UML AND DESIGN PATTERNS LAB STUDENT MANUAL
[l Year Il Semester
2020-21

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)
Seshadrirao Knowledge Village, Gudlavalleru — 521356.

[INSTITUTE VISION & MISSION]

Institute Vision:
To be a leading institution of engineering education and research, preparing students for
leadership in their fields in a caring and challenging learning environment.

Institute Mission:

VISION

To produce quality engineers by providing state-of-the-art engineering education.

To attract and retain knowledgeable, creative, motivated and highly skilled individuals
whose leadership and contributions uphold the college tenets of education, creativity,
research and responsible public service.

To develop faculty and resources to impart and disseminate knowledge and information to
students and also to society that will enhance educational level, which in turn, will
contribute to social and economic betterment of society.

To provide an environment that values and encourages knowledge acquisition and academic
freedom, making this a preferred institution for knowledge seekers.

To provide quality assurance.

To partner and collaborate with industry, government, and R&D institutes to develop new
knowledge and sustainable technologies and serve as an engine for facilitating the nation’s
economic development.

To impart personality development skills to students that will help them to succeed and
lead.

To instil in students the attitude, values and vision that will prepare them to lead lives of
personal integrity and civic responsibility.

To promote a campus environment that welcomes and makes students of all races, cultures
and civilizations feel at home.

Putting students face to face with industrial, governmental and societal challenges.

[DEPARTMENT VISION & MISSION]

To be a Centre of Excellence in computer science and engineering education and training to meet

The challenging needs of the industry and society.

MISSION

»

To impart quality education through well-designed curriculum in tune with the growing
software needs of the industry.

To be a Centre of Excellence in computer science and engineering education and training to
meet the challenging needs of the industry and society.

To serve our students by inculcating in them problem solving, leadership, teamwork skills and
the value of commitment to quality, ethical behavior & respect for others.

To foster industry-academia relationship for mutual benefit and growth

10.

11.

12.

PROGRAMME EDUCATIONAL OBJECTIVES(PEOS):-

PEO1: Identify, analyze, formulate and solve Computer Science and Engineering problems

both independently and in a team environment by using the appropriate modern tools.

PEO2: Manage software projects with significant technical, legal, ethical, social,

environmental and economic considerations.

PEO3: Demonstrate commitment and progress in lifelong learning, professional
development, leadership and Communicate effectively with professional clients and the

public.

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,
and an engineering specialization to the solution of complex engineering problems.

Problem analysis: Identify, formulate, review research literature, and analyze complex engineering
problems reaching substantiated conclusions using first principles of mathematics, natural sciences,
and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and design
system components or processes that meet the specified needs with appropriate consideration for
the public health and safety, and the cultural, societal, and environmental considerations.

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with
an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering solutions in
societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of
the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports
and design documentation, make effective presentations, and give and receive clear instructions.
Project management and finance: Demonstrate knowledge and understanding of the engineering
and management principles and apply these to one’s own work, as a member and leader in a team,
to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES
Students will be able to
PSO1: Design, develop, test and maintain reliable software systems and intelligent systems.
PSO2: Design and develop an appropriate design pattern to refine the model.
Course Objectives:
e To get familiar with the Object Oriented Analysis and Design in software development,
develop UML structural and behavioral models of an application.
e Todescribe and choose an appropriate Design Pattern to refine the model.

Course Outcomes:
Upon successful completion of the course, the students will be able to
o apply the object oriented analysis and designs in software development and familiar with
the UML concepts.
develop static conceptual models of the system.
generate dynamic behavioral models of the system to meet user needs.
design object oriented architecture models.
describe and select an appropriate design pattern to refine the model.
classify and explain given design pattern.

Mapping Of Course Qutcomes With Program Outcomes:

UML AND DESIGN PATTERN LAB

Program Outcomes and Program Specific Outcome
Course outcomes
POl | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 PSOL | PSO2
CO1: apply the object oriented analysis and designs
in software development and familiar with the UML 2 2 2 1 2 1 1
concepts.
CO2: develop static conceptual models of the 5 1 1 1 1 1 1
system.
CO3: generate dynamic behavioral models of the 5 1 1 1 5 5 5 1
system to meet user needs.
CO4: design object oriented architecture models. 2 2 1 2 2 1 1
CO5: descrlbe_ and select an appropriate design 3 5 1 5 5 5 5
pattern to refine the model.
CO6: classify and explain given design pattern. 2 1 2 2 1 1

List of Experiments

S.No Experiment

1 | Demonstration of Visual Paradigm software tool for UML.

2 | Create a requirement model using UML class notations for railway reservation
system and ATM application.

3 | Develop class diagram for railway reservation system and ATM application.

4 | Develop interaction diagram, state chart and activity diagrams for railway
reservation system and ATM application.

5 | Develop component and deployment diagrams for railway reservation system
and ATM application.

6 | Using UML designs develop factory method, facade design patterns.

7 | User gives a print command from a word document. Design to represent this

chain of responsibility design pattern.

UML and Design Patterns Lab Manual

UML

What is UML?

"The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing, and
documenting the artifacts of software systems, as well as for business modeling and other non-
software systems".— OMG UML Specification

"UML is a graphical notation for modeling various aspects of software systems.” — whm

Why use UML?

Two questions, really:

1) Why use a graphical notation of any sort?

Facilitates construction of models that in turn can be used to:
Reason about system behavior.

Present proposed designs to others.

Document key elements of design for future understanding.

2) Which graphical notation should be used?

UML has become the de-facto standard for modeling object oriented systems.
UML is extensible and method-independent.

UML is not perfect, but it's good enough.

The Origins of UML

Object-oriented programming reached the mainstream of programming in the late 1980's and early
1990's. The rise in popularity of object-oriented programming was accompanied by a profusion of
object-oriented analysis and design methods, each with its own graphical notation.

Three OOA/D gurus, and their methods, rose to prominence Grady Booch — The Booch
Method, James Rumbaugh, et al. — Object Modeling Technique, Ivar Jacsobson — Objectory In
1994, Booch and Rumbaugh, then both at Rational, started working on a unification of their
methods. A first draft of their Unified Method was released in October 1995. In 1996, (+/-) Jacobson
joined Booch and Rumbaugh at Rational; the name UML was coined. In 1997 the Object
Management Group (OMG) accepted UML as an open and industry standard visual modeling
language for object oriented systems. Current version of UML is 2.0.

UML Diagram Types

There are several types of UML diagrams:

Use-case Diagram

Shows actors, use-cases, and the relationships between them.

Class Diagram

Shows relationships between classes and pertinent information about classes themselves.
Object Diagram

Shows a configuration of objects at an instant in time.

Interaction Diagrams

Department of Computer Science & Engineering

UML and Design Patterns Lab Manual

Show an interaction between a group of collaborating objects.

Two types: Collaboration diagram and sequence diagram

Package Diagram

Shows system structure at the library/package level.

State Diagram

Describes behavior of instances of a class in terms of states, stimuli, and transitions.
Activity Diagram

Very similar to a flowchart—shows actions and decision points, but with the ability to accommodate
concurrency.

Deployment Diagram

Shows configuration of hardware and software in a distributed system.

UML Modeling Types

It is very important to distinguish between the UML models. Different diagrams are used for
different type of UML modeling. There are three important type of UML modeling:

Structural modeling:

Structural modeling captures the static features of a system. They consist of the followings:
o Classes diagrams

Objects diagrams

Deployment diagrams

Package diagrams

Component diagrams

Structural model represents the framework for the system and this framework is the place where all
other components exist. So the class diagram, component diagram and deployment diagrams are
the part of structural modeling. They all represent the elements and the mechanism to assemble
them.

But the structural model never describes the dynamic behavior of the system. Class diagram is the
most widely used structural diagram.

Behavioral Modeling
Behavioral model describes the interaction in the system. It represents the interaction among the
structural diagrams. Behavioral modeling shows the dynamic nature of the system. They consist of
the following:

o Activity diagrams

e Interaction diagrams

e Use case diagrams
All the above show the dynamic sequence of flow in a system.

Architectural Modeling

Architectural model represents the overall framework of the system. It contains both structural and
behavioral elements of the system. Architectural model can be defined as the blue print of the entire
system. Package diagram comes under architectural modeling.

Department of Computer Science & Engineering -2-

UML and Design Patterns Lab Manual

UML Basic Notations

UML is popular for its diagrammatic notations. We all know that UML is for visualizing,
specifying, constructing and documenting the components of software and non software systems.
Here the Visualization is the most important part which needs to be understood and remembered by
heart.

