
 1

II Year II Sem Operating systems Lab GEC

OPERATING SYSTEMS LAB
FACULTY MANUAL

II Year II Semester

Prepared by

Manasa. Y
Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

Seshadri rao Knowledge Village, Gudlavalleru – 521356

 2

II Year II Sem Operating systems Lab GEC

INSTITUTE VISION & MISSION

GUDLAVALLERU ENGINEERING COLLEGE
(An Autonomous Institution with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521356

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE VISION:

To be a leading institution of engineering education and research, preparing
students for leadership in their fields in a caring and challenging learning
environment.

INSTITUTE MISSION:

 To produce quality engineers by providing state-of-the-art engineering

education.
 To attract and retain knowledgeable, creative, motivated and highly skilled

individuals whose leadership and contributions uphold the college tenets
of education, creativity, research and responsible public service.

 To develop faculty and resources to impart and disseminate knowledge
and information to students and also to society that will enhance
educational level, which in turn, will contribute to social and economic
betterment of society.

 To provide an environment that values and encourages knowledge
acquisition and academic freedom, making this a preferred institution for
knowledge seekers.

 To provide quality assurance.
 To partner and collaborate with industry, government, and R&D institutes

to develop new knowledge and sustainable technologies and serve as an
engine for facilitating the nation’s economic development.

 To impart personality development skills to students that will help them to
succeed and lead.

 To instil in students the attitude, values and vision that will prepare them
to lead lives of personal integrity and civic responsibility.

 To promote a campus environment that welcomes and makes students of
all races, cultures and civilizations feel at home.

 Putting students face to face with industrial, governmental and societal
challenges.

 3

II Year II Sem Operating systems Lab GEC

DEPARTMENT VISION & MISSION

VISION

To be a Centre of Excellence in Computer Science and Engineering

education and training to meet the challenging needs of the industry and

society.

MISSION

 To impart quality education through well-designed curriculum in tune with

the growing software needs of the industry.

 To serve our students by inculcating in them problem solving, leadership,

teamwork skills and the value of commitment to quality, ethical behavior &

respect for others.

 To foster industry-academia relationship for mutual benefit and growth.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):-

PEO1: Identify, analyze, formulate and solve Computer Science and Engineering
problems both independently and in a team environment by using the appropriate
modern tools.

PEO2: Manage software projects with significant technical, legal, ethical, social,
environmental and economic considerations

PEO3: Demonstrate commitment and progress in lifelong learning, professional
development, leadership and communicate effectively with professional clients and
the public.

 4

II Year II Sem Operating systems Lab GEC

PROGRAM OUTCOMES (POs)

Engineering students will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations,

and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as a

 5

II Year II Sem Operating systems Lab GEC

member and leader in a team, to manage projects and in multidisciplinary

environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

PROGRAM SPECIFIC OUTCOMES

Students will be able to

PSO1: Design, develop, test and maintain reliable software systems and

 intelligent systems.

PSO2: Design and develop web sites, web apps and mobile apps.

Course Objectives:

 To develop the concepts of process and memory management techniques.

 To know the problems of deadlock and study the various handling

mechanisms.

Course Outcomes:
Upon successful completion of the course, the students will be able to

 implement CPU and disk scheduling algorithms.

 develop code for memory management techniques.

 develop code to implement Bankers algorithm to avoid deadlocks.

Mapping Of Course Outcomes With Program Outcomes

OPERATING SYSTEMS
LAB

1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2

CO1: implement CPU
and disk scheduling
algorithms

3 2 2 2 2 2 2

CO2: develop code for
memory management
techniques

2 2 2 2 2 2 2

CO3: develop code to
implement Bankers
algorithm to avoid
deadlocks

2 2 2 2 2 2 2

Operating Systems lab 3 3 3 3 3 3 3

 6

II Year II Sem Operating systems Lab GEC

LIST OF EXPERIMENTS

ADDITIONAL LAB EXPERIMENTS

S. No Program Name
Mapping
Of Co’s

Page
No

1.
Simulate the following CPU scheduling algorithms

a) FCFS b) SJF c) Priority d) Round Robin
CO1 7-16

2. Simulate MVT and MFT CO2 17-20

3.
Simulate the following page replacement algorithms

a) FIFO b) LRU c) Optimal
CO2 21-28

4.
Simulate Bankers Algorithm for Dead Lock

Avoidance
CO3 29

5.
Simulate the following disk scheduling algorithms

a) FCFS b) SSTF c) SCAN d) CSCAN
CO1 34-41

S. No Program Name Mapping
Of Co’s Page No

1. Write a program to implement Shortest Job

first scheduling algorithm with preemption
CO1 42

2. Write a program to implement priority

scheduling algorithm with preemption
CO1 44

 7

II Year II Sem Operating systems Lab GEC

EXERCISE: 1

AIM: 1(a) Write a program to implement the First come First Serve (FCFS) CPU

scheduling algorithm.

DESCRIPTION:

 First Come First Serve (FCFS) is an operating system scheduling algorithm

that automatically executes queued requests and processes in order of

their arrival.

 It is the easiest and simplest CPU scheduling algorithm.

ALGORITHM:

Step1: Input the processes along with their burst time (bt).

Step 2: Find waiting time (wt) for all processes.

Step 3: As first process that comes need not to wait so waiting time for process

1 will be 0 i.e. wt[0] = 0.

Step 4: Find waiting time for all other processes i.e. for

 process i -> wt[i] = bt[i-1] + wt[i-1] .

Step 5: Find turnaround time = waiting_time + burst_time for all processes.

Step 6: Find average waiting time = total_waiting_time / no_of_processes.

