

 Learning Material

UNIT – I

Objective:

To differentiate various distributed computing technologies.

Syllabus:

Evolution and Emergence of web services:

Evolution of distributed computing, Core distributed computing technologies-client/

server, CORBA, JAVA RMI, MicroSoft DCOM, MOM, Challenges in Distributed

Computing, role of J2EE and XML in distributed computing, emergence of web

services and Service Oriented Architecture(SOA).

Learning Outcomes:

Students will be able to

 Understand how to differentiate various distributed computing

technologies.

 Identify challenges in distributed Computing.

 Learn the role of J2EE and XML in distributed computing.

 Understand the emergence of Web Services and SOA

LEARNING MATERIAL

Evolution of Distributed Computing:-

In the early years of computing, mainframe-based applications were considered to be

the best-fit solution for executing large-scale data processing applications. With the

advent of personal computers (PCs), the concept of software programs running on

standalone machines became much more popular in terms of the cost of ownership

and the ease of application use. With the number of PC-based application programs

running on independent machines growing, the communications between such

application programs became extremely complex and added a growing challenge in

the aspect of application-to-application interaction.

Lately, network computing gained importance, and enabling remote procedure

calls (RPCs) over a network protocol called Transmission Control Protocol/Internet

Protocol (TCP/IP) turned out to be a widely accepted way for application software

communication. Since then, software applications running on a variety of hardware

platforms, operating systems, and different networks faced some challenges when

required to communicate with each other and share data. This demanding

requirement lead to the concept of distributed computing applications. As a

definition, “Distributing Computing is a type of computing in which different

components and objects comprising an application can be located on different

computers connected to a network”. Distributed computing model that provides an

infrastructure enabling invocations of object functions located anywhere on the

network. The objects are transparent to the application and provide processing

power as if they were local to the application calling them.

Figure 1.1 Internet-based distributed computing model.

Importance of Distributed Computing:

The distributed computing environment provides many advantages

The following are some of those key advantages:

Higher performance: Applications can execute in parallel and distribute the load

across multiple servers.

Collaboration: Multiple applications can be connected through standard distributed

computing mechanisms.

Higher reliability and availability: Applications or servers can be clustered in
multiple machines.

Scalability: This can be achieved by deploying these reusable distributed
components on powerful servers.

Extensibility: This can be achieved through dynamic (re)configuration of

applications that are distributed across the network. Higher productivity and lower

development cycle time. By breaking up large problems into smaller ones, these

individual components can be developed by smaller development teams in isolation.

Reuse: The distributed components may perform various services that can

potentially be used by multiple client applications. It saves repetitive development

effort and improves interoperability between components.

 Reduced cost: Because this model provides a lot of reuse of once developed

components that are accessible over the network, significant cost reductions can be

achieved. Distributed computing also has changed the way traditional network

programming is done by providing a shareable object like semantics across networks

using programming languages like Java, C, and C++. The following sections briefly

discuss core distributed computing technologies such as Client/Server applications,

OMG CORBA, Java RMI, Microsoft COM/DCOM, and MOM.

Client-Server Applications:

The early years of distributed application architecture were dominated by two-

tier business applications. In a two-tier architecture model, the first (upper) tier

handles the presentation and business logic of the user application (client), and the

second/lower tier handles the application organization and its data storage (server).

This approach is commonly called client-server applications architecture. Generally,

the server in a client/server application model is a database server that is mainly

responsible for the organization and retrieval of data. The application client in this

model handles most of the business processing and provides the graphical user

interface of the application. It is a very popular design in business applications

where the user.

Interface and business logic are tightly coupled with a database server for

handling data retrieval and processing. For example, the client-server model has

been widely used in enterprise resource planning (ERP), billing, and Inventory

application systems where a number of client business applications residing in

multiple desktop systems interact with a central database server. Figure 1.2 shows

an architectural model of a typical client server system in which multiple desktop-

based business client applications access a central database server. Some of the

common limitations of the client-server application model are as follows:

■ Complex business processing at the client side demands robust client systems.

■ Security is more difficult to implement because the algorithms and logic reside on

the client side making it more vulnerable to hacking.

■ Increased network bandwidth is needed to accommodate many calls to the server,

which can impose scalability restrictions.

■ Maintenance and upgrades of client applications are extremely difficult because
each client has to be maintained separately.

■Client-server architecture suits mostly database oriented standalone applications

and does not target robust reusable component oriented applications.

CORBA:

The Common Object Request Broker Architecture (CORBA) is an industry

wide, open standard initiative, developed by the Object Management Group (OMG)

for enabling distributed computing that supports a wide range of application

environments. OMG is a non profit consortium responsible for the production and

maintenance of framework specifications for distributed and interoperable object-

oriented systems.

CORBA differs from the traditional client/server model because it provides an

object-oriented solution that does not enforce any proprietary protocols or any

particular programming language, operating system, or hardware platform. By

adopting CORBA, the applications can reside and run on any hardware platform

located anywhere on the network, and can be written in any language that has

mappings to a eutral interface definition called the Interface Definition Language

(IDL).

An IDL is a specific interface language designed to expose the services

(methods/functions) of a CORBA remote object. CORBA also defines a collection of

system-level services for handling low-level application services like life-cycle,

persistence, transaction, naming, security, and so forth. Initially, CORBA 1.1 was

focused on creating component level, portable object applications without

interoperability. The introduction of CORBA 2.0 added interoperability between

different ORB vendors by implementing an Internet Inter-ORB Protocol (IIOP).

The IIOP defines the ORB backbone, through which other ORBs can bridge

and provide interoperation with its associated services. In a CORBA-based solution,

the Object Request Broker (ORB) is an object bus that provides a transparent

mechanism for sending requests and receiving responses to and from objects,

regardless of the environment and its location. The ORB intercepts the client’s call

and is responsible for finding its server object that implements the request, passes

its parameters, invokes its method, and returns its results to the client. The ORB, as

part of its implementation, provides interfaces to the CORBA services, which allows

it to build custom-distributed application environments.

Figure 1.3 illustrates the architectural model of CORBA with an example

representation of applications written in C, C++, and Java providing IDL bindings.

The CORBA architecture is composed of the following components:

IDL: CORBA uses IDL contracts to specify the application boundaries and to

establish interfaces with its clients. The IDL provides a mechanism by which the

distributed application component’s interfaces, inherited classes, events, attributes,

and exceptions can be specified.

ORB: It acts as the object bus or the bridge, providing the communication

infrastructure to send and receive request/responses from the client and server. It

establishes the foundation for the distributed application objects, achieving

interoperability in a heterogeneous environment.

Some of the distinct advantages of CORBA over a traditional client/server

application model are as follows:

OS and programming-language independence: Interfaces between clients and

servers are defined in OMG IDL, thus providing the following advantages to Internet

programming: Multi-language and multi-platform application environments, which

provide a logical separation between interfaces and implementation.

Legacy and custom application integration: Using CORBA IDL, developers can

encapsulate existing and custom applications as callable client applications and use

them as objects on the ORB.

Rich distributed object infrastructure: CORBA offers developers a rich set of

distributed object services, such as the Lifecycle, Events, Naming, Transactions, and

Security services.

Location transparency: CORBA provides location transparency: An object

reference is independent of the physical location and application level location. This

allows developers to create CORBA-based systems where objects can be moved

without modifying the underlying applications.

Java RMI:

Java RMI was developed by Sun Microsystems as the standard mechanism to

enable distributed Java objects-based application development using the Java

environment. RMI provides a distributed Java application environment by calling

remote Java objects and passing them as arguments or return values. It uses Java

object serialization—a lightweight object persistence technique that allows the

conversion of objects into streams. Before RMI, the only way to do inter-process

communications in the Java platform was to use the standard Java network

libraries. Though the java.net APIs provided sophisticated support for network

functionalities, they were not intended to support or solve the distributed computing

challenges.

Java RMI uses Java Remote Method Protocol (JRMP) as the interprocess

communication protocol, enabling Java objects living in different Java Virtual

Machines (VMs) to transparently invoke one another’s methods. Because these VMs

can be running on different computers anywhere on the network, RMI enables

object-oriented distributed computing. RMI also uses a reference-counting garbage

collection mechanism that keeps track of external live object references to remote

objects (live connections) using the virtual machine. When an object is found

unreferenced, it is considered to be a weak reference and it will be garbage collected.

In RMI-based application architectures, a registry (rmiregistry)-oriented

mechanism provides a simple non-persistent naming lookup service that is used to

store the remote object references and to enable lookups from client applications.

The RMI infrastructure based on the JRMP acts as the medium between the RMI

clients and remote objects. It intercepts client requests, passes invocation

arguments, delegate’s invocation requests to the RMI skeleton, and finally passes

the return values of the method execution to the client stub. It also enables call

backs from server objects to client applications so that the asynchronous

notifications can be achieved.

Figure 1.4 depicts the architectural model of a Java RMI-based application solution.

The Java RMI architecture is composed of the following components:

RMI client: The RMI client, which can be a Java applet or a standalone application,

performs the remote method invocations on a server object. It can pass arguments

that are primitive data types or serializable objects.

RMI stub: The RMI stub is the client proxy generated by the rmi compiler (rmic

provided along with Java developer kit—JDK) that encapsulates the network

information of the server and performs the delegation of the method invocation to

the server. The stub also marshals the method arguments and un marshals the

return values from the method execution.

RMI infrastructure: The RMI infrastructure consists of two layers: the remote

reference layer and the transport layer. The remote reference layer separates out the

specific remote reference behavior from the client stub. It handles certain reference

semantics like connection retries, which are unicast/multicast of the invocation

requests. The transport layer actually provides the networking infrastructure, which

facilitates the actual data transfer during method invocations, the passing of formal

arguments, and the return of back execution results.

RMI skeleton: The RMI skeleton, which also is generated using the RMI compiler

(rmic) receives the invocation requests from the stub and processes the arguments

(un marshalling) and delegates them to the RMI server. Upon successful method

execution, it marshals the return values and then passes them back to the RMI stub

via the RMI infrastructure.

RMI server: The server is the Java remote object that implements the exposed

interfaces and executes the client requests. It receives incoming remote method

invocations from the respective skeleton, which passes the parameters after

unmarshalling. Upon successful method execution, return values are sent back to

the skeleton, which passes them back to the client via the RMI infrastructure. RMI-

IIOP doesn't support dynamic downloading of the classes as it is done with CORBA

in DII (Dynamic Interface Invocation).Actually RMI-IIOP combines the usability of

Java Remote Method Invocation (RMI) with the interoperability of the Internet Inter-

ORB Protocol (IIOP).So in order to attain this interoperability between RMI and

CORBA, some of the features that are supported by RMI but not CORBA and vice

versa are eliminated from the RMI-IIOP specification.

Microsoft DCOM:

The Microsoft Component Object Model (COM) provides a way for Windows-

based software components to communicate with each other by defining a binary

and network standard in a Windows operating environment. COM evolved from OLE

(Object Linking and Embedding), which employed a Windows registry-based object

organization mechanism. COM provides a distributed application model for ActiveX

components. As a next step, Microsoft developed the Distributed Common Object

Model (DCOM) as its answer to the distributed computing problem in the Microsoft

Windows platform. DCOM enables COM applications to communicate with each

other using an RPC mechanism, which employs a DCOM protocol on the wire.

Figure 1.5 shows an architectural model of DCOM. DCOM applies a skeleton and

stub approach whereby a defined interface that exposes the methods of a COM object

can be invoked remotely over a network. The client application will invoke methods

on such a remote COM object in the same fashion that it would with a local COM

object. The stub encapsulates the network location information of the COM server

object and acts as a proxy on the client side.

The servers can potentially host multiple COM objects, and when they register

themselves against a registry, they become available for all the clients, who then

discover them using a lookup mechanism.

DCOM is quite successful in providing distributed computing support on the

Windows platform. But, it is limited to Microsoft application environments.

The following are some of the common limitations of DCOM:

■ Platform lock-in

■ State management

■ Scalability

■ Complex session management issues

Message-Oriented Middleware:

Although CORBA, RMI, and DCOM differ in their basic architecture and

approach, they adopted a tightly coupled mechanism of a synchronous

communication model (request/response). All these technologies are based upon

binary communication protocols and adopt tight integration across their logical tiers,

which is susceptible to scalability issues. Message-Oriented Middleware (MOM) is

based upon a loosely coupled asynchronous communication model where the

application client does no need to know its application recipients or its method

arguments.

MOM enables applications to communicate indirectly using a messaging

provider queue. The application client sends messages to the message queue (a

message holding area), and the receiving application picks up the message from the

queue. In this operation model, the application sending messages to another

application continues to operate without waiting for the response from that

application.

JMS provides Point-to-Point and Publish/Subscribe messaging models with the

following features:

■ Complete transactional capabilities

■ Reliable message delivery

■ Security

Some of the common challenges while implementing a MOM-based application

environment have been the following:

■ Most of the standard MOM implementations have provided native APIs for

communication with their core infrastructure. This has affected the portability of

applications across such implementations and has led to a specific vendor lock-in.

■ The MOM messages used for integrating applications are usually based upon a

proprietary message format without any standard compliance.

Challenges in Distributed Computing:

Distributed computing technologies like CORBA, RMI, and DCOM have been quite

successful in integrating applications within a homogenous environment inside a

local area network. As the Internet becomes a logical solution that spans and

connects the boundaries of businesses, it also demands the interoperability of

applications across networks. This section discusses some of the common

challenges noticed in the CORBA-, RMI-, and DCOM-based distributed computing

solutions:

■ Maintenance of various versions of stubs/skeletons in the client and server

environments is extremely complex in a heterogeneous network environment.

■ Quality of Service (QoS) goals like Scalability, Performance, and Availability in a

distributed environment consume a major portion of the application’s development

time.

■ Interoperability of applications implementing different protocols on heterogeneous

platforms almost becomes impossible. For example, a DCOM client communicating

to an RMI server or an RMI client communicating to a DCOM server.

■ Most of these protocols are designed to work well within local networks. They are

not very firewall friendly or able to be accessed over the Internet.

The Role of J2EE and XML in Distributed Computing:

The emergence of the Internet has helped enterprise applications to be easily

accessible over the Web without having specific client-side software installations. In

the Internet-based enterprise application model, the focus was to move the complex

business processing toward centralized servers in the back end. The first generation

of Internet servers was based upon Web servers that hosted static Web pages and

provided content to the clients via HTTP (Hyper Text Transfer Protocol). HTTP is a

stateless protocol that connects Web browsers to Web servers, enabling the

transportation of HTML content to the user.

This was the beginning of server-side scripting using technologies like CGI,

NSAPI, and ISAPI. With many organizations moving their businesses to the Internet,

a whole new category of business models like business-to-business (B2B) and

business-to-consumer (B2C) came into existence. This evolution leads to the

specification of J2EE architecture, which promoted a much more efficient platform

for hosting Web-based applications. J2EE provides a programming model based

upon Web and business components that are managed by the J2EE application

server.