UML notations are the most important elements in modelling. Efficient and appropriate use
of notations is very important for making a complete and meaningful model. The model is useless
unless its purpose is depicted properly.

So learning notations should be emphasized from the very beginning. Different notations are
available for things and relationships. And the UML diagrams are made using the notations of things
and relationships. Extensibility is another important feature which makes UML more powerful and
flexible.

Structural Things
Graphical notations used in structural things are the most widely used in UML. These are considered
as the nouns of UML models. Following are the list of structural things.
o C(Classes
Interface
Collaboration
Use case
Active classes
Components
Nodes

Class Notation:
UML class is represented by the diagram shown below. The diagram is divided into four parts.
o The top section is used to name the class.
e The second one is used to show the attributes of the class.
o The third section is used to describe the operations performed by the class.
o The fourth section is optional to show any additional components.

Class
Visibility Student =
Publig——————— + name : Siring
Protected———1—» # roll : Integer <+ httributes
Private—— g - saction ; String
+ Display ()

- Add () 4 Operaticns
- Edit ()
Delete {)

Hame

Rasponsibilities
-- Manage student in a class -

Extra componant
{ This is not mandatory)

Classes are used to represent objects. Objects can be anything having properties and responsibility.

Department of Computer Science & Engineering

UML and Design Patterns Lab Manual

Object Notation:
The object is represented in the same way as the class. The only difference is the name which is
underlined as shown below:

Student
+ name : String
roll : Integer
- section : String
+ Display ()
- Add ()
- Edit ()
Delete ()

As object is the actual implementation of a class which is known as the instance of a class. So it has
the same usage as the class.

Interface Notation:
Interface is represented by a circle as shown below. It has a name which is generally written below
the circle.

Interface

Studentipplication +——— Name

Interface is used to describe functionality without implementation. Interface is the just like a
template where you define different functions not the implementation. When a class implements
the interface it also implements the functionality as per the requirement.

Collaboration Notation:
Collaboration is represented by a dotted eclipse as shown below. It has a name written inside the
eclipse.

Collaboration

H’FFH'_._-___-_H_._\-‘_"""H-._

! iy
-
o -

y
(Group of responsibilities¢—j———
/

. s

be used for clarification

Collaboration represents responsibilities. Generally responsibilities are in a group.

Department of Computer Science & Engineering -4 -

UML and Design Patterns Lab Manual

Use case Notation:
Use case is represented as an eclipse with a name inside it. It may contain additional responsibilities.

Use case

Register Student Name

Bdditional ¢ onents can
be used for clarification

Use case is used to capture high level functionalities of a system.

Actor Notation:
An actor can be defined as some internal or external entity that interacts with the system.

actor

Actor is used in a use case diagram to describe the internal or external entities.

Initial State Notation:
Initial state is defined show the start of a process. This notation is used in almost all diagrams.

]
R

Initial
state

The usage of Initial State Notation is to show the starting point of a process.

Final State Notation:
Final state is used to show the end of a process. This notation is also used in almost all diagrams to

describe the end.
@

Final state

Department of Computer Science & Engineering -5-

UML and Design Patterns Lab Manual

The usage of Final State Notation is to show the termination point of a process.

Active class Notation:
Active class looks similar to a class with a solid border. Active class is generally used to describe
concurrent behavior of a system.

Active Class

School +————— Name

+ name : String
+ address: String

+ addDepartment () §——————0Operations

Attributes

Active class is used to represent concurrency in a system.

Component Notation:
A component in UML is shown as below with a name inside. Additional elements can be added
wherever required.

Component

. —— Name
natitution
Additional

components can
be added

Component is used to represent any part of a system for which UML diagrams are made.

Node Notation:
A node in UML is represented by a square box as shown below with a name. A node represents a

physical component of the system.
Node

Server < Name

Node is used to represent physical part of a system like server, network etc.

Behavioural Things:

Dynamic parts are one of the most important elements in UML. UML has a set of powerful features
to represent the dynamic part of software and non software systems. These features include
interactions and state machines.

Department of Computer Science & Engineering -6-

Interactions can be of two types:

e Sequential (Represented by sequence diagram)

o Collaborative (Represented by collaboration diagram)

Interaction Notation:

UML and Design Patterns Lab Manual

Interaction is basically message exchange between two UML components. The following diagram

represents different notations used in an interaction.

Obiject
User begin by Y
selecting ‘Detect | :COceanWorksDoc
Ships' menu
option I
OnShipdetectionD DoShiphetection (]
etectships ()
Self call
call
DetermineTile
message Sizal)

recursion

e

* [Far each

:CTargetDetector | :OceanWorkProgressBar |
\ I

lifeline

tiles]

niProgressBar(]

Interaction is used to represent communication among the components of a system.

State machine Notation:

State machine describes the different states of a component in its life cycle. The notations are

described in the following diagram.

Money withdrawal from ATM

Initial state Intermediate Transition
/ the object / state /
Insert Ham,'h
card
idle Insert PIN number Select from menu
h.bnor_.'ual Action l:m;.‘.irm by
exit pushing menu
Fi 1
Initial “":;m:r‘;?“ {Event)
state f

Firal
state

Department of Computer Science & Engineering

Complete
transaction

Confirmation

UML and Design Patterns Lab Manual

State machine is used to describe different states of a system component. The state can be active,
idle or any other depending upon the situation.

Grouping Things:
Organizing the UML models are one of the most important aspects of the design. In UML there is
only one element available for grouping and that is package.

Package Notation:
Package notation is shown below and this is used to wrap the components of a system.

Name

Package

Compoments

*,

Additional components can
be used for clarification

Annotational Things:

In any diagram explanation of different elements and their functionalities are very important. So
UML has notes notation to support this requirement.

Note Notation:
This notation is shown below and they are used to provide necessary information of a system.

Note is added here for additional information Ij

S

Note

Relationships

A model is not complete unless the relationships between elements are described properly. The
Relationship gives a proper meaning to an UML model. Following are the different types of
relationships available in UML.

e Dependency

e Association

e Generalization
o Extensibility

Department of Computer Science & Engineering -8-

UML and Design Patterns Lab Manual

Dependency Notation:

Dependency is an important aspect in UML elements. It describes the dependent elements and the
direction of dependency. Dependency is represented by a dotted arrow as shown below. The arrow
head represents the independent element and the other end the dependent element.

Name

Name of the element
Dependent——-——-———=—==—=—=====2 » Independent

Dependency is used to represent dependency between two elements of a system.

Association Notation:

Association describes how the elements in an UML diagram are associated. In simple word it
describes how many elements are taking partin an interaction.

Association is represented by a dotted line with (without) arrows on both sides. The two ends
represent two associated elements as shown below. The multiplicity is also mentioned at the ends
(1, * etc) to show how many objects are associated.

Hacip Navigation Multiplicity
Employee ¢ - ————-—- Association- - - ¥ — - - »0Organization

Association is used to represent the relationship between two elements of a system.

Generalization Notation:

Generalization describes the inheritance relationship of the object oriented world. It is parent and
child relationship.

Generalization is represented by an arrow with hollow arrow head as shown below. One end
represents the parent element and the other end child element.

Child Parent
Generalization D

Generalization is used to describe parent-child relationship of two elements of a system.

Extensibility Notation:
All the languages (programming or modelling) have some mechanism to extend its capabilities like
syntax, semantics etc. UML is also having the following mechanisms to provide extensibility features.
o Stereotypes (Represents new elements)
o Tagged values (Represents new attributes)
o Constraints (Represents the boundaries)

Department of Computer Science & Engineering -9-

UML and Design Patterns Lab Manual

Tagged
value
Model no/<- Stereotypes
(vaislon=1.2) Constraint
Name &
Price
Add() {Selling volume in T
Delete() months}

Extensibility notations are used to enhance the power of the language. It is basically additional
elements used to represent some extra behaviour of the system. These extra behaviours are not
covered by the standard available notations.

Department of Computer Science & Engineering -10-

UML and Design Patterns Lab Manual

UML Class Diagram

The class diagram is a static diagram. It represents the static view of an application. Class
diagram is not only used for visualizing, describing and documenting different aspects of a system
but also for constructing executable code of the software application.

The class diagram describes the attributes and operations of a class and also the constraints
imposed on the system. The class diagrams are widely used in the modelling of object oriented
systems because they are the only UML diagrams which can be mapped directly with object oriented
languages.

The class diagram shows a collection of classes, interfaces, associations, collaborations and
constraints. It is also known as a structural diagram.

Purpose:

The purpose of the class diagram is to model the static view of an application. The class
diagrams are the only diagrams which can be directly mapped with object oriented languages and
thus widely used at the time of construction.

