
1

II Year I Sem UNIX Programming Lab
Lab

GEC

UNIX PROGRAMMING LAB
FACULTY MANUAL

II Year I Semester

Prepared by

Siva Naga Prasad Mannem

Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

Seshadri rao Knowledge Village, Gudlavalleru – 521356

2

II Year I Sem UNIX Programming Lab
Lab

GEC

INSTITUTE VISION & MISSION

GUDLAVALLERU ENGINEERING COLLEGE
(An Autonomous Institution with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521356

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE VISION:

To be a leading institution of engineering education and research, preparing
students for leadership in their fields in a caring and challenging learning
environment.

INSTITUTE MISSION:

 To produce quality engineers by providing state-of-the-art engineering
education.

 To attract and retain knowledgeable, creative, motivated and highly skilled
individuals whose leadership and contributions uphold the college tenets
of education, creativity, research and responsible public service.

 To develop faculty and resources to impart and disseminate knowledge
and information to students and also to society that will enhance
educational level, which in turn, will contribute to social and economic
betterment of society.

 To provide an environment that values and encourages knowledge
acquisition and academic freedom, making this a preferred institution for
knowledge seekers.

 To provide quality assurance.
 To partner and collaborate with industry, government, and R&D institutes

to develop new knowledge and sustainable technologies and serve as an
engine for facilitating the nation’s economic development.

 To impart personality development skills to students that will help them to
succeed and lead.

 To instil in students the attitude, values and vision that will prepare them
to lead lives of personal integrity and civic responsibility.

 To promote a campus environment that welcomes and makes students of
all races, cultures and civilizations feel at home.

 Putting students face to face with industrial, governmental and societal
challenges.

3

II Year I Sem UNIX Programming Lab
Lab

GEC

PEO1: Identify, analyze, formulate and solve Computer Science and Engineering
problems both independently and in a team environment by using the appropriate
modern tools.

PEO2: Manage software projects with significant technical, legal, ethical, social,
environmental and economic considerations

PEO3: Demonstrate commitment and progress in lifelong learning, professional
development, leadership and communicate effectively with professional clients and
the public.

VISION

To be a Centre of Excellence in Computer Science and Engineering

education and training to meet the challenging needs of the industry and

society.

MISSION

 To impart quality education through well-designed curriculum in tune with

the growing software needs of the industry.

 To serve our students by inculcating in them problem solving, leadership,

teamwork skills and the value of commitment to quality, ethical behavior &

respect for others.

 To foster industry-academia relationship for mutual benefit and growth.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):-

DEPARTMENT VISION & MISSION

4

II Year I Sem UNIX Programming Lab
Lab

GEC

PROGRAM OUTCOMES (POs)

Engineering students will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations,

and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

5

II Year I Sem UNIX Programming Lab
Lab

GEC

member and leader in a team, to manage projects and in multidisciplinary

environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

PROGRAM SPECIFIC OUTCOMES

Students will be able to

PSO1: Design, develop, test and maintain reliable software systems and

intelligent systems.

PSO2: Design and develop web sites, web apps and mobile apps.

Course Objectives:

 To familiarize with various UNIX utilities.

 To impart knowledge on developing shell scripts.

Course Outcomes:

Upon successful completion of the course, the students will be able to

 develop shell scripts in order to perform shell programming.

 demonstrate the UNIX file system.

Mapping Of Course Outcomes With Program Outcomes

Unix Programming Lab
1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2

CO1: develop shell scripts in
order to perform shell
programming

1 1 2 1 1 1

CO2: demonstrate the
UNIX file system 1

Unix Programming Lab 1 1 1

1 1 1

II Year I Sem UNIX Programming Lab GEC

6

LIST OF EXPERIMENTS

S. No Program Name
Mapping

Of Co’s

Page

No

1. Practice session on UNIX commands and vi editor CO1 7
2. Write a shell script to print the factorial of first n

natural numbers. CO1 22

3. Write a shell script to generate a multiplication
table of the given number. CO1 23

4. Write a shell script to list the files in the current
directory to which the user has read, write and
execute permissions.

