
1

III Year-I Sem Computer Networks and Compiler Design Lab GEC

COMPUTER NETWORKS AND COMPILER DESIGN LAB

III Year – I Semester

Prepared by

Mr. J. N. V. R. Swarup Kumar Mrs. D. Priyanka

 Assistant Professor Assistant Professor

Department of Computer Science and Engineering

GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521 356.

2

III Year-I Sem Computer Networks and Compiler Design Lab GEC

VISION & MISSION OF THE COLLEGE

Vision

To be a leading institution of engineering education and research, preparing students for

leadership in their fields in a caring and challenging learning environment.

Mission

 To produce quality engineers by providing state-of-the-art engineering education.

 To attract and retain knowledgeable, creative, motivated and highly skilled individuals

whose leadership and contributions uphold the college tenets of education, creativity,

research and responsible public service.

 To develop faculty and resources to impart and disseminate knowledge and information

to students and also to society that will enhance educational level, which in turn, will

contribute to social and economic betterment of society.

 To provide an environment that values and encourages knowledge acquisition and

academic freedom, making this a preferred institution for knowledge seekers.

 To provide quality assurance.

 To partner and collaborate with industry, government, and R and D institutes to develop

new knowledge and sustainable technologies and serve as an engine for facilitating the

nation’s economic development.

 To impart personality development skills to students that will help them to succeed and

lead.

 To instil in students the attitude, values and vision that will prepare them to lead lives of

personal integrity and civic responsibility.

 To promote a campus environment that welcomes and makes students of all races,

cultures and civilizations feel at home.

 Putting students face to face with industrial, governmental and societal challenges.

3

III Year-I Sem Computer Networks and Compiler Design Lab GEC

VISION & MISSION OF THE DEPARTMENT

Vision

To be a Centre of Excellence in Computer Science and Engineering education and training to

meet the challenging needs of the industry and society.

Mission

 To impart quality education through well-designed curriculum in tune with the growing

software needs of the industry.

 To serve our students by inculcating in them problem solving, leadership, teamwork skills

and the value of commitment to quality, ethical behavior & respect for others.

 To foster industry-academia relationship for mutual benefit and growth

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

 Identify, analyze, formulate and solve Computer Science and Engineering problems both

independently and in a team environment by using the appropriate modern tools.

 Manage software projects with significant technical, legal, ethical, social, environmental

and economic considerations.

 Demonstrate commitment and progress in lifelong learning, professional development,

leadership and communicate effectively with professional clients and the public.

PROGRAM OUTCOMES(POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

4

III Year-I Sem Computer Networks and Compiler Design Lab GEC

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Students will be able to

 Design, develop, test and maintain reliable software systems and intelligent systems.

 Design and develop web sites, web apps and mobile apps.

Course Objectives

 To demonstrate the functionalities of various layers of OSI model.

 To demonstrate lexical analysis and syntax analysis phases of a compiler.

Learning Outcomes .

Upon successful completion of the course, the students will be able to

 implement data link layer framing and error detection methods.

 analyze the topological and routing strategies for an IP based networking

infrastructure.

 develop code to implement lexical analyzer.

 implement lexical analyzer using LEX tool.

 implement parser using YACC tool.

5

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Mapping of Course Outcomes with Program Outcomes:

CS2509 : COMPUTER NETWORKS AND COMPILER DESIGN LAB

Course outcomes

Program Outcomes and Program Specific Outcome

P

O

1

P

O

2

P

O

3

P

O

4

P

O

5

P

O

6

P

O

7

P

O

8

P

O

9

P

O

10

P

O

11

P

O

12

P

S

O

1

PS

O2

C01:implement data link layer framing

and error detection methods.
3 3 3 1 2 2 2 2 2

CO2:analyze the topological and

routing strategies for an IP based

networking infrastructure.

3 3 3 1 2 2 2 2 1 2

CO3:develop code to implement lexical

analyzer.
3 3 3 2 2 2 2 2 2 2

CO4:implement lexical analyzer using

LEX too
3 3 3 2 2 2 2 2 2 2

CO5:implement parser using YACC

tool.
3 3 3 2 2 2 2 2 2 2

Computer Networks And Compiler

Design Lab
3 3 3 3 3 3 3 3 3 3

6

III Year-I Sem Computer Networks and Compiler Design Lab GEC

INDEX

S.No TITLE Page No

1 System Requirements 8

2 Guidelines to Students 8

 LIST OF EXPERIMENTS

 Computer Networks

Exercise:1
Implement the data link layer framing methods such as character,

character stuffing and bit stuffing
9

Exercise:2 Implement on a data set of characters using two CRC polynomials

– CRC 12, CRC 16.
12

Exercise:3 Implement Dijkstra‘s algorithm to compute the shortest path

through graph.
16

Exercise:4 Take an example subnet graph with weights indicating delay

between nodes. Now obtain Routing table art each node using

distance vector routing algorithm.

20

Exercise:5 Implement hierarchal routing algorithm. 22

Exercise:6 Implement error detecting techniques. 24

 Compiler Design

Exercise:1 Implement DFA for the regular languages. 26

Exercise:2 Implement a PDA for context free languages. 28

Exercise:3 Implement a TM for phrase-structured languages. 31

Exercise:4 Design lexical analyzer to recognize the tokens and removes the

comment lines and the blank spaces.
34

Exercise:5 Implement the lexical analyzer using LEX tool. 40

Exercise:6 Implement predictive parser for a given language 43

Exercise:7 Implement LALR bottom up parser for the given language. 49

Exercise:8 Implement the syntax analyzer using YACC tool. 53

7

III Year-I Sem Computer Networks and Compiler Design Lab GEC

S.No ADDITIONAL EXPERIMENTS Page No

 Computer Networks

Exercise:1 Write a program to take an example subnet of hosts and obtain the

broadcast tree for it.
56

Exercise:2 Write a program to implement caesar cipher substitution technique. 59

Exercise:3 Write a program to implement rail fence cipher transposition

technique.
61

Exercise:4 Write a program to implement RSA algorithm to encrypt a text data

and decrypt the same.
63

8

III Year-I Sem Computer Networks and Compiler Design Lab GEC

1. System Requirements

Recommended Systems / Software Requirements:

 Intel based desktop PC, ANSI C Compiler with Supporting Editors, IDE’s such as

Turbo C.

 Linux with gcc compiler

 Codetantra Platform for Computer Netwoks lab.

2. Guidelines to Students

 Equipment in the lab for the use of student community. Students need to maintain

a proper decorum in the computer lab. Students must use the equipment with care.