The UML diagrams like activity diagram, sequence diagram can only give the sequence flow
of the application but class diagram is a bit different. So it is the most popular UML diagram in the
coder community.

So the purpose of the class diagram can be summarized as:
Analysis and design of the static view of an application.
o Describe responsibilities of a system.

e Base for component and deployment diagrams.

e Forward and reverse engineering.

How to draw Class Diagram?

Class diagrams are the most popular UML diagrams used for construction of software
applications. So it is very important to learn the drawing procedure of class diagram.

Class diagrams have lot of properties to consider while drawing but here the diagram will be
considered from a top level view.

Class diagram is basically a graphical representation of the static view of the system and
represents different aspects of the application. So a collection of class diagrams represent the whole
system.

The following points should be remembered while drawing a class diagram:

o The name of the class diagram should be meaningful to describe the aspect of the system.

e Each element and their relationships should be identified in advance.

o Responsibility (attributes and methods) of each class should be clearly identified.

e For each class minimum number of properties should be specified. Because unnecessary
properties will make the diagram complicated.

e Use notes when ever required to describe some aspect of the diagram. Because at the end
of the drawing it should be understandable to the developer/coder.

o Finally, before making the final version, the diagram should be drawn on plain paper and
rework as many times as possible to make it correct.

Department of Computer Science & Engineering -11-

UML and Design Patterns Lab Manual

Now the following diagram is an example of an Order System of an application. So it describes a
particular aspect of the entire application.
o First of all Order and Customer are identified as the two elements of the system and they
have a one to many relationship because a customer can have multiple orders.
o We would keep Order class is an abstract class and it has two concrete classes (inheritance
relationship) SpecialOrder and NormalOrder.
o The two inherited classes have all the properties as the Order class. In addition they have
additional functions like dispatch () and receive ().

So the following class diagram has been drawn considering all the points mentioned above:

Customer Order
name:String date:Date Supes
location:String |e o number:String — s
sendCrder() confirmy{)
receiveCrder() closel)
é; Gauafaliza
Ll tion
SpecialOrder NormalOrder
date:Date date:Date
number:String numger: String
confirmi) confirm()
close() close()
dispatech() dispatchi)
receive()
Sub class
UML Object Diagram

Object diagrams are derived from class diagrams so object diagrams are dependent upon
class diagrams.

Object diagrams represent an instance of a class diagram. The basic concepts are similar for
class diagrams and object diagrams. Object diagrams also represent the static view of a system but
this static view is a snapshot of the system at a particular moment.

Object diagrams are used to render a set of objects and their relationships as an instance.

Purpose:
The purpose of a diagram should be understood clearly to implement it practically. The
purposes of object diagrams are similar to class diagrams.

The difference is that a class diagram represents an abstract model consists of classes and
their relationships. But an object diagram represents an instance at a particular moment which is
concrete in nature.

Department of Computer Science & Engineering -12-

UML and Design Patterns Lab Manual

It means the object diagram is more close to the actual system behaviour. The purpose is to
capture the static view of a system at a particular moment.
So the purpose of the object diagram can be summarized as:
e Forward and reverse engineering.
o Obiject relationships of a system .
e Static view of an interaction.
¢ Understand object behaviour and their relationship from practical perspective.

How to draw Object Diagram?

We have already discussed that an object diagram is an instance of a class diagram. It implies
that an object diagram consists of instances of things used in a class diagram.

So both diagrams are made of same basic elements but in different form. In class diagram
elements are in abstract form to represent the blue print and in object diagram the elements are in
concrete form to represent the real world object.

To capture a particular system, numbers of class diagrams are limited. But if we consider
object diagrams then we can have unlimited number of instances which are unique in nature. So
only those instances are considered which are having impact on the system.

From the above discussion it is clear that a single object diagram cannot capture all the
necessary instances or rather cannot specify all objects of a system. So the solution is:
o First, analyze the system and decide which instances are having important data and
association.
e Second, consider only those instances which will cover the functionality.
o Third, make some optimization as the numbers of instances are unlimited.

Before drawing an object diagrams the following things should be remembered and
understood clearly:
o Object diagrams are consist of objects.
o Thelinkin object diagram is used to connect objects.
o Objects and links are the two elements used to construct an object diagram.

Now after this the following things are to be decided before starting the construction of the
diagram:
o The object diagram should have a meaningful name to indicate its purpose.
The most important elements are to be identified.
The association among objects should be clarified.
Values of different elements need to be captured to include in the object diagram.
Add proper notes at points where more clarity is required.

The following diagram is an example of an object diagram. It represents the Order
management system which we have discussed in Class Diagram. The following diagram is an instance
of the system at a particular time of purchase. It has the following objects

e Customer

e Order

e SpecialOrder
e NormalOrder

Now the customer object (C) is associated with three order objects (01, 02 and 03). These
order objects are associated with special order and normal order objects (S1, S2 and N1). The

Department of Computer Science & Engineering -13-

UML and Design Patterns Lab Manual

customer is having the following three orders with different numbers (12, 32 and 40) for the
particular time considered.

Now the customer can increase number of orders in future and in that scenario the object
diagram will reflect that. If order, special order and normal order objects are observed then we you
will find that they are having some values.

For orders the values are 12, 32, and 40 which implies that the objects are having these
values for the particular moment (here the particular time when the purchase is made is considered
as the moment) when the instance is captured.

The same is for special order and normal order objects which are having number of orders as
20, 30 and 60. If a different time of purchase is considered then these values will change accordingly.
So the following object diagram has been drawn considering all the points mentioned above:

Object diagram of an order management system

C:Customer
|
O1:Order 02:0rder 03:0rder
Number= 12 Number = 32 Number = 40
S1:SpecialOrder S$2:SpecialOrder N1:NormalOrder
Number = 20 Number = 30 Number = 60

UML Component Diagram

Component diagrams are different in terms of nature and behaviour. Component diagrams
are used to model physical aspects of a system.

Now the question is what are these physical aspects? Physical aspects are the elements like
executables, libraries, files, documents etc which resides in a node.

So component diagrams are used to visualize the organization and relationships among
components in a system. These diagrams are also used to make executable systems.

Purpose:

Component diagram is a special kind of diagram in UML. The purpose is also different from
all other diagrams discussed so far. It does not describe the functionality of the system but it
describes the components used to make those functionalities.

So from that point component diagrams are used to visualize the physical components in a
system. These components are libraries, packages, files etc.

Component diagrams can also be described as a static implementation view of a system.
Static implementation represents the organization of the components at a particular moment.

Department of Computer Science & Engineering -14 -

UML and Design Patterns Lab Manual

A single component diagram cannot represent the entire system but a collection of diagrams
are used to represent the whole.

So the purpose of the component diagram can be summarized as:
o Visualize the components of a system.
o Construct executables by using forward and reverse engineering.
o Describe the organization and relationships of the components.

How to draw Component Diagram?

Component diagrams are used to describe the physical artifacts of a system. This artifact
includes files, executables, libraries etc.

So the purpose of this diagram is different, Component diagrams are used during the
implementation phase of an application. But it is prepared well in advance to visualize the
implementation details.

Initially the system is designed using different UML diagrams and then when the artifacts are
ready component diagrams are used to get an idea of the implementation.

This diagram is very important because without it the application cannot be implemented
efficiently. A well prepared component diagram is also important for other aspects like application
performance, maintenance etc.

So before drawing a component diagram the following artifacts are to be identified clearly:
o Files used in the system.
o Libraries and other artifacts relevant to the application.
o Relationships among the artifacts.

Now after identifying the artifacts the following points needs to be followed:
o Use a meaningful name to identify the component for which the diagram is to be drawn.
o Prepare a mental layout before producing using tools.
e Use notes for clarifying important points.

The following is a component diagram for order management system. Here the artifacts are
files. So the diagram shows the files in the application and their relationships. In actual the
component diagram also contains dlls, libraries, folders etc.

In the following diagram four files are identified and their relationships are produced. Component
diagram cannot be matched directly with other UML diagrams discussed so far. Because it is drawn
for completely different purpose.

So the following component diagram has been drawn considering all the points mentioned above:

Department of Computer Science & Engineering -15-

UML and Design Patterns Lab Manual

Java files

Cuatoemer.java /

Components

MormalOrder.java

UML Deployment Diagram

Deployment diagrams are used to visualize the topology of the physical components of a
system where the software components are deployed.

So deployment diagrams are used to describe the static deployment view of a system.
Deployment diagrams consist of nodes and their relationships.

Purpose:

The name Deployment itself describes the purpose of the diagram. Deployment diagrams
are used for describing the hardware components where software components are deployed.
Component diagrams and deployment diagrams are closely related.