CO1 24

5.
Write a shell script to compare two strings by
reading strings from the command line. CO1 25

6.
Write shell script to read username & to find
whether the user currently logged in or not. CO1 26

7.
Write shell scripts to find the length of a given
string and to extract a substring from a given
string.

CO1 27

8.
Write a shell script that counts the number of
lines and words present in a given file. CO1 28

9.
Write a shell script that displays the list of all files
in the given directory. CO1 29

10.
Write a shell scripts that copies multiple files to a
directory. CO1 30

11.
Write a shell script (small calculator) that adds,
subtracts, multiplies and divides the given two
integers. There are two division options: one
returns the quotient and the other returns
reminder. The script requires 3 arguments:
The operation to be used and two integer
numbers. The options are add (-a), subtract (-s),
multiply (-m), quotient (-c) and reminder (-r).

CO1 31

12.
Write a C program that illustrates uses of the
opendir, readdir, and closedir APIs. CO2 32

13
Write a program that takes one or more
file/directory names as command line input and
reports the following information on the file:
• File type. • Number of links.
• Time of last access. • Read, Write and
Execute permissions.

CO2 34

14
Write a C program that illustrates the creation of
child process using fork system call. CO2 36

II Year I Sem UNIX Programming Lab GEC

7

login:

login : amrood

amrood's

password:

Last login: Sun Jun 14 09:32:32 2009 from 62.61.164.73

$ cal

June 2009

Aim:-
1.Practice session on UNIX Commands and vi editor.
Login Unix

When you first connect to a Unix system, you usually see a prompt such as the
following:

To log in
 Have your userid (user identification) and password ready. Contact

your system administrator if you don't have these yet.

 Type your userid at the login prompt, then press ENTER. Your userid
is case- sensitive, so be sure you type it exactly as your system
administrator has instructed.

 Type your password at the password prompt, then press ENTER.
Your password is also case-sensitive.

If you provide the correct userid and password, then you will be allowed to enter
into the system. Read the information and messages that comes up on the screen,
which is as follows.

You will be provided with a command prompt (sometime called the $ prompt)
where you type all your commands. For example, to check calendar, you need to
type the cal command as follows

Change Password

Su M
o

Tu We Th Fr Sa

 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

II Year I Sem UNIX Programming Lab GEC

8

$ passwd

Changing password

for amrood

(current) Unix

password:******

New Unix

4096 Dec 25 09:59 uml

$ ls -l

total 19621

drwxrwxr-x 2 amrood amrood

All Unix systems require passwords to help ensure that your files and data
remain your own and that the system itself is secure from hackers and crackers.
Following are the steps to change your password –

Step 1: To start, type password at the command prompt as shown below.

Step 2: Enter your old password, the one you're currently using.

Step 3: Type in your new password. Always keep your password complex
enough so that nobody can guess it. But make sure, you remember it.

Step 4: You must verify the password by typing it again.

Note − We have added asterisk (*) here just to show the location where you need
to enter the current and new passwords otherwise at your system. It does not
show you any character when you type.
Listing Directories and Files
All data in Unix is organized into files. All files are organized into directories.
These directories are organized into a tree-like structure called the filesystem.
You can use the ls command to list out all the files or directories available in a
directory. Following is the example of using ls command with -l option.

II Year I Sem UNIX Programming Lab GEC

9

$

$ users

amrood bablu qadir

rw-rw-r--

1 Amrood amrood 5341 Dec 25 08:38 uml.jpg

drwxr-xr-x 2 Amrood amrood 4096 Feb 15 2006 Univ

drwxr-xr-x 2 Root root 4096 Dec 9 2007 Urlspedia

-rw-r--r-- 1 Root root 276480 Dec 9 2007 urlspedia.tar

drwxr-xr-x 8 Root root 4096 Nov 25 2007 Usr

-rwxr-xr-x 1 Root root 3192 Nov 25 2007 webthumb.php

-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007 webthumb.tar

-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007 yourfile.mid

-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007 yourfile.swf

Here entries starting with d ... represent directories. For example, uml, univ and
urlspedia are directories and rest of the entries are files.

Who Are You?
While you're logged into the system, you might be willing to know : Who am I?
The easiest way to find out "who you are" is to enter the whoami command.

Try it on your system. This command lists the account name associated with the
current login. You can try who am i command as well to get information about
yourself.

Who is Logged in?
Sometime you might be interested to know who is logged in to the computer at
the same time.
There are three commands available to get you this information, based on how
much you wish to know about the other users: users, who, and w.

