
UML AND DESIGN PATTERNS LAB STUDENT MANUAL
III Year II Semester

2020-21

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)
Seshadrirao Knowledge Village, Gudlavalleru – 521356.

INSTITUTE VISION & MISSION

DEPARTMENT VISION & MISSION

Institute Vision:
To be a leading institution of engineering education and research, preparing students for
 leadership in their fields in a caring and challenging learning environment.

Institute Mission:

 To produce quality engineers by providing state-of-the-art engineering education.
 To attract and retain knowledgeable, creative, motivated and highly skilled individuals

whose leadership and contributions uphold the college tenets of education, creativity,
research and responsible public service.

 To develop faculty and resources to impart and disseminate knowledge and information to
students and also to society that will enhance educational level, which in turn, will
contribute to social and economic betterment of society.

 To provide an environment that values and encourages knowledge acquisition and academic
freedom, making this a preferred institution for knowledge seekers.

 To provide quality assurance.
 To partner and collaborate with industry, government, and R&D institutes to develop new

knowledge and sustainable technologies and serve as an engine for facilitating the nation’s
economic development.

 To impart personality development skills to students that will help them to succeed and
lead.

 To instil in students the attitude, values and vision that will prepare them to lead lives of
personal integrity and civic responsibility.

 To promote a campus environment that welcomes and makes students of all races, cultures
and civilizations feel at home.

 Putting students face to face with industrial, governmental and societal challenges.

VISION

To be a Centre of Excellence in computer science and engineering education and training to meet

The challenging needs of the industry and society.

MISSION

 To impart quality education through well-designed curriculum in tune with the growing

software needs of the industry.

 To be a Centre of Excellence in computer science and engineering education and training to

meet the challenging needs of the industry and society.

 To serve our students by inculcating in them problem solving, leadership, teamwork skills and

the value of commitment to quality, ethical behavior & respect for others.

 To foster industry-academia relationship for mutual benefit and growth

PROGRAMME EDUCATIONAL OBJECTIVES(PEOs):-

PROGRAM OUTCOMES (POs)

Engineering students will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,
and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering
problems reaching substantiated conclusions using first principles of mathematics, natural sciences,
and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design
system components or processes that meet the specified needs with appropriate consideration for
the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with
an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in
societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of
the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports
and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering
and management principles and apply these to one’s own work, as a member and leader in a team,
to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

PEO1: Identify, analyze, formulate and solve Computer Science and Engineering problems

both independently and in a team environment by using the appropriate modern tools.

PEO2: Manage software projects with significant technical, legal, ethical, social,

environmental and economic considerations.

PEO3: Demonstrate commitment and progress in lifelong learning, professional

development, leadership and Communicate effectively with professional clients and the

public.

PROGRAM SPECIFIC OUTCOMES
Students will be able to
PSO1: Design, develop, test and maintain reliable software systems and intelligent systems.
PSO2: Design and develop an appropriate design pattern to refine the model.
Course Objectives:

 To get familiar with the Object Oriented Analysis and Design in software development,
develop UML structural and behavioral models of an application.

 To describe and choose an appropriate Design Pattern to refine the model.

 Course Outcomes:

Upon successful completion of the course, the students will be able to
 apply the object oriented analysis and designs in software development and familiar with

the UML concepts.
 develop static conceptual models of the system.
 generate dynamic behavioral models of the system to meet user needs.
 design object oriented architecture models.
 describe and select an appropriate design pattern to refine the model.
 classify and explain given design pattern.

Mapping Of Course Outcomes With Program Outcomes:

 UML AND DESIGN PATTERN LAB

Course outcomes
Program Outcomes and Program Specific Outcome

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

CO1: apply the object oriented analysis and designs
in software development and familiar with the UML
concepts.

2 2 2 1 2 1 1

CO2: develop static conceptual models of the
system. 2 1 1 1 1 1 1

CO3: generate dynamic behavioral models of the
system to meet user needs. 2 1 1 1 2 2 2 1

CO4: design object oriented architecture models. 2 2 1 2 2 1 1

CO5: describe and select an appropriate design
pattern to refine the model. 3 2 1 2 2 2 2

CO6: classify and explain given design pattern. 2 1 2 2 1 1

List of Experiments

S.No Experiment

1 Demonstration of Visual Paradigm software tool for UML.

2 Create a requirement model using UML class notations for railway reservation

system and ATM application.

3 Develop class diagram for railway reservation system and ATM application.

4 Develop interaction diagram, state chart and activity diagrams for railway

reservation system and ATM application.

5 Develop component and deployment diagrams for railway reservation system

and ATM application.

6 Using UML designs develop factory method, facade design patterns.

7 User gives a print command from a word document. Design to represent this

chain of responsibility design pattern.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 1 -

UML

What is UML?
"The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing, and
documenting the artifacts of software systems, as well as for business modeling and other non-
software systems".— OMG UML Specification

"UML is a graphical notation for modeling various aspects of software systems." — whm

Why use UML?
Two questions, really:

1) Why use a graphical notation of any sort?
Facilitates construction of models that in turn can be used to:
Reason about system behavior.
Present proposed designs to others.
Document key elements of design for future understanding.

