2. S  aSa | bSb | a | b    [ ]  [GATE 2009] 
The language generated by the above grammar over the alphabet {a, b} is 
the of 

a) all palindromes    
b) all odd length palindromes  
c)   strings that begin and   
d) all even length palindromes  end with the same symbol  
 
3. Consider the CFG with {S,A,B} as the non-terminal alphabet  {a,b} as the 

terminal alphabet,S as the start symbol and the following set of 
production rules:       [GATE 2007] 

 S  aB   S  bA     
 B  b   A  a 
 B  bS  A  aS 
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 B aBB  S  bAA 
Which of the following strings is generated by the grammar?   [ ] 
a) aaaabb  b)  aabbbb  c) aabbab  d)  abbbba  
4. How many derivation trees are there for the grammar in Question 3? 
a) 1   b)  2   c)  3   d)  4  [ ] 
 

5.                    [GATE 2006] 

   
                   
6. Consider the regular grammar:     [GATE 2005] 

S→Xa|Ya 
X→Za 
Z→Sa| � 
Y→Wa 
W→Sa 

where S is the starting symbol, the set of terminals is {a} and the set of non-
terminals is {S, W, X, Y, Z}. 
We wish to construct a deterministic finite automaton (DFA) to recognize the 
same language. What is the minimum number of states required for the 
DFA?           [ ] 

a) 2   b) 3   c)4   d)5 
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UNIT-V 

Objective: 
To understand and design push down automata’s for a given Context free 

language. 

Syllabus: 
Ambiguity in context free grammars, minimization of Context Free 

Grammars, Chomsky normal form, Greibach normal form, pumping lemma 

for Context Free Languages, closure properties of CFL (proofs not required), 

applications of CFLs 

Push down automata: 
Push down automata, model of PDA, design of PDA. 
Learning Outcomes: 
Students will be able to:  

 understand ambiguity in context free grammars. 

 minimize the given context free grammar. 

 apply Chomsky and Greibach Normal Forms on context free 

grammars. 

 understand and design PDA for given context free languages. 

Learning Material 

Ambiguity in context free grammars: 
A context-free grammar G is said to be ambiguous if it has two parse trees 

for some word. 

(or) 

A word which has more than one leftmost derivation or more than one 

rightmost derivation is said to be ambiguous. 

 
Note: A CFL for which every CFG is ambiguous is said to be an inherently 

ambiguous CFL. 
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Example: 
G = ({S}, {a, b, +, *}, P. S), where P consists of SS+S | S*S | a | b 

 We have two derivation trees for a + a * b 

 
Two derivation trees for a + a * b 

Minimization of Context Free Grammars: 

1) Elimination of useless symbols.  

2) Elimination of ε –Productions. 

 

3) Elimination of Unit Productions. 

Elimination of Useless Symbols: 

Let G=(V, T, P, S) be a grammar. A symbol X is useless if it is not involved in 

derivation.   

(or) 

A symbol X is useless if there is no way of getting a terminal string from it. 

Example: 
Consider the grammar 

SAB | a 

A a 

We find that no terminal string is derivable from B. We therefore eliminate B 

and the production S  AB. 

Then the grammar is  

Sa 

Aa 
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We find that only S and a appear in sentential forms. Thus ({S}, {a}, {S  a}, 

S) is an 

equivalent grammar with no useless symbols. 

Elimination of ε –Productions: 
A production of the form A  ε, where A is a variable, is called a null 

production. 

If L = L(G) for some CFG G = (V, T, P, S), then L - { ε } is L(G') for a CFG G' 

with no useless symbols or ε -productions. 

Example: 
Consider the grammar  

A0B1 | 1B1 

B0B | 1B | ε 

Remove ε-productions from the grammar. 

B ε is the null production. 

The new productions after elimination of ε are 

 A0B1 | 1B1| 01 | 11 

B0B | 1B | 0 | 1 

 

Elimination of Unit Productions: 
A production of the form AB whose right-hand side consists of a single 

variable is called a unit production.  

All other productions, including those of the form A a and ε -productions, 

are nonunit productions. 

Example: 
Consider the grammar 

S0A | 1B | C 

A0S | 00 

B1 | A 

C01 

Remove unit production from the grammar. 

SC and BA are the unit productions 
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The new productions after elimination of unit productions are 

S0A | 1B | 01 

A0S | 00 

B1 | 0S | 00 

C01 

C is a useless symbol. So eliminate C production. 

The final set of productions are 

S0A | 1B | 01 

A0S | 00 

B1 | 0S | 00 

Chomsky Normal Form :( CNF) 
Any context-free language without ε is generated by a grammar in which all 

productions are of the form ABC or A a. Here, A, B, and C, are variables 

and a is a terminal. 

Step 1: Simplify the grammar. 

 a) Eliminate ε –productions 

 b) Eliminate unit productions 

 c) Eliminate Useless symbols. 

The given grammar does not contain ε –productions, unit productions and 

useless symbols.  

It is in optimized form. 

 

Step 2: Consider a production in P,of the form A->X1X2X3.....Xm where 

m>=2.If Xi is a terminal a, introduce a new variable Ca and a production Ca-

>a.Then replace Xi by Ca.  