The application server consists of many APIs and low-level services available to

the components. These low-level services provide security, transactions, connections

and instance pooling, and concurrency services, which enable a J2EE developer to

focus primarily on business logic rather than plumbing. The power of Java and its

rich collection of APIs provided the perfect solution for developing highly

transactional, highly available and scalable enterprise applications. Based on many

standardized industry specifications, it provides the interfaces to connect with

various back-end legacy and information systems. J2EE also provides excellent client

connectivity capabilities, ranging from PDA to Web browsers to Rich Clients (Applets,

CORBA applications, and Standard Java Applications).

Figure 1.7 shows various components of the J2EE architecture. A typical J2EE

architecture is physically divided in to three logical tiers, which enables clear

separation of the various application components with defined roles and

responsibilities.

The following is a breakdown of functionalities of those logical tiers:

Presentation tier: The Presentation tier is composed of Web components, which

handle HTTP quests/responses, Session management, Device independent content

delivery, and the invocation of business tier components.

Application tier: The Application tier (also known as the Business tier) deals with

the core business logic processing, which may typically deal with workflow and

automation. The business components retrieve data from the information systems

with well-defined APIs provided by the application server.

Integration tier: The Integration tier deals with connecting and communicating to

back-end Enterprise Information Systems (EIS), database applications and legacy

applications, or mainframe applications.

Emergence of Web Services and SOA:

Today, the adoption of the Internet and enabling Internet-based applications

has created a world of discrete business applications, which co-exist in the same

technology space but without interacting with each other.

The increasing demands of the industry for enabling B2B, application-to-

application (A2A), and inter-process application communication has led to a growing

requirement for service-oriented architectures. Enabling service- oriented

applications facilitates the exposure of business applications as service components

enable business applications from other organizations to link with these services for

application interaction and data sharing without human intervention. By leveraging

this architecture, it also enables interoperability between business applications and

processes.

By adopting Web technologies, the service-oriented architecture model facilitates the

delivery of services over the Internet by leveraging standard technologies such as

XML. It uses platform-neutral standards by exposing the underlying application

components and making them available to any application, any platform, or any

device, and at any location.

Today, this phenomenon is well adopted for implementation and is commonly

referred to as Web services. Although this technique enables communication between

applications with the addition of service activation technologies and open technology

standards, it can be leveraged to publish the services in a register of yellow pages

available on the Internet. This will further redefine and transform the way businesses

communicate over the Internet. This promising new technology sets the strategic

vision of the next generation of virtual business models and the unlimited potential

for organizations doing business collaboration and business process management

over the Internet.

Web services can be programmed in a variety of languages, old and new. The

obvious way to publish a web service is with a web server; a web service client needs

to execute on a machine that has network access, usually over HTTP, to the web

server. In more technical terms, a web service is a distributed software system whose

components can be deployed and executed on physically distinct devices.

 Consider, for example, a web server host1 that hosts a web service and a

mobile device host2 that hosts an application issuing requests against the service on

host1 (see Figure 1-9). Web services may be more architecturally complicated than

this, of course; for one thing, a service may have many clients issuing requests

against it, and the service itself may be composed of other services. For instance, a

stock-picking web service might consist of several code components, each hosted on a

separate commercial-grade web server, and any mix of PCs, handhelds, and other

networked devices might host programs that consume the service.

 Figure 1-9. A web service and one of its clients

An HTTP request goes, by definition, from client to server, and an HTTP

response goes, also by definition, from server to client. For web services over HTTP,

the HTTP messages are the infrastructure, and these HTTP messages can be

combined into basic conversational patterns that characterize a web service. For

example, if the web service conversation starts with an HTTP request that expects an

HTTP response, the pattern is the familiar request/response conversation. By

contrast, if the conversation starts with an HTTP message from the server, a

message that expects a message from the client in return, then the pattern is

solicit/response. Richer conversational patterns can be composed out of such basic

two-message patterns. Indeed, these two-message patterns are composed of even

more primitive ones: a message from client to server without a response is a pattern

known as one-way, and the reverse pattern, from server to client without a client

response, is known as notification. Web services tend to be simple in structure. The

four conversational patterns enumerated just now cover most modern web services,

and request/response is the pattern that still dominates.

 UNIT-I

 Assignment-Cum-Tutorial Questions
SECTION-A

I)Objective Questions:

1). CORBA stands for ______________

2).___________ are used to convert your application into Web-Application. []

a).Strut Services b).Web Services

 c).Java Services d).Browser Action

3). Web Services are _____________ []

a).None of these b).Application Desigining Tool

c).Application IDE d).Application Components

4).Web services are self contained and self desribing?
(True/False)

5). Web services can be discovered using _____________ []

a) UDDII b) UDDI c) UDDDI d)UDII
6). ______________ is the basis for web services?

a)PHP b)XML c)GGI d)CSS

 7). Which of the following is considered as Web Service Platform

 Elements? []

 A) UDDI B) WSDL C) SOAP D) All

8).Java supports RMI,RMI stands for? []

A) Random Method Invocation B)Remote Memory Interface

C)Remote Method Invocation D)Random Memory Invocation

9).In RMI architecture which layer intercepts method calls made by the client

redirects these calls to a remote RMI service? []

A)stub & skeleton layer B)Application Layer

C)Remote Reference Layer D)Transport Layer

10).In the ______________client invokes the request and then blocks waiting for

the response []

A)Deferred synchronous Invocation B)one way Invocation

C)Synchronous Invocation D)Two-Way Invocation

11). ______________ provides programmers a familiar programming model by

executing the local procedural calls to a distributed environment []

A)Distributed Environment B)Permanent Procedural call

C)Process and File D)Remote Procedure Call

12). ______________refers to computing technologies in which the hardware and

software components are distributed across the network []

A) Client and server B)User and system

 C)User and File Server D)User and DB Server

13). ______________serves as the glue between the client and server applications

respectively , and that ORB []

A)ORB&ORB Interface B)CORBA IDL stubs & Skeletons

 C)Client and servant D)Client and server

14).An RMI server is responsible for ______________ []

A)Creating an instance of the remote object B)Exporting remote object

C)Binding instance of the remote object to RMI Registry D)All

15). ______________ servers as the glue between CORBA object implementations

and the ORB itself []

A)The object Adapter B)Dynamic Skeleton Interface

C)Server Process Activation D)Client process Activation

16).What are the layers of RMI architecture______________ []

A)Stub and Skeleton Layer B)Remote Reference Layer C)Transport Layer D)All

17).Microsoft DCOM remote protocol is also referred to as ______________ []

A)Object RPC or ORPC B)Opinion RPC C)Server RPC D)Client RPC

18). Point out the wrong statement: []

a) SOA provides the standards that transport the messages and makes the

infrastructure to support it possible

b) SOA provides access to reusable Web services over a SMTP network

c) SOA offers access to ready-made, modular, highly optimized, and widely

shareable components that can minimize developer and infrastructure costs

d) None of the mentioned

19). Which of the following describes a message-passing taxonomy for a

component-based architecture that provides services to clients upon demand ?

 []

a) SOA b) EBS c) GEC d) All of the mentioned

20). Point out the correct statement: []

a) Service Oriented Architecture (SOA) describes a standard method for

requesting services from distributed components and managing the results

b) SOA provides the translation and management layer in an architecture that

removes the barrier for a client obtaining desired services

c) With SOA, clients and components can be written in different languages and

can use multiple messaging protocols

d) All of the mentioned

SECTION-B
II).Descriptive Questions:

1.Briefly explain the evolution of Distributed Computing.

2.List and explain core distributed computing technologies.
3.Write a short note on the following DCT

 a) Client/Server architecture b) CORBA

 4.Write a short note on the following DCT

 c) JAVA RMI d) MS DCOM and MOM
 5.Outline the challenges in Distributed Computing.

 6.Outline the role of J2EE ,XML in Distributed Computing.

 7.Define the emergence of Web Services.

 8. Compare the advantages of CORBA over a traditional client/server application
model.

 9.Analyze the limitations of DCOM Model.

10.Does JAVA RMI-IIOP support dynamic downloading of classes?

11.Illustrate how does Core Distributed Computing Techniques provide web
services?

12.Illustrate what happens when you use Distributed Computing in web
services?

Web Services 1

IV Year – I Semester 2018-19 CSE

UNIT – II

Objective:

To learn the fundamentals of web service

Syllabus:

Introduction to web services:

Web services architecture and its characteristics, Core building blocks of

web services, standards and technologies available for implementing web

services, web services communication, basic steps of implementing web

services, developing web services enabled applications.

Learning Outcomes:

 Understand the characteristics and core building blocks of WS.

 Identify standards and technologies available for WS.

 Learn the basic steps to implement WS.

 Understand the design and development of WS enabled application.

Web Services 2

IV Year – I Semester 2018-19 CSE

LEARNING MATERIAL

Introduction to web services:

 A web service is any piece of software that makes it available over the

internet and uses a standardized XML messaging system.

 XML is used to encode all communications to a web service.

 A web service is a collection of open protocols and standards used for

exchanging data between applications or systems.

 Software applications written in various programming languages and

running on various platforms can use web services to exchange data

over computer networks like the Internet in a manner similar to inter-

process communication on a single computer.

 This interoperability (e.g., between Java and Python, or Windows and

Linux applications) is due to the use of open standards.

 Web services are self-contained, modular, distributed, dynamic

applications that can be described, published, located, or invoked over

the network to create products, processes, and supply chains.

 These applications can be local, distributed, or web-based.

 Web services are built on top of open standards such as TCP/IP,

HTTP, Java, HTML, and XML.

Following are the features of Web service:

 Is available over the Internet or private (intranet) networks.

 Uses a standardized XML messaging system.

 Is not tied to any one operating system or programming language.

 Is self-describing via a common XML grammar.

 Is discoverable via a simple find mechanism.

How Does a Web Service Work?

A web service enables communication among various applications by

using open standards such as HTML, XML, WSDL, and SOAP.

Web Services 3

IV Year – I Semester 2018-19 CSE

 A web service takes the help of:

 XML to tag the data.

 SOAP to transfer a message.

 WSDL to describe the availability of service.

You can build a Java-based web service on Solaris that is accessible from

your Visual Basic program that runs on Windows.

 You can also use C# to build new web services on Windows that can be

invoked from your web application that is based on JavaServer Pages

(JSP) and runs on Linux.

The basic characteristics of a Web services application model are as

follows:

 Web services are based on XML messaging, which means that

the data exchanged between the Web service provider and the

user are defined in XML.

 Web services provide a cross-platform integration of business

applications over the Internet.

 To build Web services, developers can use any common

programming language, such as Java, C, C++, Perl, Python,

C#, and/or Visual Basic, and its existing application

components.

 web services are not meant for handling presentations like

HTML context—it is developed to generate XML for uniform

accessibility through any software application, any platform, or

device.

 Because Web services are based on loosely coupled application

components, each component is exposed as a service with its

unique functionality

 web services use industry-standard protocols like HTTP, and

they can be easily accessible through corporate firewalls.

Web Services 4

IV Year – I Semester 2018-19 CSE

 Web services can be used by many types of clients.

 Web services vary in functionality from a simple request to a

complex business transaction involving multiple resources.

 All platforms including J2EE, CORBA, and Microsoft .NET

provide extensive support for creating and deploying Web

services.

 Web services are dynamically located and invoked from public

and private registries based on industry standards such as

UDDI and ebXML.

Benefits of using Web Services:

Exposing the Existing Function on the network

 A web service is a unit of managed code that can be remotely invoked

using HTTP, that is, it can be activated using HTTP requests.

 Web services allows you to expose the functionality of your existing

code over the network.

 Once it is exposed on the network, other application can use the

functionality of your program.

Interoperability

 Web services allow various applications to talk to each other and

share data and services among themselves. Other applications can

also use the web services.

 For example, a VB or .NET application can talk to Java web services

and vice versa.

 Web services are used to make the application platform and

technology independent.

Standardized Protocol

 Web services use standardized industry standard protocol for the

communication.

Web Services 5

IV Year – I Semester 2018-19 CSE

 All the four layers (Service Transport, XML Messaging, Service

Description, and Service Discovery layers) use well-defined protocols

in the web services protocol stack.

 This standardization of protocol stack gives the business many

advantages such as a wide range of choices, reduction in the cost due

to competition, and increase in the quality.

 Low Cost of Communication

 Web services use SOAP over HTTP protocol, so you can use your

existing low-cost internet for implementing web services.

 This solution is much less costly compared to proprietary solutions

like EDI/B2B.

 Besides SOAP over HTTP, web services can also be implemented on

other reliable transport mechanisms like FTP.

Web services architecture and its characteristics:

 The Web services architecture is a technology stack that identifies

standards-based application components, which ensures

interoperability among Web services providers and requesters.

 It adopts service-oriented architecture (SOA) concepts using

standards-based messages and communication protocols.

 Web-services architecture consists of many layers of interrelated

logical components built using standards-based technologies.

 The logical components representing the layers provide standardized

components and communication for defining and describing the

services, discovering and subscribing to the services, transporting for

service communication, aggregating a set of services, and

collaborating with services.

 They also facilitate standards-based mechanisms for building end-to-

end security, services provisioning and management, and delivering

other QoS such as reliability, scalability, manageability, and

availability.

Web Services 6

IV Year – I Semester 2018-19 CSE

 There are two ways to view the web service architecture:

The first is to examine the individual roles of each web service actor.

The second is to examine the emerging web service protocol stack.

There are three major roles within the web service architecture:

 Service Provider .

 Service Requestor.

 Service Registry.

Service Provider: This is the provider of the web service. The service

provider implements the service and makes it available on the internet.

Service Requestor: This is any consumer of the web service. The requestor

utilizes an existing web service by opening a network connection and

sending an XML request.

Service Registry: This is a logically centralized directory of services. The

registry provides a central place where developers can publish new services

or find existing ones. It therefore serves as a centralized clearing house for

companies and their services.

Figure: Operational Models or Roles in Web Services

Web Services 7

IV Year – I Semester 2018-19 CSE

Web services have the following special behavioral characteristics:
XML-Based : Web Services uses XML at data representation and data

transportation layers.

Loosely Coupled: A consumer of a web service is not tied to that web

service directly.

Coarse-Grained: Businesses and the interfaces that they expose should be

coarse-grained.Web services technology provides a natural way of defining

coarse-grained services that access the right amount of business logic.

Ability to be Synchronous or Asynchronous: Asynchronous clients

retrieve their result at a later point in time, while synchronous clientsreceive

their result when the service has completed. Asynchronous capability is a

key factor in enabling loosely coupled systems.

Supports Remote Procedure Calls(RPCs): A web service supports RPC by

providing services of its own, equivalent to those of a traditional component,

or by translating incoming invocations into an invocation of an EJB or a

.NET component.

 Supports Document Exchange:Web services support the transparent

exchange of documents to facilitate business integration.

2. Core building blocks of web services:

Figure: Technology/Protocol Stack or Core Building Blocks of Web services

architecture.

Web Services 8

IV Year – I Semester 2018-19 CSE

Components of Web Services:

XML-RPC:
This is the simplest XML-based protocol for exchanging information between

computers.

9

� XML-RPC is a simple protocol that uses XML messages to perform RPCs.

� Requests are encoded in XML and sent via HTTP POST.

� XML responses are embedded in the body of the HTTP response.