$

whoam

i

amroo

II Year I Sem UNIX Programming Lab GEC

10

Try the w command on your system to check the output. This lists down
information associated with the users logged in the system.
Logging Out

When you finish your session, you need to log out of the system. This is to
ensure that nobody else accesses your files.

To log out
Just type the logout command at the command prompt, and the system will clean
up everything and break the connection.

System Shutdown
The most consistent way to shut down a Unix system properly via the command
line is to use one of the following commands –

Command Description

halt Brings the system down immediately

init 0 Powers off the system using predefined scripts to
synchronize and clean up the system prior to shutting
down

init 6 Reboots the system by shutting it down completely
and then restarting it

poweroff Shuts down the system by powering off

$ who

amrood ttyp0 Oct 8 14:10 (limbo)

bablu ttyp2 Oct 4 09:08 (calliope)

qadir ttyp4 Oct 8 12:09 (dent)

$

II Year I Sem UNIX Programming Lab GEC

11

$ls

reboot Reboots the system

Shutdown Shuts down the system

File management:

 All data in Unix is organized into files. All files are organized into directories.
These directories are organized into a tree-like structure called the file system.

When you work with Unix, one way or another, you spend most of your time
working with files. This tutorial will help you understand how to create and
remove files, copy and rename them, create links to them, etc.

In Unix, there are three basic types of files –

Ordinary Files − An ordinary file is a file on the system that contains data, text,
or program instructions. In this tutorial, you look at working with ordinary files.

Directories − Directories store both special and ordinary files. For users familiar
with Windows or Mac OS, Unix directories are equivalent to folders.

Special Files − Some special files provide access to hardware such as hard
drives, CD-ROM drives, modems, and Ethernet adapters. Other special files are
similar to aliases or shortcuts and enable you to access a single file using
different names.

Listing Files:

To list the files and directories stored in the current directory, use the following
command:

bin Hosts lib res.03

ch07 hw1 pub test_results

ch07.bak hw2 res.01 users

docs hw3 res.02 work

II Year I Sem UNIX Programming Lab GEC

12

$ls -l

total

The command ls supports the -l option which would help you to get more
information about the listed files

drwxrwxr-x 2 amrood amrood 4096 Dec 25 09:59 Uml

-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38 uml.jpg

drwxr-xr-x 2 amrood amrood 4096 Feb 15 2006 Univ

drwxr-xr-x 2 Root root 4096 Dec 9 2007 Urlspedia

-rw-r--r-- 1 Root root 276480 Dec 9 2007 urlspedia.tar

drwxr-xr-x 8 Root root 4096 Nov 25 2007 Usr

drwxr-xr-x 2 200 300 4096 Nov 25 2007 webthumb-1.01

-rwxr-xr-x 1 Root root 3192 Nov 25 2007 webthumb.php

-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007 webthumb.tar

-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007 yourfile.mid

-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007 yourfile.swf

drwxr-xr-x 11 amrood amrood 4096 May 29 2007 zlib-1.2.3

$

Here is the information about all the listed columns –
First Column: Represents the file type and the permission given on the file.
Below is the description of all type of files.
Second Column: Represents the number of memory blocks taken by the file or
directory.
Third Column: Represents the owner of the file. This is the Unix user who
created this file.
Fourth Column: Represents the group of the owner. Every Unix user will have
an associated group.
Fifth Column: Represents the file size in bytes.
Sixth Column: Represents the date and the time when this file was created or
modified for the last time.
Seventh Column: Represents the file or the directory name.
In the ls -l listing example, every file line begins with a d, -, or l.

II Year I Sem UNIX Programming Lab GEC

13

ch01-2.doc ch02-1.doc c

ch06-2.doc ch04-1.doc ch040.doc ch05.doc

ch03-2.doc ch01-1.doc ch010.doc ch02.doc

$ls *.doc

Prefix Description

- Regular file, such as an ASCII text file, binary executable,
or hard link

b Block special file. Block input/output device file such as
a physical hard drive

c Character special file. Raw input/output device file such
as a physical hard drive

d Directory file that contains a listing of other files and
directories

l Symbolic link file. Links on any regular file

p Named pipe. A mechanism for interprocess
communications

s Socket used for interprocess communication

Metacharacters
Metacharacters have a special meaning in Unix. For example, * and ? are
metacharacters.
We use * to match 0 or more characters, a question mark (?) matches with a
single character. For Example

Displays all the files, the names of which start with ch and end with .doc
Here, * works as meta character which matches with any character. If you want
to display all the files ending with just .doc, then you can use the following

$ls ch*.doc

II Year I Sem UNIX Programming Lab GEC

14

$ ls -a

$ vi filename

This is unix file....I created it for the first time.....