2) Which graphical notation should be used?
UML has become the de-facto standard for modeling object oriented systems.
UML is extensible and method-independent.
UML is not perfect, but it's good enough.

The Origins of UML
Object-oriented programming reached the mainstream of programming in the late 1980's and early
1990's. The rise in popularity of object-oriented programming was accompanied by a profusion of
object-oriented analysis and design methods, each with its own graphical notation.

Three OOA/D gurus, and their methods, rose to prominence Grady Booch — The Booch

Method, James Rumbaugh, et al. — Object Modeling Technique, Ivar Jacsobson — Objectory In
1994, Booch and Rumbaugh, then both at Rational, started working on a unification of their
methods. A first draft of their Unified Method was released in October 1995. In 1996, (+/-) Jacobson
joined Booch and Rumbaugh at Rational; the name UML was coined. In 1997 the Object
Management Group (OMG) accepted UML as an open and industry standard visual modeling
language for object oriented systems. Current version of UML is 2.0.

UML Diagram Types
There are several types of UML diagrams:
Use-case Diagram
Shows actors, use-cases, and the relationships between them.
Class Diagram
Shows relationships between classes and pertinent information about classes themselves.
Object Diagram
Shows a configuration of objects at an instant in time.
Interaction Diagrams

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 2 -

Show an interaction between a group of collaborating objects.
Two types: Collaboration diagram and sequence diagram
Package Diagram
Shows system structure at the library/package level.
State Diagram
Describes behavior of instances of a class in terms of states, stimuli, and transitions.
Activity Diagram
Very similar to a flowchart—shows actions and decision points, but with the ability to accommodate
concurrency.
Deployment Diagram
Shows configuration of hardware and software in a distributed system.

UML Modeling Types
It is very important to distinguish between the UML models. Different diagrams are used for
different type of UML modeling. There are three important type of UML modeling:

Structural modeling:
Structural modeling captures the static features of a system. They consist of the followings:

 Classes diagrams
 Objects diagrams
 Deployment diagrams
 Package diagrams
 Component diagrams

Structural model represents the framework for the system and this framework is the place where all
other components exist. So the class diagram, component diagram and deployment diagrams are
the part of structural modeling. They all represent the elements and the mechanism to assemble
them.

But the structural model never describes the dynamic behavior of the system. Class diagram is the
most widely used structural diagram.

Behavioral Modeling
Behavioral model describes the interaction in the system. It represents the interaction among the
structural diagrams. Behavioral modeling shows the dynamic nature of the system. They consist of
the following:

 Activity diagrams
 Interaction diagrams
 Use case diagrams

All the above show the dynamic sequence of flow in a system.

Architectural Modeling
Architectural model represents the overall framework of the system. It contains both structural and
behavioral elements of the system. Architectural model can be defined as the blue print of the entire
system. Package diagram comes under architectural modeling.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 3 -

UML Basic Notations
UML is popular for its diagrammatic notations. We all know that UML is for visualizing,

specifying, constructing and documenting the components of software and non software systems.
Here the Visualization is the most important part which needs to be understood and remembered by
heart.

UML notations are the most important elements in modelling. Efficient and appropriate use

of notations is very important for making a complete and meaningful model. The model is useless
unless its purpose is depicted properly.

So learning notations should be emphasized from the very beginning. Different notations are

available for things and relationships. And the UML diagrams are made using the notations of things
and relationships. Extensibility is another important feature which makes UML more powerful and
flexible.

Structural Things
Graphical notations used in structural things are the most widely used in UML. These are considered
as the nouns of UML models. Following are the list of structural things.

 Classes
 Interface
 Collaboration
 Use case
 Active classes
 Components
 Nodes

Class Notation:
UML class is represented by the diagram shown below. The diagram is divided into four parts.

 The top section is used to name the class.
 The second one is used to show the attributes of the class.
 The third section is used to describe the operations performed by the class.
 The fourth section is optional to show any additional components.

Classes are used to represent objects. Objects can be anything having properties and responsibility.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 4 -

Object Notation:
The object is represented in the same way as the class. The only difference is the name which is
underlined as shown below:

As object is the actual implementation of a class which is known as the instance of a class. So it has
the same usage as the class.

Interface Notation:
Interface is represented by a circle as shown below. It has a name which is generally written below
the circle.

Interface is used to describe functionality without implementation. Interface is the just like a
template where you define different functions not the implementation. When a class implements
the interface it also implements the functionality as per the requirement.

Collaboration Notation:
Collaboration is represented by a dotted eclipse as shown below. It has a name written inside the
eclipse.

Collaboration represents responsibilities. Generally responsibilities are in a group.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 5 -

Use case Notation:
Use case is represented as an eclipse with a name inside it. It may contain additional responsibilities.

Use case is used to capture high level functionalities of a system.

Actor Notation:
An actor can be defined as some internal or external entity that interacts with the system.

Actor is used in a use case diagram to describe the internal or external entities.

Initial State Notation:
Initial state is defined show the start of a process. This notation is used in almost all diagrams.