� XML-RPC is platform-independent.

� XML-RPC allows diverse applications to communicate.

� A Java client can speak XML-RPC to a Perl server.

� XML-RPC is the easiest way to get started with web services.

SOAP:
SOAP is an XML-based protocol for exchanging information between

computers.

� SOAP is a communication protocol.

� SOAP is for communication between applications.

� SOAP is a format for sending messages.

� SOAP is designed to communicate via Internet.

� SOAP is platform independent.

� SOAP is language independent.

� SOAP is simple and extensible. 10

� SOAP allows you to get around firewalls.

� SOAP will be developed as a W3C standard.

WSDL:
WSDL is an XML-based language for describing web services and how to

access them.

� WSDL stands for Web Services Description Language.

� WSDL was developed jointly by Microsoft and IBM.

Web Services 9

IV Year – I Semester 2018-19 CSE

� WSDL is an XML based protocol for information exchange in

decentralized and distributed environments.

� WSDL is the standard format for describing a web service.

� WSDL definition describes how to access a web service and what

operations it will perform.

� WSDL is a language for describing how to interface with XML-based

services.

� WSDL is an integral part of UDDI, an XML-based worldwide business

registry.

� WSDL is the language that UDDI uses.

UDDI:
UDDI is an XML-based standard for describing, publishing, and finding web

services.

� UDDI stands for Universal Description, Discovery, and Integration.

� UDDI is a specification for a distributed registry of web services.

� UDDI is platform independent, open framework.

� UDDI can communicate via SOAP, CORBA, and Java RMI Protocol.

� UDDI uses WSDL to describe interfaces to web services.

� UDDI is seen with SOAP and WSDL as one of the three foundation

standards of web services.

� UDDI is an open industry initiative enabling businesses to discover each

other and define how they interact over the Internet.

3. Standards and technologies available for implementing web services:
All the latest standards related to web services are

Transports:
BEEP, the Blocks Extensible Exchange Protocol (formerly referred to as

BXXP), is a framework for building application protocols. It has been

standardized by IETF and it does for Internet protocols what XML has done

for data.

� Blocks Extensible Exchange Protocol (BEEP)

Web Services 10

IV Year – I Semester 2018-19 CSE

Messaging:
These messaging standards and specifications are intended to give a

framework for exchanging information in a decentralized, distributed

environment.

� SOAP 1.1 (Note)

� SOAP 1.2 (Specification)

� Web Services Attachments Profile 1.0

� SOAP Message Transmission Optimization Mechanism

Description and discovery:
Web services are meaningful only if potential users may find information

sufficient to permit their execution. The focus of these specifications and

standards is the definition of a set of services supporting the description and

discovery of businesses, organizations, and other web services providers; the

web services they make available; and the technical interfaces which may be

used to access those services.

� UDDI 3.0

� WSDL 1.1 (Note)

� WSDL 1.2 (Working draft)

� WSDL 2.0 (Working Group)

Security:
Using these security specifications, applications can engage in secure

communication designed to work with the general web services framework.

� Web Services Security 1.0

� Security Assertion Markup Language (SAML)

Management:
Web services manageability is defined as a set of capabilities for discovering

the existence,availability, health, performance, usage, as well as the control

and configuration of a web service within the web services architecture. As

web services become pervasive and critical to business operations, the task

of man aging and implementing them is imperative to the success of

business operations.

Web Services 11

IV Year – I Semester 2018-19 CSE

IThe following core technologies are used for web services:

� Extensible Markup Language (XML)

� SOAP

� Web Services Description Language (WSDL)

4. Web Services Communication Model
In Web services architecture, depending upon the functional requirements,

it is possible to implement the models with RPC-based synchronous or

messaging-based Synchronous/asynchronous communication models.

These communication models need to be understood before Web services are

designed and implemented.

RPC-Based Communication Model

� The RPC-based communication model defines a request/response-based,

synchronous communication.

� When the client sends a request, the client waits until a response is sent

back from the server before continuing any operation.

� Typical to implementing CORBA or RMI communication, the RPC-based

Web services are tightly coupled and are implemented with remote objects to

the client application.

� Figure 3.3 represents an RPC-based communication model in Web

services architecture.

� The clients have the capability to provide parameters in method calls to

the Web service provider.

� Then, clients invoke the Web services by sending parameter values to the

Web service provider that executes the required methods, and then sends

back the return values.

� Additionally, using RPCbased communication, both the service provider

and requestor can register and discover services, respectively.

Web Services 12

IV Year – I Semester 2018-19 CSE

5. Basic steps of implementing web services

Web Services 13

IV Year – I Semester 2018-19 CSE

The process of implementing Web services is quite similar to implementing

any distributed application using CORBA or RMI.

However, in Web services, all the components are bound dynamically only at

its runtime using standard protocols.

Figure 3.5 illustrates the process highlights of implementing Web services.

1.The service provider creates the Web service typically as SOAP based

service interfaces for exposed business applications.

The provider then deploys them in a service container or using a SOAP

runtime environment, and then makes them available for invocation over a

network.

The service provider also describes the Web service as a WSDL-based service

description, which defines the clients and the service container with a

consistent way of identifying the service location, operations, and its

communication model.

2. The service provider then registers the WSDL-based service description

with a service broker, which is typically a UDDI registry.

3. The UDDI registry then stores the service description as binding

templates and URLs to WSDLs located in the service provider environment.

4. The service requestor then locates the required services by querying the

UDDI registry. The service requestor obtains the binding information and

the URLs to identify the service provider.

5. Using the binding information, the service requestor then invokes the

service provider and then retrieves the WSDL Service description for those

registered services. Then, the service requestor creates a client proxy

application and establishes communication with the service provider

using SOAP.

6. Finally, the service requestor communicates with the service provider and

exchanges data or messages by invoking the available services in the service

container.

16

Web Services 14

IV Year – I Semester 2018-19 CSE

6. Developing web services enabled applications:

Preparing for the JAX-WS samples

To prepare for this sample, we import sample code, which is a simple web

application that includes Java classes and an EJB.

Importing the sample In this section, prepare the environment for the JAX-

WS web services application samples:

1. In the Java EE perspective, select File Import

2. Select General Existing Projects into Workspace.

3. In the Import Projects window, select Select archive file.

4. Click Browse. Navigate to the 4884code\webservices folder and select the

RAD8WebServiceStart.zip file. Click Open.

5. Click Select All and click Finish. After the build, no warning or error

messages are displayed in the workspace.

Testing the application:
To start and test the application, follow these steps:
1. In the Servers view, start WebSphere Application Server V8.0.

2. Right-click the server and select Add and remove projects.

3. In the Add and Remove Projects window, select RAD8WebServiceEAR,

click Add, and then click Finish.

4. Expand WebContent, right-click search.html, RAD8WebServiceWeb and

select Run As � Run on Server.

5. Select Choose an existing server and select the v8.0 server to run the

application.

Then click Finish.

6. When the search page opens in a web browser, in the Social Security

number field, enter an appropriate value, for example, 111-11-1111, and

click Search. If everything works correctly, you can see the customer’s full

name, first account, and its balance, which have been read from the

memory data.

7. Test the stateless session EJB, SimpleBankFacade, by using the

Universal Test Client (UTC).

Web Services 15

IV Year – I Semester 2018-19 CSE

The following methods are valid: – getCustomerFullName(ssn): Retrieves the

full name (use 111-

11-1111) – getNumAccounts(ssn): Retrieves the number of accounts –

getAccountId(ssn, int):

Retrieves the account ID by index (0,1,2,...) – getAccountBalance(accountId):

Retrieves the balance.

Web Services 16

IV Year – I Semester 2018-19 CSE

UNIT-II
Assignment-Cum-Tutorial Questions

SECTION-A

 Objective Questions

1. The ____________________is responsible for transporting messages between

applications.

2. A _________is a collection of open protocols and standards used for

exchanging data between applications or systems.

3. The XML Messaging layer is responsible for transporting messages

between applications. [True/False]

4. The service requestor utilizes an existing web service by opening a

network connection and sending an XML request. [True/False]

5. A web service enables communication among various applications by

using open standards such as HTML, XML, WSDL, and SOAP.

[True/False]

6. Which of the following is considered as Web Service Platform Elements ?

A) All of these B) UDDI C) WSDL D) SOAP []

7. Web services can be discovered using ________. []

 A) UDDII B) UDDI C) UDDDI D) UDII

8. _____ process steps are there for implementing web services. []

A) 12 B) 8 C) 6 D)1

9. ___________ are self-contained, modular, distributed, dynamic

applications that can be described, published, located, or invoked over the

network to create products, processes, and supply chains. []

A) Web Services B) Software Services

C) System Services D) Hardware Services

Web Services 17

IV Year – I Semester 2018-19 CSE

10. Which of the following is correct about Service Description layer in Web

Service Protocol Stack? []

A) This layer is responsible for describing the public interface to a specific

web service.

B)Currently, service description is handled via the Web Service Description

Language (WSDL).

C) Both of the above. D) None of the above.

11. Which of the following are correct layers in protocol stack of web

services.

A) Service Transport layer & XML Messaging layer []

B) Service Description layer & Service Discovery layer

C) Both and A & B D) None of the above

12. Which of the following is true about behavioral characteristics of web

services? []

A) Web Services uses XML at data representation and data transportation

B)A consumer of a web service is not tied to that web service directly.

C) Businesses and the interfaces that they expose should be coarse-

grained. Web services technology provides a natural way of defining coarse-

grained services that access the right amount of business logic.

D) All of the above.

13.Which of the following is true about Web services? []

A - Web services are open standard (XML, SOAP, HTTP etc.) based Web

applications.

 B - Web services interact with other web applications for the purpose of

exchanging data.

Web Services 18

IV Year – I Semester 2018-19 CSE

 C - Web Services can convert your existing applications into Web-

applications. D - All of the above.

14) Which of the following is true about Web service? []

 A - It is available over the Internet or private (intranet) networks.

B - It uses a standardized XML messaging system.

C - It is not tied to any one operating system or programming language.

D - All of the above.

15) What is the purpose of XML in a web service? []

A - A web services takes the help of XML to tag the data, format the data.

B - A web service takes the help of XML to transfer a message.

C - A web service takes the help of XML to describe the availability of

service.

 D - None of the above.

16) Which of the following is the benefits of having XML based WEB

services?

A) Using XML eliminates any networking, operating system, or platform

binding. []

B). Web Services based applications are highly interoperable application at

their core level.

C) Both of the above

D)None of the above.

17) Which of the following is correct about XML RPC? []

 A) XML-RPC is a simple protocol that uses XML messages to perform RPCs.

Web Services 19

IV Year – I Semester 2018-19 CSE

 B) XML-RPC is platform-independent.

C)XML-RPC allows diverse applications to communicate.

D) All of the above.

18) _________is responsible for describing the public interface to a specific

web service. []

A) Service Discovery B) Service Description

 C) Service Request D) Service Response

SECTION-B
 SUBJECTIVE QUESTIONS

1. Define Web Services and explain introductory concepts of WS.

2. Draw and explain the architecture of Web Services

3. Briefly explain the characteristics of Web Services.

4. List and explain core building blocks of Web Services.

5. Write a short note on the following to implement WS

 a) Standards b) Technologies

6. What is the importance of RPC-Based communication model?

7. With a neat sketch explain basic steps of implementing web services.

8. Explain the use of the components in Web Services.

9. Compare and contrast the advantages of Web Services than Distributed
Computing Technologies.

10. Distinguish between SOAP and WSDL in Web Services.

11. Do Web services supports Remote Procedure Calls(RPCs)?

12.Distinguish the XML Messaging layer and Service Transport layer in Web

Service.

13. Outline the purpose of Service Discovery layer and Service Description

Layer in Web Service Protocol Stack.

Web Services 1

IV Year – I Semester 2018-19 CSE

UNIT – III

WEB SERVICES

Objective:

 To learn the use of WSDL for describing web services.

 Syllabus:

 Describing web services WSDL: WSDL in the world of web services, Web services life
cycle, Anatomy of WSDL definition document, WSDL bindings, WSDL tools, limitations of
WSDL

 Learning Outcomes: Students will be able to

 understand the need of WSDL in web services.
 identify the components in WS life cycle.
 learn the anatomy of WSDL definition document.
 understand WSDL bindings and tools.
 know the limitations of WSDL

Web Services 2

IV Year – I Semester 2018-19 CSE

LEARNING MATERIAL

 WSDL in the world of web services

 WSDL stands for Web Services Description Language. It is the standard format for
describing a web service. WSDL was developed jointly by Microsoft and IBM.

 Features of WSDL :

 WSDL is an XML-based protocol for information exchange in decentralized and
distributed environments.

 WSDL definitions describe how to access a web service and what operations it will
perform.

 WSDL is a language for describing how to interface with XML-based services.
 WSDL is an integral part of Universal Description, Discovery, and Integration (UDDI),

an XML-based worldwide business registry.
 WSDL is the language that UDDI uses.
 WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'. WSDL Usage
 WSDL is often used in combination with SOAP and XML Schema to provide web

services over the Internet.
 A client program connecting to a web service can read the WSDL to determine what

functions are available on the server.
 Any special data types used are embedded in the WSDL file in the form of XML

Schema.
 The client can then use SOAP to actually call one of the functions listed in the WSDL.

History of WSDL

 WSDL 1.1 was submitted as a W3C Note by Ariba, IBM, and Microsoft for describing
services for the W3C XML Activity on XML Protocols in March 2001.

 WSDL Elements

 A WSDL document contains the following elements:

 Definition : It is the root element of all WSDL documents. It defines the name of the web
service, declares multiple namespaces used throughout the remainder of the document, and
contains all the service elements described here.

 Data types : The data types to be used in the messages are in the form of XML schemas.

 Message : It is an abstract definition of the data, in the form of a message presented either as
an entire document or as arguments to be mapped to a method invocation.

Web Services 3

IV Year – I Semester 2018-19 CSE

 Operation : It is the abstract definition of the operation for a message, such as naming a
method, message queue, or business process, that will accept and process the message.

 Port type : It is an abstract set of operations mapped to one or more end-points, defining the
collection of operations for a binding; the collection of operations, as it is abstract, can be
mapped to multiple transports through various bindings.

 Binding : It is the concrete protocol and data formats for the operations and messages
defined for a particular port type.

 Port : It is a combination of a binding and a network address, providing the target address
of the service communication.

Service : It is a collection of related end-points encompassing the service definitions in the
file; the services map the binding to the port and include any extensibility definitions.

 Web Services Description Language (WSDL)

 Microsoft and IBM released the first version of the WSDL specification jointly, in
September 2000, briefly after announcing a UDDI specification along with 36 other
companies.

 This version of WSDL was based on two precedent description languages: Network
Accessible Services Specification Language (NASSL) and (SOAP Contract Language
SCL), from IBM and Microsoft, respectively.

 Later on in March 2001, the same companies joined by a few others submitted the
WSDL 1.1 specification to W3C. Thus, currently the WSDL specification is in works
at W3C. Officially, it is a W3C Note that forms the basis of the upcoming WSDL 1.2
specification from W3C.