$ vi filename

command –

To list the invisible files, specify the -a option to ls –

. .profile docs lib test_results

.. .rhosts hosts pub users

.emacs Bin hw1 res.01 work

.exrc ch07 hw2 res.02

.kshrc ch07.bak hw3 res.03

$

Single dot (.) − This represents the current directory.
Double dot (..) − This represents the parent directory.
Creating Files
You can use the vi editor to create ordinary files on any Unix system. You
simply need to give the following command −

The above command will open a file with the given filename. Now, press the key
i to come into the edit mode. Once you are in the edit mode, you can start writing
your content in the file as in the following program –

Once you are done with the program, follow these steps −

•Press the key esc to come out of the edit mode.
•Press two keys Shift + Z together to come out of the file completely.
You will now have a file created with filename in the current directory.
Editing Files
You can edit an existing file using the vi editor. We will discuss in short how to
open an existing file −
Once the file is opened, you can come in the edit mode by pressing the key i and

then you can proceed by editing the file. If you want to move here and there
inside a file, then first you need to come out of the edit mode by pressing the key
Esc. After this, you can use the following keys to move inside a file –
• l key to move to the right side.

II Year I Sem UNIX Programming Lab GEC

15

$ cat filename

This is unix file....I created it for the first time.....

$ cat -b filename

1 This is unix file....I created it for the first time.....

2 I'm going to save this content in this file.

$

$ wc filename

2 19 103 filename

$

• h key to move to the left side.
• k key to move upside in the file.
• j key to move downside in the file.
So using the above keys, you can position your cursor wherever you want to edit.
Once you are positioned, then you can use the i key to come in the edit mode.
Once you are done with the editing in your file, press Esc and finally two keys
Shift + ZZ together to come out of the file completely.
Display Content of a File:
You can use the cat command to see the content of a file. Following is a simple

example to see the content of the above created file.

You can display the line numbers by using the -b option along with the cat
command as follows

Counting Words in a File:
You can use the wc command to get a count of the total number of lines, words,
and characters contained in a file. Following is a simple example to see the
information about the file created above

Here is the detail of all the four columns −
First Column: Represents the total number of lines in the file.
Second Column: Represents the total number of words in the file.
Third Column: Represents the total number of bytes in the file. This is the
actual size of the file.

II Year I Sem UNIX Programming Lab GEC

16

$ wc filename1 filename2 filename3

Fourth Column: Represents the file name.
You can give multiple files and get information about those files at a time.

Following is simple syntax

If we want to get number of lines in a file we can use –l option for wc.
$ wc –l filename
If we want to get number of words in a file we can use –w option for wc.
$ wc –w filename
If we want to get number of characters in a file we can use –c option for wc.
$ wc –c filename
Copying Files:
To make a copy of a file use the cp command. The basic syntax of the command
is
$ cp sours_file destination_file
Following is the example to create a copy of the existing file filename.
$ cp filename copyfile
You will now find one more file copyfile in your current directory. This file will
exactly be the same as the original file filename

Renaming Files:
To change the name of a file, use the mv command. Following is the basic
syntax
$ mv old_file new_file
The following program will rename the existing file filename to newfile.
$ mv filename newfile
The mv command will move the existing file completely into the new file. In
this case, you will find only newfile in your current directory.

Deleting Files:
To delete an existing file, use the rm command. Following is the basic syntax
$ rm filename
Caution: A file may contain useful information. It is always recommended to be
careful while using this Delete command. It is better to use the -i option along
with rm command.
Following is the example which shows how to completely remove the existing
file filename.