Any damage caused is punishable.

 Students are supposed to occupy the machines allotted to them and are not

supposed to talk or make noise in the lab. The allocation is put up on the lab

notice board.

 Lab can be used in free time / lunch hours by the students who need to use the

systems should take prior permission from the lab in-charge.

 Lab records need to be submitted on or before date of submission.

9

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:1a

Aim : Write a program to implement the data link layer framing method such as bit stuffing.

Description:

The new technique allows data frames to contain an arbitrary number of bits and allows

character codes with an arbitrary no of bits per character. Each frame begins and ends with

the special bit pattern, 01111110, called a flag byte. Whenever the sender's data link layer

encounters five consecutive ones in the data, it automatically stuffs a 0 bit into the outgoing

bit stream. This bit stuffing is analogous to character stuffing, in which a DLE is stuffed into

the outgoing character stream before DLE in the data.

Program:

#include<stdio.h>

void main()

{

 int a[20],b[20],i,j,k,count,n;

 printf("Enter the frame size : ");

 scanf("%d",&n);

 printf("Enter the frame in the form of 0's and 1's : ");

 for(i=0;i<n;i++)

 {

 scanf("%d",&a[i]);

 }

 i=0;

 count=1;

 j=0;

 while(i<n)

 {

 if(a[i]==1)

 {

 b[j]=a[i];

 for(k=i+1;a[k]==1&&k<n&&count<5;k++)

 {

 j++;

 b[j]=a[k];

 count++;

 if(count==5)

 {

 j++;

 b[j]=0;

 }

 i=k;

 }

 }

 else

 {

 b[j]=a[i];

 }

 i++;

 j++;

10

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 }

 printf("After bit stuffing : ");

 for(i=0;i<j;i++)

 printf("%d",b[i]);

 printf("\n");

}

Output:

Exercise:1b

Aim: Write a program to implement the data link layer framing method such as character

stuffing and also de stuff it.

Description:

In character stuffing, each frame starts with the ASCII character sequence DLE STX

and ends with the sequence DLE ETX.(where DLE is Data Link Escape, STX is Start of

TeXt and ETX is End of TeXt.) This method overcomes the drawbacks of the character count

method. If the destination ever loses synchronization, it only has to look for DLE STX and

DLE ETX characters. If however, binary data is being transmitted then there exists a

possibility of the characters DLE STX and DLE ETX occurring in the data. Since this can

interfere with the framing, a technique called character stuffing is used. The sender's data link

layer inserts an ASCII DLE character just before the DLE character in the data. The receiver's

data link layer removes this DLE before this data is given to the network layer. However

character stuffing is closely associated with 8-bit characters and this is a major hurdle in

transmitting arbitrary sized characters.

Program:

#include<stdio.h>

#include<conio.h>

void main()

{

 int i,j,n,k,count,a[20],b[20];

 char d[20];

11

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 printf("Enter the number of characters : ");

 scanf("%d",&n);

 printf("Enter the characters : ");

 scanf("%s",d);

 printf("The original data : %s\n",d);

 printf("The transmitted data : dlestx",d);

 for(i=0;i<n;i++)

 {

 j=i;

 if(d[j]=='d')

 {

 if(d[++j]=='l')

 {

 if(d[++j]=='e')

 {

 printf("dle");

 }

 }

 }

 printf("%c",d[i]);

 }

 printf("dleetx");

 printf("\nThe received data : %s",d);

 printf("\n");

}

Output:

Viva Questions:

1. What is Framing?

2. What is Fixed Size Framing?

3. Define Character Stuffing?

4. What is Bit Stuffing?

5. Name the two sub layers of Data link layer. Specify their protocols.

12

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:2a

Aim: Write a program to implement on a data set of characters the CRC encoding algorithm.

Description:

CRC (Cyclic Redundancy Check) is used for encoding the given bits using the generated

string. The encoded information is transmitted to the other end. For encoding we perform the

exclusive operation

Program:

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

 char msg[20],key[10],keycpy[20],temp[20],quot[20],rem[20];

 int msglen,keylen,i,j;

 printf("Enter the frame string : ");

 scanf("%s",msg);

 printf("Enter the generator string : ");

 scanf("%s",key);

 strcpy(keycpy,key);

 msglen=strlen(msg);

 keylen=strlen(key);

 for(i=0;i<keylen-1;i++)

 {

 msg[msglen+i]='0';

 }

 for(i=0;i<keylen;i++)

 temp[i]=msg[i];

 for(i=0;i<msglen;i++)

 {

 quot[i]=temp[0];

 if(quot[i]=='0')

 for(j=0;j<keylen;j++)

 key[j]='0';

 else

 for(j=0;j<keylen;j++)

 key[j]=keycpy[j];

 for(j=keylen-1;j>0;j--)

 {

 if(temp[j]==key[j])

 rem[j-1]='0';

 else

 rem[j-1]='1';

 }

 rem[keylen-1]=msg[i+keylen];

 strcpy(temp,rem);

 }

 strcpy(rem,temp);

 printf("The data to be transmitted is : ");

 for(i=0;i<msglen;i++)

13

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 printf("%c",msg[i]);

 for(i=0;i<keylen-1;i++)

 printf("%c",rem[i]);

 printf("\n");

}

Output:

Exercise:2b

Aim: Write a program to implement on a data set of characters the CRC decoding algorithm.

Description:

CRC (Cyclic Redundancy Check) is used for decoding the string which is encoded in the

CRC encoding algorithm. Also we check for the errors that occur in the transmitted data. For

this we use exclusive operation.

Program:

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

 int p[20],g[20],i,j,k;

 char cp[20],cg[20];

 printf("Enter the received string : ");

 scanf("%s",cp);

 printf("Enter the polynomial string : ");

 scanf("%s",cg);

 for(i=0;i<strlen(cp);i++)

 p[i]=cp[i]-'0';

14

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 for(i=0;i<strlen(cg);i++)

 g[i]=cg[i]-'0';

 i=0;

 j=0;

 while(1)

 {

 j=0;

 while(p[j]!=1)

 j++;

 if(j>=strlen(cp)-(strlen(cg)-1))

 break;

 k=0;

 for(i=j;i<j+strlen(cg);i++)

 p[i]=p[i]^g[k];

 }

 for(i=0;i<strlen(cp);i++)

 {

 if(p[i]!=0)

 break;

 }

 if(i!=strlen(cp))

 {

 printf("No error\n");

 printf("Data received is : ");

 for(i=0;i<strlen(cp)-(strlen(cg)-1);i++)

 {

 cp[i]=cp[i]-'0';

 printf("%d",cp[i]);

 cp[i]=cp[i]-'1';

 }

 }

 else

 printf("Error");

 printf("\n");

}

Output:

15

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Viva Questions:

1. What are the types of errors?

2. What is Error Detection? What are its methods?

3. What is Redundancy?

4. What is VRC?

5. What is LRC?

6. What is CRC?

7. What is Checksum?

8. List the steps involved in creating the checksum.

16

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:3

Aim: Write a program on Implementation of Dijkstra's shortest path algorithm.