The usage of Initial State Notation is to show the starting point of a process.

Final State Notation:
Final state is used to show the end of a process. This notation is also used in almost all diagrams to
describe the end.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 6 -

The usage of Final State Notation is to show the termination point of a process.

Active class Notation:
Active class looks similar to a class with a solid border. Active class is generally used to describe
concurrent behavior of a system.

Active class is used to represent concurrency in a system.

Component Notation:
A component in UML is shown as below with a name inside. Additional elements can be added
wherever required.

Component is used to represent any part of a system for which UML diagrams are made.

Node Notation:
A node in UML is represented by a square box as shown below with a name. A node represents a
physical component of the system.

Node is used to represent physical part of a system like server, network etc.

Behavioural Things:
Dynamic parts are one of the most important elements in UML. UML has a set of powerful features
to represent the dynamic part of software and non software systems. These features include
interactions and state machines.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 7 -

Interactions can be of two types:
 Sequential (Represented by sequence diagram)
 Collaborative (Represented by collaboration diagram)

Interaction Notation:
Interaction is basically message exchange between two UML components. The following diagram
represents different notations used in an interaction.

Interaction is used to represent communication among the components of a system.

State machine Notation:
State machine describes the different states of a component in its life cycle. The notations are
described in the following diagram.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 8 -

State machine is used to describe different states of a system component. The state can be active,
idle or any other depending upon the situation.

Grouping Things:
Organizing the UML models are one of the most important aspects of the design. In UML there is
only one element available for grouping and that is package.

Package Notation:
Package notation is shown below and this is used to wrap the components of a system.

Annotational Things:
In any diagram explanation of different elements and their functionalities are very important. So
UML has notes notation to support this requirement.

Note Notation:
This notation is shown below and they are used to provide necessary information of a system.

Relationships
A model is not complete unless the relationships between elements are described properly. The
Relationship gives a proper meaning to an UML model. Following are the different types of
relationships available in UML.

 Dependency
 Association
 Generalization
 Extensibility

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 9 -

Dependency Notation:
Dependency is an important aspect in UML elements. It describes the dependent elements and the
direction of dependency. Dependency is represented by a dotted arrow as shown below. The arrow
head represents the independent element and the other end the dependent element.

Dependency is used to represent dependency between two elements of a system.

Association Notation:
Association describes how the elements in an UML diagram are associated. In simple word it
describes how many elements are taking part in an interaction.
Association is represented by a dotted line with (without) arrows on both sides. The two ends
represent two associated elements as shown below. The multiplicity is also mentioned at the ends
(1, * etc) to show how many objects are associated.

Association is used to represent the relationship between two elements of a system.

Generalization Notation:
Generalization describes the inheritance relationship of the object oriented world. It is parent and
child relationship.
Generalization is represented by an arrow with hollow arrow head as shown below. One end
represents the parent element and the other end child element.

Generalization is used to describe parent-child relationship of two elements of a system.

Extensibility Notation:
All the languages (programming or modelling) have some mechanism to extend its capabilities like
syntax, semantics etc. UML is also having the following mechanisms to provide extensibility features.

 Stereotypes (Represents new elements)
 Tagged values (Represents new attributes)
 Constraints (Represents the boundaries)

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 10 -

Extensibility notations are used to enhance the power of the language. It is basically additional
elements used to represent some extra behaviour of the system. These extra behaviours are not
covered by the standard available notations.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 11 -

UML Class Diagram
The class diagram is a static diagram. It represents the static view of an application. Class

diagram is not only used for visualizing, describing and documenting different aspects of a system
but also for constructing executable code of the software application.

The class diagram describes the attributes and operations of a class and also the constraints

imposed on the system. The class diagrams are widely used in the modelling of object oriented
systems because they are the only UML diagrams which can be mapped directly with object oriented
languages.

The class diagram shows a collection of classes, interfaces, associations, collaborations and

constraints. It is also known as a structural diagram.

Purpose:
The purpose of the class diagram is to model the static view of an application. The class

diagrams are the only diagrams which can be directly mapped with object oriented languages and
thus widely used at the time of construction.

The UML diagrams like activity diagram, sequence diagram can only give the sequence flow

of the application but class diagram is a bit different. So it is the most popular UML diagram in the
coder community.

So the purpose of the class diagram can be summarized as:

 Analysis and design of the static view of an application.
 Describe responsibilities of a system.
 Base for component and deployment diagrams.
 Forward and reverse engineering.

How to draw Class Diagram?
Class diagrams are the most popular UML diagrams used for construction of software

applications. So it is very important to learn the drawing procedure of class diagram.

Class diagrams have lot of properties to consider while drawing but here the diagram will be
considered from a top level view.

Class diagram is basically a graphical representation of the static view of the system and

represents different aspects of the application. So a collection of class diagrams represent the whole
system.

The following points should be remembered while drawing a class diagram:

 The name of the class diagram should be meaningful to describe the aspect of the system.
 Each element and their relationships should be identified in advance.
 Responsibility (attributes and methods) of each class should be clearly identified.
 For each class minimum number of properties should be specified. Because unnecessary

properties will make the diagram complicated.
 Use notes when ever required to describe some aspect of the diagram. Because at the end

of the drawing it should be understandable to the developer/coder.
 Finally, before making the final version, the diagram should be drawn on plain paper and

rework as many times as possible to make it correct.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 12 -

Now the following diagram is an example of an Order System of an application. So it describes a
particular aspect of the entire application.