 

Step 3: Consider a production A->B1B2B3.....Bm where m>=3,create new 

variables D1,D2,....Dm-2 and replace A->B1B2B3...Bm by the set of productions 

{A->B1D1,D1->B2D2,..........Dm-3->Bm-2 Dm-2,Dm-2->Bm-1Bm  } 
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Example: 
Consider the grammar ({S, A, B}, {a, b}, P, S) that has the productions: 

S bA | aB 

AbAA | aS | a 

B aBB | bS | b 

Find an equivalent grammar in CNF. 

 

Step 1: Simplify the grammar. 

 a) Eliminate ε –productions 

 b) Eliminate unit productions 

 c) Eliminate Useless symbols. 

The given grammar does not contain ε –productions, unit productions and 

useless symbols.  

It is in optimized form. 

Step 2: The only productions already in proper form are A a and Bb. 

So we may begin by replacing terminals on the right by variables, except in 

the case of the productions A  a and B  b.  

S  bA is replaced by S CbA and Cb b.  

Similarly, A aS is replaced by A  CaS and Ca a; A bAA is replaced by 

ACbAA; S aB is replaced by SCaB; 

BbS is replaced by B CbS, and B  aBB is replaced by B CaBB. 

In the next stage, the production ACbAA is replaced by A  CbD1 and D1 

AA, and the production BCaBB is replaced by B CaD2 and D2 BB. 

Step 3: The productions for the grammar in CNF are : 

S CbA | CaB  D1 AA  

A  CaS | CbD1 | a D2 BB 

B CbS | CaD2 | b Ca a 

   Cb b 
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Greibach Normal Form: 
Every context-free language L without e can be generated by a grammar for 

which every production is of the form A  aα, where A is a variable, a is a 

terminal, and α is a (possibly empty) string of variables. 

Lemma 1: Define an A-production to be a production with variable A on the 

left. Let G = (V, T, P, S) be a CFG. Let A  α1Bα2 be a production in P and 

Bβ1 | β2| ……|βr  be the set of all B-productions. Let G1 = (V, T, P1, S) 

be obtained from G by deleting the production A  α1Bα2 from P and 

adding the productions A α1β1α2 | α1β2α2 | ……| α1βrα2. Then L(G) = 

L(G1). 

Lemma 2: Let G = (V, T, P, S) be a CFG. Let AAα1 | Aα2 | ……| Aαr be 

the set of A-productions for which A is the leftmost symbol of the right-hand 

side. Let A  β1 | β2| ……|βs be the remaining A-productions. Let G1 = (V 

U {B}, T, P1, S) be the CFG formed by adding the variable B to V and 

replacing all the A-productions by the productions: 

 
Then L(G1) = L(G). 

Example: 
Convert to Greibach normal form the grammar 

G=i{A1,A2,A3}, {a, b}, P A1),  

where P consists of the following: 



Formal Languages and Automata Theory 7 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 
We now apply Lemma 2 to the productions 
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Pumping Lemma for CFL's: 
Let L be any CFL. Then there is a constant n, depending only on L, such 

that if z is in L and   | z | ≥ n, then we may write z = uvwxy such that 

 
Example: 
Consider the language L = {aibici | ≥ 1}. Suppose L were context free and let 

n be the constant.  

Consider z = anbncn. Write z = uvwxy so as to satisfy the conditions of the 

pumping lemma.  

Since |vwx| ≤ n, it is not possible for vx to contain instances of a’s and c’s, 

because the rightmost a is n + 1 positions away from the leftmost c.  

If v and x consist of a’s only, then uwy (the string uviwxiy with i = 0) has n 

b’s and n c’s but fewer than n a’s since |vx| ≥ 1. 

Thus, uwy is not of the form aibici. But by the pumping lemma vwy is in L, a 

contradiction. 

The cases where v and x consist only of b’s or only of c’s are disposed of 

similarly.  

If vx has a’s and b’s, then uwy has more c’s than a’s or b’s, and again it is 

not in L.  

If vx contains b’s and c’s, a similar contradiction results.  

We conclude that L is not a context-free language. 

Closure Properties of CFL’s: 

 Context-free languages are closed under union, concatenation and 

Kleene closure. 

 The context-free languages are closed under substitution. 

 The CFL’s are closed under homomorphism. 

 The CFL’s are not closed under intersection. 

 The CFL’s are not closed under complementation. 
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Applications of the pumping lemma: 
The pumping lemma can be used to prove a variety of languages not to be 

context free, using the same "adversary" argument as for the regular set 

pumping lemma. 

Push down automata: 

 
Moves: 

 

 
Model of PDA: 

 Pushdown automaton has a read-only input tape, an input alphabet a 

finite state control, a set of final states, and an initial state as in the 

case of an FA.  
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 In addition to these, it has a stack called the pushdown store. It is a 

read-write pushdown store as we can add elements to PDS or remove 

elements from PDS.  

 A finite automaton is in some state and on reading, an input symbol 

moves to a new state.  

 The pushdown automaton is also in some state and on reading an 

input symbol and the topmost symbol in PDS, it moves to a new state 

and writes (adds) a string of symbols in PDS. 
 