Description:

Let the node at which we are starting be called the initial node. Let the distance of node

Y be the distance from the initial node to Y. Dijkstra's algorithm will assign some initial

distance values and will try to improve them step by step.

1. Mark all nodes unvisited. Create a set of all the unvisited nodes called the unvisited set.

2. Assign to every node a tentative distance value: set it to zero for our initial node and to

infinity for all other nodes. Set the initial node as current.

3. For the current node, consider all of its unvisited neighbours and calculate their tentative

distances through the current node. Compare the newly calculated tentative distance to

the current assigned value and assign the smaller one. For example, if the current node A

is marked with a distance of 6, and the edge connecting it with a neighbour B has length

2, then the distance to B through A will be 6 + 2 = 8. If B was previously marked with a

distance greater than 8 then change it to 8. Otherwise, keep the current value.

4. When we are done considering all of the unvisited neighbours of the current node, mark

the current node as visited and remove it from the unvisited set. A visited node will never

be checked again.

5. If the destination node has been marked visited (when planning a route between two

specific nodes) or if the smallest tentative distance among the nodes in the unvisited set

is infinity (when planning a complete traversal; occurs when there is no connection

between the initial node and remaining unvisited nodes), then stop. The algorithm

has finished.

6. Otherwise, select the unvisited node that is marked with the smallest tentative distance,

set it as the new "current node", and go back to step 3. When planning a route, it is

actually not necessary to wait until the destination node is "visited" as above: the

algorithm can stop once the destination node has the smallest tentative distance among

all "unvisited" nodes (and thus could be selected as the next "current").

Program:

#include<stdio.h>

#include<conio.h>

#define INFINITY 9999

#define MAX 10

void dij(int g[MAX][MAX],int n,int stnode);

int main()

{

 int g[MAX][MAX],i,j,n,u;

 printf("Enter number of vertices : ");

 scanf("%d",&n);

 printf("Enter the adjacency matrix\n");

 for(i=0;i<n;i++)

 for(j=0;j<n;j++)

 scanf("%d",&g[i][j]);

 printf("Enter the starting node : ");

 scanf("%d",&u);

 dij(g,n,u);

 return 0;

}

17

III Year-I Sem Computer Networks and Compiler Design Lab GEC

void dij(int g[MAX][MAX],int n,int stnode)

{

 int cost[MAX][MAX],dist[MAX],pred[MAX];

 int vis[MAX],count,mindist,nextnode,i,j;

 for(i=0;i<n;i++)

 {

 for(j=0;j<n;j++)

 {

 if(g[i][j]==0)

 cost[i][j]=INFINITY;

 else

 cost[i][j]=g[i][j];

 }

 }

 for(i=0;i<n;i++)

 {

 dist[i]=cost[stnode][i];

 pred[i]=stnode;

 vis[i]=0;

 }

 dist[stnode]=0;

 vis[stnode]=1;

 count=1;

 while(count<n-1)

 {

 mindist=INFINITY;

 for(i=0;i<n;i++)

 {

 if(dist[i]<mindist&&!vis[i])

 {

 mindist=dist[i];

 nextnode=i;

 }

 }

 vis[nextnode]=1;

 for(i=0;i<n;i++)

 {

 if(!vis[i])

 {

 if(mindist+cost[nextnode][i]<dist[i])

 {

 dist[i]=mindist+cost[nextnode][i];

 pred[i]=nextnode;

 }

 }

 }

 count++;

 }

 for(i=0;i<n;i++)

 {

18

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 if(i!=stnode)

 {

 printf("Distance of node %d = %d\n",i,dist[i]);

 printf("Path = %d",i);

 j=i;

 do

 {

 j=pred[j];

 printf(" <- %d",j);

 }while(j!=stnode);

 printf("\n");

 }

 }

}

Output:

19

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Viva Questions:

1. What is Protocol?

2. What are the key elements of protocols?

3. What are the key design issues of a computer Network?

4. Define Bandwidth and Latency?

5. Define Routing?

6. What are the responsibilities of Network Layer?

7. Dijkstra’s Algorithm is used to solve _____________ problems.

8. Which of the following is the most commonly used data structure for implementing

Dijkstra’s Algorithm?

9. What is the time complexity of Dijikstra’s algorithm?

10. Dijkstra’s Algorithm cannot be applied on ______________

20

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:4

Aim: Take an example subnet graph with weights indicating delay between nodes. Now

obtain routing table at each node using distance vector routing algorithm.

Description:

A router transmits its distance vector to each of its neighbours in a routing packet. Each

router receives and saves the most recently received distance vector from each of its

Neighbours.A router recalculates its distance vector when:

1. It receives a distance vector from a neighbour containing different information than

before.

2. It discovers that a link to a neighbour has gone down.

Program:

#include<stdio.h>

struct node

{

 unsigned dist[20];

 unsigned from[20];

}rt[10];

int main()

{

 int cost[10][10],n,i,j,k,count=0;

 printf("Enter the number of nodes : ");

 scanf("%d",&n);

 printf("Enter the cost matrix\n");

 for(i=0;i<n;i++)

 {

 for(j=0;j<n;j++)

 {

 scanf("%d",&cost[i][j]);

 cost[i][i]=0;

 rt[i].dist[j]=cost[i][j];

 rt[i].from[j]=j;

 }

 }

 do

 {

 count=0;

 for(i=0;i<n;i++)

 for(j=0;j<n;j++)

 for(k=0;k<n;k++)

 if(rt[i].dist[j]>cost[i][k]+rt[k].dist[j])

 {

 rt[i].dist[j]=rt[i].dist[k]+rt[k].dist[j];

 rt[i].from[j]=k;

 count++;

 }

 }while(count!=0);

 for(i=0;i<n;i++)

 {

21

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 Prin tf("For router %d\n",i+1);

 for(j=0;j<n;j++)

 {

 printf("Node %d via %d distance

%d\n",j+1,rt[i].from[j]+1,rt[i].dist[j]);

 }

 }printf("\n");

}

Output:

Viva Questions:

1. What is Distance-Vector Routing Protocol?

2. What is Routing table?

22

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:5

Aim: Implement hierarchical routing algorithm.

Description:

This is essentially a 'Divide and Conquer' strategy. The network is divided into different

regions and a router for a particular region knows only about its own domain and other

routers.

Thus, the network is viewed at two levels:

1. The Sub-network level, where each node in a region has information about its peers in the

same region and about the region's interface with other regions. Different regions may

have different 'local' routing algorithms. Each local algorithm handles the traffic between

nodes of the same region and also directs the outgoing packets to the appropriate

interface.

2. The Network Level, where each region is considered as a single node connected to its

interface nodes. The routing algorithms at this level handle the routing of packets between

two interface nodes, and is isolated from intra-regional transfer.

Networks can be organized in hierarchies of many levels; e.g. local networks of a city at

one level, the cities of a country at a level above it, and finally the network of all nations.

In Hierarchical routing, the interfaces need to store information about:

i. All nodes in its region which are at one level below it.

ii. Its peer interfaces.

iii. At least one interface at a level above it, for outgoing packages

Program:

#include<stdio.h>

#include<conio.h>

struct full

{

 char line[10],dest[10];

 int hops;

}f[20];

void main()

{

 int nv,i,min,minver;

 char sv[20],temp;

 printf("Enter number of vertices : ");

 scanf("%d",&nv);

 printf("Enter source vertex : ");

 scanf("%s",sv);

 printf("Enter full table for soutce vertex %s\n",sv);

 for(i=0;i<nv;i++)

 scanf("%s%s%d",f[i].dest,f[i].line,&f[i].hops);

 printf("HIERARCHICAL TABLE");

 for(i=0;i<nv;)

 {

 if(sv[0]==f[i].dest[0])

 {

 printf("\n%s %s %d",f[i].dest,f[i].line,f[i].hops);

 i++;

 }

23

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 else

 {

 min=1000;

 minver=0;

 temp=f[i].dest[0];

 while(temp==f[i].dest[0])

 {

 if(f[i].hops<min)

 {

 minver=i;

 }

 i++;

 }

 printf("\n%c %s %d",temp,f[minver].line,f[minver].hops);

 }

 }

 printf("\n");

}

Output:

Viva Questions:

1. What is static and dynamic routing?

2. What are the fields included in routing table?

3. Difference between Hierarchical and Flat Routing Protocol.

24

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:6

Aim: Write a program to implement one of the error detection technique , simple parity

check for even parity.

Description:

Blocks of data from the source are subjected to a check bit or parity bit generator form,

where a parity of :

1 is added to the block if it contains odd number of 1’s, and

0 is added if it contains even number of 1’s

This scheme makes the total number of 1’s even, that is why it is called even parity checking.

Program:

25

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Output:

Viva Questions:

1. Define parity check.

26

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:1

Aim: Implement DFA for the regular languages.

Description:

A deterministic finite automaton (DFA) is a finite-state machine that accepts or

rejects strings of symbols and only produces a unique computation of the automaton for each

input string.

A deterministic finite automaton M, is a 5-tuple (Q, ∑, δ, q0 , F), where

 Q is a finite set of states.

 ∑ is a finite input alphabet.

 δ is the transition function mapping Q x ∑ Q

 q0 ∈ Q is the initial state.

 F ⊆ Q is the set of final states.

a) A set of all strings which contains ‘aa’ as substring over {a,b}.

Program:

#include<stdio.h>

main()

{

 int i,st=0;

 char str[10],ch;

 clrscr();

printf("\nEnter string to be tested:");

gets(str);

for(i=0;str[i]!='\0';i++)

{

ch=str[i];

if(ch=='a'||ch=='b')

{

switch(st)

{

case 0:if(ch=='b')

 st=0;

 else if(ch=='a')

 st=1;

 break;

case 1:if(ch=='b')

 st=0;

 else if(ch=='a')

 st=2;

 break;

27

III Year-I Sem Computer Networks and Compiler Design Lab GEC

case 2:if(ch=='a' || ch=='b')

 st=2;

 break;

default:break;

}

}

else

{

 printf("Invalid input...string is rejected");

 exit(0);

}

}

if(st==2)

printf("Accepted");

else

printf("Rejected");

getch();

}

Output:

Viva Questions:

1. What are the types of finite automata?

2. What is DFA?

3. What is Regular Expression?

4. What is Regular Language?

5. What are the limitations of finite automata?

28

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:2

Aim: Implement a PDA for context free languages.

Description:

a) Design PDA for the language L= {wcwr |w ∈ {a,b}*}.

Program:

#include<stdio.h>

char stack[20];

int top=-1;

void push(char var)

{

 stack[++top]=var;

}

char pop()

{

 char n;

 n=stack[top--];

 return n;

}

void main()

{

 char ch,str[10];

 int i,state=0;

 clrscr();

 printf("Enter string to be tested:");

 gets(str);

 push('z');

 for(i=0;str[i]!='\0';i++)

 {

 ch=str[i];

29

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 if(ch=='a'||ch=='b'||ch=='$'||ch=='c')

 {

 switch(state)

 {

 case 0:if((ch=='a'||ch=='b')&&stack[top]=='z')

 {

 push(ch);

 state=0;

 }

 else

 if((ch=='a'||ch=='b')&&(stack[top]=='a'||stack[top]=='b'))

 {

 push(ch);

 state=0;

 }

 else

 if(ch=='c'&&(stack[top]=='a'||stack[top]=='b'||stack[top]=='z'))

 {

 state=1;

 }

 break;

 case 1: if(ch=='a'&& stack[top]=='a')

 {

 pop();

 state=1;

 }

 else if(ch=='b'&& stack[top]=='b')

 {

 pop();

 state=1;

 }

 else if(ch=='$' && stack[top]=='z')

 {

 pop();

 state=1;

 }

 break;

 default: break;

 }

 }

 else

 {

 printf("Invalid input...please enter valid string");

 exit(0);

 }

 }

 if(stack[top]=='\0')

 printf("String is accepted");

30

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 else

 printf("String is rejected");

 getch();

}

Output:

Viva Questions:

1. What is PDA?

2. What is context free language?

3. What is context free grammar?

4. What is derivation tree?

5. What is ambiguous grammar?

31

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:3

Aim: Implement a TM for phrase-structured languages.

Description:

A Turing machine (TM) is denoted by

a) TM for addition of two unary numbers.

Program:
#include<stdio.h>

void main()

{

 char str[20],c;

int i=0,st=0;

clrscr();

printf("Enter string:");

gets(str);

while(str[i]!='\0')

{

 c=str[i];

 if(c=='0'||c=='1'||c=='B')

 {

 switch(st)

 {

 case 0:if(c=='1')

 {

 str[i]='1';

 i++;

 st=0;

 }

 else if(c=='0')

 {

 str[i]='1';

 i++;

 st=1;

 }

32

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 break;

 case 1:if(c=='1')

 {

 str[i]='1';

 i++;

 st=1;

 }

 else if(c=='B')

 {

 str[i]='B';

 i--;

 st=2;

 }

 break;

 case 2:if(c=='1')

 {

 str[i]='B';

 i++;

 st=3;

 }

 break;

 case 3:if(c=='B')

 {

 str[i]='B';

 i++;

 st=3;

 }

 break;

 default: break;

 }

 }

 else

 {

 printf("Invalid input... please enter valid string");

 exit(0);

 }

}

if(st==3)

{

printf("Halt and accept");

printf("\nAddition of two unary numbers is:");

puts(str);

 }

 else

 printf(“Halt and reject");

getch();

}

33

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Output:

Viva Questions:

1. What is Turing Machine?

2. What is recursive language?

3. What is recursively enumerable language?

4. What are decidable problems?

34

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:4

Aim: Design lexical analyzer to recognize the tokens and removes the comment lines and the

blank spaces.

Description:

Lexical analysis is the first phase of a compiler. The lexical analysis phase reads the

characters from the source program and group them into stream of tokens. Common token

names are identifiers, keywords, separator (also known as punctuators), operators, literals,

comments.

Algorithm:

1. Declare an array and store the keywords in that array.

2. Take a file as an input.

3. Read the charaters from the file (sequence of charaters is string) till the end of the file

and recognize the tokens.

a. If the string matches with any of the keywords, print that string is a keyword.

b. If the string is not a keyword, print it as an identifier.

c. If the string is a number, print it as a digit.

d. If the string matches with operator and special symbols, print the

corresponding message.

Program:

#include<stdio.h>

#include<ctype.h>

#include<string.h>

int lineno=0;

struct

{

 char token[10];

}symbol_table[50];

int loc=0;

int kcnt=32;

char keylist[][20]={"auto","break","case","continue","const","char","double"

 ,"default","do","extern","enum","else","float","for","goto","int","if",

 "long","return","register","static","short","switch","signed","struct"

 ,"sizeof","typedef","unsigned","union","void","volatile","while"};

char lexbuf[100],c;

int tokenval,i,p;

void comment(char);

void digit(char);

void id(char);

35

III Year-I Sem Computer Networks and Compiler Design Lab GEC

void print_symbol_table();

int insert(char *);

int lookup(char *);

void string(char);

FILE *fp;

void main()

{

 int st;

 char c,fname[10];

 clrscr();

 printf("Enter filename:");

 gets(fname);

 fp=fopen(fname,"r");

 while((c=fgetc(fp))!=EOF)

 {

 st=0;

 if(c==' ' || c=='\t');

 else if(c=='\n')

 {

 printf("\n");

 lineno++;

 }

 else if(c=='/')

 {

 st=1;

 }

 else if (isdigit(c))

 {

 st=2;

 }

 else if (isalpha(c))

 {

 st=3;

 }

 else if(c=='"')

 {

 st=4;

 }

 else

 {

 switch(c)

 {

 case '+' :

 case '-' :

 case '*' :

 case '/' :

 case '%' :

 case '=' :

36

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 case '<' :

 case '>' :printf("<%c,%s>",c,"operator");

 break;

 }

 }

 switch(st)

 {

 case 1:comment(c);

 break;

 case 2:digit(c);

 break;

 case 3:id(c);

 break;

 case 4:string(c);

 break;

 }

 }

 print_symbol_table();

 printf("\n No of lines = %d",lineno);

 getch();

}

void comment(char c)

{

 c=fgetc(fp);

 if(c=='/')

 {

 printf("Single line comment");

 do

 {

 c=fgetc(fp);

 }while((c=fgetc(fp))!='\n');

 return;

 }

 else if(c=='*')

 {

 while(1)

 {

 c=fgetc(fp);

 if(c=='*')

 {

 c=fgetc(fp);

 if(c=='/')

 printf("comment");

 break;

 }

37

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 else continue;

 }

 }

}

void digit(char c)

{

 tokenval = c-'0';

 c=fgetc(fp);

 while(isdigit(c)) {

 tokenval = tokenval*10 + c-'0';

 c=fgetc(fp);

 }

 ungetc(c,fp);

 printf("digit=%d",tokenval);

 return;

}

void id(char c)

{

 i=0;

 while(isalnum(c))

 {

 lexbuf[i++]=c;

 c=fgetc(fp);

 }

 lexbuf[i]='\0';

 ungetc(c,fp);

 for(i=0;i<kcnt;i++)

 {

 if(strcmp(lexbuf,keylist[i])==0)

 {

 printf("<%s,%s>",lexbuf,"keyword");

 break;

 }

 }

 if(i==kcnt)

 {

 printf("<%s,%s>",lexbuf,"id");

 p=lookup(lexbuf);

 if(p==-1)

 p=insert(lexbuf);

 }

}

void string(char c)

{

 do

38

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 {

 c=fgetc(fp);

 }while(c!='"');

 printf("String literal");

}

int insert(char *lexeme)

 {

 strcpy(symbol_table[loc].token,lexeme);

 return(loc++);

 }

int lookup(char *s)

 {

 int i;

 for(i=0;i<loc;i++)

 if (strcmp(s,symbol_table[i].token)==0)

 return (i);

 return -1;

 }

void print_symbol_table()

{

 int i;

 printf("\n\nloc - symbol \n");

 for(i=0;i<loc;i++)

 printf("\n %d - %s",i,symbol_table[i].token);

}

Output:

“sample.c”

main()

{

 int a=10,b=20;

 int c;

 c=a+b;

 printf("%d",c);

 getch();

}

39

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Viva Questions:

1. What is a token?

2. What are the phases of compiler?

3. What is lexical analysis?

4. What is a symbol table?

5. What is the difference between compiler and interpreter?

40

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:5

Aim: Implement the lexical analyzer using LEX tool.

Description:

 LEX Tool is widely used to specify lexical analyzers for a variety of languages.

 The tool is referred as LEX Compiler and its input specification as the LEX

Language.

Lex Specifications:

 A Lex program consists of three parts:

 declarations

 % %

 transation rules

 % %

 auxiliary procedures

 The Declarations section includes declarations of variables, manifest constants,

and regular definitions.

 The regular definitions are used as components of the regular expressions

appearing in the translation rules.

 The Translation Rules of a Lex program are statements of the form

 P1 {action1}

 P2 {action2}

 Pn {actionn}

where each P1 is a regular expression and each action1 is a program fragment

describing what action the lexical analyzer should take when pattern Pi matches a

lexeme.

 In Lex, the actions are written in C; but they can be in any implementation

language.

 The third section holds whatever auxiliary procedures are needed by the actions.

 These procedures can be compiled separately and loaded with the lexical analyzer.

Program:

%{

/* program to recognize a c program */

%}

identifier [a-zA-Z][a-zA-Z0-9]*

%%

41

III Year-I Sem Computer Networks and Compiler Design Lab GEC

#.* { printf("\n%s is a PREPROCESSOR DIRECTIVE",yytext);}

int |

float |

char |

double |

while |

for |

do |

if |

break |

continue |

void |

switch |

case |

long |

struct |

const |

typedef |

return |

else |

goto {printf("\n\t%s is a KEYWORD",yytext);}

{identifier}\({printf("\n\nFUNCTION\n\t%s",yytext);}

\{ { printf("\n BLOCK BEGINS");}

 \} { printf("\n BLOCK ENDS"); }

{identifier}(\[[0-9]*\])? { printf("\n %s IDENTIFIER",yytext);}

 \".*\" { printf("\n\t%s is a STRING",yytext);}

[0-9]+ { printf("\n\t%s is a NUMBER",yytext);}

= {printf("\n\t%s is an ASSIGNMENT OPERATOR",yytext);}

\<= |

\>= |

\< |

== |

\> { printf("\n\t%s is a RELATIONAL OPERATOR",yytext);}

%%

int main(int argc,char **argv)

{

if (argc > 1)

{

FILE *file;

file = fopen(argv[1],"r");

if(!file)

{

printf("could not open %s \n",argv[1]);

exit(0);

}

yyin = file;

}

yylex();

printf("\n\n");

return 0;

42

III Year-I Sem Computer Networks and Compiler Design Lab GEC

}

int yywrap()

{

return 0;

}

Output:

Viva Questions:

1. What is regular expression?

2. What is the regular expression for identifiers?

3. List the different sections available in LEX compiler?

4. What is an auxiliary definition?

5. How can we define the translation rules?

43

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:6
Aim: Implement predictive parser for a given language.

E → TE’

 E’ → +TE’ | ε

 T → FT’

 T’ → *FT’ | ε

 F → (E) | id

Description:

Predictive parsing is one of the top-down parsing technique. In this, the parse table is

used with input. The parse table shouldn’t contain multiple entries. The grammar which is

acceptable by this parser is LL(1) grammar. There is no backtracking in predictive parsing.

Algorithm:

Input: A string w and a parsing table M for grammar G.

Output: If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method: Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$

in the input buffer. The program that utilizes the predictive parsing table M to produce a parse

for the input is as follows:

set ip to point to the first symbol of w$;

repeat

begin

let X be the top stack symbol and a the symbol pointed to by ip;

if X is a terminal or $ then

if X=a

then pop X from the stack and advance ip

 else

error()

 else/* X is a nonterminal*/

 if M[X,a]=XY1,Y2,……,Yk then

 begin

pop X from the stack;

push Yk,Yk-1,………..Y1 on to the stack,Y1 on top

 end

 else

error()

 end/*first begin end*/

until X=$

44

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Program:

#include<stdio.h>

int stack[20],top=-1;

void push(int item)

{

 if(top>=20)

 {

 printf("STACK OVERFLOW");

 exit(1);

 }

 stack[++top]=item;

 }

 int pop()

 {

 int ch;

 if(top<=-1)

 {

 printf("underflow");

 exit(1);

 }

 ch=stack[top--];

 return ch;

}

char convert(int item)

{

 char ch;

 switch(item)

 {

 case 0:return('E');

 case 1:return('e');

 case 2:return('T');

 case 3:return('t');

 case 4:return('F');

 case 5:return('i');

45

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 case 6:return('+');

 case 7:return('*');

 case 8:return('(');

 case 9:return(')');

 case 10:return('$');

 }

}

void main()

{

 int m[10][10],i,j,k;

 char ips[20];

 int ip[10],a,b,t;

 m[0][0]=m[0][3]=21;

 m[1][1]=621;

 m[1][4]=m[1][5]=-2;

 m[2][0]=m[2][3]=43;

 m[3][1]=m[3][4]=m[3][5]=-2;

 m[3][2]=743;

 m[4][0]=5;

 m[4][3]=809;

 clrscr();

 printf("\n enter the input string:");

 scanf("%s",ips);

 for(i=0;ips[i];i++)

 {

 switch(ips[i])

 {

 case 'E':k=0;break;

 case 'e':k=1;break;

 case 'T':k=2;break;

 case 't':k=3;break;

 case 'F':k=4;break;

 case 'i':k=5;break;

 case '+':k=6;break;

46

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 case '*':k=7;break;

 case '(':k=8;break;

 case ')':k=9;break;

 case '$':k=10;break;

 }

 ip[i]=k;

 }

 ip[i]=-1;

 push(10);

 push(0);

 i=0;

 printf("\tstack\t input \n");

 while(1)

 {

 printf("\t");

 for(j=0;j<=top;j++)

 printf("%c",convert(stack[j]));

 printf("\t\t");

 for(k=i;ip[k]!=-1;k++)

 printf("%c",convert(ip[k]));

 printf("\n");

 if(stack[top]==ip[i])

 {

 if(ip[i]==10)

 {

 printf("\t\t SUCCESS");

 return;

 }

 else

 {

 top--;

 i++;

 }

 }

47

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 else if(stack[top]<=4&&stack[top]>=0)

 {

 a=stack[top];

 b=ip[i]-5;

 t=m[a][b];

 top--;

 while(t>0)

 {

 push(t%10);

 t=t/10;

 }

 }

 else

 {

 printf("ERROR");

 return;

 }

 }

 getch();

}

Output:

48

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Viva Questions :

1. What is top-down parsing?

2. What is parse tree?

3. How many types of parsers are there?

4. What is predictive parsing?

5. What is LL(1) grammar?

49

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:7
Aim: Implement LALR bottom up parser for the given language.

SCC

CcC

Cd

Description:

LALR parsing is one of the bottom-up parsing technique. In this parsing the parse

table is used with input. The parse table doesn’t contain multiple entries. So the There is no

backtracking in LALR parser. LALR parser is the efficient bottom-up parser.

Algorithm:

Input: An augmented grammar G’.

Output: The LALR parsing table actions and goto for G’.

Method:

1. Construct C= {I0, I1, I2,… , In}, the collection of sets of LR(1) items.

2. For each core present in among these sets, find all sets having the core, and replace

these sets by their union.

3. Parsing action table is constructed as for Canonical LR.

4. The goto table is constructed by taking the union of all sets of items having the same

core. If J is the union of one or more sets of LR (1) items, that is, J=I1 U I2 U … U

Ik, then the cores of goto(I1,X), goto(I2,X),…, goto(Ik, X) are the same as all of them

have same core. Let K be the union of all sets of items having same core as goto(I1,

X). Then goto(J,X)=K.

Program:

#include<stdio.h>

int st[20],top=-1;

char input[20];

int encode(char ch)

{

 switch(ch)

 {

 case 'c':return 0;

 case 'd':return 1;

 case '$':return 2;

 case 'S':return 3;

 case 'C':return 4;

 }

 return -1;

 }

 char decode(int n)

 {

 switch(n)

 {

 case 0:return('c');

 case 1:return('d');

 case 2:return('$');

 case 3:return('S');

 case 4:return('C');

50

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 }

 return 'z';

 }

 void push(int n)

 {

 st[++top]=n;

 }

 int pop()

 {

 return(st[top--]);

 }

 void display(int p,char *ptr)

 {

 int l;

 for(l=0;l<=top;l++)

 {

 if(l%2==1)

 printf("%c",decode(st[l]));

 else

 printf("%d",st[l]);

 }

 printf("\t");

 for(l=p;ptr[l];l++)

 printf("%c",ptr[l]);

 printf("\n");

 }

 void main()

 {

 char t1[20][20],pr[20][20],xy;

 int inp[20],t2[20][20],gt[20][20];

 int i,k,x,y,tx=0,ty=0,len;

 clrscr();

 strcpy(pr[1],"S-CC");

 strcpy(pr[2],"C-cC");

 strcpy(pr[3],"C-d");

 t2[0][0]=3;

 t2[0][1]=4;

 t2[2][0]=3;

 t2[2][1]=4;

 t2[3][0]=3;

 t2[3][1]=4;

 t2[4][0]=t2[4][1]=t2[4][2]=3;

 t2[5][2]=1;

 t2[6][0]=t2[6][1]=t2[6][2]=2;

 t1[0][0]=t1[0][1]='s';

 t1[1][2]='a';

 t1[2][0]=t1[2][1]='s';

 t1[3][0]=t1[3][1]='s';

 t1[4][0]=t1[4][1]=t1[4][2]='r';

51

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 t1[5][2]='r';

 t1[6][0]=t1[6][1]=t1[6][2]='r';

 gt[0][3]=1;

 gt[0][4]=2;

 gt[2][4]=5;

 gt[3][4]=6;

 printf("enter string:");

 scanf("%s",input);

 for(k=0;input[k];k++)

 {

 inp[k]=encode(input[k]);

 if(input[k]<0||inp[k]>2)

 printf("\n error in input");

 }

 push(0);

 i=0;

 while(1)

 {

 x=st[top];y=inp[i];

 display(i,input);

 if(t1[x][y]=='a')

 {

 printf("string is accepted \n");

 exit(0);

 }

 else if(t1[x][y]=='s')

 {

 push(inp[i]) ;

 push(t2[x][y]);

 i++;

 }

 else if(t1[x][y]=='r')

 {

 len=strlen(pr[t2[x][y]])-2;

 xy=pr[t2[x][y]][0];

 ty=encode(xy);

 for(k=1;k<=2*len;k++)

 pop();

 tx=st[top];

 push(ty);

 push(gt[tx][ty]);

 }

 else

 {

 printf("\n error in parsing");

 break;

 }

 }

 getch();

 }

52

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Output:

Viva Questions:

1. What is bottom-up parsing?

2. What are the different types of LR parsers?

3. What is lookahead?

4. What is shift-reduce parsing?

5. What is LALR parsing?

53

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:8

Aim: Implement the syntax analyzer using YACC tool.

Description:

Yacc (Yet Another Compiler-Compiler) is a computer program for the Unix operating

system. An Yacc tool can be used to generate automatically an LALR parser.

A Yacc program consists of three parts:

 definitions

 % %

 rules

 % %

 Subroutines

 The definition part consists of token declarations and C code bracketed by %{ and %}

 The grammar is placed in the rules section.

 User subroutines are added in sunroutines section.

Program:

%{

#include<stdio.h>

%}

%token num

%%

E:E'\n' {printf("\n E->E:%d",$$);exit(0);}

 |E'+'T {$$=$1+$3; printf("\n E->E+T:%d",$$);}

 |T {$$=$1; printf("\n E->T:%d",$$);}

 ;

 T:T'*'F {$$=$1*$3; printf("\n T->T*F:%d",$$);}

 |F {$$=$1; printf("\n T->F:%d",$$);}

 ;

 F:'('E')' {$$=$2;printf("\n F->(E):%d",$$);}

 |num {$$=$1; printf("\n F->num:%d",$$);}

 ;

%%

main()

{

return yyparse();

}

int yylex()

{

int c;

while((c=getchar())==' ');

if(isdigit(c))

{

ungetc(c,stdin);

scanf("%d",&yylval);

return num;

}

if(c=='\n')

{

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Unix

54

III Year-I Sem Computer Networks and Compiler Design Lab GEC

return 0;

}

else

return c;

}

char yyerror(char *s)

{

printf("%s",s);

}

Output:

Viva Questions:

1. What is YACC?

2. What is the difference between LEX and YACC?

3. What is the use of yyparse()?

55

III Year-I Sem Computer Networks and Compiler Design Lab GEC

56

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Additional Experiments

Exercise:1

Aim: Write a program to take an example subnet of hosts and obtain the broadcast tree for it.

Description:

Kruskal's algorithm is used to obtain the broadcast tree from the given subnet. This

algorithm constructs a minimal spanning tree for a connected weighted graph G. Algorithm :

1. Select any edge of minimal value that is not a loop. This is the first edge of T.

2. Select any remaining edge of G having minimal value that does not from a circuit with

the edges already included in T.

3. Continue step-2 until T contains n-1 edges where n is the number of vertices of G.

Program:

#include<stdio.h>

#include<conio.h>

int n,weight[10][10]={0},intree[10]={0},d[10]={0},whoto[10]={0};

void updatedistance(int target)

{

 int i;

 for(i=0;i<n;i++)

 {

 if((weight[target][i]!=0)&&(d[i]>weight[target][i]))

 {

 d[i]=weight[target][i];

 whoto[i]=target;

 }

 }

}

void main()

{

 int i,j,total=0,s;

 printf("Enter the number of nodes : ");

 scanf("%d",&n);

 printf("Enter distance from\n");

 for(i=0;i<n;++i)

 {

 for(j=0;j<n;j++)

 {

 if(i==j)

 weight[i][j]=0;

 else

 {

 printf("%c --> %c : ", 'A'+i,'A'+j);

 scanf("%d",&weight[i][j]);

 }

 }

 }

 printf("The Distance matrix is\n");

 for(i=0;i<n;i++)

 {

57

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 for(j=0;j<n;j++)

 printf("%d ",weight[i][j]);

 printf("\n");

 }

 for(i=0;i<n;i++)

 d[i]=1000;

 printf("Enter source from 0 to %d : ",n-1);

 scanf("%d",&s);

 printf("Broadcast tree for source node %c is\n",s+'A');

 printf("Source\tDestination\n");

 intree[s]=1;

 updatedistance(s);

 for(j=0;j<n-1;j++)

 {

 int min=-1;

 for(i=0;i<n;i++)

 {

 if(!intree[i])

 {

 if((min==-1)||(d[min]>d[i]))

 min=i;

 }

 }

 printf("%c\t%c\n",whoto[min]+'A',min+'A');

 intree[min]=1;

 total+=d[min];

 updatedistance(min);

 }

 printf("Total distance : %d\n",total);

}

Output:

58

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Viva Questions:

1. What is mask?

2. What is the pupose of mask?

3. What is subnet?

59

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:2

Aim: Write a program to implement caesar cipher substitution technique.

Description:

In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's

code or Caesar shift, is one of the simplest and most widely known encryption techniques. It

is a type of substitution cipher in which each letter in the plain text is replaced by a letter

some fixed number of positions down the alphabet. For example, with a left shift of 3, D

would be replaced by A, E would become B, and so on. The method is named after Julius

Caesar, who used it in his private correspondence. The transformation can be represented by

aligning two alphabets; the cipher alphabet is the plain alphabet rotated left or right by some

number of positions.

Program:

#include<stdio.h>

#include<string.h>

int main()

{

 char msg[100],ch;

 int i,key;

 printf("Enter the string : ");

 gets(msg);

 printf("Enter the key value : ");

 scanf("%d",&key);

 printf("Original string : %s\n",msg);

 for(i=0;msg[i]!='\0';++i)

 {

 ch=toupper(msg[i]);

 if(ch>='a' && ch<='z')

 {

 ch=ch+key;

 if(ch>'z')

 {

 ch=ch-'z'+'a'-1;

 }

 msg[i]=ch;

 }

 else if(ch>='A' && ch<='Z')

 {

 ch=ch+key;

 if(ch>'Z')

 {

 ch=ch-'Z'+'A'-1;

 }

 msg[i]=ch;

 }

 }

 printf("Encrypted string : %s\n",msg);

 for(i=0;msg[i]!='\0';++i)

 {

60

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 ch=msg[i];

 if(ch>='a'&&ch<='z')

 {

 ch=ch-key;

 if(ch<'a')

 {

 ch=ch+'z'-'a'+1;

 }

 msg[i]=ch;

 }

 else if(ch>='A'&&ch<='Z')

 {

 ch=ch-key;

 if(ch<'A')

 {

 ch=ch+'Z'-'A'+1;

 }

 msg[i]=ch;

 }

 }

 printf("Decrypted string : %s\n",msg);

 return 0;

}

Output:

Viva Questions:

1. What is cipher?

2. What are types of cipher?

61

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:3

Aim: Write a program to implement rail fence cipher transposition technique.

Description:

A transposition cipher is one in which plain text symbols are rearranged (i.e., transposed

or permuted) to produce cipher text. The method of transposition may be either mathematical

or typographical in nature. The Rail fence cipher is a transposition cipher. It rearranges the

plain text letters by drawing them in a way that they form a shape of the rails of an imaginary

fence. To encrypt the message, the letters should be written in a zigzag pattern, going

downwards and upwards between the levels of the top and bottom imaginary rails. The shape

that is formed by the letters is similar to the shape of the top edge of the rail fence. Next, all

the letters should be read off and concatenated, to produce one line of cipher text. The letters

should be read in rows, usually from the top row down to the bottom one. The secret key is

the number of levels in the rail. It is also a number of rows of letters that are created during

encryption. This number cannot be very big, so the number of possible keys is quite limited.

Program:

#include<stdio.h>

#include<string.h>

void main()

{

 int n,L,i,j,k=-1,row=0,col=0;

 char a[40],b[40][40];

 printf("Enter the plain text : ");

 gets(a);

 printf("Enter the value of n : ");

 scanf("%d",&n);

 L=strlen(a);

 b[n][L];

 for(i=0;i<n;++i)

 {

 for(j=0;j<L;++j)

 {

 b[i][j]='\n';

 }

 }

 for(i=0;i<L;++i)

 {

 b[row][col++]=a[i];

 if(row==0 || row==n-1)

 k=k*(-1);

 row=row+k;

 }

 printf("The encrypted code : ");

 for(i=0;i<n;++i)

 {

 for(j=0;j<L;++j)

 {

 if(b[i][j]!='\n')

 {

62

III Year-I Sem Computer Networks and Compiler Design Lab GEC

 printf("%c",b[i][j]);

 }

 }

 }

 printf("\nDecrypted message : ");

 puts(a);

 printf("\n");

}

Output:

Viva Questions:

1. What is transposition technique?

2. What is the difference between transposition technique and substitution technique?

63

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Exercise:4

Aim: Write a program to implement RSA algorithm to encrypt a text data and decrypt the

same.

Description:

RSA is an algorithm used by modern computers to encrypt and decrypt messages. It is an

asymmetric cryptographic algorithm. Asymmetric means that there are two different keys.

This is also called public key cryptography, because one of the keys can be given to anyone.

The other key must be kept private. The algorithm is based on the fact that finding the factors

of a large composite number is difficult: when the integers are prime numbers, the problem is

called prime factorization. It is also a key pair (public and private key) generator.

Program:

64

III Year-I Sem Computer Networks and Compiler Design Lab GEC

65

III Year-I Sem Computer Networks and Compiler Design Lab GEC

Output:

Viva Questions:

1. What is encryption?

2. What is decryption?

3. What is private key?

4. What is public key?