 First of all Order and Customer are identified as the two elements of the system and they
have a one to many relationship because a customer can have multiple orders.

 We would keep Order class is an abstract class and it has two concrete classes (inheritance
relationship) SpecialOrder and NormalOrder.

 The two inherited classes have all the properties as the Order class. In addition they have
additional functions like dispatch () and receive ().

So the following class diagram has been drawn considering all the points mentioned above:

UML Object Diagram
Object diagrams are derived from class diagrams so object diagrams are dependent upon

class diagrams.

Object diagrams represent an instance of a class diagram. The basic concepts are similar for
class diagrams and object diagrams. Object diagrams also represent the static view of a system but
this static view is a snapshot of the system at a particular moment.

Object diagrams are used to render a set of objects and their relationships as an instance.

Purpose:
The purpose of a diagram should be understood clearly to implement it practically. The

purposes of object diagrams are similar to class diagrams.

The difference is that a class diagram represents an abstract model consists of classes and
their relationships. But an object diagram represents an instance at a particular moment which is
concrete in nature.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 13 -

It means the object diagram is more close to the actual system behaviour. The purpose is to
capture the static view of a system at a particular moment.
So the purpose of the object diagram can be summarized as:

 Forward and reverse engineering.
 Object relationships of a system .
 Static view of an interaction.
 Understand object behaviour and their relationship from practical perspective.

How to draw Object Diagram?
We have already discussed that an object diagram is an instance of a class diagram. It implies

that an object diagram consists of instances of things used in a class diagram.

So both diagrams are made of same basic elements but in different form. In class diagram
elements are in abstract form to represent the blue print and in object diagram the elements are in
concrete form to represent the real world object.

To capture a particular system, numbers of class diagrams are limited. But if we consider

object diagrams then we can have unlimited number of instances which are unique in nature. So
only those instances are considered which are having impact on the system.

From the above discussion it is clear that a single object diagram cannot capture all the

necessary instances or rather cannot specify all objects of a system. So the solution is:
 First, analyze the system and decide which instances are having important data and

association.
 Second, consider only those instances which will cover the functionality.
 Third, make some optimization as the numbers of instances are unlimited.

Before drawing an object diagrams the following things should be remembered and

understood clearly:
 Object diagrams are consist of objects.
 The link in object diagram is used to connect objects.
 Objects and links are the two elements used to construct an object diagram.

Now after this the following things are to be decided before starting the construction of the

diagram:
 The object diagram should have a meaningful name to indicate its purpose.
 The most important elements are to be identified.
 The association among objects should be clarified.
 Values of different elements need to be captured to include in the object diagram.
 Add proper notes at points where more clarity is required.

The following diagram is an example of an object diagram. It represents the Order

management system which we have discussed in Class Diagram. The following diagram is an instance
of the system at a particular time of purchase. It has the following objects

 Customer
 Order
 SpecialOrder
 NormalOrder

Now the customer object (C) is associated with three order objects (O1, O2 and O3). These

order objects are associated with special order and normal order objects (S1, S2 and N1). The

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 14 -

customer is having the following three orders with different numbers (12, 32 and 40) for the
particular time considered.

Now the customer can increase number of orders in future and in that scenario the object

diagram will reflect that. If order, special order and normal order objects are observed then we you
will find that they are having some values.

For orders the values are 12, 32, and 40 which implies that the objects are having these

values for the particular moment (here the particular time when the purchase is made is considered
as the moment) when the instance is captured.

The same is for special order and normal order objects which are having number of orders as

20, 30 and 60. If a different time of purchase is considered then these values will change accordingly.
So the following object diagram has been drawn considering all the points mentioned above:

UML Component Diagram
Component diagrams are different in terms of nature and behaviour. Component diagrams

are used to model physical aspects of a system.

Now the question is what are these physical aspects? Physical aspects are the elements like
executables, libraries, files, documents etc which resides in a node.

So component diagrams are used to visualize the organization and relationships among

components in a system. These diagrams are also used to make executable systems.

Purpose:
Component diagram is a special kind of diagram in UML. The purpose is also different from

all other diagrams discussed so far. It does not describe the functionality of the system but it
describes the components used to make those functionalities.

So from that point component diagrams are used to visualize the physical components in a

system. These components are libraries, packages, files etc.

Component diagrams can also be described as a static implementation view of a system.
Static implementation represents the organization of the components at a particular moment.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 15 -

A single component diagram cannot represent the entire system but a collection of diagrams
are used to represent the whole.

So the purpose of the component diagram can be summarized as:

 Visualize the components of a system.
 Construct executables by using forward and reverse engineering.
 Describe the organization and relationships of the components.

How to draw Component Diagram?
Component diagrams are used to describe the physical artifacts of a system. This artifact

includes files, executables, libraries etc.