   
 
Instantaneous description: 
Instantaneous description (ID) is the configuration of a PDA at a given 

instant. We define an ID to be a triple (q, w, γ), where q is a state, w a string 

of input symbols, and γ a string of stack symbols. 
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Accepted Languages: 

 
 
Example: 
Design a PDA that accepts {wwR | w in (0+1)*} 

L = { ε, 0, 1, 00, 11, 0110, 1001, .........} 

Let M= (Q, ∑, Г, δ, q0, Z0, F) be the PDA 

Consider M = ({q1, q2}, {0, 1}, {0, 1, Z0}, δ, q1, Z0, Ø) 

       δ(q1,0,Z0)={(q1,0Z0)} 

       δ(q1,1,Z0)={(q1,1Z0)} 

       δ(q1,0,0)={(q1,00),(q2, ε)} 

       δ(q1,1,0)={(q1,10)} 

       δ(q1,0,1)={(q1,01)} 

       δ(q1,1,1)={(q1,11),(q2, ε)} 

       δ(q2,0,0)={(q2, ε)} 

       δ(q2,1,1)={(q2, ε)} 

       δ(q1,ε,Z0)={(q2, ε } 

       δ(q2,ε,Z0)={(q2, ε)} 

Deterministic PDA: 
The PDA is deterministic in the sense that at most one move is possible from 

any ID.  

Formally we say a PDA M is deterministic if: 
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Equivalence of PDA's and CFL's : 
 
CFG to PDA Conversion 
If L is a context-free language, then there exists a PDA M such that L = N(M). 

 

Procedure: 

 

Let L=L(G), where G=(VN, Σ,P,S) is a context free grammar. 

We construct a PDA   M as 

    M= ((q), Σ, VN U Σ, Z0,q, δ, Ø) 

Where δ  is defined by the following rules: 

R1: δ (q, ε,A) = {(q, α) | A -> α is in P} 

R2: δ (q,a,a) = { (q, ε)}  for every a in Σ. 

Example: 

Construct a pda  M equivalent to the following context free grammar: 

S->0BB 

B->0S|1S|0. 

Test whether 0104 is in N(M). 

Solution:  

Define pda A as follows: 

A=(({q},{0,1},{S,B,0,1}, δ,q, Z0, Ø) 

δ is defined by the following rules: 

R1: δ(q, ε, S)={(q,0BB)} 

R2: δ(q, ε, B)={(q,0S),(q,0S),(q,0)} 
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R3: δ(q, 0,0)={( q, ε)} 

R4: δ(q, 1,1)={( q, ε)} 

String Checking  

           (q,0104,S)         

           ⊢ (q, 0104, 0BB)                               by Rule R1 

           ⊢ (q, 104, BB)                                   by Rule R3 

           ⊢ (q, 104,1SB)                                  by Rule R2 since (q,1S)∈ α(q, ∧, B) 

           ⊢ (q, 04, SB)      by Rule R4     

           ⊢ (q, 04, 0BBB)                                by Rule R1 

           ⊢ (q, 03,BBB)    by Rule  R3 

           ⊢* (q, 03,000)    by Rule R2 since (q,0) ∈ α(q, ∧, B) 

           ⊢* (q, ε , ε)     by Rule R3                                                   
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UNIT-V 

Assignment-Cum-Tutorial Questions 
A.  Objective Questions 

1. Grammar that produce more than one Parse tree for same word  is: 

a) Ambiguous   b) Unambiguous  [ ] 

c) Complementation  d) Concatenation Intersection 

2. For every grammar there will an equivalent grammar in CNF.  

[True/False] 

3. The derivation trees of strings generated by a context free grammar in 

Chomsky Normal Form are always binary trees   [True |False] 

4. Which of the following conversion is not possible (algorithmically)?  

a) Regular grammar to Context-free grammar    [ ] 

b) Nondeterministic FSA to Deterministic FSA 

c) Nondeterministic PDA to Deterministic PDA  

d) All of the above 

5. CFL’s are not closed intersection and complementation. [True | False] 

6. CFL’s are closed under       [ ] 

 a) union  b) concatenation  c) closure  d)  All 

7. The grammar  G  with the productions     [ ] 

A → AA | (a) | ε   is an  

a) Ambiguous grammar  b) Unambiguous grammar  

c) Grammar    d) None 

8. Identify the useless symbol in the grammar given below. [ ] 

 S->AB | C A->a  B-> BC C->b 

a) S   b)  A   c)  B   d) C 

9. Find an equivalent reduced grammar for the given grammar. [ ] 

S-> 0 | 1 | ε S-> 0S0 | 1S1 

a) S->0 | 1 ,S->0S0 |1S1 | 0 | 1 b) S->0 | 1  ,S->SS|0S1 | 1S1 

c) S-> 0 | 1, S->00 |11   d) None 
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10. Which one of the following is a Chomsky Normal Form grammar? 