Step 7: Similarly, find average turnaround time = total_turn_around_time /

no_of_processes

 PROGRAM:

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{

 int n,bt[20],i,wt[20],tt[20],stt=0,swt=0;
 float awt,att;

 printf("Enter number of process : ");
 scanf("%d",&n);
 printf("Enter process cpu time : ");
 for(i=0;i<n;i++)
 scanf("%d",&bt[i]);
 wt[0]=0;
 tt[0]=stt=bt[0];
 for(i=1;i<n;i++)

 8

II Year II Sem Operating systems Lab GEC

 {
 wt[i]=bt[i-1]+wt[i-1];
 tt[i]=wt[i]+bt[i];
 swt+=wt[i];
 stt+=tt[i];
 }

 printf("Cpu time\tWaiting time\tTurn around time");
 for(i=0;i<n;i++)
 {
 printf("\n%d\t\t%d\t\t%d",bt[i],wt[i],tt[i]);
 }
 awt=(float)swt/n;
 att=(float)stt/n;
 printf("\nAverage waiting time : %f",awt);
 printf("\nAverage turn around time : %f\n",att);

}

OUTPUT:

Enter number of process : 5
Enter process cpu time : 2 3 6 5 4
Cpu time Waiting time Turn around time
2 0 2
3 2 5
6 5 11
5 11 16
4 16 20
Average waiting time : 6.800000
Average turn around time : 10.800000

VIVA QUESTIONS:
1. What are the shortcomings with FCFS CPU scheduling algorithm?

2. What is Convoy Effect?

 9

II Year II Sem Operating systems Lab GEC

AIM: 1(b) Write a program to implement the Shortest Job First (SJF) CPU

scheduling algorithm.

DESCRIPTION:

Shortest Job First (SJF) is an algorithm in which the process having the

smallest execution time is chosen for the next execution.

 Two schemes:

 Non preemptive – once CPU given to the process it cannot be preempted

until completes its CPU burst

 Preemptive – if a new process arrives with CPU burst length less than

remaining time of current executing process, preempt. This scheme is

known as the Shortest-Remaining-Time-First (SRTF)

 PROGRAM:

 #include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
 int n,bt[20],i,j,t,wt[20],tt[20],swt=0,stt=0;
 float awt,att;
 printf("Enter number of process : ");
 scanf("%d",&n);
 printf("Enter process cpu time : ");
 for(i=0;i<n;i++)
 scanf("%d",&bt[i]);
 printf("Cpu time before sorting : ");
 for(i=0;i<n;i++)
 printf("%d ",bt[i]);
 printf("\nCpu time after sorting : ");
 for(i=0;i<n;i++)
 {
 for(j=i+1;j<n;j++)
 {
 if(bt[i]>bt[j])
 {
 t=bt[i];
 bt[i]=bt[j];
 bt[j]=t;
 }
 }
 }
 for(i=0;i<n;i++)

 10

II Year II Sem Operating systems Lab GEC

 printf("%d ",bt[i]);

 wt[0]=0;
 tt[0]=stt=bt[0];
 for(i=1;i<n;i++)
 {
 wt[i]=bt[i-1]+wt[i-1];
 tt[i]=wt[i]+bt[i];
 swt+=wt[i];
 stt+=tt[i];
 }
 printf("\nCpu time\tWaiting time\tTurn around time");
 for(i=0;i<n;i++)
 printf("\n%d\t\t%d\t\t%d",bt[i],wt[i],tt[i]);

 awt=(float)swt/n;
 att=(float)stt/n;
 printf("\nAverage waiting time : %f\n",awt);
 printf("Average turn around time : %f\n",att);

}

OUTPUT:

Enter number of process : 4
Enter process cpu time : 3 2 4 1
Cpu time before sorting : 3 2 4 1
Cpu time after sorting : 1 2 3 4
Cpu time Waiting time Turn around time
1 0 1
2 1 3
3 3 6
4 6 10
Average waiting time : 2.500000
Average turn around time : 5.000000

VIVA QUESTIONS:

1. What is the advantage of SJF algorithm?

2. What is the drawback of SJF algorithm?

3. What is the difference between preemptive SJF and non-preemptive SJF?

4. What is the other name for non-preemptive SJF?

5. What is the other name for preemptive SJF?

 11

II Year II Sem Operating systems Lab GEC

AIM: 1(c) Write a program to implement the Priority based process

scheduling algorithm.
DESCRIPTION:
 A priority is associated with each process, and the CPU is allocated to the

process with highest priority.

 Equal-priority processes are scheduled in FCFS order.

 The large CPU burst, the lower the priority, and vice versa.

 Priorities are generally indicated by some fixed range of numbers, such as 0

to 7, or 0 to 4095. Here we assume low numbers represent high priority.

ALGORITHM:

Algorithm for Priority Based:

1- First input the processes with their burst time and priority.

2- Sort the processes, burst time and priority according to the priority.

3- Now simply apply FCFS algorithm.

 PROGRAM:

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{

 int n,bt[10],wt[10],pt[10],tt[10],swt=0,stt=0,t,t1,i,j;
 float awt,att;
 printf("Enter number of process : ");
 scanf("%d",&n);
 printf("Enter %d process times : ",n);
 for(i=0;i<n;i++)
 scanf("%d",&bt[i]);
 printf("Enter %d process priorites : ",n);
 for(i=0;i<n;i++)
 scanf("%d",&pt[i]);
 printf("Cpu time and priorities before sorting\n");
 for(i=0;i<n;i++)
 printf("%d\t%d\n",bt[i],pt[i]);
 printf("Cpu times and priorities after sorting\n");
 for(i=0;i<n;i++)
 {
 for(j=i+1;j<n;j++)
 {
 if(pt[i]>pt[j])
 {

 12

II Year II Sem Operating systems Lab GEC

 t=pt[i];
 pt[i]=pt[j];
 pt[j]=t;
 t1=bt[i];
 bt[i]=bt[j];
 bt[j]=t1;
 }
 }
 }
 for(i=0;i<n;i++)
 printf("%d\t%d\n",bt[i],pt[i]);

 wt[0]=0;
 tt[0]=stt=bt[0];
 for(i=1;i<n;i++)
 {
 wt[i]=bt[i-1]+wt[i-1];
 tt[i]=wt[i]+bt[i];
 swt+=wt[i];
 stt+=tt[i];
 }
 awt=(float)swt/n;
 att=(float)stt/n;
 printf("Cpu time\tPriority\tWaiting time\tTurn around time\n");
 for(i=0;i<n;i++)
 printf("%d\t\t%d\t\t%d\t\t%d\n",bt[i],pt[i],wt[i],tt[i]);
 printf("Average waiting time : %f\n",awt);
 printf("Average turn around time : %f\n",att);
}

OUTPUT:

Enter number of process : 3
Enter 3 process times : 3 2 5
Enter 3 process priorites : 6 2 4
Cpu time and priorities before sorting
3 6
2 2
5 4
Cpu times and priorities after sorting
2 2
5 4
3 6
Cpu time Priority Waiting time Turn around time
2 2 0 2
5 4 2 7
3 6 7 10
Average waiting time : 3.000000
Average turn around time : 5.666667

 13

II Year II Sem Operating systems Lab GEC

VIVA QUESTIONS:

1. What is the drawback of priority scheduling algorithm?

2. Differentiate preemptive and non-preemptive priority algorithm?

3. What is starvation ?

AIM: 1(d) Write a program to implement the Round Robin CPU

scheduling algorithm.