Component diagrams are used to describe the components and deployment diagrams shows
how they are deployed in hardware.

UML is mainly designed to focus on software artifacts of a system. But these two diagrams
are special diagrams used to focus on software components and hardware components.

So most of the UML diagrams are used to handle logical components but deployment
diagrams are made to focus on hardware topology of a system. Deployment diagrams are used by
the system engineers.

The purpose of deployment diagrams can be described as:
e Visualize hardware topology of a system.
o Describe the hardware components used to deploy software components.
o Describe runtime processing nodes.

Department of Computer Science & Engineering -16-

UML and Design Patterns Lab Manual

How to draw Deployment Diagram?

Deployment diagram represents the deployment view of a system. It is related to the
component diagram. Because the components are deployed using the deployment diagrams. A
deployment diagram consists of nodes. Nodes are nothing but physical hardwares used to deploy
the application.

Deployment diagrams are useful for system engineers. An efficient deployment diagram is

very important because it controls the following parameters

e Performance

o Scalability

¢ Maintainability

o Portability
So before drawing a deployment diagram the following artifacts should be identified:

o Nodes

¢ Relationships among nodes

The following deployment diagram is a sample to give an idea of the deployment view of order
management system. Here we have shown nodes as:

e Monitor

e Modem

e Caching server
e Server

The application is assumed to be a web based application which is deployed in a clustered
environment using server 1, server 2 and server 3. The user is connecting to the application using
internet. The control is flowing from the caching server to the clustered environment.

So the following deployment diagram has been drawn considering all the points mentioned above:

Connection

<<Processors> il o R

Caching server

Server 3

Server 1

Department of Computer Science & Engineering -17 -

UML and Design Patterns Lab Manual

UML Use Case Diagram

To model a system the most important aspect is to capture the dynamic behaviour. To clarify
a bit in details, dynamic behaviour means the behaviour of the system when it is running /operating.

So only static behaviour is not sufficient to model a system rather dynamic behaviour is
more important than static behaviour. In UML there are five diagrams available to model dynamic
nature and use case diagram is one of them. Now as we have to discuss that the use case diagram is
dynamic in nature there should be some internal or external factors for making the interaction.

These internal and external agents are known as actors. So use case diagrams are consists of
actors, use cases and their relationships. The diagram is used to model the system/subsystem of an
application. A single use case diagram captures a particular functionality of a system.

So to model the entire system numbers of use case diagrams are used.

Purpose:

The purpose of use case diagram is to capture the dynamic aspect of a system. But this
definition is too generic to describe the purpose.

Because other four diagrams (activity, sequence, collaboration and Statechart) are also
having the same purpose. So we will look into some specific purpose which will distinguish it from
other four diagrams.

Use case diagrams are used to gather the requirements of a system including internal and
external influences. These requirements are mostly design requirements. So when a system is
analyzed to gather its functionalities use cases are prepared and actors are identified.

Now when the initial task is complete use case diagrams are modelled to present the outside
view. So in brief, the purposes of use case diagrams can be as follows:
o Used to gather requirements of a system.
e Used to get an outside view of a system.
o Identify external and internal factors influencing the system.
o Show the interacting among the requirements are actors.

How to draw Use Case Diagram?

Use case diagrams are considered for high level requirement analysis of a system. So when
the requirements of a system are analyzed the functionalities are captured in use cases.

So we can say that uses cases are nothing but the system functionalities written in an
organized manner. Now the second things which are relevant to the use cases are the actors. Actors
can be defined as something that interacts with the system.

The actors can be human user, some internal applications or may be some external
applications. So in a brief when we are planning to draw an use case diagram we should have the
following items identified.

o Functionalities to be represented as an use case
e Actors
¢ Relationships among the use cases and actors.

Department of Computer Science & Engineering -18-

UML and Design Patterns Lab Manual

Use case diagrams are drawn to capture the functional requirements of a system. So after
identifying the above items we have to follow the following guidelines to draw an efficient use case
diagram.

o The name of a use case is very important. So the name should be chosen in such a way so
that it can identify the functionalities performed.

e Give asuitable name for actors.

o Show relationships and dependencies clearly in the diagram.

e Do not try to include all types of relationships. Because the main purpose of the diagram is
to identify requirements.

o Use note when ever required to clarify some important points.

The following is a sample use case diagram representing the order management system. So
if we look into the diagram then we will find three use cases (Order, SpecialOrder and NormalOrder)
and one actor which is customer.

The SpecialOrder and NormalOrder use cases are extended from Order use case. So they
have extends relationship. Another important point is to identify the system boundary which is
shown in the picture. The actor Customer lies outside the system as it is an external user of the
system.

Use case diagram of an order management system
Use cases

—

acTar ‘ﬁ—-_______"_ﬁﬁ__
<<gxtends>> = T
| i ~ - .{: SpecialOrder)':.

= ! "\ 8 _'_,_,.,-J"/
" — — e
_HLRN, Exta
'—-(Order)

relationship
N\ e o —
i, — : <<pxtendss> v Ty
Customer - {\ NormalOrder)

Ex tand{/ L =
relationship

——

System __—
boundary

UML Interaction Diagram

From the name Interaction it is clear that the diagram is used to describe some type of
interactions among the different elements in the model. So this interaction is a part of dynamic
behaviour of the system.

This interactive behaviour is represented in UML by two diagrams known as Sequence
diagram and Collaboration diagram. The basic purposes of both the diagrams are similar.

Sequence diagram emphasizes on time sequence of messages and collaboration diagram
emphasizes on the structural organization of the objects that send and receive messages.

Department of Computer Science & Engineering -19-

UML and Design Patterns Lab Manual

Purpose:

The purposes of interaction diagrams are to visualize the interactive behaviour of the
system. Now visualizing interaction is a difficult task. So the solution is to use different types of
models to capture the different aspects of the interaction.

That is why sequence and collaboration diagrams are used to capture dynamic nature but
from a different angle.

So the purposes of interaction diagram can be describes as:
e To capture dynamic behaviour of a system.
o Todescribe the message flow in the system.
o To describe structural organization of the objects.
o To describe interaction among objects.

How to draw Interaction Diagram?

As we have already discussed that the purpose of interaction diagrams are to capture the
dynamic aspect of a system. So to capture the dynamic aspect we need to understand what a
dynamic aspect is and how it is visualized. Dynamic aspect can be defined as the snap shot of the
running system at a particular moment.

We have two types of interaction diagrams in UML. One is sequence diagram and the other
is a collaboration diagram. The sequence diagram captures the time sequence of message flow from
one object to another and the collaboration diagram describes the organization of objects in a
system taking part in the message flow.

So the following things are to identified clearly before drawing the interaction diagram:
o Obijects taking part in the interaction.
e Message flows among the aobjects.
o The sequence in which the messages are flowing.
¢ Object organization.

Following are two interaction diagrams modelling order management system. The first
diagram is a sequence diagram and the second is a collaboration diagram.

The Sequence Diagram:
The sequence diagram is having four objects (Customer, Order, SpecialOrder and
NormalOrder).

The following diagram has shown the message sequence for SpecialOrder object and the
same can be used in case of NormalOrder object. Now it is important to understand the time
sequence of message flows. The message flow is nothing but a method call of an object.

The first call is sendOrder () which is a method of Order object. The next call is confirm ()
which is a method of SpecialOrder object and the last call is Dispatch () which is a method of
SpecialOrder object. So here the diagram is mainly describing the method calls from one object to
another and this is also the actual scenario when the system is running.

Department of Computer Science & Engineering -20-

UML and Design Patterns Lab Manual

Sequence diagram of an erder managemant system
object

Initialization | ‘SpecialOrder | oR |:HnrmalDrﬂar

call

1
[
[
lifalina |
I
l
|

sendordes () Dispatch ()

Confirm ()

return

-
Salf call

eturn

-

The Collaboration Diagram:

The second interaction diagram is collaboration diagram. It shows the object organization as
shown below. Here in collaboration diagram the method call sequence is indicated by some
numbering technigue as shown below. The number indicates how the methods are called one after
another. We have taken the same order management system to describe the collaboration diagram.

The method calls are similar to that of a sequence diagram. But the difference is that the
sequence diagram does not describe the object organization where as the collaboration diagram
shows the object organization.

Now to choose between these two diagrams the main emphasis is given on the type of
requirement. If the time sequence is important then sequence diagram is used and if organization is
required then collaboration diagram is used.