So the purpose of this diagram is different, Component diagrams are used during the
implementation phase of an application. But it is prepared well in advance to visualize the
implementation details.

Initially the system is designed using different UML diagrams and then when the artifacts are

ready component diagrams are used to get an idea of the implementation.

This diagram is very important because without it the application cannot be implemented
efficiently. A well prepared component diagram is also important for other aspects like application
performance, maintenance etc.

So before drawing a component diagram the following artifacts are to be identified clearly:

 Files used in the system.
 Libraries and other artifacts relevant to the application.
 Relationships among the artifacts.

Now after identifying the artifacts the following points needs to be followed:

 Use a meaningful name to identify the component for which the diagram is to be drawn.
 Prepare a mental layout before producing using tools.
 Use notes for clarifying important points.

The following is a component diagram for order management system. Here the artifacts are

files. So the diagram shows the files in the application and their relationships. In actual the
component diagram also contains dlls, libraries, folders etc.

In the following diagram four files are identified and their relationships are produced. Component
diagram cannot be matched directly with other UML diagrams discussed so far. Because it is drawn
for completely different purpose.

So the following component diagram has been drawn considering all the points mentioned above:

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 16 -

UML Deployment Diagram
Deployment diagrams are used to visualize the topology of the physical components of a

system where the software components are deployed.

So deployment diagrams are used to describe the static deployment view of a system.
Deployment diagrams consist of nodes and their relationships.

Purpose:
The name Deployment itself describes the purpose of the diagram. Deployment diagrams

are used for describing the hardware components where software components are deployed.
Component diagrams and deployment diagrams are closely related.

Component diagrams are used to describe the components and deployment diagrams shows

how they are deployed in hardware.

UML is mainly designed to focus on software artifacts of a system. But these two diagrams
are special diagrams used to focus on software components and hardware components.

So most of the UML diagrams are used to handle logical components but deployment

diagrams are made to focus on hardware topology of a system. Deployment diagrams are used by
the system engineers.

The purpose of deployment diagrams can be described as:

 Visualize hardware topology of a system.
 Describe the hardware components used to deploy software components.
 Describe runtime processing nodes.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 17 -

How to draw Deployment Diagram?
Deployment diagram represents the deployment view of a system. It is related to the

component diagram. Because the components are deployed using the deployment diagrams. A
deployment diagram consists of nodes. Nodes are nothing but physical hardwares used to deploy
the application.

Deployment diagrams are useful for system engineers. An efficient deployment diagram is

very important because it controls the following parameters
 Performance
 Scalability
 Maintainability
 Portability

So before drawing a deployment diagram the following artifacts should be identified:

 Nodes
 Relationships among nodes

The following deployment diagram is a sample to give an idea of the deployment view of order
management system. Here we have shown nodes as:

 Monitor
 Modem
 Caching server
 Server

The application is assumed to be a web based application which is deployed in a clustered

environment using server 1, server 2 and server 3. The user is connecting to the application using
internet. The control is flowing from the caching server to the clustered environment.

So the following deployment diagram has been drawn considering all the points mentioned above:

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 18 -

UML Use Case Diagram
To model a system the most important aspect is to capture the dynamic behaviour. To clarify

a bit in details, dynamic behaviour means the behaviour of the system when it is running /operating.

So only static behaviour is not sufficient to model a system rather dynamic behaviour is
more important than static behaviour. In UML there are five diagrams available to model dynamic
nature and use case diagram is one of them. Now as we have to discuss that the use case diagram is
dynamic in nature there should be some internal or external factors for making the interaction.

These internal and external agents are known as actors. So use case diagrams are consists of

actors, use cases and their relationships. The diagram is used to model the system/subsystem of an
application. A single use case diagram captures a particular functionality of a system.

So to model the entire system numbers of use case diagrams are used.

Purpose:
The purpose of use case diagram is to capture the dynamic aspect of a system. But this

definition is too generic to describe the purpose.

Because other four diagrams (activity, sequence, collaboration and Statechart) are also
having the same purpose. So we will look into some specific purpose which will distinguish it from
other four diagrams.

Use case diagrams are used to gather the requirements of a system including internal and

external influences. These requirements are mostly design requirements. So when a system is
analyzed to gather its functionalities use cases are prepared and actors are identified.

Now when the initial task is complete use case diagrams are modelled to present the outside

view. So in brief, the purposes of use case diagrams can be as follows:
 Used to gather requirements of a system.
 Used to get an outside view of a system.
 Identify external and internal factors influencing the system.
 Show the interacting among the requirements are actors.

How to draw Use Case Diagram?
Use case diagrams are considered for high level requirement analysis of a system. So when

the requirements of a system are analyzed the functionalities are captured in use cases.

So we can say that uses cases are nothing but the system functionalities written in an
organized manner. Now the second things which are relevant to the use cases are the actors. Actors
can be defined as something that interacts with the system.

The actors can be human user, some internal applications or may be some external

applications. So in a brief when we are planning to draw an use case diagram we should have the
following items identified.

 Functionalities to be represented as an use case
 Actors
 Relationships among the use cases and actors.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 19 -

Use case diagrams are drawn to capture the functional requirements of a system. So after
identifying the above items we have to follow the following guidelines to draw an efficient use case
diagram.