 This chapter goes into detail in understanding WSDL 1.1.
 WSDL in the World of Web Services
 WSDL, as we know, is a description language for Web services. So what does this

exactly mean? This means that WSDL

 represents information about the interface and semantics of how to invoke or call a Web

service. A WSDL definition contains four important pieces of information about the Web

service:

 Interface information describing all the publicly available functions.

 Data type information for the incoming (request) and outgoing (response) messages

to these functions.

 Binding information about the protocol to be used for invoking the specified Web

service.

 Address information for locating the specified Web service.

Web Services 4

IV Year – I Semester 2018-19 CSE

 Once we develop a Web service, we create its WSDL definition.

 We can create this definition either manually or by using a tool.

 Many tools are available for generating a WSDL definition from existing Java classes,

J2EE components (such as Servlets/EJBs), or from scratch. Once the WSDL

definition is created, a link to it is published in a Web services registry (based on

UDDI, for instance), so that the potential user(s) of this Web service can follow this

link and find out the location of the Web service, the function calls that it supports,

and how to invoke these calls.

 Finally, the user(s) would use this information to formulate a SOAP request or any

other type of request based on the binding protocol supported, in order to invoke the

function on a Web service.

 Web Service Life Cycle:

In Figure 3.1, all of the communication over the wire takes place onSOAP. The following list

explains the steps depicted in Figure 3.1.

 Step 1: illustrates a service provider publishing its Web service to a UDDI

registry. This is when the service provider would create a WSDL definition and publish a link

to this definition along with the rest of theWeb service information to a UDDI registry.

 Step 2: illustrates an interested service user locating the Web service and

finally obtaining information about invoking the Web service from the

published WSDL definition. This step involves downloading a WSDL

definition to the service user system and desterilizing WSDL to a Java

class (or any other language). This Java interface serves as a proxy to the

actual Web service. It consists of the binding information of the Web

service.

 Step 3: shows the service user binding at runtime to the Web service. In

this step, the service user’s application would make use of the Java interface representing

WSDL as a proxy, in order to bind to the Web

service.

 Step 4: finally shows the service user invoking the Web service based on

the service invocation information it extracted from the Web service WSDL definition. This

is when the service user’s application would make use of the Java interface representing

WSDL as a proxy, in order to invoke the methods/functions exposed by the Web service.

Web Services 5

IV Year – I Semester 2018-19 CSE

Anatomy of a WSDL Definition Document

A WSDL definition document consists of the following seven key structural

elements:

<definitions>: A WSDL document is a set of definitions. These definitions

are defined inside the <definitions> element, which is the root element in a

WSDL document. It defines the name of the Web service and also declares the name spaces

that are used throughout the rest of the WSDL document.

<types>: This element defines all of the data types that would be used to describe the

messages that are exchanged between the Web service and the service user. WSDL does not

mandate the use of a specific typing system. However, as per the WSDL specification, XML

Schema is the default typing system.

<message>: This element represents a logical definition of the data being transmitted

between the Web service and the service user. This element describes a one-way message,

which may represent a request or response sent to or from the Web service. It contains zero or

more message <part> elements, which basically refer to the request parameters or response

return values.

Web Services 6

IV Year – I Semester 2018-19 CSE

<portType>: This element defines the abstract definition of the operations supported by a

Web service, by combining various request and response messages defined by <message>

elements. Each operation refers to an input

message and an output message.

<binding>: This element specifies a concrete protocol and data format used for representing

the operations and messages defined by a particular <portType> on the wire.

<port>: This element specifies an address for binding to the Web service.

<service>: This element aggregates a set of related <port> elements,each which uniquely

specify the binding information of the Web service. <service> consisting of multiple <port>

elements essentially represents the capability of the service to be invoked over multiple

bindings. More information on WSDL bindings is discussed in the next section.First, let’s

take a look at Listing 3.1, which shows a WSDL document describing First,a weather

information Web service, WeatherInfoService.This WSDL definition is present in the

WeatherInfo.wsdl file.

 <?xml version=”1.0”?>

<definitions name=”WeatherInfo”

targetNamespace=”http://myweather.com/weatherinfo.wsdl”

xmlns:tns=”http://myweather.com/weatherinfo.wsdl”

xmlns:xsd1=”http://myweather.com/weatherinfo.xsd”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<types>

<schema targetNamespace=

“http://myweather.com/weatherinfo.xsd” xmlns=

“http://www.w3.org/2000/10/XMLSchema”>

<element name=”WeatherInfoRequest”>

<complexType>

<all>

<element name=”Country”

type=”string”/>

<element name=”Zip”

type=”string”/>

Web Services 7

IV Year – I Semester 2018-19 CSE

<element name=”Instant”

type=”string”/>

</all>

</complexType>

</element>

<element name=”WeatherInfo”>

<complexType>

<all>

<element name=”FTemp”

type=”float”/>

<element name=”Humidity”

type=”float”/>

</all>

</complexType>

</element>

</schema>

</types>

<message name=”GetWeatherInfoInput”>

<part name=”WeatherInfoRequestSpec”

element=”xsd1:WeatherInfoRequest”/>

</message>

<message name=”GetWeatherInfoOutput”>

 Listing 5.1 WeatherInfo.wsdl.

 element=”xsd1:WeatherInfo”/>

</message>

<portType name=”WeatherInfoPortType”>

<operation name=”GetWeatherInfo”>

<input message=”tns:GetWeatherInfoInput”/>

<output message=”tns:GetWeatherInfoOutput”/>

</operation>

</portType>

<binding name=”WeatherInfoSoapBinding”

Web Services 8

IV Year – I Semester 2018-19 CSE

type=”tns:WeatherInfoPortType”>

<soap:binding style=”document”

transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”GetWeatherInfo”>

<soap:operation soapAction=

“http://myweather.com/GetWeatherInfo”/>

<input>

<soap:body use=”literal”/>

</input>

<output>

<soap:body use=”literal”/>

</output>

</operation>

</binding>

<service name=”WeatherInfoService”>

<documentation>

Provides Weather Information

</documentation>

<port name=”WeatherInfoPort”

binding=”tns:WeatherInfoSoapBinding”>

<soap:address location=

“http://myweather.com/provideweatherinfo”/>

</port>

</service>

</definitions>

Listing 5.1 WeatherInfo.wsdl. (continued)

Now, let’s understand how exactly WeatherInfo.wsdl describes the

WeatherInfoService Web service.

<definitions> Element:

The <definitions> element specifies the name of the document in which this

Web Services 9

IV Year – I Semester 2018-19 CSE

WSDL definition is stored, which is WeatherInfo in our case.This element specifies

namespaces that would be used in the rest of the WSDL document. The following are the two

important namespaces that the <definitions> element defines:

WSDL instance specific namespace: The targetNamespace attribute of the

<definitions> element lets the WSDL document make references to itself as

an XML Schema namespace. Note how-ever that it is not required for the

WSDL document to actually exist at the address specified targetNamespace attribute. This

attribute is just a mechanism to refer to our WSDL definition in a unique way.

Default namespace for a WSDL document: The default namespace is specified by

xmlns=”http://schemas.xmlsoap.org/wsdl/”. The default namespace indicates that all of the

elements in this WSDL definition

without a namespace prefix, such as <types>, <message>, and <portType>,

are part of this namespace.

<message> Element:

WeatherInfo.wsdl defines two <message> elements.

The first <message> definition named GetWeatherInfoInput will be used later to define the

input message of the GetWeatherInfo operation.

The second <message> definition named GetWeatherInfoOutput will be used later to define

the output message of the GetWeatherInfo operation. This binding of <message> definitions

to an actual operation is defined in the <portType> element.

Again, each of these <message> definitions consists of a <part> element. In case of

the GetWeatherInfoInput message, <part> essentially specifies the name,that is,

WeatherInfoRequestSpec, and type, that WeatherInfoRequest, of the request parameter to

GetWeath-erInfo operation. Whereas, in case of the GetWeatherInfoOutput message, <part>

refers to the name and type of the return value sent within the response of the

GetWeatherInfo operation. Note that both WeatherInfoRequest and WeatherInfo, which were

referred to by the type attribute of <part> element also were defined by the preceding <types>

element.

Also in cases where operations take multiple arguments or return multiple

values, the <message> element can define multiple <part> elements.

Web Services 10

IV Year – I Semester 2018-19 CSE

<portType> Element:

The <portType> element in WeatherInfo.wsdl defines a single operation named

GetWeatherInfo by combining the <input> message as defined by the

GetWeatherInfoInput <message> element and the <output> message as defined by the

GetWeatherInfoOutput <message> element. Note the use of WeatherInfo.wsdl as a target

namespace by the <input> and <output> elements.

Four types of operations are supported by WSDL:

One-way operation. One-way operation represents a service that just receives the message,

and thus a one-way operation is typically defined by

a single <input> message element.

Request-response operation. A request-response operation repre-sents a

service that receives a request message and sends a response message.

Typically, a request-response operation is defined by one <input> message

followed by one <output> message. An optional <fault> element also can

be included in the definition of a request-response operation to specify the

abstract message format for any error messages that may be output as a

result of the operation.

The GetWeatherInfo operation follows the request-response transmission pattern.

Solicit-response operation: A solicit-response operation represents a service that sends a

request message and that receives the response message. Such operations are therefore

defined by one <output> message, followed by an <input> message. A solicit-response

opera-tion also can include a <fault> element in order to specify the for-mat of any error

messages resulting from the operation.

Notification operation. This operation represents a service that sends a message, hence this

kind of operation is represented by a single <output> element.

Figure 5.2 provides the pictorial representation of the previous four transmission types.

Web Services 11

IV Year – I Semester 2018-19 CSE

Figure:WSDL operational types.

<binding> Element:

A binding defines the message format and protocol details for operations and messages

defined by a particular <portType>. There may be any number of bindings for a given

<portType>. The type attribute of the <binding> element refers to the <portType> that it

binds to, which is WeatherInfoPortType in our case. Our WeatherInfoService specifies a

SOAP binding, as is defined in the WSDL 1.1 specification. The WSDL 1.1 SOAP binding is

discussed in detail in a later section titled SOAP Binding.

<service> Element:

The <service> element specifies the location of the service. Because our

WeatherInfoService is bound to SOAP, we use the <soap:address> element and specify the

service URL as http://myweather.com /provideweatherinfo/.

Now, let’s take a look at the support for various bindings in the WSDL 1.1

specification.

WSDL Bindings:

In WSDL, the term binding refers to the process of associating protocol or data format

information with an abstract entity such as <message>, <operation>, or <portType>. In this

section, we examine the support for bindings in the WSDL 1.1 specification. Let’s begin with

the WSDL binding extensions.

Web Services 12

IV Year – I Semester 2018-19 CSE

WSDL Binding Extensions:

WSDL allows user-defined elements, also known as Extensibility Elements,

under various elements defined by a default WSDL namespace. These elements are

commonly used to specify some technology-specific binding, although they can be used for

other purposes as well. Extensibility elements, when used to specify a technology-specific

binding, are known as WSDL Binding Extensions.

Extensibility elements provide a powerful mechanism for extending WSDL because

they enable support for network and message protocols to be revised without having to revise

the WSDL specification.

The base specification of WSDL defines three WSDL binding extensions, which are

as follows:

 SOAP binding

 HTTP GET & POST binding

 MIME binding

We will take a look at the most commonly used WSDL binding extension, the

SOAP binding, in a later section titled SOAP Binding.

WSDL Binding Support for Operations:

All four types of operations supported by WSDL—one-way, request-response, solicit-

response, and notification—represent an abstract notion only.

Binding describes the concrete correlation to these abstract notions. Binding

determines how the messages are actually sent, for instance, within a single communication

(for example, an HTTP request/response) or as two independent communications (for

example, two HTTP requests). Thus, binding for a specific operation type must be defined in

order to successfully carry out that type of operation. Note that although the WSDL structure

supports the bindings for these four operations, the WSDL specification defines bindings for

only one-way and request-response operations.

Hence, in order to use WSDL to describe services that support solicit-response and/or

notification types of operations, the communica-tion protocol of the Web service must define

the WSDL binding extensions, thus enabling the use of these operations.

Let’s now take a look at SOAP binding as defined by the WSDL 1.1

specification.

Web Services 13

IV Year – I Semester 2018-19 CSE

SOAP Binding:

WSDL 1.1 defines a binding for SOAP 1.1 endpoints. This binding provides the following

SOAP protocol specific information:

 An indication that the binding is bound to the SOAP 1.1 protocol.

 A way of specifying an address for a SOAP endpoint.

 The URI for the SOAP action HTTP header for the HTTP binding of

 SOAP

 A list of definitions of headers that are transmitted as part of the

SOAP envelope

Let’s examine the SOAP binding of the request-response RPC operation over

HTTP as defined in the WeatherInfo.wsdl file shown earlier (see the section

titled Anatomy of a WSDL Definition Document).

<soap:binding>

The <soap:binding> element is defined in WeatherInfo.wsdl as follows:

<soap:binding style=”document”

transport=”http://schemas.xmlsoap.org/soap/http”/>

The <soap:binding> element says that the binding is bound to the SOAP

protocol format, that is, envelope, header, and body. However, this element does not give any

information about the format or encoding of the message. This element must be present

whenever describing services that have a SOAP binding.

The style attribute indicates whether the operations supported by this bindingare RPC-

oriented or document-oriented. In RPC-oriented commu-nication, themessages contain

parameter and return values, whereas in document-oriented communication, the messages

contain document(s). This information about the style of communication can be useful

because it helps in selecting the programming model for communicating with the Web

service. For example, if a Web service is described to support RPC, we can choose a JAX-

RPC programming model to communicate with it, or if a Web service is described to support

document-style communication, we can

appropriately choose a JAXM programming model.

The transport attribute specifies the transport binding for the SOAP protocol. The URI

value of http://schemas.xmlsoap.org/soap/http corresponds to the HTTP binding as defined in

Web Services 14

IV Year – I Semester 2018-19 CSE

the SOAP specification. Similarly, respective URIs can be used to indicate other types of

transports such as SMTP or FTP.

<soap:operation>

The <soap:operation> element is defined in WeatherInfo.wsdl as follows:

<soap:operation soapAction=“http://myweather.com/GetWeatherInfo”/>

The <soap:operation> element defines the information with regard to

communication style and the SOAP action header at that specific operation

level.

The semantics of the style attribute remains the same as that for a

<soap:binding> element.

The soapAction attribute specifies the value of a SOAP action header in the form of a

URI. “Developing Web Services Using SOAP.”

<soap:body>

The <soap:body> element is defined in WeatherInfo.wsdl as follows:

<soap:body use=”literal”/>

This element defines how the message <part> elements appear inside the

SOAP body element. Based on the style of communication, RPC-oriented or

document-oriented, the <Body> element of the SOAP message is constructed.

The use attribute indicates whether the message <part> elements are encoded using

some encoding rules or whether the <part> elements already define the concrete schema of

the message.

If the value of the use attribute is “encoded”, then each message <part> refers to an

abstract type defined through the type attribute. These abstract types are then used to produce

a concrete definition of the message by applying the encoding specified by an encodingStyle

attribute.