Collaboration diagram of an order managemaent system

| Initialization |
l Object Sequence number
:Customer /
1:sendOrder() MNote: Sequence is indicated by
numbering the messages/method calls
:Order

2:confirm{) «+—— Message

| End of Process

Self-Delegation

Department of Computer Science & Engineering -21-

UML and Design Patterns Lab Manual

UML Statechart Diagram

The name of the diagram itself clarifies the purpose of the diagram and other details. It
describes different states of a component in a system. The states are specific to a component/object
of a system.

A Statechart diagram describes a state machine. Now to clarify it state machine can be
defined as a machine which defines different states of an object and these states are controlled by
external or internal events.

Activity diagram explained in next chapter, is a special kind of a Statechart diagram. As
Statechart diagram defines states it is used to model lifetime of an object.

Purpose:

Statechart diagram is one of the five UML diagrams used to model dynamic nature of a
system. They define different states of an object during its lifetime. And these states are changed by
events. So Statechart diagrams are useful to model reactive systems. Reactive systems can be
defined as a system that responds to external or internal events.

Statechart diagram describes the flow of control from one state to another state. States are
defined as a condition in which an object exists and it changes when some event is triggered. So the
most important purpose of Statechart diagram is to model life time of an object from creation to
termination.

Statechart diagrams are also used for forward and reverse engineering of a system. But the
main purpose is to model reactive system.

Following are the main purposes of using Statechart diagrams:
o To model dynamic aspect of a system.
o To model life time of a reactive system.
o Todescribe different states of an object during its life time.
o Define a state machine to model states of an object.

How to draw Statechart Diagram?

Statechart diagram is used to describe the states of different objects in its life cycle. So the
emphasis is given on the state changes upon some internal or external events. These states of
objects are important to analyze and implement them accurately.

Statechart diagrams are very important for describing the states. States can be identified as
the condition of objects when a particular event occurs.

Before drawing a Statechart diagram we must have clarified the following points:
o Identify important objects to be analyzed.
o Identify the states.
o Identify the events.

The following is an example of a Statechart diagram where the state of Order object is
analyzed.

The first state is an idle state from where the process starts. The next states are arrived for
events like send request, confirm request, and dispatch order. These events are responsible for state
changes of order object.

Department of Computer Science & Engineering -22-

UML and Design Patterns Lab Manual

During the life cycle of an object (here order object) it goes through the following states and
there may be some abnormal exists also. This abnormal exit may occur due to some problem in the
system. When the entire life cycle is complete it is considered as the complete transaction as
mentioned below.

The initial and final state of an object is also shown below:

Statechart diagram of an order managemenl systsm

Initial state Intermadiate /Tranlltlﬂﬂ-
of tha cbject / state 4
‘/’
M 1
Initiali e
axit
zatian l
Select normal or
Il »iJ Send ord t
- die nd order reques apacial order
Abnormal
Sl Rotion Confirm order
E " (Event)
oy T Final state . wJ
(Fallura) - B
state T
Order confirmation
.,--’"'FP
Firal
atate
v]
Conplete f
transaction
Dispatch order
UML Activity Diagram

Activity diagram is another important diagram in UML to describe dynamic aspects of the
system.

Activity diagram is basically a flow chart to represent the flow form one activity to another
activity. The activity can be described as an operation of the system.

So the control flow is drawn from one operation to another. This flow can be sequential,
branched or concurrent. Activity diagrams deals with all type of flow control by using different
elements like fork, join etc.

Purpose:

The basic purposes of activity diagrams are similar to other four diagrams. It captures the
dynamic behaviour of the system. Other four diagrams are used to show the message flow from one
object to another but activity diagram is used to show message flow from one activity to another.

Activity is a particular operation of the system. Activity diagrams are not only used for
visualizing dynamic nature of a system but they are also used to construct the executable system by
using forward and reverse engineering techniques. The only missing thing in activity diagram is the
message part.

Department of Computer Science & Engineering -23-

UML and Design Patterns Lab Manual

It does not show any message flow from one activity to another. Activity diagram is some
time considered as the flow chart. Although the diagrams looks like a flow chart but it is not. It
shows different flow like parallel, branched, concurrent and single.

So the purposes can be described as:
o Draw the activity flow of a system.
o Describe the sequence from one activity to another.
o Describe the parallel, branched and concurrent flow of the system.

How to draw Activity Diagram?

Activity diagrams are mainly used as a flow chart consists of activities performed by the
system. But activity diagram are not exactly a flow chart as they have some additional capabilities.
These additional capabilities include branching, parallel flow, swimlane etc.

Before drawing an activity diagram we must have a clear understanding about the elements
used in activity diagram. The main element of an activity diagram is the activity itself. An activity is a
function performed by the system. After identifying the activities we need to understand how they
are associated with constraints and conditions.

So before drawing an activity diagram we should identify the following elements:
e Activities
e Association
e Conditions
e Constraints

Once the above mentioned parameters are identified we need to make a mental layout of
the entire flow. This mental layout is then transformed into an activity diagram.

The following is an example of an activity diagram for order management system. In the
diagram four activities are identified which are associated with conditions. One important point
should be clearly understood that an activity diagram cannot be exactly matched with the code. The
activity diagram is made to understand the flow of activities and mainly used by the business users.

The following diagram is drawn with the four main activities:
o Send order by the customer
e Receipt of the order
e Confirm order
o Dispatch order

After receiving the order request condition checks are performed to check if it is normal or special
order. After the type of order is identified dispatch activity is performed and that is marked as the
termination of the process.

Department of Computer Science & Engineering -24 -

UML and Design Patterns Lab Manual

Activity diagram of an order management system
Activities

Condition

Order request system Pk
confirms the receipt of the
order) [Check if the
order is normal

onder]
Start of /
process [ﬂﬂ‘]_\

Customer sends
an order request

[Yes]
[Check if the
order is special
order]
[Yes] Confirm the

Tearmination

\% Dispatch the
order

Department of Computer Science & Engineering

-25.-

Experiments

UML and Design Patterns Lab Manual

ATM Application (ATM)

ATM Scenario Use Case Diagram:

ot

// -
- Bank officer

e

-

Change pln\

Depositfunds

Withdraw money §

O

Transfer funds

Department of Computer Science & Engineering

/Trénsferf nd
P u

Make payment Client

View balance

-26 -

UML and Design Patterns Lab Manual

ATM Scenario Activity Diagram:

Insert
card

CEnter
_ PIN__ | |

|
Connect ' Not connected

Enter)
transition | |

A~

‘ Any more transaction
< > |

No more transaction

Remove
card

®

Department of Computer Science & Engineering -27-

ATM Scenario Sequence Diagram:

UML and Design Patterns Lab Manual

A Atm ac : B : Bank
machine account client
1: Insert card
Insert PIN m
- 3 : Enter PIN

4 : Verification

5: PIN ok

|

6 : Request for transaction

7 : Process transaction

]

8 : Enter amount

9 : Amount entered

10 : Withdrawal

g

!

11 : Withdrawal success

12: Dis@snse cash

13:

take cash

14 .

Terminate

g
g

15:

Print slip

16:

Eject card

Department of Computer Science & Engineering

-28-

UML and Design Patterns Lab Manual

ATM Scenario Collaboration Diagram:

11: Enter amount
9: Select translation

6: Enter pin
Ep |

Q | ATM |
. & < l
. | Screen |
% 5: Prompt for pin ‘ : \7 Verity PIN
: Customer 8: Prompt for translation y er
\ 10: Prompt for amount \JTZ Withdraw fund;
\ P \ 13: Verify funds
\ .\ 2: Read card no. % a3 i
1: Accept carg * ——> o 14/.\Deduct fun
| [/_\\' / "‘.
% 3
S : Open account)
 Card | s ' Acco |
' Reader | & | unt |
e 17: Eject card S

/
/
P

/
/f 5: Provide cost
/ 16: Provide receipt

r/’
PR .
| CASH |
 DISPENCER |

Department of Computer Science & Engineering

-29.

UML and Design Patterns Lab Manual

ATM Scenario Component Diagram:

ATM.exe
Card Reader ., Cash Dispenser
Card Reader N ATM Screen bard dispenser
ATM Screen

Department of Computer Science & Engineering -30-

ATM Scenario Deployment Diagram:

Oracle Server

Banking
db server

ATM Server.exe

UML and Design Patterns Lab Manual

Printer

<<Private network>>

125 First
sl.

ATM Client.exe

Department of Computer Science & Engineering

ATM Client.exe

<<Private Network>>

-31-

UML and Design Patterns Lab Manual

ATM Scenario State Chart Diagram

Withdraw [Balance]
" OPEN | " Overdrawntodispend
| | | noticetocustomer |
Customer represents closure Deposit [Balance]

' \
|
\

 CLOSED | cpeck blancef balance]

\

Department of Computer Science & Engineering

-32-

UML and Design Patterns Lab Manual

Railway Reservation System (RRS)

RRS Use Case Diagram:

Syztem

Enquiry Ticket avaidabity
Bo ok Ticket I
1 |
4 i : Raihway website
k s ==indude == /"’f ¥

'
=lzinclude ==
,

AN

=indude :=~>--I'I

-q:f_-:irclude::::-

Clerk

y \
= =include ==
.