[ ] 

(i) A->BC |a (ii) A->aA |a |b (iii) A->BCD |a, B->a, C->c, D->d 

a) (i) only   b) (i) and (iii)  c) (ii) and (iii)  d) (i),(ii) and (iii) 

11. Which one of the following is not a Greibach Normal form grammar?

            [ ] 

     (i) S->a |bA |aA |bB (ii) S->a |aA|AB (iii) S->a | A| aA 

              A->a     A->a         A->a 

              B->b    B->b 

a) (i) and (ii)  b) (i) and (iii)  c) (ii) and (iii)  d)(i),(ii) and (iii) 

12. L={ 0n 12n  |n>=1} is       [ ] 

 a) regular     b) context-free but not regular  

c) context-free but regular  d) None 

13. Recognize the language accepted by the PDA with the following 

moves           [ ] 

 δ ( q0,a,Z0)=(q0,aZ0) , δ ( q0,a,a)=(q0,aa) 

 δ ( q0,b,a)=(q1, ε) , δ ( q1,b,a)=(q1, ε) 

 δ ( q1,c,Z0)=(q2, Z0) , δ ( q2,c,Z0)=(q2, Z0) 

a) L={anbncn | n, m>=1}   b) L={anbncm | n, m>=1} 

c) L={ambncn | n, m>=1}   d) L={ambncm | n, m>=1} 

14. The grammars G1 and G2 are  

G1:  S -> 0S0| 1S1 | 0|1| ε 

G2:  is S -> as |asb| X, X -> Xa | a.  

     Which is the correct statement?      [ ] 

     a) G1 is ambiguous, G2 is unambiguous      

     b) G1 is unambiguous, G2 is ambiguous 

     c) Both G1 and G2 are ambiguous                

     d) Both G1 and G2 are unambiguous 
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B. Descriptive questions 
1. What is an ambiguous grammar? Explain with an example. 

2. Define Useless symbol and give example. 

3. What is an Null production and Unit producation? Explain with an 

example. 

4. List the applications of CFG. 

5. List the closure properties of CFL. 

6. Explain pumping lemma for CFL’s with an example. 

7. Explain the model of PDA. 

8. Show that the grammar is ambiguous.  
S → 0A | 1B  
A → 0AA | 1S | 1  
B → 1BB | 0S | 0   

9. Convert the following grammar in to GNF 
S XA |BB 
B b |SB 

X b 
10. Design PDA for L={wcwr | w � (0+1)* }  
11. Design PDA for the language L = { an bn+m cm | n,m >= 1 }  
12. What is the language generated by the grammar G=(V,T,P,S) where 

P={S->aSb, S->ab}? 
13. For the following grammar : 

S -> ABC | BbB , A-> aA | BaC|aaa , B-> bBb| a|D ,C->CA|AC ,D-> ε  
i. Eliminate ε-productions. 
ii.  Eliminate any unit productions in the resulting grammar.  
iii. Eliminate any useless symbols in the resulting grammar.  
iv. Put the resulting grammar in Chomsky Normal Form 

14. Find a CFG, without ε productions, unit productions and useless 
productions equivalent to the grammar defined by 

SABaC 
A BC 
B b|ε 
C D|ε 
D d 
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15. Obtain the PDA for the given regular language: L= {wwr|w is in 
(0+1)*}. 
 
 
 

16. Convert the following Grammar into CNF.  
S → AbcD / abc  
A → aASB / d  
B → b/ cb 
D → d 

17. Consider the grammar ({S, A, B}, {a, b}, P, S) that has the 
productions:   

SbA | aB 
A bAA | aS | a 
BaBB | bS | b 

 Find an equivalent grammar in CNF. 
18. Show that L= {an b n c n ⃒ n≥ 0} is not a context free language. 

 
C. Gate Questions 

1. Identify the language generated by the following grammar, Where S is 
the start variable.      [ ] [Gate 2017] 

  S->XY         

  X->aX |a 

  Y->aYb |epsilon 

A) {am bn |m>=n, n>0}   B) {ambn |m>=n, n>=0}  

C)   {am bn |m>n, n>=0}   D) {ambn |m>n, n>0} 

2. Consider the following statements about the context free grammar  
  G = {S → SS, S → ab, S → ba, S → Ε} [ ] [Gate 2006] 

 I. G is ambiguous 

 II. G produces all strings with equal number of a’s and b’s 

 III. G can be accepted by a deterministic PDA.  

Which combination below expresses all the true statements about G? 
a) I only   b) I and III only  
c) I and II only   d) I, II and III 

3. Consider the languages:     [ ] [Gate 2005]   
    L1 = {wwR   | w belongs {0,1}*} 
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 L2 = {w#wR   | w belongs {0,1}*},where # is  a special symbol 

 L3 = {ww   | w belongs {0,1}*} 
 Which one of the following is TRUE?      
a) L1 is a deterministic CFL   b) L2 is a deterministic CFL 
c) L3 is a CFL, but not a deterministic CFL d) L3 is a deterministic CFL 

 
4. If L1 is context free language and L2 is a regular language which of the 

following is/are false?      [ ] [Gate 1999] 
a) L1-L2 is not context free   b) L1 ∩ L2 is context free   
c) ~L1              d) ~L2      
 

5. Let LD be the set of all languages accepted by a PDA by final state and L 
E the set of all languages accepted by empty stack. Which of the 
following is true?        [ ] [Gate 1999]
  
a) LD  = L E    b) LD ⊂ L E    c) L E ⊃ LD     d) None of the above 

 
6. Context-free languages are closed under:  [ ] [Gate1998]

  
     a) Union, Intersection    b) Union, Kleene closure 
      c) Intersection, complement  d) Complement, Kleene closure
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UNIT VI 

Objective: 

To  understand and design Turing Machines for the given recursively enumerable languages. 