 The name of a use case is very important. So the name should be chosen in such a way so
that it can identify the functionalities performed.

 Give a suitable name for actors.
 Show relationships and dependencies clearly in the diagram.
 Do not try to include all types of relationships. Because the main purpose of the diagram is

to identify requirements.
 Use note when ever required to clarify some important points.

The following is a sample use case diagram representing the order management system. So

if we look into the diagram then we will find three use cases (Order, SpecialOrder and NormalOrder)
and one actor which is customer.

The SpecialOrder and NormalOrder use cases are extended from Order use case. So they

have extends relationship. Another important point is to identify the system boundary which is
shown in the picture. The actor Customer lies outside the system as it is an external user of the
system.

UML Interaction Diagram
From the name Interaction it is clear that the diagram is used to describe some type of

interactions among the different elements in the model. So this interaction is a part of dynamic
behaviour of the system.

This interactive behaviour is represented in UML by two diagrams known as Sequence

diagram and Collaboration diagram. The basic purposes of both the diagrams are similar.

Sequence diagram emphasizes on time sequence of messages and collaboration diagram
emphasizes on the structural organization of the objects that send and receive messages.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 20 -

Purpose:
The purposes of interaction diagrams are to visualize the interactive behaviour of the

system. Now visualizing interaction is a difficult task. So the solution is to use different types of
models to capture the different aspects of the interaction.

That is why sequence and collaboration diagrams are used to capture dynamic nature but

from a different angle.

So the purposes of interaction diagram can be describes as:
 To capture dynamic behaviour of a system.
 To describe the message flow in the system.
 To describe structural organization of the objects.
 To describe interaction among objects.

How to draw Interaction Diagram?
As we have already discussed that the purpose of interaction diagrams are to capture the

dynamic aspect of a system. So to capture the dynamic aspect we need to understand what a
dynamic aspect is and how it is visualized. Dynamic aspect can be defined as the snap shot of the
running system at a particular moment.

We have two types of interaction diagrams in UML. One is sequence diagram and the other

is a collaboration diagram. The sequence diagram captures the time sequence of message flow from
one object to another and the collaboration diagram describes the organization of objects in a
system taking part in the message flow.

So the following things are to identified clearly before drawing the interaction diagram:

 Objects taking part in the interaction.
 Message flows among the objects.
 The sequence in which the messages are flowing.
 Object organization.

Following are two interaction diagrams modelling order management system. The first

diagram is a sequence diagram and the second is a collaboration diagram.

The Sequence Diagram:
The sequence diagram is having four objects (Customer, Order, SpecialOrder and

NormalOrder).

The following diagram has shown the message sequence for SpecialOrder object and the
same can be used in case of NormalOrder object. Now it is important to understand the time
sequence of message flows. The message flow is nothing but a method call of an object.

The first call is sendOrder () which is a method of Order object. The next call is confirm ()

which is a method of SpecialOrder object and the last call is Dispatch () which is a method of
SpecialOrder object. So here the diagram is mainly describing the method calls from one object to
another and this is also the actual scenario when the system is running.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 21 -

The Collaboration Diagram:
The second interaction diagram is collaboration diagram. It shows the object organization as

shown below. Here in collaboration diagram the method call sequence is indicated by some
numbering technique as shown below. The number indicates how the methods are called one after
another. We have taken the same order management system to describe the collaboration diagram.

The method calls are similar to that of a sequence diagram. But the difference is that the

sequence diagram does not describe the object organization where as the collaboration diagram
shows the object organization.

Now to choose between these two diagrams the main emphasis is given on the type of

requirement. If the time sequence is important then sequence diagram is used and if organization is
required then collaboration diagram is used.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 22 -

UML Statechart Diagram
The name of the diagram itself clarifies the purpose of the diagram and other details. It

describes different states of a component in a system. The states are specific to a component/object
of a system.

A Statechart diagram describes a state machine. Now to clarify it state machine can be

defined as a machine which defines different states of an object and these states are controlled by
external or internal events.

Activity diagram explained in next chapter, is a special kind of a Statechart diagram. As

Statechart diagram defines states it is used to model lifetime of an object.

Purpose:
Statechart diagram is one of the five UML diagrams used to model dynamic nature of a

system. They define different states of an object during its lifetime. And these states are changed by
events. So Statechart diagrams are useful to model reactive systems. Reactive systems can be
defined as a system that responds to external or internal events.

Statechart diagram describes the flow of control from one state to another state. States are

defined as a condition in which an object exists and it changes when some event is triggered. So the
most important purpose of Statechart diagram is to model life time of an object from creation to
termination.

Statechart diagrams are also used for forward and reverse engineering of a system. But the

main purpose is to model reactive system.

Following are the main purposes of using Statechart diagrams:
 To model dynamic aspect of a system.
 To model life time of a reactive system.
 To describe different states of an object during its life time.
 Define a state machine to model states of an object.

How to draw Statechart Diagram?
Statechart diagram is used to describe the states of different objects in its life cycle. So the

emphasis is given on the state changes upon some internal or external events. These states of
objects are important to analyze and implement them accurately.