Department of Computer Science & Engineering -33-

UML and Design Patterns Lab Manual
RRS Activity Diagram for Booking Ticket:

(Che-:k availability of tidﬂ:ED

YES
Book tickets

Fll details

i Submit details }
Make paywnart
Prirk ticket

Department of Computer Science & Engineering -34-

UML and Design Patterns Lab Manual

RRS Activity Diagram for Cancelling Ticket:

®

(Cullects cancelation Form and fill in detaila

£ Submit: Farm _)

Formn modify
MOT Ok

MOT O

[0]4

ﬁ\(clerk enters Form details in syskem)

(Yalidates and werify details)

84

(—Calculate ard refund fare amu:uunt_j

C Print cancel resulk)

Department of Computer Science & Engineering -35-

RRS Class Diagram:

TRAIN

Hrairo
HrairHame

CLERK

+id
+atkrbute 1

+Formm_det ail()
+Carcellation_Formi)

UML and Design Patterns Lab Manual

Hizes

RAILWAY §¥ STE

PASS ENGER

Hame
+address
+age

+id
+aktribute 1

+responsel)

/

1..*

h +gerder

+searchTrain()
+Biook_ticket()
+HZancel _tickeh)
+Hay charges()
Hlodify_Form ()

+makes

PAYMENT

cancels
||*

+arnourk

HoreHo

+atabe

+no_of _person
+chargaT yoe

Hrare_arnt(]
Hewe_tickat(]
+HDelete ticket()

Department of Computer Science & Engineering

-36-

RRS Sequence Diagram for Booking Ticket:

UML and Design Patterns Lab Manual

fPazsenger fFailway website fderk icket

i i i i :

U"' 2 : Stabe() . : :

' Iﬁ i Ferrn_details() E

|_|"' 4 : Madiky_Foem() :

i Ca Far-lh_aml() E

£ ¢ Prirh_tidket() .

: : 'U 7t Mew ticket() |

% 1 Ticket_nol]]

|_|1'| 9 F‘a\,r_&:harges(j E E

RRS Sequence Diagram for Cancelling Ticket:

[Pazsenger MRailway websita fClerk ickat

11 Cancellation_Forrmi)

i

.
-

Z: Can:e!_ticket(j

3 1 Filled_form()

U:: 4 1 Madify_Form()

57 Cmfirms()

.D G Delete_ticket(]

¢ Add to awailable() !

L'Is.

& Calculate_fire ar:ud refnd_balancel)

Department of Computer Science & Engineering

-50-

RRS Component Diagram:

UML and Design Patterns Lab Manual

view classses

check availability ,,faﬂ~ﬂ*”""

Home page

% maodify form

E
E fill form

\elke
gcantth:t

book tidcet

Resevation class

Er_; Passengesr g Ticket

refund

=l -

Session

Eéi Payment

Acess sydem

g Acess database

Department of Computer Science & Engineering

-51-

UML and Design Patterns Lab Manual

Design Patterns

Introduction

A design pattern is:
e astandard solution to a common programming problem
a technique for making code more flexible by making it meet certain criteria
a design or implementation structure that achieves a particular purpose
a high-level programming idiom
shorthand for describing certain aspects of program organization
connections among program components
the shape of an object diagram or object model

When (not) to use design patterns

The first rule of design patterns is the same as the first rule of optimization: delay. Just as
you shouldn’t optimize prematurely, don’t use design patterns prematurely. It may be best to first
implement something and ensure that it works, then use the design pattern to improve weaknesses;
this is especially true if you do not yet grasp all the details of the design. (If you fully understand the
domain and problem, it may make sense to use design patterns from the start, just as it makes sense
to use a more efficient rather than a less efficient algorithm from the very beginning in some
applications.)

Design patterns may increase or decrease the understandability of a design or
implementation. They can decrease understandability by adding indirection or increasing the
amount of code. They can increase understandability by improving modularity, better separating
concerns, and easing description. Once you learn the vocabulary of design patterns, you will be able
to communicate more precisely and rapidly with other people who know the vocabulary. It's much
better to say, “This is an instance of the visitor pattern” than “This is some code that traverses a
structure and makes callbacks, and some certain methods must be present, and they are called in
this particular way and in this particular order.”

Most people use design patterns when they notice a problem with their design — something
that ought to be easy isn't — or their implementation — such as performance. Examine the
offending design or code. What are its problems, and what compromises does it make? What would
you like to do that is presently too hard? Then, check a design pattern reference. Look for patterns
that address the issues you are concerned with.

Department of Computer Science & Engineering -52-

UML and Design Patterns Lab Manual

Examples

Here are some examples of design patterns which you have already seen. For each design
pattern, this list notes the problem it is trying to solve, the solution that the design pattern supplies,
and any disadvantages associated with the design pattern. A software designer must trade off the
advantages against the disadvantages when deciding whether to use a design pattern. Tradeoffs
between flexibility and performance are common, as you will often discover in computer science
(and other fields).

Encapsulation (data hiding)

Problem: Exposed fields can be directly manipulated from outside, leading to violations of the
representation invariant or undesirable dependences that prevent changing the implementation.

Solution: Hide some components, permitting only stylized access to the object.

Disadvantages: The interface may not (efficiently) provide all desired operations. Indirection may
reduce performance.

Subclassing (inheritance)

Problem: Similar abstractions have similar members (fields and methods). Repeating these is
tedious, error-prone, and a maintenance headache.

Solution: Inherit default members from a superclass; select the correct implementation via run-time
dispatching.

Disadvantages: Code for a class is spread out, potentially reducing understandability. Run-time
dispatching introduces overhead.

Iteration

Problem: Clients that wish to access all members of a collection must perform a specialized traversal
for each data structure. This introduces undesirable dependences and does not extend to other
collections.

Solution: Implementations, which have knowledge of the representation, perform traversals and do
bookkeeping. The results are communicated to clients via a standard interface.

Disadvantages: Iteration order is fixed by the implementation and not under the control of the
client.

Exceptions

Problem: Errors occurring in one part of the code should often be handled elsewhere. Code should
not be cluttered with error-handling code, nor return values preempted by error codes.

Solution: Introduce language structures for throwing and catching exceptions.
Disadvantages: Code may still be cluttered. It can be hard to know where an exception will be

handled. Programmers may be tempted to use exceptions for normal control flow, which is
confusing and usually inefficient.

Department of Computer Science & Engineering -53-

UML and Design Patterns Lab Manual

These particular design patterns are so important that they are built into Java. Other design

patterns are so important that they are built into other languages. Some design patterns may never

be built

into languages, but are still useful in their place.

Classification of Patterns
Patterns are classified by purpose and scope:

«Creational Patterns:

Creational patterns deal with the creation of objects and help to make a system

independent of howobjects are created, composed and represented. They also enable flexibility in
what gets created,who creates it, how it gets created and when it gets created.
e Structural Patterns:

Structural patterns deal with how objects are arranged to form larger structures

» Behavioral Patterns:
Behavioural patterns deal with how objects interact, the ownership of responsibility and factoring
code in variant and non-variant components.

The scope is defined as :

e class -

static relationships through class inheritance (white-box reuse)

= object - dynamic relationships through object composition (black-box reuse) or collaboration

Patterns Summary
There are 5 creational patterns, 7 structural patterns and 11 behavioural patterns :

Purpose
Creational Structural Behavioural
Scope Class Factory Method Adapter (class) Interpreter
Template Method
Object Abstract Factory Adapter (object) Chain of Responsibility
Builder Bridge Command
Prototype Composite Tterator
Singleton Decorator Mediator
Facade Memento
Flyweight Qbserver
Proxy State
Strategy
Visitor

Pros and Cons of using Design Patterns

Pros:

Department of Computer Science & Engineering

Quality, flexibility and re-use

Design Patterns capture solutions to common computing problems and represent the time,
effort and experience gained from applying these solutions over numerous
domains/iterations. Generally systems that use Design Patterns are elegant, flexible and
have more potential for reuse

Provide a common frame of reference for discussion of designs

Patterns can be combined to solve one or more common computing problems

Provide a common format for pattern specification

Intent, Motivation, Applicability, Structure, Participants, Collaborations, Consequences

-54 -

UML and Design Patterns Lab Manual

Cons:
o Complexity
Design Patterns require a reasonable degree of study and can be difficult for some designers
to grasp. Junior designers/developers may not have encountered Design Patterns and have
to learn them before they can be productive on a project.