Syllabus: 

Turing Machine: Turing Machine, model, Design of TM, Types of Turing Machines, Computable 

functions, Recursively  enumerable languages, church‘s hypothesis. 

Computability Theory: Decidability of problems, universal Turing Machine, Undecidability of posts 

correspondence problem, Turing reducibility, definition of P and NP problems, NP complete and NP hard 

problems. 

Learning Outcomes: 

Students will be able to: 

 understand turing machine and its  model.  

 design Turing Machine’s for Recursively Enumerable languages. 

 define P and NP class of problems. 

 define decidability and undecidability of problems.  
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Learning Material 

Turing Machine: 

A Turing machine (TM) is denoted by 

 

The Turing Machine Model: 

 The basic model has a finite control, an input tape that is divided into cells, and a tape head that 

scans one cell of the tape at a time.  

 The tape has a leftmost cell but is infinite to the right. Each cell of the tape may hold exactly one 

of a finite number of tape symbols.  

 Initially, the n leftmost cells, for some finite n ≥ 0, hold the input, which is a string of symbols 

chosen from a subset of the tape symbols called the input symbols.  

 The remaining infinity of cells each hold the blank, which is a special tape symbol that is not an 

input symbol. 

 

Moves of Turning Machine 

In one move the Turing machine, depending upon the symbol scanned by the tape head and the state of 

the finite control, 

1) changes state, 

2) prints a symbol on the tape cell scanned, replacing what was written there, and 
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3) moves its head left or right one cell. 

 

Note : The difference between a Turing machine and a two-way finite automaton lies in the former's 

ability to change symbols on its tape. 

 

Instantaneous description (ID): 

 Instantaneous description of the Turing machine M is denoted by α1qα2. 

 Here q, the current state of M, is in Q; α1α2 is the string in Г* that is the contents of the tape up to 

the rightmost nonblank symbol or the symbol to the left of the head, whichever is rightmost. 

(Observe that the blank B may occur in α1α2.). 

 The tape head is assumed to be scanning the leftmost symbol of α2, or if α2 = ε, the head is 

scanning a blank. 

 

Acceptance by Turning Machine 

The language accepted by M, denoted L(M), is the set of those words in ∑* that cause M to enter a final 

state when placed,  justified at the left, on the tape of M, , with M in state q0, and the tape head of M at 

the leftmost cell. 

Formally, the language accepted by M = (Q,∑,Г,δ,q0,B,F) is 

 

Example: 

Design a TM to accept the language L = {0n1n | n≥1}. 

Initially, the tape of M contains 0n1n followed by infinity of blanks.  

Repeatedly, M replaces the leftmost 0 by X, moves right to the leftmost 1, replacing it by Y,, moves left 

to find the rightmost X, then moves one cell right to the leftmost 0 and repeats the cycle. 

If, however, when searching for a 1, M finds a blank instead, , then M halts without accepting.  

If, after changing a 1 to a Y, M finds no more 0's, then M checks that no more 1's remain, accepting if 

there are none. 
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The function δ 

 
Transition Diagram 

 

String Verfication by Turning Machine 

 
A computation of M 

 

Types of Turing Machines: 

i) Two-way infinite tape: 

A Turing machine with a two-way infinite tape is denoted by M = (Q,∑,Г,δ,q0,B,F). As its name 

implies, the tape is infinite to the left as well as to the right. We denote an ID of such a device as for 

the one-way infinite TM. We imagine, however, that there is an infinity of blank cells both to the left 

and right of the current nonblank portion of the tape. 
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ii) Multitape Turing machines: 

A multitape Turing machine consists of a finite control with k tape heads and k tapes; each tape is 

infinite in both directions.. On a single move, depending on the state of the finite control and the 

symbol scanned by each of the tape heads,  the machine can: 

1) change state; 

2) print a new symbol on each of the cells scanned by its tape heads; 

3) move each of its tape heads,, independently, one cell to the left or right, or keep it stationary. 

Initially, the input appears on the first tape, and the other tapes are blank. 

 
 

iii) Nondeterministic Turing machines: 

A nondeterministic Turing machine is a device with a finite control and a single, one-way infinite 

tape. For a given state and tape symbol scanned by the tape head, the machine has a finite number of 

choices for the next move. Each choice consists of a new state, a tape symbol to print, and a direction 

of head motion. Note that the nondeterministic TM is not permitted to make a move in which the next 

state is selected from one choice, and the symbol printed and/or direction of head motion are selected 

from other choices. The nondeterministic TM accepts its input if any sequence of choices of moves 

leads to an accepting state. 
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iv) Multidimensional Turing machines: 

The device has the usual finite control, but the tape consists of a k-dimensional array of cells infinite 

in all 2k directions, for some fixed k. Depending on the state and symbol scanned, the device changes 

state, prints a new symbol, and moves its tape head in one of 2k directions, either positively or 

negatively, along one of the k axes. Initially, the input is along one axis, and the head is at the left end 

of the input. At any time, only a finite number of rows in any dimension contain nonblank symbols, 

and these rows each have only a finite number of nonblank symbols. 

 
 

v) Multihead Turing machines: 

A k-head Turing machine has some fixed number,,k, of heads. The heads are numbered 1 through k,,  

and a move of the TM depends on the state and on the symbol scanned by each head.. In one move, 

the heads may each move independently left,, right, or remain stationary. 