DESCRIPTION:

1. The queue structure in ready queue is of First In First Out (FIFO) type.

2. A fixed time is allotted to every process that arrives in the queue. This

fixed time is known as time slice or time quantum.

3. The first process that arrives is selected and sent to the processor for

execution. If it is not able to complete its execution within the time

quantum provided, then an interrupt is generated using an automated

timer.

4. The process is then stopped and is sent back at the end of the queue.

However, the state is saved and context is thereby stored in memory. This

helps the process to resume from the point where it was interrupted.

5. The scheduler selects another process from the ready queue and

dispatches it to the processor for its execution. It is executed until the

time Quantum does not exceed.

6. The same steps are repeated until all the process are finished.

Different formulas to be calculated in Round Robin:
1. Completion Time: Time at which process completes its execution.

2. Turn Around Time: Time Difference between completion time and arrival

time. Turn Around Time = Completion Time – Arrival Time

3. Waiting Time(W.T): Time Difference between turn around time and burst

time. Waiting Time = Turn Around Time – Burst Time

Steps to find waiting times of all processes:
1. Create an array rem_bt[] to keep track of remaining burst time of

processes. This array is initially a copy of bt[] (burst times array)

 14

II Year II Sem Operating systems Lab GEC

2. Create another array wt[] to store waiting times of processes. Initialize

this array as 0.

3. Initialize time : t = 0

4. Keep traversing the all processes while all processes are not done. Do

following for i'th process if it is not done yet.

a. If rem_bt[i] > quantum

i. t = t + quantum

ii. bt_rem[i] -= quantum;

b. Else // Last cycle for this process

i. t = t + bt_rem[i];

ii. wt[i] = t - bt[i]

iii. bt_rem[i] = 0; // This process is over

 PROGRAM:

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
 char pname[20][10];
 int n,i,bt[20],ptime[20],tq,count=0,tot=0,wt[20],twt=0,ttt=0,e[20];
 float awt,att;
 printf("enter number of process : ");
 scanf("%d",&n);
 for(i=1;i<=n;i++)
 {
 printf("enter %d process name : ",i);
 scanf(" %s",pname[i]);
 printf("enter %d process time : ",i);
 scanf("%d",&ptime[i]);
 bt[i]=ptime[i];
 }
 printf("enter time quantum : ");
 scanf("%d",&tq);
 while(count<n)
 {
 for(i=1;i<=n;i++)
 {
 if(bt[i]!=0)
 {
 if(bt[i]<=tq)
 {
 tot+=bt[i];

 15

II Year II Sem Operating systems Lab GEC

 bt[i]=0;
 e[i]=tot;
 count++;
 }
 else
 {
 bt[i]=bt[i]-tq;
 tot+=tq;
 }
 printf("%s\t%d\n",pname[i],bt[i]);
 }
 }
 }

 for(i=1;i<=n;i++)
 {
 wt[i]=e[i]-ptime[i];
 twt+=wt[i];
 ttt+=e[i];

 }
 printf("pname\tcpu time\twaiting time\tturn around time");
 for(i=1;i<=n;i++)
 printf("\n%s\t\t%d\t\t%d\t\t%d",pname[i],ptime[i],wt[i],e[i]);
 printf("\ntotal waiting time : ");
 printf("%d",twt);
 awt=(float)twt/n;
 printf("\naverage waiting time : ");
 printf("%f",awt);
 printf("\ntotal turn around time : ");
 printf("%d",ttt);
 att=(float)ttt/n;
 printf("\naverage turn around time : ");
 printf("%f\n",att);

}

OUTPUT:

Enter number of process : 3
Enter 1 process name : P1
Enter 1 process time : 6
Enter 2 process name : P2
Enter 2 process time : 5
Enter 3 process name : P3
Enter 3 process time : 8
Enter time quantum : 5
P1 1
P2 0
P3 3

 16

II Year II Sem Operating systems Lab GEC

P1 0
P3 0
Pname Cpu time Waiting time Turn around time
P1 6 10 16
P2 5 5 10
P3 8 11 19
Total waiting time : 26
Average waiting time : 8.666667
Total turn around time : 45
Average turn around time : 15.000000

VIVA QUESTIONS:

1. What are the disadvantages of RR algorithm?

2. List various applications of Round robin algorithm?

 17

II Year II Sem Operating systems Lab GEC

EXERCISE: 2

AIM: 2(a) Write a program to implement the MVT memory management

technique.

DESCRIPTION:

About MVT (Multiprogramming with a Variable Number of Tasks):

1- Multiprogramming with a Variable Number of Tasks (MVT) is an example

of dynamic partitioning.

2- MVT is the memory management technique in which each job gets just

the amount of memory it needs. That is, the partitioning of memory is

dynamic and changes as jobs enter and leave the system.

3- In variable partitioning scheme there are no partitions at the beginning.

4- Memory is given to the processes as they come.

5- MVT suffers with external fragmentation.

6- MVT is a more efficient user of resources.

7- There is only the OS area and the rest of the available RAM.

8- The memory is allocated to the processes as they enter.

9- This method is more flexible as there is no internal fragmentation and

there is no size limitation.