Consider the following example:
<output>

<soap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

namespace=”urn:acmens:acmeservice”

use=”encoded”/>

</output>

The <soap:body> element in this code depicts a SOAP binding wherein the

Web Services 15

IV Year – I Semester 2018-19 CSE

body of the output SOAP message consists of abstract <part> elements that are used to

produce the concrete definition of the message by applying the

encodingStyle as defined in http://schemas .xmlsoap.org/soap/encoding/.

<soap:address>

The <soap:address> element is defined as follows in

WeatherInfo.wsdl:

<soap:address location=

“http://myweather.com/provideweatherinfo”/>

The <soap:address> element specifies an address for the given service port.

WSDL Tools:

WSDL tools typically provide functionality in terms of the following:

WSDL generation: Generating WSDL from an existing service Component for example, a

J2EE component or a Java Bean component or from scratch.

WSDL compilation: A typical WSDL compiler would generate the necessary

data structures and a skeleton for the implementation of the service. The generated

implementation skeleton contains all the methods (operations) that are described in the given

WSDL definition.

WSDL proxy generation: This functionality can read a WSDL and produce a specific

language binding (for example, Java or Perl) consisting of all the code required to bind the

Web service and to invoke the Web service functions at runtime. This functionality is

typically used at the client end.

Many WSDL tools provide support for these three functionalities.

Table 3.1 lists some of the famous ones in the Java Web Services space.

Web Services 16

IV Year – I Semester 2018-19 CSE

In the following section, we examine the WSDL tools provided by the Systinet WASP

platform

Support for WSDL in Systinet WASP 4.0:

Systinet WASP provides two tools for working with WSDL: Java2WSDL and

WSDL Compiler. Both of these tools accomplish two different types of functionalities related

to WSDL:

Generating WSDL from a Java class that is a potential candidate for a

Web service: This functionality is taken care of by the Java2WSDL tool.

Generating Java code from an existing WSDL: This functionality is taken care of by the

WSDL Compiler.

We will check out both these tools in the following two sections.

Generating WSDL from a Java Class
In situations in which an implementation of the Web service has already been created first,

the Java2WSDL tool can be used to generate WSDL. This tool provides a lot of options for

generating WSDL from an existing Java

implementation.

To understand the functioning of this tool, consider the following

Java class:

package jws.ch5;

public class WeatherInfoJavaService

{

public float GetWeatherInfo (String sCountry, String sZip,String sInstance)

{

Talk to some backend services to get hold

of the weather information

Return the weather information;

a manipulated value for now.

return 65.0f;

}

public void SetWeatherInfo (String sCountry, String sZip, String sInstance, String

sTemperature)

{

Update the backend weather databases

Web Services 17

IV Year – I Semester 2018-19 CSE

with this information

 }

}

 As can be seen from the previous listing, this class provides get and set methods. The

main job of this class is to manage information related to weather. Note that this is a

very simplistic version of such a weather information service.

 For example, we want to expose this class as a Web service. In which case, we also

decide to provide the description of the interface of this Web service as a WSDL. Our

Web service supports SOAP-based communication, and hence, a SOAP binding as

well. Thus, this fact also should be considered while generating WSDL using the

Java2WSDL tool.

 Once the WSDL has been generated, it can be registered in a registry such as UDDI

accompanied by the business- and other service-related information. So when the

prospective Web service users find the Web service, they can obtain the WSDL

description corresponding to this Web service and start using it.

Limitations of WSDL:

 WSDL 1.1 has an obvious limitation: its incapability of being able to describe

complex business Web services, which typically are constituted by

orchestrating multiple finer-grained Web services.

 This drawback is due to the lack of support for workflow descriptions in

WSDL.

 To overcome these limitations of WSDL, standards such as ebXML

Collaborative Protocol Profile/Collaborative Protocol Agreement (CCP/A),

Business Process Specification Schema (BPSS), and Web Services

Choreography Interface (WSCI) can be leveraged. An EbXML set of

technologies can be used to build business Web services.

Web Services 18

IV Year – I Semester 2018-19 CSE

UNIT-III
Assignment-Cum-Tutorial Questions

SECTION-A

 Objective Questions

1).What is WSDL? []

a) Web Services Data Language b) Web services Description Language

c) Web Services Describing Language d) None of These

2)WSDL was developed jointly by []

a)Microsoft and IBM b)Microsoft and Intel

c)IBM and Oracle d)Microsoft and Oracle

3)WSDL is pronounced as []

a)Wis-dell b)wis-dull c)wiz-dull d)wiz-dell

4). _________ is an extension of WSDL. []

a)XLink b)XLang c)XQuery d)XPath

5). Which of these is not the major element of WSDL document which

describes the describes a web service

 []

a) portType b) message c) binding d) attribute

6). WSDL port describes the interfaces exposed by a []

a) web servicer b)web service c)web browser d)None of these

7). Which directory of web service interface described by WSDL? []

a)HTTP b)DNS c)UDDI d)XML

Web Services 19

IV Year – I Semester 2018-19 CSE

8). The information about the names of the methods the parameters that can

be passed,and the values that are returned from the functions is controlled

in some Webservices by a description specified in _________ []

a)XML b)SOAP c)WSDL d)WSL

9) A resource on the Web is uniquely identified by its URI,which

means_________ []

a) Uniform Resource Identifier b) Universal Registered Identifier

c) Uniform Registered Identifier d) Universal Resource Identifier

10)WSDL is written in []

a)WML b)XML c)HTML d)CSS

11). The information about the names of the methods, the parameters

that can be passed, and the values that are returned from the functions

is controlled in some Web services by a description specified in ____

a)XML b)SOAP c)WSDL d)WC []

12) WSDL contains information about the names of the methods, the

parameters that can be passed, and the values that are returned from the

functions. (True/False)

13)What are the web service platform elements? []

a)SOAP,UDDI,XML b)HTTP.WSDL

c)UDDI,XML,SOAP d)SOAP,UDDI,WSDL

14)The binding element has two attributes,they are []

a)name and type b)style and transport

c)prototype and name d)port and service

Web Services 20

IV Year – I Semester 2018-19 CSE

15).Which of the following is used to locate and describe web service?[]

a)SOAP B)Web page c)WSDL D)UDDI

SECTION-B
 SUBJECTIVE QUESTIONS

1.Define WSDL and explain briefly.

2.With a neat sketch explain web services lifecycle.

3.Outline the Anatomy of WSDL definition document.

4.What are the different types of bindings available in WSDL?

5.List and explain the tools of WSDL.

6.Briefly explain the limitations of WSDL.

7.Identify six major elements provided by WSDL.

8.Give four transaction primitives/operation types supported by WSDL.

9.Apply the concepts of WSDL in the world of web services.

10.Differentiate between WSDL binding and WSDL port.

11.Illustarate the relationship of ports with in a service.

12.Mention what things need to be taken care for ports while binding?

13.Outline how endpoints are defined inWSDL?

14.Illustrate how the HTTP GET/POST Binding Extends WSDL?

Web Services 1

IV Year – I Semester 2018-19 CSE

UNIT – IV

Objective:

To learn the fundamentals of SOAP.

Syllabus:

Core fundamentals of SOAP:

Anatomy of a SOAP Message (SOAP message structure), SOAP

Encoding, SOAP Message Exchange Models, SOAP Communication,

SOAP Messaging, SOAP Security, Developing web services using

SOAP, Building SOAP Web Services, Developing SOAP Web Services

Using Java, Limitations of SOAP.

Learning Outcomes:

 Students will be able to

 know the anatomy of SOAP message.

 identify SOAP exchange models, communication and

security.

 learn the basic steps to build SOAP web services.

 develop SOAP Web Services using

java.

 identify the limitations of SOAP.

Web Services 2

IV Year – I Semester 2018-19 CSE

LEARNING MATERIAL

Introduction:

 SOAP is a lightweight protocol intended for

exchanging structured information in a

decentralized, distributed environment. SOAP uses

XML technologies to define an extensible messaging

framework, which provides a message construct that

can be exchanged over a variety of underlying

protocols. The framework has been designed to be

independent of any particular programming model

and other implementation-specific semantics.

 SOAP initially was developed by DevelopMentor, Inc.,

as a platform-independent protocol for accessing

services, objects between applications, and servers

using HTTP-based communication.

 SOAP used an XML-based vocabulary for

representing RPC calls and its parameters and return

values.

 SOAP stands for Simple Object Access Protocol.

 SOAP is a W3C recommendation for communication

between two applications.

Web Services 3

IV Year – I Semester 2018-19 CSE

SOAP message structure:

SOAP defines the structure of an XML document, rules, and

mechanisms that can be used to enable communication

between applications.

It does not mandate a single programming language or a

platform, nor does it define its own language or platform.

A SOAP message is an ordinary XML document containing the

following elements −

 Envelope − Defines the start and the end of the message.

It is a mandatory element.

 Header − Contains any optional attributes of the message

used in processing the message, either at an intermediary

point or at the ultimate end-point. It is an optional

element.

 Body − Contains the XML data comprising the message

being sent. It is a mandatory element.

 Fault − An optional Fault element that provides

information about errors that occur while processing the

message.

Web Services 4

IV Year – I Semester 2018-19 CSE

All these elements are declared in the default namespace for the

SOAP envelope −

http://www.w3.org/2001/12/soap-envelope and the default

namespace for SOAP encoding and data types is −

http://www.w3.org/2001/12/soap-encoding

The following block depicts the general structure of a SOAP message

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<SOAP-ENV:Header>

...

...

</SOAP-ENV:Header>

Web Services 5

IV Year – I Semester 2018-19 CSE

<SOAP-ENV:Body>

...

...

<SOAP-ENV:Fault>

...

...

</SOAP-ENV:Fault>

...

</SOAP-ENV:Body>

</SOAP_ENV:Envelope>

In the scenario in Listing 4.1, the SOAP message is

embedded in an HTTP request for getting the book price

information from www.wiley.com for the book Developing

Java Web Services.

POST /BookPrice HTTP/1.1

Host: catalog.acmeco.com

Content-Type: text/xml; charset=”utf-8”

Content-Length: 640

SOAPAction: “GetBookPrice”

<SOAP-ENV:Envelope

Web Services 6

IV Year – I Semester 2018-19 CSE

xmlns:SOAP

ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”

xmlns:xsd=http://www.w3c.org/2001/XMLSchema

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Header>

<person:mail

xmlns:person=”http://acmeco.com/Header/”>xyz@acmeco.com

</person:mail>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:GetBookPrice

xmlns:m=”http://www.wiley.com/jws.book.price

List”> <bookname xsi:type=’xsd:string’>

Developing Java Web Services</bookname>

</m:GetBookPrice>

</SOAP-ENV:Body>

</SOAP-ENV: Envelope>

Listing 4.1 SOAP request message.

Listing 4.2 shows the SOAP message embedded in an HTTP

response returning the price of the book.

Web Services 7

IV Year – I Semester 2018-19 CSE

HTTP/1.1 200 OK

Content-Type: text/xml; charset=”utf-8”

 Content-Length: 640

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3c.org/2001/XMLSchema”

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

<SOAP-ENV:Header>

<wiley:Transaction

xmlns:wiley=”http://jws.wiley.com/2002/booktx”SOAP-
ENV:mustUnderstand=”1”> 5

</wiley:Transaction>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:GetBookPriceResponse

xmlns:m=”http://www.wiley.com/jws.book.priceList”>

<Price>50.00</Price>

</m:GetBookPriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.2 SOAP response message.

SOAP Envelope

 The SOAP envelope is the primary container of a

SOAP message’s structure and is the mandatory

element of a SOAP message.

Web Services 8

IV Year – I Semester 2018-19 CSE

 It is represented as the root element of the message as Envelope

 As we discussed earlier, it is usually declared as an

element using the XML namespace

http://schemas.xmlsoap.org/soap/envelope/.

 As per SOAP 1.1 specifications, SOAP messages that

do not follow this namespace declaration are not

processed and are considered to be invalid.

 Encoding styles also can be defined using a

namespace under Envelope to represent the data

types used in the message.

Listing 4.3 SOAP envelope element in SOAP message.

<SOAP-ENV:Envelope

xmlns:SOAPENV=http://schemas.xmlsoap.org/soap/envelo

pe/xmlns:xsi=http://www.w3c.org/2001/XMLSchema-

instance xmlns:xsd=http://www.w3.org/2001/XMLSchema

SOAP-ENV encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>
<!--SOAP Header elements - -/>

<!--SOAP Body element - -/><SOAP-ENV:Envelope>

Web Services 9

IV Year – I Semester 2018-19 CSE

Listing 4.3 SOAP Envelope element.

 Envelope is a mandatory part of SOAP message.

 Every Envelope element must contain exactly one Body element.

 If an Envelope contains a Header element, it must contain

no more than one, and it must appear as the first child of

the Envelope, before the Body.

 The envelope changes when SOAP versions change.
 The SOAP envelope is specified using the ENVnamespace

prefix and the Envelope element.

 The optional SOAP encoding is also specified using a

namespace name and the optional encodingStyleelement,

which could also point to an encoding style other than the

SOAP one.

 A v1.1-compliant SOAP processor generates a fault upon

receiving a message containing the v1.2 envelope

namespace

 v1.2-compliant SOAP processor generates receives a

message that does not include a VersionMismatch fault if

it the v1.2 envelope namespace.

SOAP Header

 It is an optional part of a SOAP message.

 Header elements can occur multiple times.

 Headers are intended to add new features and functionality.

Web Services 10

IV Year – I Semester 2018-19 CSE

 The SOAP header contains header entries defined in a namespace.

 The header is encoded as the first immediate child element of

the SOAP envelope.

 When multiple headers are defined, all immediate child

elements of the SOAP header are interpreted as SOAP header

blocks.

SOAP Header Attributes

A SOAP Header can have the following two attributes −

 Actor attribute

The SOAP protocol defines a message path as a list of

SOAP service nodes. Each of these intermediate nodes can

perform some processing and then forward the message to the

next node in the chain. By setting the Actor attribute, the client

can specify the recipient of the SOAP header.

 MustUnderstand attribute

It indicates whether a Header element is optional or

mandatory. If set to true, the recipient must understand and

process the Header attribute according to its defined semantics,

or return a fault.

<SOAP-ENV:Header>

<wiley:Transaction

xmlns:wiley=”http://jws.wiley.com/2002/booktx”

Web Services 11

IV Year – I Semester 2018-19 CSE

SOAP-ENV:mustUnderstand=”1”>

<keyValue> 5 </keyValue>

</wiley:Transaction>

</SOAP-ENV:Header>

Listing 4.4 SOAP Header element.

SOAP Body:

 The SOAP body is a mandatory element that contains the

application-defined XML data being exchanged in the SOAP

message.

 The body must be contained within the envelope and must

follow any headers that might be defined for the message.

 The body is defined as a child element of the envelope, and

the semantics for the body are defined in the associated

SOAP schema.

 A Body block of a SOAP message can contain any of the following:
 RPC method and its parameters
 Target application (receiver) specific data
 SOAP fault for reporting errors and status information

<SOAP-ENV:Body>

<m:GetBookPrice

xmlns:m=”http://www.wiley.com/jws.book.priceList/”>

<bookname xsi:type=’xsd:string’>

Developing Java Web services</bookname>

</m:GetBookPrice>

</SOAP-ENV:Body>

Listing 4.5 SOAP Body element.

Web Services 12

IV Year – I Semester 2018-19 CSE

SOAP Fault

 In a SOAP message, the SOAP Fault element is used to

handle errors and to find out status information.

 This element provides the error and/or status

information. It can be used within a Body

element or as a Body entry.

 It provides the following elements to define the error and

status of the SOAP message in a readable description,

showing the source of the information and its details:

 Faultcode : The faultcode element defines the algorithmic

mechanism for the SOAP application to identify the fault.

 It contains standard values for identifying the error or status of the

SOAP application.

 The namespace identifiers for these faultcode values are defined in

http://schemas.xmlsoap.org/soap/envelope/.

The following fault-code element values are defined in the SOAP

1.1 specification:

VersionMismatch : This value indicates that an invalid

namespace is defined in the SOAP envelope or an

unsupported version of a SOAP message.

Web Services 13

IV Year – I Semester 2018-19 CSE

MustUnderstand : This value is returned if the SOAP

receiver node cannot handle and recognize the SOAP

header block when the MustUnderstand attribute is

set to 1. The MustUnderstand values can be set to 0

for false and 1 for true.

Client This faultcode is indicated when a problem

originates from the receiving client. The possible

problems could vary from an incorrect SOAP message,

a missing element, or incorrect name-space definition.

 Server This faultcode indicates that a problem has been

encountered during processing on the server side of

the application, and that the application could not

process further because the issue is specific to the

content of the SOAP message.

 Faultstring: The faultstring element provides a readable

description of the SOAP fault exhibited by the SOAP

application.

 Faultactor:The faultactor element provides the

information about the ultimate SOAP actor

(Sender/Receiver/Intermediary) in the message who is

responsible for the SOAP fault at the particular

destination of a message.

 Detail: The detail element provides the application-specific

error or status information related to the defined Body

block.

<SOAP-ENV:Envelopexmlns:SOAP-
ENV=”http://schemas.xmlsoap.org/soap/envelope/”

Web Services 14

IV Year – I Semester 2018-19 CSE

SOAP-ENV:encodingStyle=“http://schemas.xmlsoap.org/soap/encoding

/”>

 <SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:MustUnderstand</faultcode>

<faultstring>Header element missing</faultstring>

<faultactor>http://jws.wiley.com/GetBookPrice</faultactor>

<detail>

<wiley:error

xmlns:wiley=”http://jws.wiley.com/GetBookPrice”>

<problem>The Book name parameter missing.</problem>

</wiley:error>

</detail>

</SOAP-ENV:Fault>

</SOAP_ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.6 SOAP Fault in a SOAP message.

SOAP Encoding

 The SOAP encoding defines a set of rules for expressing its data types.
 It is a generalized set of data types that are represented by the

programming languages, databases, and semi-structured data

required for an application.

 SOAP encoding also defines serialization rules for its data model

using an encodingStyle attribute under the SOAP-ENV

namespace that specifies the serialization rules for a specific

element or a group of elements.

Web Services 15

IV Year – I Semester 2018-19 CSE

 SOAP encoding supports both simple- and compound-type values.

Simple Type Values

The definition of simple type values is based on the “W3C

XML Schema, Part -2: Data types” specification.

Examples are primitive data types such as string, integer,
decimal, and derived simple data types including
enumeration and arrays.

The following examples are a SOAP representation of

primitive data types:

<int>98765</int>

<decimal> 98675.43</decimal>

<string> Java Rules </string>

The derived simple data types are built from simple data types

and are expressed in the W3C XML Schema.

Compound Type Values

Compound value types are based on composite structural

patterns that represent member values as structure or array

types.

The following sections list the main types of compound type values.

Structure Types

Listing 4.14 is an XML Schema of the Structure data type

representing the “Shipping address” with sub elements like

“Street,” “City,” and “State.”

Web Services 16

IV Year – I Semester 2018-19 CSE

<xs:elementname=”ShippingAddress”

xmlns:xs=”http://www.w3.org/2001

/XMLS chema” >

<xs:complexType>

<xs:sequence>

<xs:element ref=”Street”type=”xsd:string”/>

<xs:element ref=”City” type=”xsd:string”/>

<xs:element ref=”State” type=”xsd:string”/>

<xs:element ref=”Zip” type=”xsd:string”/>

<xs:elementref=”Country”

type=”xsd:string”/>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing 4.14 Structure data type.

SOAP Message Exchange Models

Basically, SOAP is a stateless protocol by nature and

provides a compos-able one-way messaging framework for

Web Services 17

IV Year – I Semester 2018-19 CSE

transferring XML between SOAP applications which are

referred to as SOAP nodes. These SOAP nodes represent the

logical entities of a SOAP message path to perform message

routing or processing.

In a SOAP message, SOAP nodes are usually

represented with an endpoint URI as the next destination in

the message.

In a SOAP message, a SOAP node can be any of the following:

SOAP sender. The one who generates and sends the message.

SOAP receiver. The one who ultimately receives and

processes the message with a SOAP response,

message, or fault.

SOAP intermediary. The one who can play the role of a

SOAP sender or SOAP receiver. In a SOAP message

exchange model, there can be zero or more SOAP

intermediaries between the SOAP sender and receiver to

provide a distributed processing mechanism for SOAP

messages.

Web Services 18

IV Year – I Semester 2018-19 CSE

Intermediaries

Initial
Sender

Ultim
ate

SOAP
SOA
P SOAP SOAP

Customer Sales Accounts Inventory

SOAP Communication

SOAP is designed to communicate between applications

independent of the underlying platforms and programming

languages.

To enable communication between SOAP nodes, SOAP

supports the following two types of communication models:

SOAP RPC. It defines a remote procedural call-based

synchronous communication where the SOAP nodes send

and receive messages using request and response

methods and exchange parameters and then return the

values.

SOAP Messaging. It defines a document-driven

communication where SOAP nodes send and receive

XML-based documents using synchronous and

asynchronous messaging.

Web Services 19

IV Year – I Semester 2018-19 CSE

Now, let’s explore the details of both the communication model

and how it is represented in the SOAP messages.

SOAP RPC

The SOAP RPC representation defines a tightly coupled

communication model based on requests and responses.

Using RPC conventions, the SOAP message is represented by

method names with zero or more parameters and return

values.

Each SOAP request message represents a call method to a

remote object in a SOAP server and each method call will

have zero or more parameters.

Similarly, the SOAP response message will return the results

as return values with zero or more out parameters.

In both SOAP RPC requests and responses, the method calls

are serialized into XML-based data types defined by the

SOAP encoding rules.

Listing 4.24 is an example of a SOAP RPC request making

a method call GetBookPrice for obtaining a book price from a

SOAP server namespace

http://www.wiley.com/jws.book.priceList using a ”book-

name” parameter of ”Developing Java Web Services”.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

Web Services 20

IV Year – I Semester 2018-19 CSE

xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-

instance”

xmlns:xsd=”http://www.w3c.org/2001/XMLSchema”

 SOAP-ENV:encodingStyle
=”http://schemas.xmlsoap.org/soapencoding/”>

<SOAP-ENV:Header>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:GetBookPrice

xmlns:m=”http://www.wiley.com/jws.book.price List”>

<bookname xsi:type=’xsd:string’>

Developing Java Web services</bookname>

</m:GetBookPrice>

</SOAP-ENV:Body>

</SOAP-ENV: Envelope>

Listing 4.24 SOAP request using RPC-based communication.

The SOAP message in Listing 4.25 represents the SOAP

RPC response after processing the SOAP request, which

returns the result of the Get-BookPrice method from the

SOAP server namespace http://www.

wiley.com/jws.book.priceList using a “Price” parameter with

“$50” as its value.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”

Web Services 21

IV Year – I Semester 2018-19 CSE

xmlns:xsd=http://www.w3c.org/2001/XMLSchema

SOAP-ENV:encodingStyle

=”http://schemas.xmlsoap.org/soap/encoding/”/>

<SOAP-ENV:Body>

<m:GetBookPriceResponse xmlns:m=”

http://www.wiley.com/jws.book.priceList”>

<Price>50.00</Price>

</m:GetBookPriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.25 SOAP response message using RPC-based communication.

 SOAP Messaging

 SOAP Messaging represents a loosely coupled

communication model based on message notification and

the exchange of XML documents.

 The SOAP message body is represented by XML documents

or literals encoded according to a specific W3C XML

schema, and it is produced and consumed by sending or

receiving SOAP node(s).

 The SOAP sender node sends a message with an XML

document as its body message and the SOAP receiver node

processes it.

Listing 4.26 represents a SOAP message and a SOAP

messaging-based communication. The message contains a

header block InventoryNotice and the body product, both of

which are application-defined and not defined by SOAP. The

Web Services 22

IV Year – I Semester 2018-19 CSE

header contains information required by the receiver node

and the body contains the actual message to be delivered.

<env:Envelope

xmlns:env=”http://www.w3.org/2001/12/soap-

envelope”> <env:Header>

<n:InventoryNotice

xmlns:n=”http://jws.wiley.com/Inventory”>

<n:productcode>J6876896896</n:productcode>

 </n: InventoryNotice>

</env:Header>

<env:Body>

<m:product

xmlns:m=”http://jws.wiley.com/product”>

<m:name>Developing Java Web

Services</m:name>

<m:quantity>25000</n:quantity>

<m:date>2002-07-01T14:00:00-05:00</n:date>

</m:product>

</env:Body>

</env:Envelope>

Listing 4.26 SOAP message using messaging-based communication.

SOAP Messaging

Based on the underlying transport protocol, to enhance the

communication and message path model between the SOAP

nodes, SOAP chooses an interaction pattern depending upon

the communication model.

Web Services 23

IV Year – I Semester 2018-19 CSE

Although it depends upon SOAP implementation, SOAP

messages may support the following messaging exchange

patterns to define the message path and transmission of

messages between SOAP nodes, including intermediaries.

It is important to note that these patterns are introduced as

part of SOAP 1.2 specifications.

The most common SOAP messaging patterns are as follows:

 One-way message. In this pattern, the SOAP client

application sends SOAP messages to its SOAP

server without any response being returned. It is

typically found in email messages.

 Request/response exchange. In this pattern, the

SOAP client sends a request message that results

in a response message from the SOAP server to the

client.

 Request/N*Response pattern. It is similar to a

request/response pattern, except the SOAP client

sends a request that results in zero to many

response messages from the SOAP server to the

client.

 Notification pattern. In this pattern, the SOAP

server sends messages to the SOAP client like an

event notification, without regard to a response.

 Solicit-response pattern. In this pattern, the

SOAP server sends a request message to the SOAP

Web Services 24

IV Year – I Semester 2018-19 CSE

client like a status checking or an audit and the

client sends out a response message.

SOAP Security

 Security in SOAP messages plays a vital role in access

control, encryption, and data integrity during

communication.

 In general, SOAP messages do not carry or define any

specific security mechanisms.

However, using the SOAP headers provides a way to define

and add features enabling the implementation of application-

specific security in a form of XML-based metadata.

 The metadata information can be application-specific

information incorporating message security with

associated security algorithms like encryption and

digital signatures

 More importantly, SOAP supports various transport

protocols for communication, thus it also is possible to

incorporate transport protocol-supported security

mechanisms like SSL/TLS for SOAP messages.

 The W3C SOAP Security Extensions specifications

were available as a Note to define encryption,

authorization, and digital signatures in SOAP

messages.

 But all of the security-related elements are identified

using a single namespace identifier using the prefix

Web Services 25

IV Year – I Semester 2018-19 CSE

SOAP-SEC and with an associated URI using

http://schemas.xmlsoap.org/soap /security/.

 It also defines the three security element tags <SOAP-

SEC: Encryption>, <SOAP-SEC:Signature>, and

<SOAP-SEC:Authorization>.

Use of these security tags enables the incorporation of

encryption, digital signatures, and authorization in SOAP

messages.

The following section takes a look at how to represent

these security tags in a SOAP message.

SOAP Encryption

The use of XML-based encryption in SOAP permits secure

communication and access control to be implemented by

encrypting any element in the SOAP envelope. The W3C XML

Encryption WG (XENC) defines the mechanisms of XML

encryption in the SOAP messages. In SOAP communication,

encryption can be done at the SOAP sender node or at any of

the intermediaries in the message path.

Listing 4.33 is a sample representation of a SOAP message

SOAP Digital Signature

The use of an XML-based digital signature in SOAP

messages provides message authentication, integrity, and

non-repudiation of data during communication.

The SOAP sender node that originates the message applies

an XML-based digital signature to the SOAP body and the

receiver node validates the signature.

Web Services 26

IV Year – I Semester 2018-19 CSE

Listing 4.34 is a sample representation of a SOAP message

using XML digital signatures.

using XML encryption for encrypting its data elements.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP-ENV:Header>

<SOAP-SEC:Encryption

xmlns:SOAP-SEC=”http://schemas.xmlsoap.org/soap/security/”

SOAP-ENV:actor=”some-URI”

SOAP-ENV:mustUnderstand=”1”>

<SOAP-SEC:EncryptedData>

<SOAP-SEC:EncryptedDataReference URI=”#encrypted-

element”/>

</SOAP-SEC:EncryptedData>

<xenc:EncryptedKey xmlns:xenc=

“http://www.w3.org/2001/04/xmlenc#” Id=”myKey”

CarriedKeyName=”Symmetric Key”

Recipient=”Bill Allen”>

<xenc:EncryptionMethod

Algorithm=”http://www.w3.org/2001/04/xmlenc#rsa-1_5”/>

<ds:KeyInfo xmlns:ds=“http://www.w3.org/2000/09/xmldsi g#”>
<ds:KeyName>Bill Allen’s RSA Key</ds:KeyName>

</ds:KeyInfo>

<xenc:CipherData>

<xenc:CipherValue>ENCRYPTED KEY</xenc:CipherValue>

</xenc:CipherData>

Web Services 27

IV Year – I Semester 2018-19 CSE

<xenc:ReferenceList>

<xenc:DataReference URI=”#encrypted-element”/>

</xenc:ReferenceList>

</xenc:EncryptedKey>

 </SOAP-SEC:Encryption>

 </SOAP-ENV:Header>

<SOAP-ENV:Body>

.. </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.33 SOAP message using XML encryption

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP-ENV:Header>

<SOAP-SEC:Signature

xmlns:SOAP-SEC=”http://schemas.xmlsoap.org/soap/security/”

SOAP-ENV:actor=”Some-URI”

SOAP-ENV:mustUnderstand=”1”>

<ds:Signature Id=”TestSignature”

xmlns:ds=”http://www.w3.org/2000

/02/xmld sig#”>

<ds:SignedInfo>

<ds:CanonicalizationMethod

Algorithm=”http://www.w3.org/TR/2000/CR-

xml-c14n-20001026”>

</ds:CanonicalizationMethod>

<ds:SignatureMethod

Web Services 28

IV Year – I Semester 2018-19 CSE

Algorithm=”http://www.w3.org/2000/09/xmldsig#hmac-
sha1”/>

<ds:Reference URI=”#Body”>

<ds:Transforms>

<ds:Transform Algorithm=”http://www.w3.org/TR/2000/CR-
xml-c14n-20001026”/>

</ds:Transforms>

<ds:DigestMethod
Algorithm=”http://www.w3.org/2000/09/xmldsig#sha1”/>

<ds:DigestValue>vAKDSiy987rplkju8ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>JHJH2374e<ds:SignatureValue>

</ds:Signature>

</SOAP-SEC:Signature>

Listing 4.34 SOAP message using XML digital signatures

SOAP Authorization

Using XML-based authorization in SOAP messages enables

the authorization of the SOAP messages using certificates

from the originating SOAP sender nodes.

SOAP authorization applies an XML-based digital certificate

from an independent authorization authority to the SOAP

message from the sender.

Listing 4.35 is a sample representation of a SOAP message

using an XML-based authorization.

<SOAP-ENV:Envelope

Web Services 29

IV Year – I Semester 2018-19 CSE

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP-ENV:Header>

<SOAP-SEC:Authorization

xmlns:SOAP-SEC=”http://schemas.xmlsoap.org/soap/security/”

SOAP-ENV:actor=” actor-URI”

SOAP-ENV:mustUnderstand=”1”>

<AttributeCert xmlns=

 “http://schemas.xmlsoap.org/soap/security/AttributeCert”>

An encoded certificate inserted here as

encrypted using actor’s public key.

</AttributeCert>

</SOAP-SEC:Authorization>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.35 SOAP message using an XML-based authorization.

Developing web services using SOAP

 With the emergence of Web services, SOAP has become

the de facto communication protocol standard for creating

and invoking applications exposed over a network.

 SOAP is similar to traditional binary protocols like IIOP

(CORBA) or JRMP (RMI), but instead of using a binary

data representation, it adopts text-based data

representation using XML.

Web Services 30

IV Year – I Semester 2018-19 CSE

 Using XML notation, SOAP defines a lightweight wire

protocol and encoding format to represent data types,

programming languages, and databases.

 SOAP can use a variety of Internet standard protocols

(such as HTTP and SMTP) as its message transport, and it

provides conventions for representing communication

models like remote procedural calls (RPCs) and document-

driven messaging.

 This enables inter application communication in a

distributed environment and interoperability between

heterogeneous applications over the networks.

 With its widespread acceptance by leading IT vendors

and Web developers, SOAP is gaining popularity and

adoption in most popular business applications for

enabling them as Web services.

 It is important to note that SOAP is an ongoing W3C

effort in which leading IT vendors are participating in

order to come to a consensus on such important

tasks associated with XML-based protocols and to

define their key requirements and usage scenarios.

Building SOAP Web Services

We all are aware that SOAP provides an XML-based

communication protocol solution for bridging disparate

applications in a distributed environment using XML-based

messaging or by remotely invoking methods.

From a Web services point of view, it defines and provides the following:

Web Services 31

IV Year – I Semester 2018-19 CSE

 A standardized way to transmit data using Internet-based

protocols and a common-wire format (XML) between the

Web service provider and its requestors.

 An extensible solution model using an XML-based

framework enabling the Web service providers and

requestors to interoperate with each other in a loosely

coupled fashion and without knowing the underlying

application architecture (such as programming languages

and operating systems).

 This enables the creation of Web services over existing

applications without modifying the underlying applications.

In a Web services implementation model, SOAP can be

implemented as a client, as a server application, or both, as

follows:

 A SOAP-based client application plays the role of a Web

services requestor, which typically handles an XML-based

request/response, a message containing a XML document,

parameters required to invoke a remote method, or the

calling of a SOAP server application.

 A SOAP client can be a Web server or a traditional

application running a SOAP-based proxy, which send SOAP

requests or SOAP messages using HTTP or any other

supporting protocol.

 A SOAP server application plays the role of a Web services

provider, which processes the SOAP requests and

messages from calling SOAP-based clients.

 The SOAP server application interacts with its

encapsulated applications to process the requests or

Web Services 32

IV Year – I Semester 2018-19 CSE

messages and then sends a response to the calling SOAP

client.

 SOAP server applications also can act as SOAP

intermediaries, which allows the extensibility of the

application to enable the processing and forwarding of

messages through a series of SOAP nodes or a final

destination.

 In case of acting SOAP intermediaries, the SOAP server

application typically works as a SOAP client application to

the final destination of the message.

Developing SOAP Web Services Using Java

SOAP does not mandate a single programming model

nor does it define programming language-specific bindings

for its implementation.It is up to the provider to choose a

language and to define the implementation of its language-

specific bindings.In this context, to use Java as a language

for developing SOAP applications requires its Java

implementation for SOAP-specific bindings.

As of today, there are many SOAP application

vendors that have made Java-based SOAP implementations

for developing Web applications to Web services.

In general, the use of Java for developing SOAP

applications enables scalable and portable applications to

be built that also can interoperate with heterogeneous

applications residing on different platforms by resolving the

platform-specific incompatibilities and other issues.

Web Services 33

IV Year – I Semester 2018-19 CSE

Additionally, having SOAP-based applications that adopt a

J2EE-based infrastructure and component framework

allows the inheritance of the characteristics of J2EE

container-based services such as transactions, application

security, and back-end application/databases connectivity.

The release of the Java Web Services Developer Pack

(JWSDP) also provides a full-fledged API solution for

developing SOAP-based Web services.

A long list of open source com-munities, Web

services platform providers, and J2EE vendors also have

released their SOAP implementations adopting Java

platform and Java-based APIs.

 To study and explore the features of a Java-based

SOAP implementation, we chose to use Apache Axis, a

Java-based toolkit from Apache Software foundation for

developing SOAP-based Web services.

Axis also supports the JAX-RPC, JAXM, SAAJ, and SOAP

1.2 specifications in its forthcoming implementations. Axis

follows its predecessor efforts of Apache SOAP.

Apache refers to Axis as the next generation of Apache

SOAP implementation that provides a complete solution kit

for Web services, which is more than sending and receiving

SOAP messages.

The Axis toolkit is available for download at http://xml.apache.org/axis.

Web Services 34

IV Year – I Semester 2018-19 CSE

 As a packaged solution, the Apache Axis environment

provides the following:

 A SOAP-compliant runtime environment that

can be used as a standalone SOAP server or

as a plug-in component in a compliant Java

servlet engine (such as Tomcat, iPlanet, and

 An API library and runtime environment for

developing SOAP RPC and SOAP messaging-

based applications and services

 A transport-independent means for adopting a

variety of transport protocols (such as HTTP,

SMTP, and FTP)

 Automatic serialization and deserialization

for Java objects to and from XML in SOAP

messages

 Support for exposing EJBs as Web services,

especially the methods of stateless session

EJBs

 Tools for creating WSDL from Java classes and vice-versa

 Tools for deploying, monitoring, and testing the Web services

Axis also provides full-fledged implementation support for Sun JWSDP 1.0

APIs, especially JAX-RPC and SAAJ.

Web Services 35

IV Year – I Semester 2018-19 CSE

Limitations of SOAP

Although the SOAP specifications define a promising

communication model for Web services, the following limitations

exist that are not currently addressed by the SOAP specifications:

 The specification does not address message reliability,

secure message delivery, transactional support, and

its communication requirements of a SOAP

implementation.

 The specification does not address issues like object

activation and object lifecycle management.

 The specification discusses HTTP as the primary

transport protocol but does not discuss the usage of

other transport protocols.

 The specification does not address how to handle

SOAP messages out of a SOAP implementation.

Note that the limitations of SOAP have been currently well

addressed by the ebXML framework as part of the ebXML

messaging service, which complements SOAP and other Web

services standards.

Web Services 36

IV Year – I Semester 2018-19 CSE

UNIT-IV
Assignment-Cum-Tutorial Questions

SECTION-A
 Objective Questions

1. SOAP stands for []
 A. Safe Object Access Protocol B. Simple Object Access Protocol
 C. Single Object Access Protocol D. Syntax Open Access Protocol

2. SOAP is []
 A. Both platform and language independent protocol
 B. Only platform independent and not language independent protocol
 C. Only language independent and not platform independent protocol
 D. Neither platform independent nor language independent protocol

3. SOAP is based on XML []
 A. TRUE B. False

4. _________and ________ technology are used to satisfy security requirement

5. Using _______________ we can satisfy requirement message authentication

6. SOAP message has _______ elements. []
A. Header B. Body C. Envelope D. All of the above

 7. Every SOAP message has a root __________________________ element.

 8. SOAP is a _________. []
A) Language B) Carrier C) Protocol D) Markup

 9 .SOAP encoding supports both _________________________ type values

10. In a SOAP message, _______ are usually represented with an endpoint URI
as the next destination in the message.

11 SOAP is a _________ to let applications exchange information over HTTP

 A) XML-based protocol B) JAVA-based protocol []
 C) PHP-based protocol D) .NET-based protocol

12. SOAP is a format for sending messages and is also called as ___[]
 A) None of these B) Network protocol
 C) Data Transfer protocol D) Communication protocol

Web Services 37

IV Year – I Semester 2018-19 CSE

13. In a SOAP message, the SOAP ______ element is used to handle errors and
to find out status information []
A. Header B. Body C. Envelope D. Fault

14) ________element is the top most tag which identifies the XML document as
a SOAP message. []
A. Header B. Body C. Envelope D. Fault

15) What are the advantages of SOAP? []

A) It is platform and programming language independent.
B) RPC (Remote procedure calls) are sometimes blocked by firewalls and proxy servers
C) Both A and B D) None of the above

16) The use of _________ for developing SOAP applications enables scalable and
portable applications to be built that also can interoperate with heterogeneous
applications residing on different platforms by resolving the platform-specific
incompatibilities and other issues. []
A) C++ B) JAVA C) DBMS D) C

17) __________ contains the XML data comprising the message being sent. It is
a mandatory element []

A. Header B. Body C. Envelope D. Fault

18) In a SOAP message exchange model, there can be zero or more
_______between the SOAP
sender and receiver to provide a distributed processing mechanism for SOAP
messages. []

A) SOAP intermediaries B) SOAP sender C) SOAP Receiver D) None

SECTION-B
 SUBJECTIVE QUESTIONS

1. Briefly explain the anatomy of SOAP message structure.

2. List and explain data types supported in SOAP encoding.

3. Write a short note on SOAP message exchange models.

4. Distinguish between RPC Communication and Message Communication in

SOAP communication.

5.Outline the security issues in SOAP.

Web Services 38

IV Year – I Semester 2018-19 CSE

6. What is the role of SOAP in developing web services?

7. Outline the role of SOAP to build web services

8. Discuss the limitations of SOAP.

9. Compare and contrast the advantages of Web Services than Distributed

Computing Technologies.

10. Analyze the syntax rules for SOAP message.
11. Identify the advantages of SOAP.
12. Outline the importance of different elements that are used in SOAP
message format.
13. Explain how SOAP provides security.
14. Illustrate the important characteristics of a SOAP envelop element?
15. Mention what are the major obstacles faced by the users using SOAP?

Web Services 1

IV Year – I Semester 2018-19 CSE

WEB SERVICES

UNIT – V

Objective: To learn the fundamentals of SOAP.

Syllabus:

Discovering web services

Services discovery, role of service discovery in a SOA Service

discovery mechanisms, UDDI Registries and their uses Programming

with UDDI, UDDI data structures

Support for categorization in UDDI Registries Operations on UDDI

Registry:

Publishing, Searching, Deleting information in a UDDI registry

Limitations of UDDI.

Learning Outcomes:

Students will be able to know the role of service discovery in a

SOA. Identify UDDI Registries and their uses learn programming and

data structures in UDDI identify operations on UDDI registry.

Web Services 2

IV Year – I Semester 2018-19 CSE

LEARNING MATERIAL

Discovering web services

Services discovery, role of service discovery in a SOA

In SOA/distributed systems, services need to find each other. for
example, a web service might need to find a caching service or another
mid-tier component service etc. A Service Discovery system should
provide a mechanism for
• Service Registration
• Service Discovery
• Handling Fail over of service instances
• Load balancing across multiple instances of a Service
• Handling issues arising due to unreliable network.
Other aspects to consider when choosing or implementing a service
registration/discovery solution
• Integrating service registration and discovery into the application or
using a sidekick process
• Application Software stack compatibility with service discovery solution
• Handling Failure/outage of service discovery solution itself

Using a DNS

The simplest solution to registration and discovery is to just put all
of your backends behind a single DNS name. To address a service, you
contact it by DNS name and the request should get to a random
backend. Details of how to use DNS for service registration and discovery
can be found in the links below.

Advantages
 Easy to implement and has been there for a long time

Web Services 3

IV Year – I Semester 2018-19 CSE

Disadvantages

1. Service Instances have to poll for all changes – there’s no way to

push state. A monitoring component has to be implemented which

will detect server failures or additions and propagates the state

changes to the consumers.

2. DNS suffers from propagation delays; even after a server failure

is detected a de-registration command issued to DNS, there will be

at least a few seconds before this information gets to the consumers.

Also, due to the various layers of caching in the DNS infrastructure,

the exact propagation delay is often non-deterministic.

3. If a service is identified just by name, there’s no way to determine

which boxes get traffic. We will get the equivalent of random routing,

with loads chaotically piling up behind some backends while others

are left idle.

4. Most services use a front-end reverse proxy like nginx(to handle

more connections, load balancing, ssl offloading, static file caching

etc). These proxies cache the dns configuration unless you use some

configuration file hack resulting in issues with detecting state. The

same is true of HAProxy.

Web Services 4

IV Year – I Semester 2018-19 CSE

Introduction UDDI

UDDI technology is the core and one of the building blocks of

Web services apart from SOAP and WSDL.UDDI enables the

businesses providing services (in electronic form or in any other

medium) to register information to enable the discovery of their

services and business profile by prospective customers and/or

partners.

Similarly, it enables businesses to discover other businesses for

expanding potential business partnerships. Thus, UDDI presents

businesses with an opportunity to step into new markets and

services. It powers all kinds of businesses, large, medium, or small,

to accelerate their business presence in this global market.UDDI

initially started as a joint effort from IBM, Microsoft, and Arriba

Since then, a number of companies joined the UDDI community. As

of this book’s writing, the UDDI project community is looking

forward to releasing version 3.0 of the UDDI specification. This

chapter covers version 2.0 of the UDDI specification because it is

widely implemented and adopted as of this writing.To find more

information on the UDDI effort, visit the UDDI official Web site at
www.uddi.org.

Service discovery mechanisms

Web Services 5

IV Year – I Semester 2018-19 CSE

Manual
o A human queries and decides Automatic
o Discovery by a requester agent Centralized
o UDDI registry: Centralized, authoritative repository of

service descriptions
Decentralized

o Distant ancestors of Whois++, rWhois systems
o UDDI Federations
o P2P systems

UDDI Registries and their uses

An implementation of the UDDI specification is termed as a

UDDI registry.UDDI registry services are a set of software services

that provide access to the UDDI registry.Meanwhile, registry services

can perform a plethora of other activities such as authenticating and

authorizing registry requests, logging registry requests, load-

balancing requests, and so on.