 

vi) Off-line Turing machines: 

An off-line Turing machine is a multitape TM whose input tape is read-only. Usually we surround the 

input by endmarkers, ⊄ on the left and $ on the right. The Turing machine is not allowed to move the 

input tape head off the region between ⊄ and $. 

Recursive function: a function which calls itself directly or indirectly and terminates after finite number 

of steps. 

 

Total recursive function 

 A function is called total recursive function if it is defined for all its arguments. 

 Let f(a1,a2.....,a) be a function and defined on function g(b1,b2,....,bm), then f is total function if 

every element of f is assigned to some unique element of function g. 
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 From the definition it is clear that total recursive function is the subset of partial recursive 

function. 

 All   those partial functions for which TM halts are called total recursive functions. 

 

Partial recursive function 

 A function is called partial recursive function if it is defined for some of  its arguments. 

 Let f(a1,a2.....,a) be a function and defined on function g(b1,b2,....,bm), then f is partial function if 

some elements of f is assigned to almost  one element of function g. 

 Partial recursive function are turing computable.It means that there exist a turing machine for 

every partial recursive function. 

 

Recursively  enumerable languages  

 

A language that is accepted by a Turing machine is said to be recursively enumerable (r.e.). 

 

 Recursively enumerable languages are equivalent to the class of partial recursive functions. 

 

Recursive Language: 

A subclass of the r.e. sets, called the recursive sets, which are those languages accepted by at least one 

Turing machine that halts on all inputs. 

 

Church's Hypothesis: 

The assumption that the intuitive notion of "computable function" can be identified with the class of 

partial recursive functions is known as Church's hypothesis or the Church-Turing thesis. 

 

Decidable and undecidable problems: 

 A problem whose language is recursive is said to be decidable.  

 A problem is undecidable if there is no algorithm that takes as input an instance of the problem 

and determines whether the answer to that instance is "yes" or "no." 
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Post's Correspondence Problem: 

An instance of Post's Correspondence Problem (PCP) consists of two lists, A = w1,, ..., wk and B = x1, ... 

, xk, of strings over some alphabet ∑. This instance of PCP has a solution if there is any sequence of 

integers i1, i2, .. ., im, with m ≥1, such that ,wi1, wi2,…, wim = xi1, xi2,… xim 

. 

The sequence i1,…,im  is a solution to this instance of PCP. 

 

Example 1: 

Let ∑ = {0, 1}. Let A and B be lists of three strings each, as defined 

 
In this case PCP has a solution. Let m = 4, i1 = 2,i2 =1, i3 = 1, and i4 = 3. Then W2W1W1W3 = 

X2X1X1X3 =  101111110. 

 

 

Example 2: Show that PCP problem with 2 lists  

X=(b,bab3,ba) and y=(b3,ba,a) has a solution. 

            Given lists are x=(b,bab3,ba) y=(b3,ba,a) 

The instances of PCP is as follows 

 List X List Y 

i Xi Yi 

1 a b3 

2 bab3 ba 

3 ba a 
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In this case PCP is as follows 

X2x1x1x3=y2y1y1y3=bab3bbba 

The solution sequence is 2113  PCP has a solution. 

Example 3: Prove that PCP with two lists X =(01,1,1)   Y=(0101,10,11) has no solution. 

sol)    Instance of PCP is given as 

 List X List Y 

i Xi Yi 

1 01 0101 

2 1 10 

3 1 11 

 

Where  X1=01  Y1=0101 

                X2=1  Y2=10 

               X3=1   Y3=11 

For any i  |Xi| < |Yi|The last Y is having strings of greater lengths. So to get same string for same 

sequences of x1,x2,x3 and y1,y2,y3 is difficult. 

We cannot get solution sequence. Therefore the given PCP is having no solution. 

Turing Reducibility: 

Language Ll is reduced to L2 by finding an algorithm that mapped strings in L1 to strings in L2 and 

strings not in L1 to strings not in L2. This notion of reducibility is often called many-one reducibility. 

 A more general technique is called Turing reducibility, and consists simply of showing that L1 is 

recursive in L2. 

If L1 is many-one reducible to L2, then surely L1 is Turing-reducible to L2. 
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P and NP problems: 

The languages recognizable in deterministic polynomial time form a natural and important class, the class 

Ui≥1  DTIME(ni), which we denote by P. It is an intuitively appealing notion that P is the class of 

problems that can be solved efficiently. 

There are a number of important problems that do not appear to be in P but have efficient 

nondeterministic algorithms. These problems fall into the class Ui≥1 NTIME(ni), which we denote by NP. 

 

NP complete and NP hard problems: 

Let l be a class of languages.  

A language L is complete for l with respect to polynomial-time reductions if L is in l, and every language 

in l is polynomial-time reducible to L. 

L is NP-complete if L is complete for NP with respect to log-space reductions. 

L is hard for l with respect to polynomial-time reductions if every language in l is polynomial-time 

reducible to L, but L is not necessarily in l. 

L is NP-hard if L is hard for NP with respect to log-space reductions. 

 

 

HALTING PROBLEM 

The problem of determining whether a program halts on a given input is undecidable.This is to say that 

no program can correctly code halts.There is no algorithm for deciding halting problem 

NP 

P 

NC 

NP 
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Halting problem is simply not solvable. 