 PROGRAM:

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
 int phy,os,size[50],i,n;
 printf("Enter physical memory : ");
 scanf("%d",&phy);
 printf("Enter os memory : ");
 scanf("%d",&os);
 phy=phy-os;
 printf("Enter number of partitions : ");
 scanf("%d",&n);
 for(i=0;i<n;i++)
 {
 printf("Enter size of process %d : ",i+1);
 scanf("%d",&size[i]);
 if(size[i]<=phy)

 18

II Year II Sem Operating systems Lab GEC

 {
 phy=phy-size[i];
 printf("Process %d is allotted\n",i+1);
 }
 else
 printf("Process %d is blocked\n",i+1);

 }
 printf("Total external fragmentation : %d\n",phy);
}

OUTPUT:

Enter physical memory : 100
Enter os memory : 20
Enter number of process : 3
Enter size of process-1 : 10
Process 1 is allotted
Enter size of process-2 : 25
Process 2 is allotted
Enter size of process-3 : 50
Process 3 is blocked
Total external fragmentation : 45

VIVA QUESTIONS:

1. What is meant by external fragmentation?

2. What is compaction?

 19

II Year II Sem Operating systems Lab GEC

AIM: 2(b) Write a program to implement the MFT memory

management technique.

DESCRIPTION:

About MFT (Multiprogramming with a Fixed Number of Tasks):

1- Multiprogramming with a Fixed Number of Tasks (MFT) is an example of

static partitioning.

2- MFT is one of the old memory management techniques in which the

memory is partitioned into fixed size partitions and each job is assigned

to a partition.

3- The memory assigned to a partition does not change.

4- The OS is partitioned into fixed sized blocks at the time of installation.

5- It is possible to bind address at the time of compilation.

6- It is not flexible because the number of blocks cannot be changed.

7- There can be memory wastage due to fragmentation.

 PROGRAM:

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

 int phy,os,tot,size,i,pm[30],n;

 float inter=0;

 printf("Enter physical memory : ");

 scanf("%d",&phy);

 printf("Enter os memory : ");

 scanf("%d",&os);

 tot=phy-os;

 printf("Enter number of partitions : ");

 scanf("%d",&n);

 size=tot/n;

 for(i=0;i<n;i++)

 20

II Year II Sem Operating systems Lab GEC

 {

 printf("Enter size of process %d : ",i+1);

 scanf("%d",&pm[i]);

 if(pm[i]<=size)

 {

 printf("Process %d is allotted\n",i+1);

 inter=inter+(size-pm[i]);

 }

 else

 printf("Process %d is blocked\n",i+1);

 }

 printf("Total internal fragmentation : %f\n",inter);

}

OUTPUT:

Enter physical memory : 100
Enter os memory : 20
Enter number of partitions : 3
Enter size of process 1 : 15
Process 1 is allotted
Enter size of process 2 : 10
Process 2 is allotted
Enter size of process 3 : 30
Process 3 is blocked
Total internal fragmentation: 27.000000

VIVA QUESTIONS:

1. What is meant by internal fragmentation?

2. what is meant by MFT technique?

 21

II Year II Sem Operating systems Lab GEC

EXERCISE: 3

 AIM: 3 (a) Write a program to implement the FIFO page

replacement algorithm.

DESCRIPTION:

 The simplest page-replacement algorithm is a first-in, first-out (FIFO)

algorithm.
 A FIFO replacement algorithm associates with each page the time when

that page was brought into memory.
 When a page must be replaced, the oldest page is chosen.
 We can create a FIFO queue to hold all pages in memory.
 We replace the page at the head of the queue. When a page is brought

into memory, we insert it at the tail of the queue.

ALGORITHM:

Algorithm for FIFO Page Replacement:

Let capacity be the number of pages that memory can hold.

Let set be the current set of pages in memory.

1. Start traversing the pages.

a. If set holds less pages than capacity.

i. Insert page into the set one by one until the size of set

reaches capacity or all page requests are processed.

ii. Simultaneously maintain the pages in the queue to perform

FIFO.

iii. Increment page fault

b. Else

 If current page is present in set, do nothing.

 Else

i. Remove the first page from the queue as it was the first to be

entered in the memory

ii. Replace the first page in the queue with the current page in

the string.

iii. Store current page in the queue.

 22

II Year II Sem Operating systems Lab GEC

iv. Increment page faults.

2. Return page faults.

PROGRAM:

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
 int n,re[20],nf,i,f[20],h,flag1,k,j,count=0;
 printf("enter the number of pages : ");
 scanf("%d",&n);
 printf("enter the page numbers : ");
 for(i=0;i<n;i++)
 scanf("%d",&re[i]);
 printf("enter the number of frames : ");
 scanf("%d",&nf);
 printf("ref. string\tpage frames");
 for(i=0;i<nf;i++)
 {
 f[i]=-1;
 }
 for(i=0;i<n;i++)
 {
 printf("\n");
 printf("%d\t\t",re[i]);
 flag1=0;
 for(k=0;k<nf;k++)
 {
 if(re[i]==f[k])
 {
 flag1=1;
 break;
 }
 }
 if(flag1==0)
 {
 f[j]=re[i];
 j=(j+1)%nf;
 count++;
 for(h=0;h<nf;h++)
 {
 printf("%d\t",f[h]);
 }

 }
 }

 23

II Year II Sem Operating systems Lab GEC

 printf("\ntotal page faults : %d\n",count);
}

OUTPUT:

Enter the number of pages : 5
Enter the page numbers : 4 1 2 4 5
Enter the number of frames : 3
Ref. string Page frames
4 4 -1 -1
1 4 1 -1
2 4 1 2
4
5 5 1 2
Total page faults : 4

VIVA QUESTIONS:

1. What is Belady’s Anomaly?

2. What is the need of page replacement?

AIM: 3(b) Write a program to implement the LRU page replacement
algorithm

DESCRIPTION:

This algorithm use the recent past as an approximation of the near future, then
we can replace then that has not been used for the longest period of time.

ALGORITHM:

Let capacity be the number of pages that memory can hold.

Let set be the current set of pages in memory.

1. Start traversing the pages.

a. If set holds less pages than capacity

i. Insert page into the set one by one until the size of set

reaches capacity or all page requests are processed.

ii. Simultaneously maintain the recent occurred index of each

page in a map called indexes.

iii. Increment page fault

b. Else

 If current page is present in set, do nothing.