II Year I Sem UNIX Programming Lab GEC

17

$ rm filename
You can remove multiple files at a time with the command given below
$ rm filename1 filename2 filename3
Listing Directories
To list the files in a directory, you can use the following syntax −
$ ls dirname
Following is the example to list all the files contained in /usr/local directory

$ls /usr/local

X11 bin gimp jikes sbin

ace doc include lib share

atalk etc info man ami

Creating Directories
We will now understand how to create directories. Directories are created by the
following command −
$mkdir dirname
Here, directory is the absolute or relative pathname of the directory you want to
create. For example, the command –
$mkdir mydir
Creates the directory mydir in the current directory. Here is another example –
$mkdir /tmp/test-dir
This command creates the directory test-dir in the /tmp directory. The mkdir
command produces no output if it successfully creates the requested directory.
If you give more than one directory on the command line, mkdir creates each of
the directories. For example, −
$mkdir docs pub
Creates the directories docs and pub under the current directory
Removing Directories
Directories can be deleted using the rmdir command as follows −
$rmdir dirname
Note − To remove a directory, make sure it is empty which means there should
not be any file or sub-directory inside this directory.
You can remove multiple directories at a time as follows −
$rmdir dirname1 dirname2 dirname3
The above command removes the directories dirname1, dirname2, and dirname3,
if they are empty. The rmdir command produces no output if it is successful.
Changing Directories

II Year I Sem UNIX Programming Lab GEC

18

$ls -l /home/amrood

-rwxr-xr-- 1 amrood users 1024 Nov 2 00:10 myfile

drwxr-xr--- 1 amrood users 1024 Nov 2 00:10 mydir

You can use the cd command to do more than just change to a home directory.
You can use it to change to any directory by specifying a valid absolute or
relative path. The syntax is as given below −
$cd dirname
Here, dirname is the name of the directory that you want to change to. For
example, the command –
$cd /usr/local/bin
Changes to the directory /usr/local/bin. From this directory, you can cd to the
directory /usr/home/amrood using the following relative path
$cd ../../home/amrood
Renaming Directories
The mv (move) command can also be used to rename a directory. The syntax is
as follows:
$mv olddir newdir
You can rename a directory mydir to yourdir as follows –
$mv mydir yourdir
File permissions and access modes:
In this we will discuss in detail about file permission and access modes in Unix.
File ownership is an important component of Unix that provides a secure method
for storing files. Every file in Unix has the following attributes –
•Owner permissions − The owner's permissions determine what actions the
owner of the file can perform on the file.
•Group permissions − The group's permissions determine what actions a user,
who is a member of the group that a file belongs to, can perform on the file.
•Other (world) permissions − The permissions for others indicate what action
all other users can perform on the file.
The Permission Indicators
While using ls -l command, it displays various information related to file
permission as follows−
Here, the first column represents different access modes, i.e., the permission

associated with a file or a directory.
The permissions are broken into groups of threes, and each position in the group
denotes a specific permission, in this order: read (r), write (w), execute (x)
•The first three characters (2-4) represent the permissions for the file's owner.

II Year I Sem UNIX Programming Lab GEC

19

For example, -rwxr-xr-- represents that the owner has read (r), write (w) and
execute(x) permission.

•The second group of three characters (5-7) consists of the permissions for the
group to which the file belongs. For example, -rwxr-xr-- represents that the
group has read(r) and execute (x) permission, but no write permission.
•The last group of three characters (8-10) represents the permissions for
everyone else. For example, -rwxr-xr-- represents that there is read (r) only
permission.
File Access Modes
The permissions of a file are the first line of defense in the security of a Unix
system. The basic building blocks of Unix permissions are the read, write, and
execute permissions, which have been described below −
Read
Grants the capability to read, i.e., view the contents of the file.
Write
Grants the capability to modify, or remove the content of the file.
Execute
User with execute permissions can run a file as a program.

Directory Access Modes
Directory access modes are listed and organized in the same manner as any other
file. There are a few differences that need to be mentioned:
Read
Access to a directory means that the user can read the contents. The user can
look at the filenames inside the directory.
Write
Access means that the user can add or delete files from the directory.
Execute
Executing a directory doesn't really make sense, so think of this as a traverse
permission.
A user must have execute access to the bin directory in order to execute the ls or
the cd command.
Changing Permissions
To change the file or the directory permissions, you use the chmod (change
mode) command. There are two ways to use chmod — the symbolic mode and
the absolute mode.

II Year I Sem UNIX Programming Lab GEC

20

$ls -l testfile

-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

$chmod o+wx testfile

$ls -l testfile

-rwxrwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod u-x testfile

$ls -l testfile

-rw-rwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod g=rx testfile

$ls -l testfile

Using chmod in Symbolic Mode
 The easiest way for a beginner to modify file or directory permissions is to use
the symbolic mode. With symbolic permissions you can add, delete, or specify
the permission set you want by using the operators in the following table.

chmod Operator Description

+ Adds the designated permission(s) to a file or directory.