Let K0= Turing acceptable language. 

A problem that can be solved by an algorithm is called solvable. 

A problem that cannot be solved by an algorithm called unsolvable. 

An algorithm that solves a problem is called a decision procedure. 

The most famous of the unsolvable problems is the problems described by Ko.It is generally called 

halting problem for turing machine to determine for arbitrary given turing machine M and input 

w,whether M will eventually halt on input W. 

Closure properties of recursive languages 

 Union: If L1 and If L2 are two recursive languages, their union L1∪L2 will also be recursive 

because if TM halts for L1 and halts for L2, it will also halt for L1∪L2. 

 Concatenation: If L1 and If L2 are two recursive languages, their concatenation L1.L2 will also be 

recursive. 

 Kleene Closure: If L1is recursive, its kleene closure L1* will also be recursive.  

 Intersection and complement: If L1 and If L2 are two recursive languages, their intersection L1 ∩ 

L2 will also be recursive. 

 

Closure properties of recursively enumerable languages 

 Recursively enumerable  languages are not closed under complementation 

 If L is recursively enumerable language, its kleene closure L* will also be recursively enumerable 

language.  

 If L1 and If L2 are two recursively enumerable languages, their concatenation L1.L2 will also be 

recursively enumerable languages. 

 If L1 and If L2 are two recursively enumerable languages, their union L1 ∪ L2 will also be 

recursively enumerable languages. 

  If L1 and If L2 are two recursively enumerable languages, their union L1 ∩ L2 will also be 

recursively enumerable languages. 
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       Assignment-Cum-Tutorial Questions 

A.  Questions testing the understanding / remembering level of students 

  I) Objective Questions 

1. The move function of Turing Machine is ________________. 

2. The language accepted by a Turning machine is called ________________language. 

3. Recursively enumerable languages are equivalent to the class of ________________ functions. 

4. Recursively enumerable languages are closed under complementation.   [True |False] 

5. The set of all recursive languages is a subset of the set of all recursively enumerable languages. 

           [True |False] 

6. Phrase structured languages are accepted by TM.       [True | False] 

7. The power of Non-deterministic Turning machine and deterministic Turning Machine are same.  

           [True | False] 

8. A problem whose language is recursive is called _________________________.  

9. Recursive languages are        [ ] 

a. a). A proper  subset of CFL   b). Always recognizable by PDA 

b. c). Also called Type 0 languages  d). Recognizable by TM 

    10. Phrase structured languages are also called as Type 0 languages.   [True |False] 

 

II) Descriptive questions 

1. Define Turning Machine. Explain about  model of Turning Machine 

2. Explain about types of turing machines. 

3. Write short notes on halting problem of a Turing Machine. 

4. Discuss Church’s Hypothesis?  

5. Write short notes on P and NP problems and give examples. 

6. Write short notes on NP Complete and NP hard problems and give examples.  

7. Discuss in details about Turing Reducibility. 

8. List properties of recursive and recursively enumerable languages. 

9. What is post correspondence problem? Explain with an example 
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B.  Question testing the ability of students in applying the concepts. 

I)  Multiple Choice Questions:  

1. Which of the following languages are accepted by a Turning Machine?   [ ] 

 (i)   L= {an bn  | n>=0} 

 (ii)  L= {an b2n c2n  |n>=0} 

 (iii) The set of palindromes over alphabet {a,b} 

a) Only (i)   b) Only (ii)  c) (i) and (iii)   d) (i), (ii) and (iii) 

2.  A single tape Turing Machine M has three states q0, q1 and q2, of which q0 is the starting state. The 

tape alphabet of M is {0, 1, B} and its input alphabet is {0, 1}. The symbol B is the blank symbol used to 

indicate end of an input string. The transition function of M is described in the following table   

 0 1 B 

q0 q0,1,R q0,0,R q1,B,L 

q1 q1,0,L q1,1,L q2,B,R 

 Which of the following statements is true about M  ?     [ ] 

a) M halts after computing  1’s complement of a binary number 

b) M halts after computing  2’s complement of a binary number  

c) M halts after reversing  of a binary number  

d) None 

3. A single tape Turing Machine M has four states q0, q1, q2 and q3, of which q0 is the starting state. The 

tape alphabet of M is {0, 1, B} and its input alphabet is {0, 1}. The symbol B is the blank symbol used to 

indicate end of an input string. The transition function of M is described in the following table 

 0 1 B 

q0 q0,0,R q0,1,R q1,B,L 

q1 q1,0,L q2,1,L  

q2 q2,1,L q2,0,L q3,B,R 
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Which of the following statements is true about M ?     [ ] 

a. M halts after computing  1’s complement of a binary number 

b. M halts after computing  2’s complement of a binary number  

c. M halts after reversing  of a binary number  

d. None 

he given table represents a Turing machine which accepts     



a) even number of 1’s 

b) odd number of 1’s 

c) even number of 1’s and odd number of 1’s 

d) even number of 1’s or odd number of 1’s 

 

5. The transitions of a Turing Machine are given below     [ ] 

δ (q0,1) = (q0,1,R) 

δ (q0,B) = (q1,1,R) 

δ (q1,B) = (q2,B,R) 

The input on the tape is q011B then the output on the tape is    [ ] 

a) 111Bq2B  b) 1111Bq2B  c) 111Bq1B  d) 1111Bq1B 

 

II) Problems 

1. Design TM for the language L={an bncn |n>=1} 

2. Design TM for the language L = { an bmcn+m | n,m >= 1 } 

3. Design a Turing machine that accepts the language L ={ WWR / W�(0+1)* and 

WR is reverse of W} 

4. Consider the TM described by the transition table given below. Represent the processing of  
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a) 011  b) 0011 using ID’s. Which of the strings are accepted by TM?  