Department of Computer Science & Engineering -55-

Creational Patterns Summary

Paitern

Description

UML and Design Patterns Lab Manual

Pros/Cons

Abstract Factory
“Provide an interface for
creating families of
related or dependent
objects without specifiing
their concrete classes "’

A “family” of abstract create methods
{each of which returns a different
AbsiractProduct) are grouped 1n an
AbstractFactory interface.
ConcreteFactory mmplementations
implement the abstract create methods to
produce ConcrereProducts.

Pros.

® shields clients from concrete classes

* casy to switch product family at mintime
— just change concrete factory

® “keep it in the family” — enforces product
family grouping

Cons.
adding a new product means changing
factory interface + all concrete factories

Builder

“Separate the
construction af a complex
object fram it's
representation so that the
same consnuction Process
can create different
representations”

An appropniate ConcreteBuilder
(1mplements Builder) 1s constructed and
associated with a Director. The Director
traverses an object graph and passes each
object to the Builder. The Builder uses
each object to build-up a complex
Praduct over time. When the object
graph has been fully traversed, the final
Product can be retrieved from the Bulder.

Pros.

® separates complex construction from

(re)presentation

shields the Director from the algorithm

and internal structure used to build the

Product

* znables a consolidated Product to be built
up over time — e.g. the Product requires
nfo from multiple sources, info available
at different times

L]

Factory Method

“Define an interface for
creating an object but let
subclasses decide which
class to instantiate.
Factory method lets a
class defer instantiation
to subclasses”

An abstract Creator class defines an
abstract create method (or provides a
default create method) which returns an
abstract Product. A ConcreteCreator
class implements the abstract create
method to return a ConcreteProduct.
This enables the Creator to defer Product
creation to a subclass.

N.B. Factory Method is often used in the
Abstract Factory pattern to implement the
create methods

Pros.

& shields clients from concrete classes

® if a framework uses the Factory Method
pattern. 1t enables third-party developers
to plug-in new Products

® the Creator create method can be coded
to return a default Product

Cons.

* coding a new Product means writing fwe
classes — one for the concrete Product
and one for the concrete Creator

* static — inheritance based

Prototype

“Specify the kinds of
objects to create using a
prototypical instance and
create new objects by
copyving this profotvpe”

Objects implement the clone () method of
the Profotype interface by returning a
copy of self A client maintains a registry
of Prototype instances. When a new
instance is required, the client invokes
clone ()

Pros.

e shields clients from concrete classes

the object 1s the factory - 1.e. Product and
Creator combined (saves coding a
Creator for every Product)

pre-configured object instances — instead
of create/set member vars every tune

Cons.

s every Prototype instance has to
implement clone () which may not be
easy — e.g_ circular references, contained
elements don’t support copving, large
number of classes to be retrofitted. etc.

Smgleton

“Ensure a class has only
one imstance and provide
a global point of access to

T

i

A Singleton 1s defined with a static
getlnstance () method. a protected
constructor and any other required
instance methods. As the constructor 1s
protected, the only way to obtain an
instance is through the static getInstance
() method. This serves to control the
number of instances created/m use by
clients.

Pros.

* controls access to the instance(s)

* controls the number of instances

* more flexible than a static class - the
wstance(s) constructed in getlnstance ()
can be a subclass so method overrides are
allowed (can’t use method overrides with
a static class).

Department of Computer Science & Engineering

-56 -

Structural Patterns Summary

Pattern Description Pros/Cons
Adapter A concrete Adapter class implements Pros.
“Convert the interface of | methods defined i a Targer interface by # enables interoperability — especially

one class into another
interface clients expect.
Adapter lets classes work
together that couldn 't
otherwise because af
incompatible interfaces’

1

wrapping calls to methods in a concrete
Adaptee (and also provides equivalent
functionality for required Target methods
if they don’t exist in Adaptee).

A Class Adaprer uses multiple mheritance
of Target and Adaptee. With an Object
Adapter, Adapter contains an Adaptee
and forwards requests.

L]

L]

useful when using one or more third-
party class libraries i vour code
highlights the Target “contract” —e.g. if
shipping reusable components, mnclude a
default adapter for use by clients

object adapter — a single Adapter can
adapt many Adaptees (including
subclasses)

class adaprer — automatically inherit
Adaptee methods; mherited methods can
be overridden

Cons.

L

L]

type adapted — to the outside world. the
Adaptee looks like an Adapter (can’t
pass to Adaptee methods unless a two-
way adapter is implemented)

object adapter — need to write tedious
method mapping/delegation code

class adaprer — need to provide an
adapter for each subclass

class adaprer — multiple-inheritance of
potentially sinular interfaces (risk of
method name collisions)

Bridge

“Decouple an abstraction
from its implementation
so that the two can vary
independently”

Abstraction (an abstract base class)
provides core functionality for 1t’s
subclasses by aggregating primitive
methods from an Implementor (an
abstract class/interface) into high-level
methods. Concrerelmplemenior classes
provide specific implementations of the
primitive methods. This facilitates a
clean separation between elements that
are common (e.g. Window.draw () and
elements that are specific (e.g.
XWmdow draw ()}

Pros.

L

L

L]

L

decouples abstraction from
implementation — clean separation
between common aspects and specific
differences

extensible — abstraction and
implementation can evolve
independently

shields clients from concrete classes —a
change 1n the implementation doesn’t
require the client to be updated
implementation can be swapped at
runtime

Composite

“Compose objects into
free structures to
represent part-whole
hierarchies. Composite
lets clients treat
individual abjects and
compositions of objects
uniformiy”

Component (an abstract base class) 1s
sub-classed into either a Leafor a
Composite. A Composite contamns one or
more Components — 1.e. a Leaf or another
Composite. This enables a client to view
a single item or a group of items as one
type — a Component.

Pros.

L

L]

facilitates uniform view - clients are
shielded from details of whether a
Component 1s a Leaf or Composite
easy to add new components —
everything referenced by Component

Cons.

L

referring to erther as Component makes 1t
too general — can't control what
Components make up a Composite
without explicitly checking

Department of Computer Science & Engineering

UML and Design Patterns Lab Manual

-60 -

UML and Design Patterns Lab Manual

Partern

Description

Pros/Cons

Decorator

“Attach additional
responsibilities to an
object dynamically.
Decorators provide a
flexible alternatrve to sub-
classing for extending
functionality”

ConcrereDecorator (subclass of
Decoraror) classes wrap
ConcreteComponent (subclass of
Component) classes to transparently
extend their functionalitv. This is
achieved by added functionality
before/after dispatching method calls to
the Component. Transparency 1s
achieved as the Decorator interface
matches the Component interface

Pros.

* more flexible than inhentance -
functionality can be extended on an
wmstance basis, at runtime, etc.

* promotes reuse — a Decorator can
enhance anvthing that implements
Component

* enables recursive composition — can
construct a chain of Decorators

Cons.

* too transparent — a Decorator looks just
like the oniginal Component

o difficult to conceptualise — lots of fine-
grained Decorators connected in lots of
different ways

Facade

“Provided a unified
interface to a set of
interfaces in a sub-system.
Facade defines a higher-
level interface that makes
the sub-system easier to

£

use

A Facade provides a simplified view of a
complex object model by aggregating
methods from multiple subsystem classes
into a few high-level methods.
Communication is one-way — the Facade
knows about the subsystem classes but
the subsystem don’t have any knowledge
of the Facade.

Pros.

* shields the client from the complexity of
the subsystem

L

decouples the client from the subsystem
— relationslup management 1s
externalised to the Facade

performance - batch several method calls
into one

* control — provides a central point to
exercise control

L]

“Provide a surrogate or
placehalder for another
object to control access to

oY)

1t

Flyweight A pool of common objects (Fhweights) Pros.
“Use sharing to support are shared by splitting the object state into | # support a large number of clients using a
large numbers of fine- static (fnfrinsic) and mstance specific relatively small pool
graimed objects (extrinsic) components. When invoking
afficiently” methods on the Flyweight. the client must Cons.
pass the extrinsic state in the method. * overhead — have to pass in extrinsic state
The pool 13 managed by a each time
FlvweightFactory which ensures that
objects are added to the pool on first
request and retrieved from the pool
thereafier.
Proxy A common Subject mterface 1s defined Pros.

and implemented by a RealSubject class
and a Proxy class. The Proxy actsasa
middle-man between the client and the
RealSubject. As far as the client 1s
concemed, the Proxy looks identical to
the RealSubject (it's transparent).