Statechart diagrams are very important for describing the states. States can be identified as

the condition of objects when a particular event occurs.

Before drawing a Statechart diagram we must have clarified the following points:
 Identify important objects to be analyzed.
 Identify the states.
 Identify the events.

The following is an example of a Statechart diagram where the state of Order object is

analyzed.

The first state is an idle state from where the process starts. The next states are arrived for
events like send request, confirm request, and dispatch order. These events are responsible for state
changes of order object.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 23 -

During the life cycle of an object (here order object) it goes through the following states and
there may be some abnormal exists also. This abnormal exit may occur due to some problem in the
system. When the entire life cycle is complete it is considered as the complete transaction as
mentioned below.

The initial and final state of an object is also shown below:

UML Activity Diagram
Activity diagram is another important diagram in UML to describe dynamic aspects of the

system.

Activity diagram is basically a flow chart to represent the flow form one activity to another
activity. The activity can be described as an operation of the system.

So the control flow is drawn from one operation to another. This flow can be sequential,

branched or concurrent. Activity diagrams deals with all type of flow control by using different
elements like fork, join etc.

Purpose:
The basic purposes of activity diagrams are similar to other four diagrams. It captures the

dynamic behaviour of the system. Other four diagrams are used to show the message flow from one
object to another but activity diagram is used to show message flow from one activity to another.

Activity is a particular operation of the system. Activity diagrams are not only used for

visualizing dynamic nature of a system but they are also used to construct the executable system by
using forward and reverse engineering techniques. The only missing thing in activity diagram is the
message part.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 24 -

It does not show any message flow from one activity to another. Activity diagram is some
time considered as the flow chart. Although the diagrams looks like a flow chart but it is not. It
shows different flow like parallel, branched, concurrent and single.

So the purposes can be described as:

 Draw the activity flow of a system.
 Describe the sequence from one activity to another.
 Describe the parallel, branched and concurrent flow of the system.

How to draw Activity Diagram?
Activity diagrams are mainly used as a flow chart consists of activities performed by the

system. But activity diagram are not exactly a flow chart as they have some additional capabilities.
These additional capabilities include branching, parallel flow, swimlane etc.

Before drawing an activity diagram we must have a clear understanding about the elements

used in activity diagram. The main element of an activity diagram is the activity itself. An activity is a
function performed by the system. After identifying the activities we need to understand how they
are associated with constraints and conditions.

So before drawing an activity diagram we should identify the following elements:

 Activities
 Association
 Conditions
 Constraints

Once the above mentioned parameters are identified we need to make a mental layout of

the entire flow. This mental layout is then transformed into an activity diagram.

The following is an example of an activity diagram for order management system. In the
diagram four activities are identified which are associated with conditions. One important point
should be clearly understood that an activity diagram cannot be exactly matched with the code. The
activity diagram is made to understand the flow of activities and mainly used by the business users.

The following diagram is drawn with the four main activities:

 Send order by the customer
 Receipt of the order
 Confirm order
 Dispatch order

After receiving the order request condition checks are performed to check if it is normal or special
order. After the type of order is identified dispatch activity is performed and that is marked as the
termination of the process.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 25 -

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 26 -

Experiments

ATM Application (ATM)

ATM Scenario Use Case Diagram:

Bank officer

Change pin Transfer fund

Deposit funds
Customer Make payment Client

Withdraw money View balance

Transfer funds

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 27 -

ATM Scenario Activity Diagram:

Enter
PIN

Connect Not connected

Any more transaction

No more trans

Insert
card

Enter
transition

action

Remove
card

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 28 -

ATM Scenario Sequence Diagram:

Inse

ke cash

15 : P

1: Insert card

rt PIN

3 : Enter PIN

4 : Verification

5 : PIN ok

6 : Request for transaction

7 : Process transaction

8 : Enter amount

9 : Amount entered

10 : Withdrawal

11 : Withdrawal success

12 : Dispense cash

13 : ta

14 : Terminate

rint slip

16 : Eject card

B : Bank
client

ac :
account

A : Atm
machine

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 29 -

ATM Scenario Collaboration Diagram:

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 30 -

ATM Scenario Component Diagram:

ATM.exe

Card Reader

Cash Dispenser

Card Reader

ATM Screen

Card dispenser

ATM Screen

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 31 -

ATM Scenario Deployment Diagram:

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 32 -

ATM Scenario State Chart Diagram

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 33 -

Railway Reservation System (RRS)

RRS Use Case Diagram:

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 34 -

RRS Activity Diagram for Booking Ticket:

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 35 -

RRS Activity Diagram for Cancelling Ticket:

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 36 -

RRS Class Diagram:

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 50 -

RRS Sequence Diagram for Booking Ticket:

RRS Sequence Diagram for Cancelling Ticket:

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 51 -

RRS Component Diagram:

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 52 -

Design Patterns

Introduction

A design pattern is:
 a standard solution to a common programming problem
 a technique for making code more flexible by making it meet certain criteria
 a design or implementation structure that achieves a particular purpose
 a high-level programming idiom
 shorthand for describing certain aspects of program organization
 connections among program components
 the shape of an object diagram or object model

When (not) to use design patterns

The first rule of design patterns is the same as the first rule of optimization: delay. Just as
you shouldn’t optimize prematurely, don’t use design patterns prematurely. It may be best to first
implement something and ensure that it works, then use the design pattern to improve weaknesses;
this is especially true if you do not yet grasp all the details of the design. (If you fully understand the
domain and problem, it may make sense to use design patterns from the start, just as it makes sense
to use a more efficient rather than a less efficient algorithm from the very beginning in some
applications.)