 24

II Year II Sem Operating systems Lab GEC

 Else

i. Find the page in the set that was least recently used. We find

it using index array. We basically need to replace the page

with minimum index.

ii. Replace the found page with current page.

iii. Increment page faults.

iv. Update index of current page.

2. Return page faults.

PROGRAM:

 #include<stdio.h>
#include<conio.h>
#include<string.h>
 int findmin();
 int i,j,pf=0,f,n,min,ref[40],frame[10],avail,ind=0,count=0,k,time[10];

void main()
{

 printf("enter the number of pages : ");
 scanf("%d",&n);
 printf("enter the page numbers : ");
 for(i=0;i<n;i++)
 scanf("%d",&ref[i]);
 printf("enter the number of frames : ");
 scanf("%d",&f);
 printf("page frames:");
 printf("\n");
 for(i=0;i<f;i++)
 {
 frame[i]=-1;
 time[i]=0;
 }

 for(i=0;i<n;i++)
 {

 avail=0;

 for(j=0;j<f;j++)
 {
 if(frame[j]==ref[i])
 {
 avail=1;
 count++;

 25

II Year II Sem Operating systems Lab GEC

 time[j]=count;
 break;
 }
 }
 if(avail==0)
 {
 k=findmin();
 frame[k]=ref[i];
 count++;
 time[k]=count;
 pf++;

 for(j=0;j<f;j++)
 {
 if(frame[j]!=-1)
 printf("\t%d",frame[j]);

 }
 printf("\n");
 }
 }
 printf("total page faults : %d\n",pf);

}

int findmin()
{
 min=time[0];
 ind=0;
 for(k=1;k<f;k++)
 {
 if(time[k]<min)
 {
 min=time[k];
 ind=k;
 }
 }
 return ind;
}

 26

II Year II Sem Operating systems Lab GEC

OUTPUT:

Enter the number of pages : 6
Enter the page numbers : 5 7 5 6 7 3
Enter the number of frames : 3
Page frames:
 5
 5 7
 5 7 6
 3 7 6
Total page faults : 4

VIVA QUESTIONS:
1. What is the need of page replacement?

2. Differentiate FIFO with LRU page replacement algorithm?

AIM: 3(C) Write a program to implement the Optimal page
replacement algorithm.

DESCRIPTION:

 Replace the page that will not be used for the longest period of time.

 Optimal Page Replacement has the lowest page-fault rate of all algorithms

and will never suffer from Belady's anomaly.

ALGORITHM:

The idea is simple, for every reference we do following:

 If referred page is already present, increment hit count.

 If not present, find if a page that is never referenced in future. If such a
page exists, replace this page with new page. If no such page exists, find
a page that is referenced farthest in future. Replace this page with new
page.

PROGRAM:

#include<stdio.h>
#include<conio.h>
#include<math.h>
int findoptimal();
int i,j,pf=0,nf,r,ffree=0,found,np,max,u,v,ref[40],frame[10],avail,ind[10],k;

void main()
{

 27

II Year II Sem Operating systems Lab GEC

 printf("enter the number of pages : ");
 scanf("%d",&np);
 printf("enter the page numbers : ");
 for(i=0;i<np;i++)
 scanf("%d",&ref[i]);
 printf("enter the number of frames : ");
 scanf("%d",&nf);
 printf("ref. string\tpage frames");
 for(i=0;i<nf;i++)
 {
 frame[i]=-1;
 }
 for(i=0;i<np;i++)
 {
 printf("\n");
 printf("%d\t\t",ref[i]);
 avail=0;
 for(j=0;j<nf;j++)
 {
 if(frame[j]==ref[i])
 {
 avail=1;
 for(j=0;j<nf;j++)
 printf("%d\t",frame[j]);
 break;
 }
 }
 if(avail==0)
 {
 if(ffree<nf)
 {
 k=ffree;
 ffree++;
 }
 else
 k=findoptimal(i+1);
 frame[k]=ref[i];
 pf++;
 for(j=0;j<nf;j++)
 printf("%d\t",frame[j]);
 }
 }
 printf("\ntotal page faults : %d\n",pf);

}

int findoptimal(int p)
{
 for(u=0;u<nf;u++)

 28

II Year II Sem Operating systems Lab GEC

 {
 found=0;
 for(v=p;v<np;v++)
 {
 if(frame[u]==ref[v])
 {
 ind[u]=v;
 found=1;
 break;
 }
 }
 if(found==0)
 return u;
 }
 max=ind[0];
 for(u=1;u<nf;u++)
 { if(ind[u]>max)
 {
 max=ind[u];
 r=u;
 }
 }
 return r;
}

OUTPUT:

Enter the number of pages : 10
Enter the page numbers : 2 3 4 2 1 3 7 5 4 3
Enter the number of frames : 3
Ref. string Page frames
2 2 -1 -1
3 2 3 -1
4 2 3 4
2 2 3 4
1 1 3 4
3 1 3 4
7 7 3 4
5 5 3 4
4 5 3 4
3 5 3 4
Total page faults : 6

VIVA QUESTIONS:

1. What is the advantage of OPTIMAL page replacement over FIFO and LRU?

 29

II Year II Sem Operating systems Lab GEC

EXERCISE: 4

 AIM: Write a program to simulate Bankers algorithm for dead lock
avoidance.

DESCRIPTION:

 The name was chosen because the algorithm could be used in a banking

system to ensure that the bank never allocated its available cash in such

a way that it could no longer satisfy the needs of all its customers.

 When a new process enters the system, it must declare the maximum

number of instances of each resource type that it may need.

 This number may not exceed the total number of resources in the

system.

 System has M resources and N processes

Data structures:

 Available:
 A vector of length m indicates the number of available resources of

each type.

 If Available[j] equals k, then k instances of resource type Ri are

available.

 Max:
 An n x m matrix defines the maximum demand of each process.

 If Max[i] [j] equals k, then process Pi may request at most k

instances of resource type Rj.

 Allocation:
 An n x m matrix defines the number of resources of each type

currently allocated to each process.

 If Allocation[i][j] equals k, then process Pi is currently allocated k

instances of resource type Rj.

 Need:
 An n x m matrix indicates the remaining resource need of each

process.

 30

II Year II Sem Operating systems Lab GEC

 If Need[i][j] equals k, then process Pi may need k more instances of

resource type Rj to complete its task. Note that Need[i][j] equals

Max[i][j]- Allocation [i][j].

ALGORITHM:

The algorithm for finding out whether or not a system is in a safe
state can be described as follows:

1. Let Work and Finish be vectors of length ‘m’ and ‘n’ respectively.

 Initialize: Work= Available

 Finish [i]=false; for i=1,2,……,n

2. Find an i such that both

 a) Finish [i]=false

 b) Need_i<=work

 if no such i exists goto step (4)

3. Work=Work + Allocation_i

 Finish[i]= true

 goto step(2)

4. If Finish[i]=true for all i, then the system is in safe state.

Safe sequence is the sequence in which the processes can be safely
executed.

PROGRAM:

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{

int seq[10],m,n,i,j,alloc[10][10],max[10][10],need[10][10]={0},avai[10];
int finish[10],flag, npleft,c,k=0;

 printf("enter types of resources : ");
 scanf("%d",&m);
 printf("enter available resources instance of %d types resources\n", m);
 for(i=0;i<m;i++)

 31

II Year II Sem Operating systems Lab GEC

 scanf("%d",&avai[i]);
 printf("enter number of processes : ");
 scanf("%d",&n);
 printf("enter allocation matrix");
 for(i=0;i<n;i++)
 {
 for(j=0;j<m;j++)
 {
 scanf("%d",&alloc[i][j]);

 }
 }
 printf("enter maximum resource matrix\n");
 for(i=0;i<n;i++)
 {
 for(j=0;j<m;j++)
 scanf("%d",&max[i][j]);
 }
 printf("the given allocation matrix is\n");
 for(i=0;i<n;i++)
 {
 for(j=0;j<m;j++)
 {
 printf("%d ",alloc[i][j]);

 }
 printf("\n");
 }
 printf("the need matrix is\n");
 for(i=0;i<n;i++)
 {
 for(j=0;j<m;j++)
 {
 need[i][j]=max[i][j]-alloc[i][j];
 printf("%d ",need[i][j]);

 }

 printf("\n");
 }

 printf("the available resource vector is : ");
 for(i=0;i<m;i++)
 printf("%d ",avai[i]);
 for(i=0;i<n;i++)
 finish[i]=0;
 npleft=n;
 while(npleft!=0)
 {

 32

II Year II Sem Operating systems Lab GEC

 for(i=0;i<n;i++)
 {
 c=0;
 if(finish[i]==0)
 {
 for(j=0;j<m;j++)
 {
 if(need[i][j]<=avai[j])
 c++;
 }
 if(c==m)
 {

 finish[i]=1;
 for(j=0;j<m;j++)
 avai[j]=avai[j]+alloc[i][j];
 seq[k++]=i;
 }
 }
 }
 npleft--;
 }
 flag=0;
 for(i=0;i<n;i++)
 {
 if(finish[i]==0)
 flag=1;
 }
 if(flag==1)
 printf("\nthe system is in unsafe state");
 else
 {
 printf("\nsystem is in safe sate and safe sequence is\n");
 for(i=0;i<n;i++)
 printf("p - %d\t",seq[i]);
 printf("\n");
 }

}

OUTPUT:

Enter types of resources : 3
Enter available resources instance of 3 types resources
3 3 2
Enter number of processes : 5
Enter allocation matrix
0 1 0
2 0 0

 33

II Year II Sem Operating systems Lab GEC

3 0 3
2 1 1
0 0 2
Enter maximum resource matrix
7 5 3
3 2 2
9 0 2
2 2 2
1 3 3
The given allocation matrix is
0 1 0
2 0 0
3 0 3
2 1 1
0 0 2
The need matrix is
7 4 3
1 2 2
6 0 -1
0 1 1
1 3 1
The available resource vector is : 3 3 2
System is in safe sate and safe sequence is
p - 1 p - 3 p - 4 p - 0 p - 2

VIVA QUESTIONS:

1. What are the data structures used in this algorithm?

2. Define safe state?

3. Define safe sequence?

4. Is both deadlock state and unsafe state are same?

 34

II Year II Sem Operating systems Lab GEC

EXERCISE: 5

 AIM: 5(a) Write a program to implement the FCFS disk scheduling
algorithm.

DESCRIPTION:

FCFS is the simplest of all the Disk Scheduling Algorithms. In FCFS, the
requests are addressed in the order they arrive in the disk queue.

 The I/O requests are served or processes according to their arrival.

 The request arrives first will be accessed and served first. Since it follows
the order of arrival, it causes the wild swings from the innermost to the
outermost tracks of the disk and vice versa.

 The farther the location of the request being serviced by the read/write
head from its current location, the higher the seek time will be.

PROGRAM:

#include<stdio.h>
#include<conio.h>
void main()
{
 int n,i,queue[30],head,diff,seek=0;
 printf("enter number of queue elements : ");
 scanf("%d",&n);
 printf("enter the work queue : ");
 for(i=0;i<n;i++)
 scanf("%d",&queue[i]);
 printf("enter the disk head starting position : ");
 scanf("%d",&head);
 for(i=0;i<n;i++)
 {
 diff=abs(head-queue[i]);
 seek=seek+diff;

 head=queue[i];
 }
 printf("total seek time : %d\n",seek);

}

OUTPUT:

 Enter number of queue elements : 5
Enter the work queue : 10 50 40 30 20

 35

II Year II Sem Operating systems Lab GEC

Enter the disk head starting position : 15
Total seek time : 75

VIVA QUESTIONS:

1. How requests are serviced using FCFS algorithm?

2. What is the need of Disk scheduling?

3. Define seek time?

4. Define random access time?

5. Define Rotational latency?

AIM: 5(b) Write a program to implement the SSTF disk scheduling
algorithm.

DESCRIPTION:

 In SSTF (Shortest Seek Time First), requests having shortest seek time
are executed first.

 So, the seek time of every request is calculated in advance in queue and
then they are scheduled according to their calculated seek time.

 As a result, the request near the disk arm will get executed first.

 SSTF is certainly an improvement over FCFS as it decreases the average
response time and increases the throughput of system.

ALGORITHM:
 Let request array represents an array storing indexes of tracks that have

been requested. ‘head’ is the position of disk head.
 Find the positive distance of all tracks in the request array from head.
 Find a track from requested array which has not been accessed/serviced

yet and has minimum distance from head.
 Increments the total seek count with this distance.
 Currently serviced track position now becomes the new head position.
 Go to step 2 until all tracks in request array have not been serviced.

PROGRAM:

#include<stdio.h>
#include<conio.h>
void main()
{

 36

II Year II Sem Operating systems Lab GEC

 int n,i,queue[30],visit[30],head,j,min,seek=0,pos;
 printf("enter number of queue elements : ");
 scanf("%d",&n);
 printf("enter the work queue : ");
 for(i=0;i<n;i++)
 {
 scanf("%d",&queue[i]);
 visit[i]=0;
 }
 printf("enter the disk head starting position : ");
 scanf("%d",&head);
 for(i=0;i<n;i++)
 {
 min=999;
 for(j=0;j<n;j++)
 {
 if(visit[j]==0)
 {
 if(min>abs(head-queue[j]))
 {
 min=abs(head-queue[j]);
 pos=j;
 }
 }
 }
 visit[pos]=1;

 head=queue[pos];
 seek=seek+min;
 }
 printf("total seek time : %d\n",seek);

}
OUTPUT:

Enter number of queue elements : 5
Enter the work queue : 10 50 40 30 20
Enter the disk head starting position : 15
Total seek time : 45

VIVA QUESTIONS:

1. How requests are serviced using SSTF scheduling algorithm?

2. Which disk scheduling algorithm is best and why?

 37

II Year II Sem Operating systems Lab GEC

AIM: 5(c) Write a program to implement the SCAN disk scheduling
algorithm.

DESCRIPTION:

 In SCAN algorithm the disk arm moves into a particular direction and
services the requests coming in its path and after reaching the end of
disk, it reverses its direction and again services the request arriving in its
path.

 So, this algorithm works like an elevator and hence also known as
elevator algorithm.

 As a result, the requests at the mid-range are serviced more and those
arriving behind the disk arm will have to wait.

ALGORITHM:

 The elevator algorithm (also scan) is a disk scheduling algorithm to
determine the motion of the disk's arm and head in servicing read and
write requests.

 This algorithm is named after the behavior of a building elevator, where
the elevator continues to travel in its current direction (up or down) until
empty, stopping only to let individuals off or to pick up new individuals
heading in the same direction.

 From an implementation perspective, the drive maintains a buffer of
pending read/write requests, along with the associated cylinder number
of the request.

 When a new request arrives while the drive is idle, the initial arm/head
movement will be in the direction of the cylinder where the data is stored,
either in or out.

 As additional requests arrive, requests are serviced only in the current
direction of arm movement until the arm reaches the edge of the disk.

 When this happens, the direction of the arm reverses, and the requests
that were remaining in the opposite direction are serviced, and so on.

PROGRAM:

#include<stdio.h>
#include<conio.h>
void main()
{
 int size,n,q[20],visit[20],t,head,pos,seek=0,i,j;
 printf("enter number of queue elements : ");
 scanf("%d",&n);
 printf("enter the work queue : ");
 for(i=0;i<n;i++)

 38

II Year II Sem Operating systems Lab GEC

 {
 scanf("%d",&q[i]);
 visit[i]=0;
 }

 printf("enter the disk head starting position : ");
 scanf("%d",&head);
 for(i=0;i<n;i++)
 {
 for(j=i+1;j<n;j++)
 {
 if(q[i]>q[j])
 {
 t=q[i];
 q[i]=q[j];
 q[j]=t;
 }
 }
 }
 for(i=n;i>=1;i--)
 {
 if(q[i]<head)
 {
 seek=seek+abs(head-q[i]);
 visit[i]=1;
 head=q[i];
 }
 }
 for(i=0;i<n;i++)
 {
 if(visit[i]==0)
 {

 seek=seek+abs(head-0);
 head=0;
 break;
 }
 }

 for(i=0;i<n;i++)
 {
 if(visit[i]==0)
 {
 seek=seek+abs(head-q[i]);

 visit[i]=1;
 head=q[i];
 }
 }

 39

II Year II Sem Operating systems Lab GEC

 printf("total seek time : %d\n",seek);

}
OUTPUT:

Enter number of queue elements : 5
Enter the work queue : 10 50 40 30 20
Enter the disk head starting position : 15
Total seek time : 65

VIVA QUESTIONS:

1. Explain about SCAN disk scheduling?

2. What is the other name for SCAN algorithm?

AIM: 5(d) Write a program to implement the C-SCAN disk
scheduling algorithm.

DESCRIPTION:

 In SCAN algorithm, the disk arm again scans the path that has been
scanned, after reversing its direction.

 So, it may be possible that too many requests are waiting at the other
end or there may be zero or few requests pending at the scanned area.

 These situations are avoided in C-SCAN algorithm in which the disk arm
instead of reversing its direction goes to the other end of the disk and
starts servicing the requests from there.

 So, the disk arm moves in a circular fashion and this algorithm is also
similar to SCAN algorithm and hence it is known as C-SCAN (Circular SC

PROGRAM:
#include<stdio.h>
#include<conio.h>
void main()
{
 int size,n,q[20],visit[20],t,head,pos,seek=0,i,j,max,tot=0;
 float average=0;

 printf("enter the max range of disk : ");
 scanf("%d",&size);
 max=size-1;
 printf("enter the disk head starting position : ");
 scanf("%d",&head);
 printf("enter number of queue elements : ");

 40

II Year II Sem Operating systems Lab GEC

 scanf("%d",&n);
 printf("enter the work queue : ");
 for(i=0;i<n;i++)
 {
 scanf("%d",&q[i]);
 visit[i]=0;
 }

 for(i=0;i<n;i++)
 {
 for(j=i+1;j<n;j++)
 {
 if(q[i]>q[j])
 {
 t=q[i];
 q[i]=q[j];
 q[j]=t;
 }
 }
 }
 for(i=0;i<n;i++)
 {
 if(q[i]>head)
 {
 seek=abs(head-q[i]);
 tot=tot+seek;

printf("disk head moves from %d to %d with seek
%d\n",head,q[i],seek);

 visit[i]=1;
 head=q[i];
 }
 }

 seek=abs(head-size);
 tot=tot+seek;

printf("disk head moves from %d to %d with seek
%d\n",head,size,seek);

 head=size;

 seek=abs(size-0);
 tot=tot+seek;

printf("disk head moves from %d to %d with seek
%d\n",size,0,seek);

 head=0;

 for(i=0;i<n;i++)

 41

II Year II Sem Operating systems Lab GEC

 {
 if(visit[i]==0)
 {
 seek=abs(head-q[i]);
 tot=tot+seek;

printf("disk head moves from %d to %d with seek
%d\n",head,q[i],seek);

 visit[i]=1;
 head=q[i];
 }
 }
 printf("total seek time : %d\n",tot);
 average=(float)tot/n;
 printf("average seek time : %f\n",average);

}

OUTPUT:

Enter the max range of disk: 200
Enter the disk head starting position: 50
Enter number of queue elements: 8
Enter the work queue: 90 120 35 122 38 128 65 68
Disk head moves from 50 to 65 with seek15
Disk head moves from 65 to 68 with seek 3
Disk head moves from 68 to 90 with seek 22
Disk head moves from 90 to 120 with seek 30
Disk head moves from 120 to 122 with seek 2
Disk head moves from 122 to 128 with seek 6
Disk head moves from 128 to 200 with seek 72
Disk head moves from 200 to 0 with seek 200
Disk head moves from 0 to35 with seek 35
Disk head moves from 35 to 38 with seek 3
Total seek time: 388
Average seek time: 48.500000

VIVA QUESTIONS:

1. What is the process of C-SCAN scheduling algorithm?

2. Compare SCAN with C-SCAN?

 42

II Year II Sem Operating systems Lab GEC

ADDITIONAL LAB EXPERIMENTS:

1. AIM: Write a C program to implement Shortest Job First CPU
scheduling algorithm with preemption

DESCRIPTION:

 Preemptive SJF. In Preemptive SJF Scheduling, jobs are put into the
ready queue as they come. A process with shortest burst time begins
execution.

 If a process with even a shorter burst time arrives, the current process is
removed or preempted from execution, and the shorter job is allocated
CPU cycle

PROGRAM:
#include<stdio.h>
struct
{

int bt,wt,tat,at,ft;
}p[20];
void main()
{
 int n,i,min,nrs,limit,rbt[20],m;
 clrscr();
 printf("enter the no of processses");
 scanf("%d",&n);
 printf("enter the arrival times");
 for(i=1;i<=n;i++)
 {
 printf("enterthe arrvial time %d",i);
 scanf("%d",&p[i].at);
 }
 limit=nrs=p[1].at;
 for(i=1;i<=n;i++)
 {
 printf("enter the burest times of process %d",i);
 scanf("%d",&p[i].bt);
 limit+=p[i].bt;
 rbt[i]=p[i].bt;
 }
 do
 {
 min=999;
 for(i=1;p[i].at<=nrs&&i<=n;i++)
 {
 if(rbt[i]>0&&min>rbt[i])
 {
 m=i;

 43

II Year II Sem Operating systems Lab GEC

 min=rbt[i];
 }
 }
 rbt[m]-=1;
 nrs+=1;
 if(rbt[m]==0)
 {
 p[m].ft=nrs;
 p[m].tat=p[m].ft-p[m].at;
 p[m].wt=p[m].tat-p[m].bt;
 }
 }while(nrs<limit);
 printf("processes \t bt\tft\ttat\twt\n");
 for(i=1;i<=n;i++)
 {
 printf("%d\t%d\t%d\t%d\t%d\n",i,p[i].bt,p[i].ft,p[i].tat,p[i].wt);
 }
 getch();
}

OUTPUT:

VIVA QUESTIONS:

1. Difference between preemptive SJF and Non-preemptive SJF?

2. Define SRTF?

 44

II Year II Sem Operating systems Lab GEC

2. AIM: Write a C program to implement Priority CPU scheduling
algorithm with preemption

DESCRIPTION:

 In Preemptive Priority Scheduling, at the time of arrival of a process in
the ready queue, its Priority is compared with the priority of the other
processes present in the ready queue as well as with the one which is
being executed by the CPU at that point of time.

 The One with the highest priority among all the available processes will
be given the CPU next.

PROGRAM:
#include<stdio.h>
struct
{

int bt,wt,tat,at,ft,pt;
}p[20];
void main()
{
 int n,i,min,nrs,limit,rbt[20],m,pr[20];
 clrscr();
 printf("enter the no of process");
 scanf("%d",&n);
 printf("enter the arival times");
 for(i=1;i<=n;i++)
 {
 scanf("%d",&p[i].at);
 }
 limit=nrs=p[1].at;
 printf("enter the priority");
 for(i=1;i<=n;i++)
 {
 scanf("%d",&p[i].pt);
 pr[i]=p[i].pt;
 }

 printf("enter the burest times");

for(i=1;i<=n;i++)
 {
 scanf("%d",&p[i].bt);
 limit+=p[i].bt;
 rbt[i]=p[i].bt;
 }
 do
 {
 min=999;
 for(i=1;p[i].at<=nrs&&i<=n;i++)
 {

 45

II Year II Sem Operating systems Lab GEC

 if(rbt[i]>0&&min>pr[i])
 {
 m=i;
 min=pr[i];
 }
 }
 rbt[m]-=1;
 nrs+=1;
 if(rbt[m]==0)
 {
 p[m].ft=nrs;
 p[m].tat=p[m].ft-p[m].at;
 p[m].wt=p[m].tat-p[m].bt;
 }
 }while(nrs<limit);
 printf("process \t bt \t ft \t tat \t wt \n");
 for(i=1;i<=n;i++)
 {
 printf("%d\t%d\t%d\t%d\t%d\n",i,p[i].bt,p[i].ft,p[i].tat,p[i].wt);
 }
 getch();
}

OUTPUT:

VIVA QUESTIONS:

1. Difference between preemptive priority and non-preemptive priority?

2. Define calculation of waiting time and turnaround time?