* provides a layer-of-indirection between
the client and the RealSubject which can
be used to implement a variety of useful
features (load-on-demand. location
transparency, access control, reference
counting)

Cons.

foo transparent — as the Proxy 1s
transparent, the client 1sn’t aware of how
the Proxy should be used (e.g. with
location transparency. everv method call
is a remote call)

Department of Computer Science & Engineering

-61-

Behavioral Patterns Summary

UML and Design Patterns Lab Manual

Pattern

Description

Pros/Cons

Chain of Responsibility
“Avoid coupling the
sender af a request to its
receiver by giving more
than one object a chance
fo handle the request.
Chain the receiving
objects and pass the
request along the chain
until an object handles
it

Decouples the sender of a request from
the “ultimate™ receiver. The request 1s
passed along a chain of potential
Handlers until one of them deals with 1t.
If a handler doesn’t wish to deal with the
request. it passes the request to 1t's
successor

Pros.

* reduced coupling

¢ flexible responsibility — handling the
request 1s optional

Cons.

* the request mav get handler by the
default handler which may not know
what to do wath 1t

Command

“Encapsulate a reguest as
an object, thereby lefting
vou parameterize clients
with different requests,
queue or log requests,

and support undoable
operations.”

The purpose of the Command pattern is to
decouple an event generator (the Iimvoker)
from the event handler (the Receiver). A
ConcreteCommand class (sub-classed
from Command) defines an execute ()
method which calls the appropriate
method on the Receiver (the action
method). The client is responsible for
associating the Receiver with the
Command and then the Command with
an Invoker.

N.B. 1:1:1 mapping between Invoker,
Command and Recerver.

Pros.

¢ decouples Invoker from Receiver —
makes Receirver more re-usable as it
doesn’t manage the relationship with the
Tvoker

¢ Command encapsulate a request —
requests can be stored so they can be
undone, processed at a later time, etc.

* extensible — easy to add new Commands

* macros — commands can be grouped into
macros so that multiple commands can
be run at once

o dynamic — e.g. different Commands,
multiple Invokers, decide at runtime. etc.

Cons.

* can’t centralise related action methods in
one Command class - only one method 1s
used (execute ())

Interpreter

“Given a language, define
a representation for its
grammar along with an
interpreter that use the
representation to interpret
sentences in the

language. "

Doun’t care

Department of Computer Science & Engineering

-62 -

UML and Design Patterns Lab Manual

Pattern

Description

Pros/Cons

Tterator

“Pravide a way to access
the elements of an
aggregaie object
sequentially without
exposing its underiving
representation.”

A common OO requirement is traversal
of an aggregate strucmure. The
implementation of the traversal is
factored out of the Aggregate class into
an Ireraror. The Factory Method pattern
1s used by a Concreredgeregate to create
a Concretelterator. The Concretelterator
keeps track of the “current” position. The
same interface 1s used to iterate regardless
of the underlying aggregate structure.

Pros.

¢ shields the client from the aggregrate’s
wnternal representation

the aggregate can be iterated in many
different ways (1.e. multiple
Concretelterators)

L]

more than one iterator can be active — the
tterator stores the current state so each 1s
self contained

simplifies the Concrete Agpregate code —
iterator 1s in a separate class

L]

Cons.

® uses Abstract Factory so have to define a
Concrete Ageregate in addition to the
Concretelterator

¢ if the underlying aggregate is updated
while using an [terator, the operation of
the Iterator may be undefined.

Mediator

“Define an ebject that
encapsulates how a set of
objects interact.
Mediator promotes loose
coupling by keeping
objects from referring to
each other explicitly, and
it lets you vary their
interaction
independently. ”

A collection of related classes called
Colleagues (sub-classed as
ConcreteColleague) need to mform each
other when an event occurs. Rather than
couple every colleague to every one of
1t’s peers. each Colleague publishes the
event to a Meadiator (sub-classed as
ConcreteMediator). The Mediator then
republishes the event to the other
Colleagues. Communication is therefore
two-way — the Mediator knows about the
Colleagues and vice-versa.

Pros.

* promotes a loose coupling between the
Colleagues — instead of a Many:Many
publish, 1t’s a Many:1 (Colleagues to
Mediator) followed by a 1:Many
(Mediator to Colleagues)

promotes reuse — Colleagues aren’t
bogged down with relationship
management code so can be reused in
other circumstances

centralizes relationship management in
the Mediator

-

Cons.

o the Mediator can become very complex
and difficult to maintain

Memento

“Without violating
encapsulation, capture and
externalize an object’s
internal state so that the
object can be restored to this
state later.”

Uses an Originator (managed a contained
Memento obj). Memento (snapshot of
originator state, preserves encapsulation)
and a Carefaker (manages Memento
objects)

Pros.
® preserves encapsulation
® state can be stored and reloaded later on

Observer

“Define a one-to-many
dependency berween
objects so that when one
object changes state, all
its dependents are notified
and updated
automatically.”

One or more Observers (sub-classed as
ConcreteObserver) can be registered with
a Subject (sub-classed as
ConereteSubject). When the state of the
Subject changes, all registered Observers
are notified. Two notification models are
available : push (the state change is sent
with the notification) and pull (the
notification 1s the event only, 1f the
Observer wants to see the state change it
requests it from the Subject)

Pros.

e abstract coupling of Subject and
Observer — Subject doesn’t care what an
QObserver does with the event, just
notifies 1t

* supports broadcast — in theory, any
mumber of Observers can be supported
(doesn’t work in practice)

Cons.

¢ the client to the Subject works in
1solation — isn’t aware that setting the
state could cause a cascade of event
notifications

Department of Computer Science & Engineering

-63-

UML and Design Patterns Lab Manual

Pattern

Description

Pros/Cons

State

“dllow an object to alter its

behaviowr when its infernal

state changes. The object

will appear to change its
lass.”

A common State class 1s subclassed for
all possible states. Each subclass restricts
the operation of common methods based
on it’s state. Current state is stored in a
Context; next state is return by the current
State subclass when handle () is called

Pros.

* collects actions + transitions into state
specific classes

Cons.

doesn’t scale —1.e. if large num of
states/actions

Strategy

“Define a family of
algowithms, encapsulate
each one and make them
interchangeable. Strategy
lets the algorithm vary
independently from clients
that use it.”

Algorithms are defined as Straregy
classes. Related algorithms are grouped
mto a fanuly of Strategy classes. A
StrategvContext class contains all
required info for the algorithm defined in
the Strategy and the two classes work in
conjunction to execute the algorithm.

Pros.

* a fanuly of Strategy classes 1s available —
pick the most suitable or as directed by
an external decision making process

* simplified/cleaner code — instead of lots
of “if " statements or subclasses each
implementmg an algorithm. one
“dispatcher” class can provide all
relevant Strategy’s on request

Cons.

* clients must know the classes available i
the family - clients instantiate Strategy
instances when the StrategyContext 1s
created

Template Method

“Define the skeleton of an
algorithm in an operation,
deferring some steps to
subclasses. Template
Method lets subclasses
redefine certain steps af
an algorithm without
changes the algorithms
structure”

Capture the fmvariant behaviour of an
algorithm in an abstract base class using
high-level methods. Define the variant
behaviour as abstract primitive methods
so that concrete sub-classes can provide
implementations. The high-level methods
are defined using a combination of
primitive methods and methods defined in
the abstract base class.

N.B. basically a behavioural version af
the Factory Method

Pros.

* shields the client from the details of the
variant behaviour

* quality & productivity — only the vanant
behaviour needs to be implemented

Visitor

“Represent an operation
to be performed on the
elements of an object
structure. Visitor lets you
define a new operation
without changing the
classes of the elements on
which it operates™

A client traverses an object graph and for
each element invokes accept (Visitor v)
which in tumn calls back on the visitor
with itself —1.e. v.visit (this).
Consequently the Visitor gets notified
when an object 1s traversed and what tvpe
the traversed object is. Each Visitor
subclass has to support every type of
object that will be traversed

Pros.

* cleaner code — factors out type specific
event handling from classes and
centralises it in a Visitor

* casy to add a new “operation” for all
Visitable classes — an operation is
implemented as a Visitor subclass with a
handler method for each Visitable object
type

* can traverse multiple object tvpes in the
same traversal — unlike Iterator which
can only traverse one type at a time

* useful for running a varety of reports —
without Visitor every class that you'd
want to report on would have to have a
custom method per report

Cons.

® 1f a new Visitable class 1s added. all
Visitor subclasses have to be extended to
support it

* might break encapsulation - the Visitor
needs access to the elements details

Department of Computer Science & Engineering

-70 -