- Removes
directory.

the designated permission(s) from a file or

= Sets the designated permission(s).

Here's an example using testfile. Running ls -1 on the testfile shows that the file's
permissions are as follows –
Then each example chmod command from the preceding table is run on the

testfile, followed by ls –l, so you can see the permission changes
Using chmod with Absolute Permissions
The second way to modify permissions with the chmod command is to use a
number to specify each set of permissions for the file.
Each permission is assigned a value, as the following table shows, and the total
of each set of permissions provides a number for that set

Number Octal Permission Representation Ref

II Year I Sem UNIX Programming Lab GEC

21

$ls -l testfile

-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

$ chmod 755 testfile

$ls -l testfile

-rwxr-xr-x 1 amrood users 1024 Nov 2 00:10 testfile

$chmod 743 testfile

0 No permission ---

1 Execute permission --x

2 Write permission -w-

3 Execute and write permission: 1 (execute) + 2 (write) = 3 -wx

4 Read permission r--

5 Read and execute permission: 4 (read) + 1 (execute) = 5 r-x

6 Read and write permission: 4 (read) + 2 (write) = 6 rw-

7 All permissions: 4 (read) + 2 (write) + 1 (execute) = 7 rwx

Here's an example using the testfile. Running ls -1 on the testfile shows that the
file's permissions are as follows –

Then each example chmod command from the preceding table is run on the
testfile, followed by ls –l, so you can see the permission changes –

$ls -l testfile

-rwxr---wx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod 043 testfile

$ls -l testfile

----r---wx 1 amrood users 1024 Nov 2 00:10 testfile

II Year I Sem UNIX Programming Lab GEC

22

Aim:-
2. Write a shell script to print the factorial of first n natural numbers.
Source code:-
echo "Enter the Number"
read num
i=1
j=1
res=1
if test $j -eq 1
then
echo "The Factorial for the $j Number is="$j
j=`expr $j + 1 `
fi
while [$j -le $num]
do
while [$i -le $j]
do
res=`expr $res * $i `
i=`expr $i + 1 `
done
echo "The Factorial for the $j Number is="$res
res=1
i=1
j=`expr $j + 1 `
done
Output:-

II Year I Sem UNIX Programming Lab GEC

23

3. Write a shell script to generate a multiplication table of the given
number.
Source code:-
echo "Which table do you want ? (Give Number):"

read num

echo “----Multiplication Table of $num------”

iter=1

while [$iter -le 10]

do

 res=`expr $num * $iter`

 echo "$num * $iter = $res"

 iter=`expr $iter + 1`

done

Output:

II Year I Sem UNIX Programming Lab GEC

24

4. Write a shell script to list the files in the current directory to which the user
has read, write and execute permissions.
Source code:-
 echo " The files having Read, Write and Execute Permissions in
 the Current Directory"
 ls -l | grep "^.rwx"
 echo "Total No.of Files:"
 ls -l | grep -c "^.rwx"
Note: grep -c displays the count of number of lines.

Output:

II Year I Sem UNIX Programming Lab GEC

25

5. Write a shell script to compare two strings by reading strings from the
Command line.
Source code:-
echo enter the string1
readstr1
echo enter the string2
read str2
if ["$str1" == "$str2"]; then
 echo "Both Strings are Equal."
else
 echo "Both Strings are not Equal."
fi
Output:-

II Year I Sem UNIX Programming Lab GEC

26

6. Write shell script to read username & to find whether the user currently
logged in or not.
Source code:-

 echo "the user ---$1--- is logged on to the sytem on"
 who|grep "$1"| cut -c22-38

Output:

II Year I Sem UNIX Programming Lab GEC

27

7. Write shell scripts to find the length of a given string and to extract a
substring from a given string.

Source code:
 echo " ----To find the length of the given string----"
 echo "Enter the string"
 read str
 strlen=${#str}
 echo "The string length:$strlen"
 echo "--------Extraction of substring-------"
 echo "Enter starting position"
 read pos1
 echo "Enter how many characters u want:"
 read pos2
 substr=${str:$pos1:$pos2}
 echo "the substring:$substr"

Output:

II Year I Sem UNIX Programming Lab GEC

28

8. Write a shell script that counts the number of lines and words present in
a given file.

Source code;-
echo Enter a file name:
read fn
echo Number of Lines:
wc –l $fn
echo Number of Words:
wc –w $fn

Output:

II Year I Sem UNIX Programming Lab GEC

29

9. Write a shell script that displays the list of all files in the given directory.
Source code:-
echo "enter the directory name"
read dir
if [-d $dir]
then
echo "It is a directory, list of files in given directory"
ls -l $dir
fi

Output:

II Year I Sem UNIX Programming Lab GEC

30

10. Write a shell scripts that copies multiple files to a directory
Source code:-
iter=1
echo Enter new dir:
read nn
mkdir $nn
echo Enter number of files:
read na
while [$iter –le $na]
do
echo Enter file name:
read fn
cp $fn $nn
iter=`expr $iter + 1`
done

Output:

II Year I Sem UNIX Programming Lab GEC

31

11. Write a shell script (small calculator) that adds, subtracts, multiplies
and divides the given two integers. There are two division options: one
returns the quotient and the other returns reminder. The script requires 3
arguments:
The operation to be used and two integer numbers. The options are add (-
a), subtract (-s), multiply (-m), quotient (-c) and reminder (-r).
Source code:-
echo "Enter First Value "
read x
echo "Enter Second Value "
read y
while [$q –ne 0]
do
echo “Enter –a for adding”
echo “Enter –s for subtraction”
echo “Enter –m for multiplication”
echo “Enter –c for Quotient”
echo “Enter –r for reminder”
read s
case $s in
-a) p=`expr $x + $y`
 Echo "Sum = $p"
;;
-b) p=`expr $x - $y`
 Echo "difference = $p"
;;
-m) p=`expr $x * $y`
 Echo "Product = $p"
;;

-c) p=`expr $x / $y`
 Echo "quotient = $p"

;;

-r) p=`expr $x % $y`
 Echo “reminder = $p"
;;

II Year I Sem UNIX Programming Lab GEC

32

12. Write a C program that illustrates uses of the opendir, readdir, and
closedir APIs.

Source code:-
#include<stdio.h>
#include<fcntl.h>
#include<dirent.h>
main()
{
char d[10]; int c,op; DIR *e;
struct dirent *sd;
printf("**menu**\n1.create dir\n2.remove dir\n 3.read dir\n enter ur choice");
scanf("%d",&op);
switch(op)
{
case 1: printf("enter dir name\n");
 scanf("%s",&d);
 c=mkdir(d,777);
 if(c==1)
 printf("dir is not created"); else
 printf("dir is created"); break;
case 2: printf("enter dir name\n");
 scanf("%s",&d);
 c=rmdir(d);
 if(c==1)
 printf("dir is not removed"); else
 printf("dir is removed"); break;
case 3: printf("enter dir name to open");
 scanf("%s",&d);
 e=opendir(d);
 if(e==NULL)
 printf("dir does not exist"); else
 {
 printf("dir exist\n");
 while((sd=readdir(e))!=NULL)
 printf("%s\t",sd->d_name);
}
closedir(e);

II Year I Sem UNIX Programming Lab GEC

33

break;
}
}
Output:

II Year I Sem UNIX Programming Lab GEC

34

13. Write a program that takes one or more file/directory names as
command line input and reports the following information on the file:
• File type.
• Number of links.
• Time of last access.
• Read, Write and Execute permissions.
Sourcecode:-

for i in $*
do
if [-d $i]
then
echo “Given directory name is found as $i”
fi
if [-f $i]
then
echo “Given name is a file as $i “
fi
echo “Type of file/directory $i”
file $i
echo “Last access time is:”
ls -l$i | cut-c 31-46
echo "no.of links"
ln $i
if [-x $i –a -w $i-a –r $i]
then
echo “$i contains all permission”
else
echo “$i does not contain all permissions”
fi
done

II Year I Sem UNIX Programming Lab GEC

35

Output:

II Year I Sem UNIX Programming Lab GEC

36

14. Write a C program that illustrates the creation of child process using
fork system call.

Source code:-
#include<stdio.h>
int main()
{
 int i;
 for(i=0;i<5;i++)
 {
 if(fork() == 0)
 {
 printf("[son] pid %d from [parent] pid %d\n", getpid(), getppid());
 exit(0);
 }
 }
 for(i=0;i<5;i++)
 wait(NULL);

}
Output:

