
 1

DATABASE MANAGEMENT SYSTEMS LAB

 FACULTY MANUAL
II Year II Semester

 Prepared by
 Dr. S. Narayana Mrs. G. Keerthi
 Professor Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)
Seshadrirao Knowledge Village, Gudlavalleru – 521356

 2

II Year II Sem Database Management Systems Lab
GEC

INSTITUTE VISION & MISSION

GUDLAVALLERU ENGINEERING COLLEGE
(An Autonomous Institution with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521356

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Institute Vision
To be a leading institution of engineering education and research, preparing students
for
 leadership in their fields in a caring and challenging learning environment.

Institute Mission

 To produce quality engineers by providing state-of-the-art engineering
education.

 To attract and retain knowledgeable, creative, motivated and highly skilled
individuals whose leadership and contributions uphold the college tenets of
education, creativity, research and responsible public service.

 To develop faculty and resources to impart and disseminate knowledge and
information to students and also to society that will enhance educational level,
which in turn, will contribute to social and economic betterment of society.

 To provide an environment that values and encourages knowledge acquisition
and academic freedom, making this a preferred institution for knowledge
seekers.

 To provide quality assurance.
 To partner and collaborate with industry, government, and R&D institutes to

develop new knowledge and sustainable technologies and serve as an engine
for facilitating the nation’s economic development.

 To impart personality development skills to students that will help them to
succeed and lead.

 To instil in students the attitude, values and vision that will prepare them to
lead lives of personal integrity and civic responsibility.

 To promote a campus environment that welcomes and makes students of all
races, cultures and civilizations feel at home.

 Putting students face to face with industrial, governmental and societal
challenges.

 3

II Year II Sem Database Management Systems Lab
GEC

 DEPARTMENT VISION & MISSION

VISION
To be a Centre of Excellence in Computer Science and Engineering education and training to
meet the challenging needs of the industry and society.

MISSION
 To impart quality education through well-designed curriculum in tune with the

growing
software needs of the industry.

 To serve our students by inculcating in them problem solving, leadership, teamwork
skills and the value of commitment to quality, ethical behavior & respect for others.

 To foster industry-academia relationship for mutual benefit and growth.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Identify, analyze, formulate and solve Computer Science and Engineering problems
 both independently and in a team environment by using the appropriate modern tools.

PEO2: Manage software projects with significant technical, legal, ethical, social, environmental
 and economic considerations.
PEO3: Demonstrate commitment and progress in lifelong learning, professional development,

leader ship and communicate effectively with professional clients and the public.

 4

II Year II Sem Database Management Systems Lab
GEC

PROGRAM OUTCOMES (POs)
Engineering students will be able to:
PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering
 fundamentals, and an engineering specialization to the solution of complex engineering
 problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze
complex
 engineering problems reaching substantiated conclusions using first principles of
 mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering
problems
 and design system components or processes that meet the specified needs with
 appropriate consideration for the public health and safety, and the cultural, societal,
and
 environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and
 research methods including design of experiments, analysis and interpretation of data,
and
 synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and
 modern engineering and IT tools including prediction and modeling to complex
 engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to
 assess societal, health, safety, legal and cultural issues and the consequent
responsibilities
 relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional
engineering
 solutions in societal and environmental contexts, and demonstrate the knowledge of,
and
 need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and
 norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or
 leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with
the
 engineering community and with society at large, such as, being able to comprehend
and
 write effective reports and design documentation, make effective presentations, and
give
 and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of
the
 engineering and management principles and apply these to one’s own work, as a
member
 and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to
 engage in independent and life-long learning in the broadest context of technological
 change.

 5

II Year II Sem Database Management Systems Lab
GEC

PROGRAM SPECIFIC OUTCOMES (PSOs)
Students will be able to
1.

PSO1: Design, develop, test and maintain reliable software systems and intelligent
systems. PSO2: Design and develop web sites, web apps and mobile apps.

Course Objectives
 To familiarize with creation of database and formulate SQL solutions to manipulate

the
 database.

 To disseminate knowledge on integrity constraints, triggers and PL/SQL programs
in a
 database environment.

Course Outcomes
Students will be able to

 create relational database with constraints.
 formulate simple and complex queries using features of Structured Query

Language (SQL) for storage, retrieval and manipulation of data in a relational
database.

 create views on relational database based on the requirements of users.
 implement PL/SQL programs for processing multiple SQL statements.
 implement triggers on a relational database.

 Mapping Of Course Outcomes With Program Outcomes

ADVANCED DATA STRUCTURES
AND ALGORITHMS LAB

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

PSO
1

PSO
2

CO1:Create relational database
with constraints

3 3 3 2 2 2 2 2 2 3

CO2:Formulate simple and
complex queries using features
of Structured Query Language
(SQL) for storage, retrieval and
manipulation of data in a
relational database

3 3 3 2 2 2 2 2 2 3

CO3:Create views on relational
database based on the
requirements of users

3 2 2 2 2 2 1 2 2 2

CO4:Implement PL/SQL
programs for processing multiple
SQL statements

CO5: Implement triggers on a
relational database

3 3 3 2 2 2 1 2 2

 6

II Year II Sem Database Management Systems Lab
GEC

LIST OF EXPERIMENTS

ADDITIONAL LAB EXPERIMENTS

S. No Program Name Mapping
Of Co’s Page No

1 Execute DDL, DML, DCL and TCL Commands. CO1 7

2
Implement the following Integrity Constraints on Database
a. Primary Key b. Foreign Key c. Unique
d. Not NULL e. Check.

CO1 16

3 Execute a single line and group (Aggregate) functions on
Relation. CO2 23

4 Execute Set operations on various Relations. CO2 30

5 Execute Group by, Order by clause on Relations. CO2 33

6 Execute Sub Queries and Co-Related Nested Queries on
Relations. CO2 37

7 Perform the following join operations
a. Cross b. Inner c. Outer (left, right, full) d. Self CO2 48

8 Creating Views. CO3 52

9 Write PL/SQL basic programs. CO4 55

10 Write a PL/SQL block for transaction operations of a
typical application using triggers.

CO4,
CO5 65

S. No Program Name Mapping
Of COs Page No

1 Execute Date functions CO1, CO2 69

2 Execute Pl/SQL commands for exception handling CO4, CO5 71

3 Execute PL/SQL code for procedure Procedures CO4, CO5 73

 7

II Year II Sem Database Management Systems Lab
GEC

EXERCISE: 1
AIM: Execute DDL, DML, DCL and TCL Commands.
Description
Structured query language (SQL) is a programming language used for storing and
managing data in RDBMS.
Different data languages are:

1. DDL
2. DML
3. TCL
4. DCL

1. Data Definition Language(DDL)
DDL statements or commands are used to define database structure or schema.

1. Create
2. Alter
3. Drop
4. Truncate
5. Rename

CREATE
 Create command is used to create a table i.e create table command defines

each column of the table uniquely.
 Each column has minimum of three attributes.
 Those are name, datatype, size.

Syntax

Create table <tablename>(<attribute><datatype(size)>,…..);

Example
 Create table player(id number(10),name varchar2(20));
 Table created.
 Desc player;

Output

2. ALTER
Alter command is used to alter the structure of a database.

Syntax

alter table<tablename>add(<newattribute><datatype(size)>);

 8

Example
alter table player add(event varchar2(10));
Table Altered.
desc player

Output

3. RENAME
Rename will be in two situations.

1. To change the name of the table.
2. To change the name of the column.

Syntax

i) alter table tablename rename to players.

Example

alter table player rename to players;
Table altered.
desc players;

Output

ii) alter table tablename column<old-column> to <new-coloumn>

Example

alter table players rename column Event to Events;
table altered.
desc players;

Output

 9

4. DROP

 Drop command is used to delete objects from the database i.e it will destroy
table and all data which will be recorded in it.

Syntax
Drop table<table name>;

Example

Drop table players;
table dropped.
desc players;

Output

5. TRUNCATE

 In Truncate command, table rows,indexes,privilege will also be removed.

Syntax

Truncate table<tablename>

Example

truncate table players;
select * from players;

Output
 Object to be truncated.

No data found.

2. DATA MANIPULATION LANGUAGES(DML)

 DML is used for managing data within schema objects.
 Some commands are:
1. insert

 10

2. update
3. delete
4. select

INSERT

 Insert command is used to insert data into a table.

Syntax

Insert into <table name> values(data1,data2,….);

Example

Insert into players values(1,’tanuja’);
1 row created.
Select * from players;

Output

2. UPDATE

 Update command is used to update existing data with the table.

Syntax

update<table tablename>set column name = value where condition;

Example

Update players set name = ‘tanu’ where id = 1;
1 row is updated.
Select * from players;

Output

3. DELETE

 11

 Delete command is used to delete all records from a table, the spaces for the
record remain.

Syntax

 To delete a particular row.
 Delete from <table name>where condition;

Example
 Delete from players where id = 1;
 Select * from players;

Output

4. SELECT

 Select command is used to retrieve data from a database.

Syntax
 select * from tablename;

Example
 select * from players;

TCL commands: TCL statements allow you to control and manage transactions to
maintain the integrity of data with SQL statements.

1. COMMIT
 Commit command is used to permanently save any transaction into database.

Syntax:
 commit;

Example
 create table tanuja(roll number(30),name varchar2(30),branch varchar2(30));

table created.
Insert into tanuja values(8,’tanu’,’cse’);
1 row created.
Insert into tanuja values(9,’priya’,’cse’);
1 row created.

 12

Output

2. ROLLBACK:

 This command restores the database to last commited state.
 It is also use with savepoint command to jump to a savepoint in a transaction.

Syntax
 rollback to savepoint name;

Example
 create table sri(roll number(10),name varchar2(10) ,branch varchar2(10),marks

number(10));
Table created.
Insert into sri values(1,’tanu’,’cse’,50);
1 row created.
Insert into sri values(2,’anu’,’cse’,50);
1 row created.
Savepoint A;
Savepoint created.
Insert into sri values(3,’anuja’,’cse’,50);
1 row created.
Savepoint B;
Savepoint created.
Insert into sri values(4,’uha’,’cse’,50);
1 row created.
Rollback to savepoint B;
Rollback complete.
Select * from sri;

Output

 13

3. SAVEPOINT

 It is used to temporarily save a transaction so that you can rollback to that
point when ever necessary.

Syntax
 Savepoint savepoint name;

Example
 create table sri(id number(10),name varchar2(10));
 table created.
Insert into sri values(1,’tanu’,’cse’,50);
1 row created.
Insert into sri values(2,’anu’,’cse’,50);
1 row created.
Savepoint A;
Savepoint created.

Output

 14

DCL COMMANDS

1. GRANT:
 It gives acces privilege to data base

Syntax
 grant create session to username;

Example

Create user cse identified by tanu;
User created.
Grant connect,resource to cse;
Grant succeded.

Output

2. REVOKE

 Take back permissions from user.

Syntax
 Revoke session from username;

Example
 Revoke connect, resource from tanuja;
 Revoke succeeded.

VIVA QUESTIONS

1. List out DDL, DML, TCL and DCL commands.

 15

II Year II Sem Database Management Systems Lab
GEC

2. Difference between Truncate and Drop.
3. Difference between Commit and Savepoint.
4. Creation of a table.

 16

II Year II Sem Database Management Systems Lab
GEC

EXERCISE: 2
AIM: Implement the following Integrity Constraints

a) Primary key
b) Foreign key
c) Unique key
d) NOT NULL and Check

CONSTRAINTS
 KEY CONSTRAINTS

o SUPER KEY – set of one or more attributes that uniquely identifies a tuple
in a relation.

o CANDIDATE KEY – minimal set of attributes that uniquely identifies a
tuple in a relation.

o PRIMARY KEY – is a key which uniquely identifies a tuple in a relation.
the two properties of primary key are unique and not null.

o FOREIGN KEY – Ensure the referential integrity of the data in one table
to match values in another table.

 INTEGRITY CONSTRAINTS
o CHECK - Ensures that the value in a column meets a specific condition

E.g. check (account_balance>0)
o NOT NULL - Indicates that a column cannot store NULL value.

E.g. Account_number char(10) not null
o UNIQUE - Ensures that each row for a column must have a unique value.

E.g. unique(Name, DOB)

DEFINING DIFFERENT CONSTRAINTS ON A TABLE
A) PRIMARY KEY CONSTRAINT
 PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Ensures

that a column (or combination of two or more columns) have a unique identity
which helps to find a particular record in a table more easily and quickly.

 Syntax
create table <table name>(<attribute><datatype(<size>)> primary key,-------,--
-);
 Example: create table students(sid int primary key, name varchar(20),age
int);
 OR
 create table students(sid int,name varchar(20),age int,primary key(id));

(i) WRITE A QUERY TO CREATE STD_MSTR TABLE BY APPLYING
PRIMARY KEY CONSTRAINT

SQL> CREATE TABLE STD_MSTR(SNO VARCHAR2(10) PRIMARY
KEY,SNAME VARCHAR2(20),DEPARTMENT VARCHAR2(10));
OUTPUT:-
Table Created

(ii) WRITE A QUERY TO DESCRIBE THE STRUCTURE OF STD-MSTR
TABLE

SQL> DESC STD_MSTR;
OUTPUT:-

Name Null? Type

SNO NOT NULL VARCHAR2(10)

SNAME VARCHAR2(20)

 17

II Year II Sem Database Management Systems Lab
GEC

DEPARTMENT VARCHAR2(10)

(iii) WRITE A QUERY TO INSERT VALUES INTO STD_MSTR TABLE

SQL> INSERT INTO STD_MSTR
VALUES('08541F0043','SRINU','MCA');
OUTPUT:- 1 Row Created
SQL> INSERT INTO STD_MSTR VALUES('08541F0042','SIVA','MCA');
OUTPUT:- 1 Row Created
SQL> INSERT INTO STD_MSTR VALUES('08541F0041','TIGER','MBA');
OUTPUT:- 1 Row Created
SQL> INSERT INTO STD_MSTR VALUES('08541F0042','PANDU','EEE');
OUTPUT:-
ERROR at line 1:
ORA-00001: unique constraint (08541F0041.SYS_C003624) violated
SQL> INSERT INTO STD_MSTR VALUES('','PANDU','ECE');
OUTPUT:-
ERROR at line 1:
ORA-01400: cannot insert NULL into ("08541F0041"."STD_MSTR"."SNO")

(iv) WRITE A QUERY TO DISPLAY STD_MSTR TABLE INFORMATION
SQL> SELECT * FROM STD_MSTR;
OUTPUT:-

SNO SNAME DEPARTMENT

08541F0043 SRINU MCA

08541F0042 SIVA MCA

08541F0041 TIGER MBA

B) FOREIGN KEY CONSTRAINT
 FOREIGN KEY - Ensure the referential integrity of the data in one table to

match values in another table.
 Syntax: create table <tablename>(<attribute><datatype(<size>)>,-----,foreign

key(<attribute>) references <tablename>(<attribute>));
 Example

Create table student (id int,name varchar(9));
Create table enrolled (eid int,course varchar(20),foreign
key(eid)references student(id));

(i) WRITE A QUERY TO CREATE STD_LIB TABLE BY APPLYING
FOREIGN KEY CONSTRAINT

SQL> CREATE TABLE STD_LIB(STDNO VARCHAR2(10)
REFERENCES STD_MSTR(SNO), BOOKNO
VARCHAR2(10),BOOKNAME VARCHAR2(15),AUTHOR
VARCHAR2(10));
OUTPUT:-
Table Created

(ii) WRITE A QUERY TO DESCRIBE THE STRUCTURE OF STD-LIB
TABLE

SQL> DESC STD_LIB;
OUTPUT:-

Name Null? Type

 18

II Year II Sem Database Management Systems Lab
GEC

STDNO VARCHAR2(10)
BOOKNO VARCHAR2(10)

BOOKNAME VARCHAR2(15)
AUTHOR VARCHAR2(10)

(iii) WRITE A QUERY TO INSERT VALUES INTO STD_LIB TABLE

SQL> INSERT INTO STD_LIB
VALUES('08541F0042','CP43','C++','BAVE');
OUTPUT:- 1 Row Created

SQL> INSERT INTO STD_LIB VALUES('08541A0541','100','JAVA','SIVA
NAGA');
OUTPUT:- 1 Row Created
SQL> INSERT INTO STD_LIB
VALUES('08541A0542','255','C++','RAMS');
OUTPUT:-
ERROR at line 1:
ORA-02291: integrity constraint (08541F0041.SYS_C003656) violated -
parent key not found

(iv) WRITE A QUERY TO DISPLAY TABLE INFORMATION
SQL> SELECT * FROM STD_LIB;
OUTPUT:-

STDNO BOOKNO BOOKNAME AUTHOR

08541A0542 100 C++ RAMS

08541A0541 255 JAVA SIVA NAGA

C) UNIQUE KEY CONSTRAINT

 UNIQUE - Ensures that each row for a column must have a unique value
Create table student (sid int unique, name varchar(20), age int);

(i) WRITE A QUERY TO CREATE PRODUCT TABLE BY APPLYING
UNIQUE KEY CONSTRAINT

SQL> CREATE TABLE PRODUCT(PRODUCTID
NUMBER(3),STANDARDPRICE NUMBER(5),STARTDATE
DATE,ENDDATE DATE UNIQUE);
OUTPUT:-
Table Created

(ii) WRITE A QUERY TO DESCRIBE THE STRUCTURE OF PRODUCT
TABLE

SQL> DESC PRODUCT;
OUTPUT:-

Name Null? Type
PRODUCTID NUMBER(3)

STANDARDPRICE NUMBER(5)
STARTDATE DATE

 19

II Year II Sem Database Management Systems Lab
GEC

ENDDATE DATE

(iii) WRITE A QUERY TO INSERT VALUES INTO PRODUCT TABLE
SQL> INSERT INTO PRODUCT VALUES(1,25,'12-SEP-08','12-AUG-09');
OUTPUT:- 1 Row Created
SQL> INSERT INTO PRODUCT VALUES(2,35,'12-OCT-08','12-SEP-09');
OUTPUT:- 1 Row Created
SQL> INSERT INTO PRODUCT VALUES(107,125,'17-JUL-08','12-AUG-
09');
OUTPUT:-
ERROR at line 1:
ORA-00001: unique constraint (08541F0041.SYS_C003561) violated

(iv) WRITE A QUERY TO DISPLAY PRODUCT TABLE INFORMATION
SQL> SELECT * FROM PRODUCT;
OUTPUT:-

PRODUCTID STANDARDPRICE STARTDATE ENDDATE
1 25 12-SEP-08 12-AUG-09
2 35 12-OCT-08 12-SEP-09

D) NOT NULL CONSTRAINT

 NOT NULL - Indicates that a column cannot store NULL value

 Syntax:<column name><type>(<size>) not null
Create table student (sid int not null,name varchar(20),age int);

(i) WRITE A QUERY TO CRATE ACCOUNTINFO TABLE BY APPLYING
NOT NULL CONSTRAINT ON ACCNO FIELD

SQL> CREATE TABLE ACCOUNTINFO(ACCNO NUMBER(10) NOT
NULL,NAME VARCHAR2(20),ACCTYPE
VARCHAR2(20),TRANSACTION VARCHAR2(20), TRAN_DATE
DATE,AMOUNT NUMBER(8,2));
OUTPUT:-
Table Created

(ii) WRITE A QUERY TO DESCRIBE THE STRUCTURE OF
ACCOUNTINFO TABLE

SQL> DESC ACCOUNTINFO;
OUTPUT:-

Name Null? Type
ACCNO NOT NULL NUMBER(10)
NAME VARCHAR2(20)

ACCTYPE VARCHAR2(20)
TRANSACTION VARCHAR2(20)

TRAN_DATE DATE
AMOUNT NUMBER(8,2)

(iii) WRITE A QUERY TO INSERT VALUES INTO ACCOUNTINFO TABLE

SQL> INSERT INTO ACCOUNTINFO VALUES(1092018805,'SRINU',
'SAVINGS', 'DEPOSIT','18-AUG-2009',15000);
OUTPUT:- 1 Row Created

 20

II Year II Sem Database Management Systems Lab
GEC

SQL> INSERT INTO ACCOUNTINFO VALUES(1092017705,'SIVA',' ',
'DEPOSIT', '29-AUG-2009',35000);
OUTPUT:- 1 Row Created
SQL> INSERT INTO ACCOUNTINFO
VALUES('','SAIBABA','CURRENT','WITHDRAW', '05-AUG-2009',15000);
OUTPUT:-
ERROR at line 1:
ORA-01400: cannot insert NULL into
("08541F0041"."ACCOUNTINFO"."ACCNO")

(iv) WRITE A QUERY TO DISPLAY ACCOUNINFO TABLE
INFORMATION

SQL> SELECT * FROM ACCOUNTINFO;
OUTPUT:-

ACCNO NAM
E

ACCTYP
E

TRANSACTIO
N

TRAN_DAT
E

AMOUN
T

109201880
5

SRIN
U SAVINGS DEPOSIT 18-AUG-09 15000

109201770
5 SIVA DEPOSIT 29-AUG-09 35000

E) CHECK CONSTRAINT
 CHECK - Ensures that the value in a column meets a specific condition
 Syntax:<column name><type>(<size>)check(<logical expression>)

E.g. create table Student (s_id int NOT NULL CHECK(s_id > 0),
Name varchar(60) NOT NULL, Age int);

(i) WRITE A QUERY TO CREATE A ORDERINFO1 TABLE BY
APPLYING CHECK CONSTRAINT

SQL> CREATE TABLE ORDER(ORD_ID NUMBER(5)
CHECK(ORD_ID>100), ORD_DATE DATE,CUST_ID
NUMBER(5),QUANTITY NUMBER(5));
OUTPUT:-
Table Created

(ii) WRITE A QUERY TO DESCRIBE THE STRUCTURE OF ORDERINFO1
TABLE

SQL> DESC ORDERINFO1;
OUTPUT:-

Name Null? Type
ORD_ID NUMBER(5)

ORD_DATE DATE
CUST_ID NUMBER(5)

QUANTITY NUMBER(5)

(iii) WRITE A QUERY TO INSERT VALUES INTO ORDERINFO1 TABLE
SQL> INSERT INTO ORDER VALUES(101,'12-OCT-2008',100,1600);
OUTPUT:- 1 Row Created

 21

II Year II Sem Database Management Systems Lab
GEC

SQL> INSERT INTO ORDER VALUES(111,'07-SEP-2008',200,3500);
OUTPUT:- 1 Row Created
SQL> INSERT INTO ORDER VALUES(15,'07-NOV-2007',403,2500);
OUTPUT:-
ERROR at line 1:
ORA-02290: check constraint (08541F0041.SYS_C003525) violated

(iv) WRITE A QUERY TO DISPLAY ORDERINFO1 TABLE
INFORMATION

SQL> SELECT * FROM ORDER;
OUTPUT:-

ORD_ID ORD_DATE CUST_ID QUANTITY

10 12-OCT-08 100 1600

11 07-SEP-08 101 3500

VIVA QUESTIONS
1) Define primary key.
2) Define foreign key.
3) What is the purpose of check and not null constraints.
4) How the primary key does differs from a candidate key? How they are

similar?

 22

II Year II Sem Database Management Systems Lab
GEC

EXERCISE: 3
AIM: Execute a single line and group (Aggregate) functions on Relation.
Description
Single Row Functions

lower (): this function converts the uppercase letters to lower case letters what
you are passed to the function.
Syntax: lower(message)
Example
select lower('KEERTHI') as low from dual;

upper(): this function is used to convert the lower case letters into uppercase letters.
Syntax: upper(message)
Example
select upper('database') as upper1 from dual;

3. initcap():
It make initial letter to capital letter what you have passed to the function.
Syntax: initcap(message)
select initcap('keerthi') from dual;

4. ltrm():
This function is used for left trimming i.e, it delete(cut) the left most letter.
Syntax: ltrim('message','character')
Example: select ltrim('computerscience','c') as msg from dual;

5. rtrim()
This function is used for right trimming.
Syntax: rtrim('message','character')
Example: select rtrim('computerscience','e') as rtrim1 from dual;

 23

II Year II Sem Database Management Systems Lab
GEC

6. lpad(): this function is used for attaching a new word to the original one at left
side.
Syntax: lpad(word1,length,word2)
Example: select lpad('gec',’6','cse') as lpad1 from dual;

7. rpad(): this function is used for attaching a new word to the original one at right
side.
Syntax: rpad(word1,length,word2)
Example: select rpad('keer',3,'thi') as rpd2 from dual;

8. least(): this function is used to print the least value.
Syntax: least(string1,string2)
Example: select least('ke','me') as l1 from dual;
 (or)
select least('345','567') as l2 from dual;

9. greatest(): this function is used to get maximum value .
Syntax: greatest(string1,string2)
Example: select greatest('ke','me') as l1 from dual;
 (or)
select greatest('345','567') as l2 from dual;

Dual Functions/Date Functions
1. current date: to get the current date.
Example: select sysdate from dual;

 24

II Year II Sem Database Management Systems Lab
GEC

2. add_months(): this function is used to add the 'n' number of months to a given
date.
Example: select add_months('28-sep-1997',5) from dual;

3. last_day(): it gives the last day of the specified month in a date.
Syntax: last_date(date)
Example: select last_day('28-sep-2017') as lastday from dual;

4. months_between(): it gives the number of months between specified two dates.
Result value Months_between(date-exp1,date-exp2)
Negative result If date-exp1 is earlier than date-exp2

Integer result If date-exp1 and date-exp2 have the same day,or both specify
the last day of the month.

Decimal result If days are different and they are not both specify the last day
of the month

Fractional part Always calcilated as the difference between days divided by
31 despite the number of days in the month.

Syntax: months_between(date1,date2)
Example: select months_between('28-aug-17','1-jan-17') as mon from dual;

5. extract(): it is used to extract time component from date expression.
select extract(year from date'2008-08-02') as m1 from dual;

 25

II Year II Sem Database Management Systems Lab
GEC

6. next day:
next_day(date,dayname)
select next_day('28-may-17','thursday') as m1 from dual;

AGGREGATE FUNCTIONS
 In data base management system ,an aggregate function is a function where
the values of multiple rows are grouped together as input on certain criteria to form a
single value of more significant meaning.
The aggregate functions are:
1) MAX(): It returns the max value in the given column.
2) MIN(): It returns the max value in the given column.
3) SUM(): It returns the sum of all numeric values in the given column.
4) AVG(): It returns the average of all values in the given column.
5) COUNT():It returns the total number of all values in the given column(excluding
null values).
6) COUNT(*):It returns the number of all rows in the given table(including null
values).

1) Find the average age of all sailors.
Query
select avg(s.age) as avgage from sailor1 s;
Output

2) Find the average age of all sailors with rating of 10.
Query

select avg(s.age) as avgage from sailor1 s where s.rating = 10;
Output

3) Find the age of youngest sailors
Query

 26

II Year II Sem Database Management Systems Lab
GEC

select MIN(s.age) as youngestsailors from sailor1 s;
Output

4) Find the age of oldest sailors.
 Query
 select MAX(s.age) as oldestsailors from sailor1 s;
 Output

5) Find the total number of sailors.
Query

Select count(s.sid) as noofsailors from sailor1 s;
Output

6) Find the number of sailors with rating 10.
Query
Select count(s.sid) as noofsailors from sailor1 s where s.rating = 10;
Output

7) Find the count of distinct ratings.
Query

Select count(distinct s.rating) as distinctratings from sailor1 s;
Output

 27

II Year II Sem Database Management Systems Lab
GEC

VIVA QUESTIONS
1) What is difference between count() and count(*).
2) List out Aggregate functions.
3) List the single line functions.

 28

II Year II Sem Database Management Systems Lab
GEC

EXERCISE: 4
AIM: Execute Set operations on various Relations.
Description:
Set operations Set operations in sql:
UNION
Let R and S are two union compatible relations then, union operation returns the
tuples that are present in R or s or both.
 Two relational instances are said to be union compatible if the following

conditions are hold.
1) They have the same number of columns.
2) Corresponding columns taken in order from left to right have same data

type.
1. Find the names of sailors who have reserved red or green boat.
Query
select s.sname from sailor1 s,reserve1 r,boat1 b where s.sid = r.sid and r.bid = b.bid
and b.color = 'red'
UNION
 select s.sname from sailor1 s,reserve1 r,boat1 b where s.sid = r.sid and r.bid = b.bid
and b.color = 'green';
Output

2. Find all sid’s of sailors who have rating of 10 or reserved boat no.104.
Query
 select s.sid from sailor1 s where s.rating=10
UNION
 select r.sid from reserve1 r where r.bid = 104;

Output

INTERSECT
Let R and S are two union compatible relations then, intersect operation returns the
tuples that are common in both the relations.
1. Find the names of sailors who have reserved red and green boat.
Query
select s.sname from sailor1 s,reserve1 r,boat1 b where s.sid = r.sid and r.bid = b.bid
and b.color = 'red'
INTERSECT

 29

II Year II Sem Database Management Systems Lab
GEC

 select s.sname from sailor1 s,reserve1 r,boat1 b where s.sid = r.sid and r.bid = b.bid
and b.color = 'green';
Output

MINUS
Let R and S are two union compatible relations then, intersect operation returns the
tuples that are present in R but not in S.
1. Find the sid’s of sailors who have reserved red but not green boat.
Query
select r.sid from boat1 b,reserve1 r where r.bid = b.bid and b.color = 'red' MINUS
select r.sid from boat1 b,reserve1 r where r.bid = b.bid and b.color ='green';

Output

VIVA QUESTIONS

1) List out the SET operations.
2) What is Union?
3) What is Intersection and Minus?

 30

EXERCISE: 5
AIM: Execute Group by, Order by clause on Relations.
DESCRIPTION
GROUP BY
 The GROUP BY clause is used in a SELECT statement to collect data across

multiple records and group the results by one or more columns.
 Sometimes it is required to get information not about each row, but about each

group.
 Example: consider the Customer_Loan table that has data about all the loans

taken by all the customers of the bank. Assume that we want to retrieve the
total loan-amount of all loans taken by each customer.

 Related rows can be grouped together by the GROUP BY clause by specifying
a column as a grouping column.

 In the below example, the Cust_ID will be the grouping column.
 In the output table all the rows with an identical value in the grouping column

will be grouped together. Hence, the number of rows in the output is equal to
the number of distinct values of the grouping column.

HAVING
 The HAVING clause is used along with the GROUP BY clause. The

HAVING clause can be used to select and reject row groups.
 The format of the HAVING clause is similar to the WHERE clause, consisting

of the keyword HAVING followed by a search condition.
 The HAVING clause thus specifies a search condition for groups.

 31

1) Find the age of the youngest sailor for each rating level.
Query
Select s.rating,min(s.age) as youngest from sailor1 s group by s.rating;
Output:

2) Find the age of the youngest sailor who is eligible to vote(i.eatleast 18 years
old) for each rating level with atleast two such sailors.
Query
Select s.rating,min(s.age) as minage from sailor1 s where s.age>=18 group by s.rating
having count(*)>1;

Output

 32

II Year II Sem Database Management Systems Lab
GEC

3) Find the age of the oldest sailor for each rating level.
Query
Select s.rating,max(s.age) as oldest from sailor1 s group by s.rating;
Output

ORDER BY
The ORDER BY statement in sql is used to sort the fetched data in either ascending or
descending according to one or more columns.

 By default ORDER BY sorts the data in ascending order.
 We can use the keyword DESC to sort the data in descending order and the

keyword ASC to sort in ascending order.
Syntax of all ways of using ORDER BY is shown below:

 Sort according to one column: To sort in ascending or descending order we
can use the keywords ASC or DESC respectively.
Syntax:
SELECT * FROM table_name ORDER BY column_name ASC|DESC;

 Sort according to multiple columns: To sort in ascending or descending order
we can use the keywords ASC or DESC respectively. To sort according to
multiple columns, separate the names of columns by (,) operator.
Syntax:

 SELECT * FROM table_name ORDER BY column1 ASC|DESC , column2
ASC|DESC;

1) Find the names of sailors who have reserved a red boat listing in order of age.
Select s.sname from sailor1 s,reserve1 r,boat1 b where s.sid=r.sid and r.bid=b.bid and
b.color=’red’ order by s.age; ((or)for descending s.age desc)
Output

 33

II Year II Sem Database Management Systems Lab
GEC

2) Find the colors of boats reserved by lubber.
Select b.color from sailor1 s,reserve1 r,boat1 b where s.sid=r.sid and r.bid=b.bid and
s.sname=’lubber’;
Output

3) Find the names of sailors who have reserved at least one boat in the order of
age.
Select s.sname from sailor1 s,reserve1 r where s.sid=r.sid order by s.age;

VIVA QUESTIONS
1. What is group by?
2. What is order by?
3. When we use order by command default output will be in which order?

 34

II Year II Sem Database Management Systems Lab
GEC

EXERCISE: 6
AIM: Execute Sub Queries and Co-Related Nested Queries on Relations.
DESCRIPTION
To execute queries and nested queries on sailors, boats, and reserves database.
Create table sailor1(sid number(10) primary key, sname varchar2(10),rating
number(10),age number(8,2));
Output: Table created.
Insert into sailor1 values(22,’dustin’,7,45);
Output: 1 row created.
Insert into sailor1 values(29,’brutus’,1,133);
Output: 1 row created.
Select * from sailor1;
Output:

create table boat1(bid number(10) primary key,bname varchar2(10),color
varchar2(10));
output: Table created.
insert into boat1 values(101,'interlake','blue');
output: 1 row created.
SQL> insert into boat1 values(102,'interlake','red');
Output : 1 row created.
Select * from boat1;

Output

 35

II Year II Sem Database Management Systems Lab
GEC

Create table reserve1 (sid number(10) references sailor1(sid),bid number(10)
references boat1(bid),day date);
Output
TABLE CREATED.
insert into reserve1 values(22,101,'10-oct-98');
1 row created.
 insert into reserve1 values(22,102,'10-oct-98');
1 row created.
 insert into reserve1 values(22,103,'10-aug-98');

1 row created.

1) Find names and ages of all sailors
Query
Select distinct s.sname, s.age from sailor1 s;
Output:

 36

II Year II Sem Database Management Systems Lab
GEC

2) Find all sailors with rating above 7.
Query:
Select s.sid from sailor1 s where rating>7;
Output:

3) Find the names of sailors who have reserved boat no.103
Query:
Select s.sname from sailor1 s,reserve1 r where s.sid = r.sid and r.bid = 103;

4) find the sid’s of sailors who reserved a red boat.
Query:
Select s.sid from reserve1 r,boat1 b where s.sid = r.sid and r.bid = b.bid and b.color =
‘red’;

 5) Find the names of sailors who reserved a red boat.
Query:
Select s.sname from sialor1 s,reserve1 r,boat1 b where s.sid = r.sid and r.bid = b.bid
and b.color = ‘red’;

6) find the colors of boat reserved by lubber.
Query
Select b.color from sailor1 s,boat1 b,reserve1 s where s.sid r.sid and r.bid = b.bid and
s.sname = ‘lubber’;

7) find the names of sailors who have reserved atleast one boat.
Query:

 37

II Year II Sem Database Management Systems Lab
GEC

Select s.sname from sialor1 s, reserve1 r where s.sid = r.sid;

NESTED QUERIES
A query embedded inside another query is called a sub query. Inner query executes
initially only once and that result will be used by all the tuples of outer query.

1. Find the names of sailors who have reserved boat103
SQL> select s.sname from sailor1 s where s.sid IN(select r.sid from reserve1 r where
r.bid=103);
Output:

2. Find the names of sailors who have not reserved boat103
SQL> select s.sname from sailor1 s where s.sid not IN(select r.sid from reserve1 r
where r.bid=103);
Output:

3. Find the names of sailors who have reserved a red boat
SQL> select s.sname from sailor1 s where s.sid IN(select r.sid from reserve1 r where
r.bid IN(select b.bid from boat b where b.color='red'));

Output:

4. Find the names of sailors who have not reserved a red boat
SQL> select s.sname from sailor1 s where s.sid NOT IN(select r.sid from reserve1 r
where r.bid IN(select b.bid from boat1 b where b.color='red'));
Output:

 38

II Year II Sem Database Management Systems Lab
GEC

Co-Related nested queries: Correlated subquery is a query in which the inner query
is executed for each row of the outer query.

1) Find the names of sailors who have reserved boat no 103.
Select s.sname from sailor1 s where exists(select * from reserve1 r where s.sid=r.sid
and r.bid=103);

2) Find the names and ages of youngest sailor.
Select s.sname,s.age from sailor1 s where s.age<=all(select s1.age from sailor1 s1);

3) Find the sailors whose rating is better than some sailors called horatio.
Select s.sid from sailor1 s where s.rating>any(select s1.rating from sailor1 s1 where
s1.sname=’horatio’);

 39

II Year II Sem Database Management Systems Lab
GEC

4) Find the sailors whose rating is better than every sailor called horatio.
Select s.sid from sailor1 s where s.rating>all(select s1.rating from sailor1 s1 where
s1.sname=’horatio’);

5) Find the names who reserved all boats
Select s.sname from sailor1 s where exists(select b.bid from boat1 b where not
exists(select r.bid from reserve1 r where r.bid=b.bid and s.sid=r.sid));

 Employee table

Empid Name Salary Dept
101 Jones 20000 CSE
102 Smith 40000 ECE
103 Allen 30000 CSE
104 Scott 30000 ECE
105 Warner 50000 CSE

1. Find the employees whose salary is greater than the average salary of their

department.
SELECT *
FROM Employee1 E1
WHERE Salary > (SELECT AVG(Salary)
 FROM Employee1 E2
 WHERE E1.Dept = E2.Dept);
 E1 E2

Empid Name Salary Dept Empid Name Salary Dept

101 Jones 20000 CSE x 101 Jones 20000 CSE

102 Smith 40000 ECE 102 Smith 40000 ECE

103 Allen 30000 CSE 103 Allen 30000 CSE

 40

II Year II Sem Database Management Systems Lab
GEC

104 Scott 30000 ECE 104 Scott 30000 ECE

105 Warner 50000 CSE 105 Warner 50000 CSE

20000 > 33333 F

Empid Name Salary Dept Empid Name Salary Dept

101 Jones 20000 CSE 101 Jones 20000 CSE

102 Smith 40000 ECE 102 Smith 40000 ECE

103 Allen 30000 CSE 103 Allen 30000 CSE

104 Scott 30000 ECE 104 Scott 30000 ECE

105 Warner 50000 CSE 105 Warner 50000 CSE

40000 > 35000 T

102 Smith 40000 ECE Included in the result
 E1 E2

Empid Name Salary Dept Empid Name Salary Dept

101 Jones 20000 CSE 101 Jones 20000 CSE

102 Smith 40000 ECE 102 Smith 40000 ECE

103 Allen 30000 CSE x 103 Allen 30000 CSE

104 Scott 30000 ECE 104 Scott 30000 ECE

105 Warner 50000 CSE 105 Warner 50000 CSE

30000 > 33333 F

 E1 E2

Empid Name Salary Dept Empid Name Salary Dept

101 Jones 20000 CSE 101 Jones 20000 CSE

102 Smith 40000 ECE 102 Smith 40000 ECE

103 Allen 30000 CSE 103 Allen 30000 CSE

104 Scott 30000 ECE x 104 Scott 30000 ECE

105 Warner 50000 CSE 105 Warner 50000 CSE

30000 > 35000 F

 41

II Year II Sem Database Management Systems Lab
GEC

 E1 E2

Empid Name Salary Dept Empid Name Salary Dept

101 Jones 20000 CSE 101 Jones 20000 CSE

102 Smith 40000 ECE 102 Smith 40000 ECE

103 Allen 30000 CSE 103 Allen 30000 CSE

104 Scott 30000 ECE 104 Scott 30000 ECE

105 Warner 50000 CSE 105 Warner 50000 CSE

50000 > 33333 T

105 Warner 50000 CSE Included in the result
Final Result

Empid Name Salary Dept

102 Smith 40000 ECE

105 Warner 50000 CSE

Output

2. Find the 1st highest salary employee details in the Employee table.
SELECT MAX(Salary)
 FROM Employee1;

3. Find the 2nd highest salary employee details in the Employee table.
SELECT MAX(Salary)
 FROM Employee1
 WHERE Salary < (SELECT MAX(Salary)
 From Employee1);

 42

II Year II Sem Database Management Systems Lab
GEC

4. Find the 3rd highest salary employee details in the Employee table.
 SELECT MAX(Salary)
 FROM Employee1
 WHERE Salary < (SELECT MAX(Salary)
 From Employee1
 WHERE Salary < (SELECT MAX(Salary)
 FROM Employee1));

So here, to find 1st Highest salary - we are writing 1 Query
 to find 2nd Highest salary - we are writing 2 Queries
 to find 3rd Highest salary - we are writing 3 Queries

 to find Nth Highest salary - we need to write N Queries
Writing these many queries is tedious and inefficient.
One best solution to this problem is correlated sub query.

5. Find the 1st highest salary employee details in the Employee table.
SELECT *
FROM Employee1 E1
WHERE 0 = (SELECT COUNT(Salary)
 FROM Employee1 E2
 WHERE E2. Salary > E1. Salary);

 E2 E1

Empid Name Salary Dept Empid Name Salary Dept

101 Jones 20000 CSE 101 Jones 20000 CSE

102 Smith 40000 ECE 102 Smith 40000 ECE

103 Allen 30000 CSE 103 Allen 30000 CSE

104 Scott 35000 ECE 104 Scott 35000 ECE

105 Warner 50000 CSE 105 Warner 50000 CSE

 43

II Year II Sem Database Management Systems Lab
GEC

6. Find the 2nd highest salary employee details in the Employee table.
SELECT *
FROM Employee1 E1
WHERE 1 = (SELECT COUNT(Salary)
 FROM Employee1 E2
 WHERE E2. Salary > E1. Salary);

7. Find the 3rd highest salary employee details in the Employee table.
SELECT *
FROM Employee1 E1
WHERE 2 = (SELECT COUNT(Salary)
 FROM Employee1 E2
 WHERE E2. Salary > E1. Salary);

VIVA QUESTIONS
1. What is nested query?
2. What is co-related nested query?
3. How to find second highest salary?

 44

II Year II Sem Database Management Systems Lab
GEC

EXERCISE: 7
AIM: Perform the following join operations

a. Cross b. Inner c. Outer (left, right, full) d. Self
DESCRIPTION:
JOIN: A SQL Join statement is used to combine data or rows from two or more
tables based on a common field between them.
Example:
Student table

Sid name age
101 nihal 19
102 teja 18
103 rama 15
104 sita 16
105 siva 21

Enroll table

Sid cid
101 CS1201
103 CS1203
105 CS1101

1. Natural join
Select * from student natural join enrol;
Output:

Sid name age cid

101 nihal 19 CS1201

103 rama 15 CS1203

105 siva 21 CS1101

2. Equi join
It is a simple sql join condition which uses the eual sign as the comparison operator.it
is divided into 2 types.
1) sql inner join
2) sql outer join

1) inner join: in this all rows returned by the sql query satisfy the sql conditions
specified.
Example:
Select * from student inner join 44nrol on student.sid=enrol.sid;

3) sql outer join:
This sql join condition returns all rows from both tables which satisfy the join
condition along with rows which do not satisfy the join condition from one of the
tables.
These are 3 types

a) Left outer join
b) Right outer join
c) Full outer join

 45

II Year II Sem Database Management Systems Lab
GEC

Left outer join: in this we will get values of left side table along with the matching
values of right side table.
Example: select * form student s left outer join enrol e on s.sid=e.sid;
Output:

Sid Name Age Sid cid

101 Nihal 19 101 CS1201

103 Rama 15 103 CS1203

105 Siva 21 105 CS1101

102 Teja 18

104 Sita 16
Right outer join:
In this we will get all values of right side table along with the matching values of left
side table.
Example: select * from student s right outer join enroll e on s.sid=e.sid;
Output:

Sid Name Age Sid cid

101 Nihal 19 101 CS1201

103 Rama 15 103 CS1203

105 Siva 21 105 CS1101

Full outer join:
This type of join returns all rows from the left hand table and right hand table with
null in place where the join condition is not met.
Example:
Select * from student s full outer join enrol e on s.sid=e.sid;

Output:

Sid Name Age Sid cid

101 Nihal 19 101 CS1201

103 Rama 15 103 CS1203

105 Siva 21 105 CS1101

102 Teja 18

104 sita 16

Theta(Ө) join:
Theta join is a conditional join that takes on two tables.
Example: select * from student s,enroll e where s.sid=e.sid;
Output:

Sid Name Age Sid cid

 46

II Year II Sem Database Management Systems Lab
GEC

101 Nihal 19 101 CS1201

103 Rama 15 103 CS1203

105 Siva 21 105 CS1101

Example 2: select * from student s, enroll e where s.sid>e.sid;
Output:
Same query we can apply these symbols >=,<=,<>.

Cartesian product(X) or Cross product:
RXS return a relation instance whose schema contains all the fields of R followed by
all fields of S.
Example:
Select * from student, enroll;
Output:

Sid Name Age Sid cid

101 Nihal 19 101 CS1201

103 Rama 15 103 CS1203

105 Siva 21 105 CS1101

102 Teja 18

104 sita 16

Viva Questions

1. What is join?
2. What are the different types of outer joins?
3. What is Ө join?
4. Explain cross product.

 47

EXERCISE: 8
AIM: Creating Views.
DESCRIPTION:
A view is a table whose rows are not explicitly stored in the database but are
computed as needed from a view definition. Consider the Students and Enrolled
relations.

From these two tables, we can create a view called BStudents showing B grade
students as follows;
CREATE VIEW BStudents AS SELECT S.sid, S.name, E.cid FROM Students S,
Enrolled E WHERE S.sid = E.sid AND E.grade = 'B';
This would produce the following view;
Output:
Select * from BStudents;

Syntax:
CREATE VIEW view name
AS SELECT attribute list
FROM table(s)
WHERE condition(s)

Updatable Views:
The SQL-92 standard allows updates to be specified only on views that are defined on
a single base table using just selection and projection, with no use of aggregate
operations and distinct clause. Such views are called updatable views.

For example, consider the following Students table;

 48

Consider the following view:
CREATE VIEW GoodStudents (sid, gpa)
AS SELECT sid, gpa
FROM Students
WHERE gpa >= 6.0;
Output: select * from GoodStudents;

sid gpa
101 8.8
110 7.5
140 9.5

Example1:
first create sailors table or any other table. Create different views on that table.
1. Create view names as select s.name from sailors s;

View created
Select * from names;

2. Create view keerthi as select s.age from sailors s;
View created
Select * from keerthi;

3. Create view sony as select s.name,s.age from sailors s where s.age=35;
View created
Select * from sony;

4. Create view sam as select s.name, s.sid from sailors s where s.rating=10;
View created
Select * from sam;

Example2:
Create table student(sid number(10) primary key,name varchar2(20),gpa
number(10),age number(10));
Table created.
Insert data
Create table enroll(sid number(20)references student(sid),eid number(20));
Table created.
Insert some rows.
1. Create view bstudent as select s.sname, s.sid from student where s.gpa=9.8;

View created

 49

II Year II Sem Database Management Systems Lab
GEC

Select * from bstudent;
2. Create view M as select s.sid,s.name,e.sid from student s,enrol e where s.sid=e.sid

and e.grade=’A’;
View created
Select * from M;

3. Create view K as select s.name,s.sid from student s,enrol e where s.sid=e.sid and
s.age=21;
View created
Select * from K;

Drop views:
Syntax: Drop view view_name;

VIVA QUESTIONS
1. What is view?
2. Is view updatable?
3. What are the advantages of views?

 50

II Year II Sem Database Management Systems Lab
GEC

EXERCISE: 9
AIM:
Write PL/SQL basic programs.
DESCRIPTION:
PL/SQL stands for “Procedural Language extensions to the Structured Query
Language”. SQL is a popular language for both querying and updating data in the
relational database management systems (RDBMS). PL/SQL adds many procedural
constructs to SQL language to overcome some limitations of SQL. Besides, PL/SQL
provides a more comprehensive programming language solution for building mission-
critical applications on Oracle Databases.
PL/SQL is a highly structured and readable language. Its constructs express the intent
of the code clearly. Also, PL/SQL is a straightforward language to learn.
PL/SQL is a standard and portable language for Oracle Database development. If you
develop a program that executes on an Oracle Database, you can quickly move it to
another compatible Oracle Database without any changes.
SQL> set serveroutput on;

1. Aim:-Sum of two numbers
Sourcecode:-
SQL> declare
 x integer;
 y integer;
 z integer;
 begin
 x:=10;
 y:=20;
 z:=x+y;
 dbms_output.put_line('sum is' ||Z);
 end;
 /

Output:-
sum is30

PL/SQL procedure successfully completed.

2. Aim:-Sum of two numbers reading input from user
Sourcecode:-
SQL> declare
 x integer;
 y integer;
 z integer;
 begin
 x:=&x;
 y:=&y;
 z:=x+y;
 dbms_output.put_line(x||'+'||y||'='||z);
 end;

 51

II Year II Sem Database Management Systems Lab
GEC

 /
Output:-
Enter value for x: 2
old 6: x:=&x;
new 6: x:=2;

Enter value for y: 2
old 7: y:=&y;
new 7: y:=2;

2+2=4
PL/SQL procedure successfully completed.

3. Aim:-TO PRINT NATURAL NUMBERS
Sourcecode:-

SQL> declare
 a integer;
 begin
 for a in 10 .. 20 loop
 dbms_output.put_line('value of a:'||a);
 end loop;
 end;
 /
Output:-
value of a:10
value of a:11
value of a:12
value of a:13
value of a:14
value of a:15
value of a:16
value of a:17
value of a:18
value of a:19
value of a:20
PL/SQL procedure successfully completed.

4. AIM:-SUM OF EVEN NUMBERS USER INPUT DYNAMICALLY
SOURCODE:-
SQL> declare
 x integer:=2;
 y integer;
 s integer:=0;
 begin
 y:=&y;
 while x<=y loop
 dbms_output.put_line(x);
 s:=s+x;
 x:=x+2;
 end loop;
 dbms_output.put_line('sum of even numbers is' || s);
 end;

 52

II Year II Sem Database Management Systems Lab
GEC

 /
Output:-
Enter value for y: 10
old 6: y:=&y;
new 6: y:=10;
2
4
6
8
10
sum of even numbers is30

PL/SQL procedure successfully completed.

5. Aim:-SWAPPING OF TWO NUMBERS using temp
SourceCode:-
SQL> declare
 x integer;
 y integer;
 temp int;
 begin
 x:=10;
 y:=20;
 dbms_output.put_line('before');
 dbms_output.put_line('x='||x||'y='||y);
 temp:=x;
 x:=y;
 y:=temp;
 dbms_output.put_line('after');
 dbms_output.put_line('x='||x||'y='||y);
 end;
 /

OUTPUT;-
before
x=10y=20
after
x=20y=10
PL/SQL procedure successfully completed.

6. Aim:-SWAPPING OF TWO NUMBERS without using temp
Sourcecode;-
SQL> declare
 x integer;
 y integer;
 begin
 x:=10;
 y:=20;
 dbms_output.put_line('before');

 53

II Year II Sem Database Management Systems Lab
GEC

 dbms_output.put_line('x='||x||'y='||y);
 x:=x+y;
 y:=x-y;
 x:=x-y;
 dbms_output.put_line('after');
 dbms_output.put_line('x='||x||'y='||y);
 end;
 /
Output:-
before
x=10y=20
after
x=20y=10
PL/SQL procedure successfully completed.

7. Aim:-Find GCD for two numbers
Sourcecode;-
SQL> declare
 x integer;
 y integer;
 t integer;
 begin
 x:=8;
 y:=48;
 while mod(y,x)!=0 loop
 t:=mod(y,x);
 y:=x;
 x:=t;
 end loop;
 dbms_output.put_line('GCD of'||x||'and'||y||'is'||x);
 end;
 /

Output:
GCD of8and48is8
PL/SQL procedure successfully completed.

8. Aim:-Greatest of three numbers
Sourcecode;-
SQL> declare
 a number:=46;
 b number:=67;
 c number:=21;
 begin
 if a>b and a>c then
 dbms_output.put_line('greatest number is'||a);
 elsif b>a and b>c then
 dbms_output.put_line('greatest number is'||b);
 else
 dbms_output.put_line('greatest number is'||c);
 end if;
 end;
 /

 54

II Year II Sem Database Management Systems Lab
GEC

OUTPUT:-
greatest number is67

PL/SQL procedure successfully completed.

Example 2:
SQL> create table std(sno int,sname varchar2(10),age int,cgpa real,grade
varchar2(10));
Table created.
SQL> insert into std values(1,'A',18,9.7,'A');
1 row created.
SQL> insert into std values(2,'B',17,8.8,'B');
1 row created.
SQL> insert into std values(3,'C',18,7.3,'C');
1 row created.
SQL> SELECT * FROM STD;
 SNO SNAME AGE CGPA GRADE
---------- ---------- ---------- ---------- ----------
 1 A 18 9.7 A
 2 B 17 8.8 B
 3 C 18 7.3 C
SQL> set serveroutput on;
Inserting rows into a relation
declare
 stuid std.sno%type:=&stuid;
 stuname std.sname%type:=&stuname;
 stuage std.age%type:=&stuage;
 stucgpa std.cgpa%type:=&stucgpa;
 stugrade std.grade%type;

begin
 if stucgpa>=9 then
 stugrade:='A';
 elsif stucgpa>=8 then
 stugrade:='B';
 else stugrade:='C';
 end if;
insert into std values(stuid, stuname, stuage, stucgpa, stugrade);
end;
/
OUTPUT:-
SQL> /
Enter value for stuid: 12
old 2: stuid std.sno%type:=&stuid;
new 2: stuid std.sno%type:=12;
Enter value for stuname: 'jj'
old 3: stuname std.sname%type:=&stuname;
new 3: stuname std.sname%type:='jj';
Enter value for stuage: 22
old 4: stuage std.age%type:=&stuage;
new 4: stuage std.age%type:=22;
Enter value for stucgpa: 9.2
old 5: stucgpa std.cgpa%type:=&stucgpa;

 55

II Year II Sem Database Management Systems Lab
GEC

new 5: stucgpa std.cgpa%type:=9.2;

PL/SQL procedure successfully completed.

SQL> select * from std;
 SNO SNAME AGE CGPA GRADE
---------- ---------- ---------- ---------- ----------
 1 A 18 9.7 A
 2 B 17 8.8 B
 3 C 18 7.3 C
 12 jj 22 9.2 A

Update rows in a relation
declare
 stuid std.sno%type:=&stuid;
 stucgpa std.cgpa%type:=&stucgpa;
 stugrade std.grade%type;
begin
update std set cgpa=stucgpa where sno=stuid;
 if stucgpa>=9 then
 stugrade:='A';
 elsif stucgpa>=8 then
 stugrade:='B';
 else stugrade:='C';
 end if;
update std set grade=stugrade where sno=stuid;
end;
/
OUTPUT:-
Enter value for stuid: 12
old 2: stuid std.sno%type:=&stuid;
new 2: stuid std.sno%type:=12;
Enter value for stucgpa: 7.2
old 3: stucgpa std.cgpa%type:=&stucgpa;
new 3: stucgpa std.cgpa%type:=7.2;
PL/SQL procedure successfully completed.
SQL> select * from std;
 SNO SNAME AGE CGPA GRADE
---------- ---------- ---------- ---------- ----------
 1 A 18 9.7 A
 2 B 17 8.8 B
 3 C 18 7.3 C
 12 jj 22 7.2 C

delete TUPLES using pl/sql
declare
 stuid std.sno%type:=&stuid;
begin
delete from std where sno=stuid;
end;
/
Enter value for stuid: 12
old 2: stuid std.sno%type:=&stuid;

 56

II Year II Sem Database Management Systems Lab
GEC

new 2: stuid std.sno%type:=12;

PL/SQL procedure successfully completed.

SQL> select * from std;
 SNO SNAME AGE CGPA GRADE
---------- ---------- ---------- ---------- ----------
 1 A 18 9.7 A
 2 B 17 8.8 B
 3 C 18 7.3 C

Retrieving values from table using Pl/Sql
declare
 stuid std.sno%type:=&stuid;
 stuname std.sname%type;
 stuage std.age%type;
 stucgpa std.cgpa%type;
 stugrade std.grade%type;
begin
select sno,sname,age,cgpa,grade into stuid,stuname,stuage,stucgpa,stugrade from std
where sno=stuid;
dbms_output.put_line('student id is'||stuid);
dbms_output.put_line('student name is'||stuname);
dbms_output.put_line('student age is'||stuage);
dbms_output.put_line('cgpa is'||stucgpa||'grade is'||stugrade);
end;
/

Output:-
Enter value for stuid: 1
old 2: stuid std.sno%type:=&stuid;
new 2: stuid std.sno%type:=1;
student id is1
student name isA
student age is18
cgpa is9.7grade isA

PL/SQL procedure successfully completed.

Enter value for stuid: 66
old 2: stuid std.sno%type:=&stuid;
new 2: stuid std.sno%type:=66;
declare
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 8
Example 3:
Sailors relation
Inserting tuples into relation
declare
s_id sailors.sid%type:=&s_id;

 57

II Year II Sem Database Management Systems Lab
GEC

s_name sailors.sname%type:=&s_name;
s_rating sailors.rating%type:=&s_rating;
s_age sailors.age%type:=&s_age;
begin
insert into sailors values(s_id,s_name,s_rating,s_age);
end;
/
Output:-
Enter value for s_id: 200
old 2: s_id sailors.sid%type:=&s_id;
new 2: s_id sailors.sid%type:=200;
Enter value for s_name: 'ksru'
old 3: s_name sailors.sname%type:=&s_name;
new 3: s_name sailors.sname%type:='ksru';
Enter value for s_rating: 20
old 4: s_rating sailors.rating%type:=&s_rating;
new 4: s_rating sailors.rating%type:=20;
Enter value for s_age: 58
old 5: s_age sailors.age%type:=&s_age;
new 5: s_age sailors.age%type:=58;

PL/SQL procedure successfully completed.
SQL> select * from sailors;

 SID SNAME RATING AGE
---------- ---------- ---------- ----------
 22 dustin 7 45
 29 brutus 1 33
 31 lubber 8 55.5
 32 andy 8 25.5
 58 rusty 10 35
 64 horatio 7 35
 71 zorba 10 16
 74 horatio 9 35
 85 art 3 25.5
 95 bob 3 63.5
 200 ksru 20 58

11 rows selected.

Update tuples in a relation
declare
s_id sailors.sid%type:=&s_id;
s_name sailors.sname%type:=&s_name;
begin
update sailors set sname=s_name where sid=s_id;
end;
/
Output:-
Enter value for s_id: 200
old 2: s_id sailors.sid%type:=&s_id;
new 2: s_id sailors.sid%type:=200;
Enter value for s_name: 'jaya'

 58

II Year II Sem Database Management Systems Lab
GEC

old 3: s_name sailors.sname%type:=&s_name;
new 3: s_name sailors.sname%type:='jaya';

PL/SQL procedure successfully completed.
SQL> select * from sailors;

 SID SNAME RATING AGE
---------- ---------- ---------- ----------
 22 dustin 7 45
 29 brutus 1 33
 31 lubber 8 55.5
 32 andy 8 25.5
 58 rusty 10 35
 64 horatio 7 35
 71 zorba 10 16
 74 horatio 9 35
 85 art 3 25.5
 95 bob 3 63.5
 200 jaya 20 58

11 rows selected.

Delete tuples from a relation
declare
s_id sailors.sid%type:=&s_id;
begin
delete from sailors where sid=s_id;
end;
/
Output:-
Enter value for s_id: 200
old 2: s_id sailors.sid%type:=&s_id;
new 2: s_id sailors.sid%type:=200;

PL/SQL procedure successfully completed.
SQL> select * from sailors;

 SID SNAME RATING AGE
---------- ---------- ---------- ----------
 22 dustin 7 45
 29 brutus 1 33
 31 lubber 8 55.5
 32 andy 8 25.5
 58 rusty 10 35
 64 horatio 7 35
 71 zorba 10 16
 74 horatio 9 35
 85 art 3 25.5
 95 bob 3 63.5

 59

II Year II Sem Database Management Systems Lab
GEC

10 rows selected.
VIVA QUESTIONS:

1. What is the difference between SQL and PL/SQL?
2. Inserting rows in PL/SQL.
3. update and deletion of rows using PL/SQL.

 60

II Year II Sem Database Management Systems Lab
GEC

EXERCISE: 10
AIM:
Write a PL/SQL block for transaction operations of a typical application using
triggers. DESCRIPTION:
Trigger:
Trigger is a special kind of stored procedure i.e, automatically executed when an
event occurs.
We have two types of triggers:

1. Row-level triggers—these are executed for each row.
2. Statement-level triggers—at one time, triggers are executed.

Syntax for triggers:
create or replace trigger <trigger-name>
before or after
insert or delete or update on <table-name>
for each row
when(condition)
declare
 declare statements;
begin
 executable statements;
 exception handling statements;
end;
/
1.Row –level Triggers:
create table emp(eid number(10),ename varchar(10),salary number(10));
output: table created.
create or replace Trigger display_sal_change
before
insert or delete or update on emp15
for each row
declare
sal_diff number;
begin
sal_diff:=:old.salary-:new.salary;
dbms_output.put_line(‘old salary is:’||:old.sal);
dbms_ output.put_line(‘new salary is:’||:new.sal);
dbms_ output.put_line(‘salary diff is:’||sal_diff);
end;
/
Output: trigger is created.
insert into emp15 values(101,’ram’,5000);
1 row(s) inserted.
insert into emp values(102,’rama’,6000);
1 row(s) inserted
Select * from emp;
Output:
update emp set sal=6000 where eid=101;
output:
1 row updated
Old salary is:5000
New salary is:6000
Salary diff is:-1000
Example 2:

 61

II Year II Sem Database Management Systems Lab
GEC

create table account(acctno number(10),amount number(10));
create or replace trigger disp_notification
after
insert or update or delete on account
for each row
begin
if :new.amount<100 then
dbms_output.put_line(‘account bal is low’);
else
dbms_output.put_line(‘transaction successful’);
end if;
end;
/
Output: trigger is created
Insert into account values(501,5000);
Output:1 row(s) inserted
Transaction successful
Insert into account values(512,3000);
Output: 1 row(s) inserted
Transaction successful
Select * from account;
Output:
Insert into account values(503,50);
Output: 1 row(s) inserted
Account bal is low.
Example:
create table std(id number(10) ,name varchar(10),marks number(5));
output: table created.
create table marks(id number(10), oldmarks number(10),newmarks
number(10),foreign key(id) references std(id));
Output: table created.
->create or replace trigger disp_marks_change
before
insert or delete or update on std
for each row
begin
insert into marks values(:old.id,:old.marks,:new.marks);
end;
/
Output: trigger created
Insert into std values(101,’ram’,90);
Output:1 row(s) inserted
Insert into std values(105,’raghu’,95);
Output: 1 row(S) inserted
update std set marks=80 where id=105;
output: 1 row(s) updated
old.id:105
old.marks:90
new.marks:80
select * from std;
output:
select * from marks;
output:

 62

II Year II Sem Database Management Systems Lab
GEC

example:
create table count(description varchar(10),id number(10),foreign key(id) references
std(id));
output:table created
create or replace trigger stmt_level
after insert or update or delete on std
begin
insert into count values(‘stmt level trigger is fired’);
end;
/
Output: trigger created.

VIVA QUESTIONS:
1. What is Trigger?
2. Syntax for creating a trigger.
3. How many types of triggers are there and what are they?

 63

II Year II Sem Database Management Systems Lab
GEC

Additional Experiments
1. Execute Date functions.
dual functions/date functions:
1.current date: to get the current date.
ex: select sysdate from dual;

2. add_months(): this function is used to add the 'n' number of months to a given
date.
ex: select add_months('28-sep-1997',5) from dual;

3. last_day():
it gives the last day of the specified month in a date
syn: last_date(date)
ex: select last_day('28-sep-2017') as lastday from dual;

4. months_between(): it gives the number of months between specified two dates.
Result value Months_between(date-exp1,date-exp2)
Negative result If date-exp1 is earlier than date-exp2
Integer result If date-exp1 and date-exp2 have the same

day,or both specify the last day of the
month.

Decimal result If days are different and they are not both
specify the last day of the month

Fractional part Always calcilated as the difference
between days divided by 31 despite the
number of days in the month.

syntax:months_between(date1,date2)
example: select months_between('28-aug-17','1-jan-17') as mon from dual;

5. extract():
it is used to extract time component from date expression.
select extract(year from date'2008-08-02') as m1 from dual;

 64

II Year II Sem Database Management Systems Lab
GEC

6. next day:
next_day(date,dayname)
select next_day('28-may-17','thursday') as m1 from dual;

2. Execute Pl/SQL commands for exception handling.
Exception: any run time error is known as exception.
create table emp(id number(10)primary key, name varchar2(20), age number(5));
insert three rows into table.
System defined(predefined) exceptions:
These are built in exceptions and handled by system by using handler provided by the
user.
declare
eid emp.id%type:=&eid;
ename emp.name%type;
eage emp.age%type;
begin
select id,name,age into eid,ename,eage from emp where id=eid;
dbms_output.put_line(eid);
dbms_output.put_line(ename);
dbms_output.put_line(eage);
exception
 when no_data_found
then dbms_output.put_line(‘no such employee found’);
end;
/
Output: no such employee found
User defined exceptions:
Sql supports handling of user defined exceptions.
declare
eid emp.id%type:=&eid;
ename emp.name%type;
eage emp.age%type;
invalid_id exception;
begin
if eid<=0 then
raise invalid_id;
else
select id,name,age into eid,ename,eage from emp where id=eid;
dbms_output.put_line(eid);
dbms_output.put_line(ename);
dbms_output.put_line(eage);

 65

II Year II Sem Database Management Systems Lab
GEC

end if;
exception
when invalid_id
then dbms_output.put_line(‘employee must be greater than zero’);
when no_data_found
then dbms_output.put_line(‘no such employee found’);
end;
/
Output: enter empid: -20
employee must be greater than zero.

3. Execute PL/SQL Procedures
PROCEDURES: Database Procedures (sometimes referred to as Stored Procedures
or Procs) are subroutines that can contain one or more SQL statements that perform a
specific task. They can be used for data validation, access control, or to reduce
network traffic between clients and the DBMS servers.
SQL> create or replace procedure high(a number,b number) is
 begin
 if a>b then
 dbms_output.put_line('max value iS:='||a);
 else
 dbms_output.put_line('max value iS:='||b);
 end if;
 end;
 OUTPUT:
Procedure created.
SQL> exec high(20,10);
max value iS:=20
PL/SQL procedure successfully completed.
SQL> create or replace procedure fact(n in number) is
 fact number:=1;
 i number;
 begin
 for i in 1..n loop
 fact:=fact * i;
 end loop;
 dbms_output.put_line('the factorial value is'||fact);
 end;
 OUTPUT:
Procedure created.
SQL> exec fact(10);
the factorial value is3628800
PL/SQL procedure successfully completed.
SQL> create or replace procedure fact(n in number,f out number) is
 f1 number:=1;
 i number;
 begin
 for i in 1..n loop
 f1:=f1 * i;
 end loop;
 f:=f1;
 end;
 OUTPUT:

 66

II Year II Sem Database Management Systems Lab
GEC

Procedure created.
SQL> declare
 n number:=&n;
 f number;
 begin
 fact(n,f);
 dbms_output.put_line('the factorial is'||f);
 end;
OUTPUT:
Enter value for n: 5
old 2: n number:=&n;
new 2: n number:=5;
the factorial is120
PL/SQL procedure successfully completed.
SQL> create or replace procedure fact(n in number,f in out number) is
 f1 number;
 i number;
 begin
 f1:=f;
 for i in 1..n loop
 f1:=f1 * i;
 end loop;
 f:=f1;
 end;
 OUTPUT:
Procedure created.
SQL> declare
 n number:=&n;
 f number:=1;
 begin
 fact(n,f);
 dbms_output.put_line('factorial value is:'||f);
 end;
 OUTPUT:
Enter value for n: 6
old 2: n number:=&n;
new 2: n number:=6;
factorial value is:720
PL/SQL procedure successfully completed.