Design patterns may increase or decrease the understandability of a design or

implementation. They can decrease understandability by adding indirection or increasing the
amount of code. They can increase understandability by improving modularity, better separating
concerns, and easing description. Once you learn the vocabulary of design patterns, you will be able
to communicate more precisely and rapidly with other people who know the vocabulary. It’s much
better to say, “This is an instance of the visitor pattern” than “This is some code that traverses a
structure and makes callbacks, and some certain methods must be present, and they are called in
this particular way and in this particular order.”

Most people use design patterns when they notice a problem with their design — something

that ought to be easy isn’t — or their implementation — such as performance. Examine the
offending design or code. What are its problems, and what compromises does it make? What would
you like to do that is presently too hard? Then, check a design pattern reference. Look for patterns
that address the issues you are concerned with.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 53 -

Examples
Here are some examples of design patterns which you have already seen. For each design

pattern, this list notes the problem it is trying to solve, the solution that the design pattern supplies,
and any disadvantages associated with the design pattern. A software designer must trade off the
advantages against the disadvantages when deciding whether to use a design pattern. Tradeoffs
between flexibility and performance are common, as you will often discover in computer science
(and other fields).

Encapsulation (data hiding)
Problem: Exposed fields can be directly manipulated from outside, leading to violations of the
representation invariant or undesirable dependences that prevent changing the implementation.

Solution: Hide some components, permitting only stylized access to the object.

Disadvantages: The interface may not (efficiently) provide all desired operations. Indirection may
reduce performance.

Subclassing (inheritance)
Problem: Similar abstractions have similar members (fields and methods). Repeating these is
tedious, error-prone, and a maintenance headache.

Solution: Inherit default members from a superclass; select the correct implementation via run-time
dispatching.

Disadvantages: Code for a class is spread out, potentially reducing understandability. Run-time
dispatching introduces overhead.

Iteration
Problem: Clients that wish to access all members of a collection must perform a specialized traversal
for each data structure. This introduces undesirable dependences and does not extend to other
collections.

Solution: Implementations, which have knowledge of the representation, perform traversals and do
bookkeeping. The results are communicated to clients via a standard interface.

Disadvantages: Iteration order is fixed by the implementation and not under the control of the
client.

Exceptions
Problem: Errors occurring in one part of the code should often be handled elsewhere. Code should
not be cluttered with error-handling code, nor return values preempted by error codes.

Solution: Introduce language structures for throwing and catching exceptions.

Disadvantages: Code may still be cluttered. It can be hard to know where an exception will be
handled. Programmers may be tempted to use exceptions for normal control flow, which is
confusing and usually inefficient.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 54 -

These particular design patterns are so important that they are built into Java. Other design
patterns are so important that they are built into other languages. Some design patterns may never
be built into languages, but are still useful in their place.

Classification of Patterns
Patterns are classified by purpose and scope:

•Creational Patterns:

Creational patterns deal with the creation of objects and help to make a system
independent of howobjects are created, composed and represented. They also enable flexibility in
what gets created,who creates it, how it gets created and when it gets created.
• Structural Patterns:

Structural patterns deal with how objects are arranged to form larger structures
• Behavioral Patterns:
Behavioural patterns deal with how objects interact, the ownership of responsibility and factoring
code in variant and non-variant components.

The scope is defined as :
• class - static relationships through class inheritance (white-box reuse)
• object - dynamic relationships through object composition (black-box reuse) or collaboration

Patterns Summary
There are 5 creational patterns, 7 structural patterns and 11 behavioural patterns :

Pros and Cons of using Design Patterns
Pros:

 Quality, flexibility and re-use
Design Patterns capture solutions to common computing problems and represent the time,
effort and experience gained from applying these solutions over numerous
domains/iterations. Generally systems that use Design Patterns are elegant, flexible and
have more potential for reuse

 Provide a common frame of reference for discussion of designs
 Patterns can be combined to solve one or more common computing problems
 Provide a common format for pattern specification

Intent, Motivation, Applicability, Structure, Participants, Collaborations, Consequences

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 55 -

Cons:
 Complexity

Design Patterns require a reasonable degree of study and can be difficult for some designers
to grasp. Junior designers/developers may not have encountered Design Patterns and have
to learn them before they can be productive on a project.

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 56 -

Creational Patterns Summary

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 60 -

Structural Patterns Summary

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 61 -

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 62 -

Behavioral Patterns Summary

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 63 -

UML and Design Patterns Lab Manual

Department of Computer Science & Engineering - 70 -