 

5. Design TM for subtraction of two numbers. 

6. Show that the following post correspondence problem has a solution and give the solution.         

i ListA ListB 

1 11 11 

2 100 001 

3 111 11 

 

           

C. GATE/NET/SLET 

1. Which of the following statements is/are FALSE?  GATE CS 2013 [ ] 
1. For every non-deterministic Turing machine, there exists an equivalent deterministic Turing                     
    machine. 
2. Turing recognizable languages are closed under union and complementation. 
3. Turing decidable languages are closed under intersection and complementation. 
4. Turing recognizable languages are closed under union and intersection. 

a)1 and 4 only  b) 1 and 3 only c) 2 only d)3 only 

   2. Which of the following is true for the language   GATE CS 2008 [ ] 
a) It is not accepted by a Turing Machine 
b) It is regular but not context-free 
c) It is context-free but not regular 
d) It is neither regular nor context-free, but accepted by a Turing machine 
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3. Let L1 be a recursive language. Let L2 and L3 be languages that are   [ ] 
 recursively enumerable but not recursive. Which of the following statements is not necessarily true?  
(A) L2 – L1 is recursively enumerable.   (B) L1 – L3 is recursively enumerable  
(C) L2 ∩ L1 is recursively enumerable  (D) L2 ∪ L1 is recursively enumerable 

GATE CS 2010   
a)A  b)B  c)C  d)D 

 
4. If L and L' are recursively enumerable, then L is  GATE CS 2008  [ ] 

a) regular     b) context-free 
c) Context-sensitive    d) recursive 
 

5. Let L1 be a recursive language, and let L2 be a recursively enumerable but not a recursive language. 
Which one of the following is TRUE?  GATE-CS-2005       [ ] 

L1' --> Complement of L1 
L2' --> Complement of L2  

a) L1' is recursive and L2' is recursively enumer­able 
b) L1' is recursive and L2' is not recursively enumerable 
c) L1' and L2' are recursively enumerable 
d) L1' is recursively enumerable and L2' is recursive  
 

6. Consider the following types of languages:  GATE-CS-2016 (Set 2)     
L1 Regular,  L2: Context-free, 
L3: Recursive,  L4: Recursively enumerable.  

     Which of the following is/are TRUE?       [ ] 
I.   L3' U L4 is recursively enumerable  II.  L2 U L3 is recursive 
III. L1* U L2 is context-free    IV.  L1 U L2' is context-free  
a) I only b) I and III only c) I and IV only d) I, II and III only 

  
7. A single tape Turing Machine M has two states q0 and q1, of which q0 is the starting state.  

The tape alphabet of M is {0, 1, B} and its input alphabet is {0, 1}. The symbol B is the blank symbol 

used to indicate end of an input string. The transition function of M is described in the following table

         GATE-CS-2003   [ ] 

 
 0  1  B 

 q0  q1, 1, R  q1, 1, R  Halt 

 q1  q1, 1, R  q0, 1, L  q0, B, L 

The table is interpreted as illustrated below. The entry (q1, 1, R) in row q0 and column 1 signifies that if 

M is in state q0 and reads 1 on the current tape square, then it writes 1 on the same tape square, moves its 



Formal Languages and Automata Theory 17 

 

II.B.Tech-I-Semester A.Y.2018-19 CSE 

 

tape head one position to the right and transitions to state q1. Which of the following statements is true 

about M ? 

a) M does not halt on any string in (0+1)+ 

b) M does not halt on any string in (00+1)+ 

c) M  halts on all  string ending in  a 0 

d) M  halts on all string ending in a 1        

 

8. Which of the following is true?     GATE-CS-2002  [ ] 

a) The complement of a recursive language is recursive. 

b) The complement of a recursively enumerable language is recursively enumerable. 

c) The complement of a recursive language is either recursive or recursively enumerable. 

d) The complement of a context-free language is context-free 

 

9. Define languages L0 and L1 as follows :   GATE-CS-2003     [ ] 

L0 = {< M, w, 0 > | M halts on w} 

L1 = {< M, w, 1 > | M does not halts on w}  

Here < M, w, i > is a triplet, whose first component. M is an encoding of a Turing Machine, second 

component, w, is a string, and third component, i, is a bit. Let L = L0 ∪ L1. Which of the following is 

true? 

a) L is recursively enumerable, but L' is not 

b) L' is recursively enumerable, but L is not 

c) Both L and L' are recursive 

d) Neither L nor L' is recursively enumerable 

10. Nobody knows yet if P = NP. Consider the language L defined as follows:   

GATE-CS-2003      [ ] 

Which of the following statements is true ? 

a) L is recursive 

b) L is recursively enumerable but not recursive 

c) L is not recursively enumerable 

d) Whether L is recursive or not will be known after we find out if P = NP 