Public and Private UDDI Registries

A UDDI registry can be operated in two modes: public mode

and private mode.A public UDDI registry is available for everyone to

publish/query the business and service information on the Internet.

Such public registries can be a logical single system built upon

multiple UDDI registry nodes that have their data synchronized

through replication.Thus, all the UDDI registry node operators would

each host a copy of the content and accessing any node would

provide the same information and quality of service as any other

Web Services 6

IV Year – I Semester 2018-19 CSE

operator node.Such global grouping of UDDI registry nodes is known

as a UDDI Business Registry, or UBR.Content can be added into a

UBR from any node, however, content can be modified or deleted

only at a node at which it was inserted.A private UDDI registry is

operated by a single organization or a group of collaborating

organizations to share the information that would be avail-able only

to the participating bodies.Private UDDI registries can impose

additional security controls to protect the integrity of the registry

data and to prevent access by unauthorized users.Note that a

private node also can participate in information replication.

A UDDI registry in itself is a Web service. A Web service

consumer queries the UDDI registry using the SOAP API defined by

UDDI specification.Also, the UDDI specification publishes a WSDL

description of the UDDI registry service.The UDDI project

community members operate a UBR.This registry is available to

everyone for free publishing/querying of businesses and ser-vices

information.To find more information on this publicly operated UDDI

registry, visit the UDDI Web site at www.uddi.org.

Interacting with a UDDI Registry

Typically, vendors implementing a UDDI registry provide two
ways of interacting with a UDDI Registry Service.A graphical user
interface

(GUI), for interacting with a UDDI registry. These GUIs also can be
browser-based.The following is a list of public UDDI registries,

Web Services 7

IV Year – I Semester 2018-19 CSE

operated by various companies such as Microsoft, IBM, Hewlett
Packard, and so on, that provide a browser-based interface to these
registries:https://uddi.rte.microsoft.com/search/frames.aspx
https://www-3.ibm.com/services/uddi/v2beta/protect
/registry.html
https://uddi.hp.com/uddi/index.jsp
http://udditest.sap.com/
http://www.systinet.com/uddi/web

Below Figure shows a browser-based GUI provided by Systinet in
order to interact with its publicly hosted UDDI registry.

This screenshot depicts the interface provided for searching
businesses registered with the Sistine registry.

Figure : Web-based GUI to UDDI registry.

Web Services 8

IV Year – I Semester 2018-19 CSE

Uses of UDDI Registry

Businesses can use a UDDI registry at three levels:
White pages level.

Businesses that intend to register just the very basic information
about their company, such as company name, address, contact
information, unique identifiers such as D-U-N-S numbers or Tax IDs, or
Web services use UDDI as white pages.
Yellow pages level.

Businesses that intend to classify their informa-tion based on
categorizations (also known as classification schemes or taxonomies)
make use of the UDDI registry as yellow pages.
Green pages level.

Businesses that publish the technical information describing the
behavior and supported functions on their Web ser-vices make use of the
UDDI registry as green pages.

Programming with UDDI

This section introduces the APIs used for communicating with a UDDI
registry. Also, important data structures and categorization support of
UDDI are discussed.

UDDI Programming API

The UDDI specification defines two XML-based programming APIs
for communicating with the UDDI registry node: inquiry API and
publishing API. The following sections describe each of these.

Inquiry API

The inquiry API consists of XML messages defined using a UDDI
Schema, which can be used to locate information about a business, such
as the services a business offers and the technical specification of those
services (such as a link to a WSDL document describing the interface of
the service, the binding of the service and the URL where the service is
running, and so on).

Web Services 9

IV Year – I Semester 2018-19 CSE

A UDDI programmer would use these inquiry APIs to retrieve
information stored in the registry. To retrieve information, a registry user
does not need to be authenticated.The following is a list of inquiry API
functions that can be used for finding information in a UDDI registry:

<find_business>
<find_relatedBusinesses>
<find_service>
<find_binding>
<find_tModel>

To get further detailed information from the UDDI registry, the follow-ing
inquiry API functions are available:

<get_businessDetail>
<get_businessDetailExt>
<get_serviceDetail>
<get_bindingDetail>
<get_tModelDetail>

Publishing API

The publishing API consists of functions represented by a UDDI
Schema, which defines XML messages that can be used to create,
update, and delete the information present in a UDDI registry.Note that
in order to publish to a UDDI registry, the registry user needs to be
authenticated.

The following is a list of publishing API functions that can be used
for adding/modifying information to a UDDI registry:

<save_business>
<set_publisherAssertions>
<add_publisherAssertions>
<save_service>
<save_binding>
<save_tModel>

The following is a list of publishing API functions that can be used for
deleting information from a UDDI registry:

 <delete_business>
<delete_publisherAssertions>
<delete_service>

Web Services 10

IV Year – I Semester 2018-19 CSE

<delete_binding>
<delete_tModel>

Apart from the functions just mentioned, the publishing API also defines
functions that deal with the authentication of the registry users, which is
required in order to successfully execute the rest of the functions of this
API:

<get_authToken>
<discard_authToken>

We will discuss each of the aforementioned APIs in detail in the

sections titled Inquiry API and Publishing API, which follow.The XML
messages constituting the UDDI programmer APIs are defined using a
UDDI XML Schema.These XML messages are wrapped in a SOAP
message and then sent to the UDDI registry.In other words, all of the
XML messages are enveloped within a SOAP <body> element and then
sent as an HTTP POST request to the UDDI registry.The UDDI registry
then processes these SOAP messages and gets hold of the actual API
function represented by the XML message, which further instructs the
registry services to provide either publishing or querying services.A UDDI
registry node typically enables access to both inquiry and publishing
functionalities through different access point URLs. Table 5.3 lists the
URLs for publicly operated UDDI registry nodes.

As we can see from Table 5.3, all of the URLs corresponding to the
publishing access points support HTTPS, because publishing operations
need authenticated access.

Web Services 11

IV Year – I Semester 2018-19 CSE

Table 5.3 Access Point URLs

 OPERATORINQUIRY URL PUBLISHING URL

http://uddi.microsoft.com
/inqui

 Microsoft re https://uddi.microsoft.com

 /publish

 IBM
http://www-
3.ibm.com/services

https://www-
3.ibm.com

 /uddi/inquiryapi /services/uddi/protect

 /publishapi

https://uddi.hp.com/p
ublis

 HP
http://uddi.hp.com/inquir
e h

SAP http://udditest.sap.com/uddi
 https://udditest.sap.com

 /api/inquiry /uddi/api/publish

Note that all the UDDI invocations follow a synchronous
request/response mechanism and are stateless in nature.
This statelessness has a significant impact on the authentication of a
registry user to the UDDI registry, which is required when performing a
publishing operation on the registry.

Because of the stateless nature of the UDDI programming API,
each time a registry user uses a publishing programming API, the

Web Services 12

IV Year – I Semester 2018-19 CSE

security credentials of the identity associated with the registry user
also are passed with each UDDI invocation.

UDDI data structures

The information managed by a UDDI registry is represented as
XML data structures also known as UDDI data structures. The UDDI
data structures specification document defines the meaning of these data
structures and the relationship between them. Ultimately, it is these data
structures with which a UDDI client needs to work.

A UDDI client makes use of these, in conjunction with the XML
messages of programming APIs, to manipulate a specific type of
information in a registry.

Similarly, response to a search operation received from the UDDI registry
also would consist of these data structures.

Hence, the UDDI data structures are more or less input and out-put
parameters for the UDDI programming API.
The following are the five primary UDDI data structures defined in the
specification:

<businessEntity>
<publisherAssertion>
<businessService>

 <bindingTemplate>
 <tModel>
Note that all of these data structures except <publisher Assertion> are
identified and referenced through a 128-bit globally unique identifier also
known as UUID.These UUIDs can later be used as keys to access the
specific data within the registry.Now, let’s take a look at each of these
one by one.
<businessEntity>

The <businessEntity> data structure represents the primary
information about a business, such as contact information,
categorization of the business according to a specific taxonomy or
classification scheme, identifiers, relationships to other business entities,
and descriptions about that particular business.

Web Services 13

IV Year – I Semester 2018-19 CSE

<publisherAssertion>

A business registered in a UDDI registry can have active business
relationships with other businesses. This relationship can be of any
form, for example, a relationship of business partners or a business-to-
customer relationship. Such relationships are represented by a
<publisherAssertion> data structure in a UDDI Registry. The
<publisherAssertion> structure is used to establish a relationship
between two <businessEntity> structures.

A very interesting aspect about relationships in a UDDI registry is
its ability to not make the relationship visible to the public unless and
until both of the parties establishing this association assert for the same.
This means that if a <businessEntity> structure representing Company A
asserts its relationship with a <businessEntity> structure representing
Company B through a <publisherAssertion> structure, a UDDI registry

would not make this relationship public until Company B has

created another similar <publisherAssertion> structure. This provision is
supported by the UDDI registries in order to ensure that a company can
claim a business relationship with another company, only if the other
partner also asserts for the same relationship.
<businessService>

The <businessService> data structure represents the service of a
busi-ness. These services can be Web services or any other type of
service. For example, the <businessService> data structure may
represent a service that is offered over the telephone, such as a telephone
banking service. The <businessService> data structure is merely a logical
representation of services that a business has to offer.

A <businessEntity> structure contains one or more
<businessService> structures. The same <businessService> structure
also can be used by multiple <businessEntity> structures. For example,
if a business has two departments—say, manufacturing and sales— that
are each published to a UDDI registry as a <businessEntity> structure,
then both of them can use the same <businessService> structure
representing another business service—say, legal counseling.

Web Services 14

IV Year – I Semester 2018-19 CSE

<bindingTemplate>

The <bindingTemplate> structure consists of pointers to technical
descriptions and access URLs of the service. Each <businessService>
structure can contain one or more <bindingTemplate> structures. So, for
example, if the <businessService> structure represents a Web ser-vice,
then its <bindingTemplate> would refer to a PDF document pro-viding
the technical description of this Web service and the URL at which the
Web service can be accessed. Also, the <bindingTemplate> structure can
provide an optional description of the Web service.Note that the
<bindingTemplate> structure does not provide the details of the service
specification, such as the interface of a service. That information is
provided by the <tModel> structures, and <bindingTemplate> simply
refers to one or more of such <tModel> structures.

<tModel>

The <tModel> structure provides a description of a particular
specification or behavior of the service. The <tModel> structure does not
contain the service specification directly; instead, it contains a link to the
service specification, which is managed elsewhere. The <tModel> thus
defines the interaction pattern in order to use the service. For example, a

business may provide a Web service whose WSDL interface may be
referenced through a link from within the <tModel> structure.

Thus, <tModel> defines the lowest-level and most concrete piece of
information about the services offered by a business. A UDDI client
typically gets hold of the service specification pointed out by the
<tModel> structure in order to use a publicly available Web service
registered by a particular business.The linking between these five core
data structures of UDDI is depicted in Figure.

Apart from these five primary data structures, two other structures
exist that represent the category and identification information of the
primary data structures: <identifierBag> and <categoryBag>. Let’s take a
look at each of them now.
<identifierBag>

The <identifierBag> structure enables <businessEntity> or <tModel>
structures to include information about the common forms of
identification such as D-U-N-S numbers and tax IDs. This data can be

Web Services 15

IV Year – I Semester 2018-19 CSE

used to signify the identity of <businessEntity>, or it can be used to
signify the identity of the publishing party. Including such identification
information is optional. However, when a published <businessEntity> or
<tModel> carries such common forms of identification, it greatly
enhances the search behaviors exposed via inquiry API functions.

<categoryBag>

The <categoryBag> structure enables <businessEntity>,
<businessService>, and <tModel> structures to be categorized according
to any categorization system, such as an industry categorization system
or a geography categorization system. Categorizing the data structures
mentioned previously is optional.

However, when these data structures are published along with
their categorization information, it greatly enhances the search behaviors
exposed via inquiry API functions. The categorization support in a UDDI
registry is discussed in the following section.

Support for categorization in UDDI Registries

Categorization—also known as classification in JAXR
terminology—is considered to be the prominent functionality of any
registry.Categorization enables the data to be classified with the help of
various categorization systems (also known as taxonomies or
classification schemes), such as an industry categorization system or a
geography categorization system.For example, a business can be
classified as being located in the United States with the help of a
standard geography categorization system such as ISO-3166.

Categorizing data aids in searching for a particular piece of data.

For example, searching for a software organization whose name
begins with the letter M is much easier when that data is categorized as
being located in Redmond, Washington, than when it is not.

Searching by the letter M for an organization that does not have a
geographical categorization returns a much broader set of results, thus
making it much more difficult to discover the business in which one is
interested.

Web Services 16

IV Year – I Semester 2018-19 CSE

Hence, categorization is especially useful in the discovery of
information managed by a UDDI registry.
UDDI registries have built-in support for three industry standard
categorization systems. Also, the registry specification enables support
for an open-ended categorization system that can be used in specific
ways by a UDDI registry node operator.

In UDDI, the categorization system is represented by a <tModel>
structure. These <tModel> structures have a unique name across all the
UDDI registry node operators; however, the <tModel> UUID may change
between the node operators.
UDDI-Supported Categorization Systems

The UDDI supported categorization systems and their <tModel> names
are shown in Table 5.4.
Checked and Unchecked Categorization System

UDDI version 2.0 included the capability of validating the categorization
of a particular UDDI data structure. Depending upon whether an

organization chooses to use the validation service of a UDDI registry, one
of the two types of categorization systems will be supported:
Checked categorization system.

Checked categorization systems are used when the publisher of a
categorization system wishes to ensure that the categorization code
values registered represent accurate and validated information.

The categorization code values represented by UDDI structure
<categoryBag> would be checked for valid values during a
<save_business>, <save_service>, or <save_tModel> API call.

Web Services 17

IV Year – I Semester 2018-19 CSE

Table 5.4. UDDI-Supported Categorization Systems and Their <tModel>
Names

CATEGORI
-

<TMODEL>
NAME DESCRIPTION

 ZATION

 SYSTEM

 NAICS ntis-gov:naics
This is a standard industry and
services

categorization system. NAICS
abbreviates

 :1997 to
 the North American Industry
 Classification
 System. This system is the most
 elaborate
 and comprehensive industry
 classification

Web Services 18

IV Year – I Semester 2018-19 CSE

 scheme defined so far. Further
 information

on this categorization system
can be

 obtained from
 www.census.gov/epcd/www

 /naics.html.

 UNSPSC unspcs-org
This standard industry and
services

 :unspsc:3-1
categorization system
abbreviates to the

Universal Standard Products
and

 Services

Classification. This was the first
such

industry classification scheme
defined for

 electronic businesses. Further
 information

on this categorization system
can be

 obtained from www.unspsc.org.

 ISO 3166 iso-ch:3166
This is the standard geography
based

 categorization system. Further
 :1999 information
 can be found at

Web Services 19

IV Year – I Semester 2018-19 CSE

 www.din.de/gremien/nas

 /nabd/iso3166ma.

Operator

uddi-
org:general

This categorization system is
operator

 Specific _keywords specific. This is an open-ended

categorization system that is not
pre-

defined. As a result, it can
consist of any

category entries that may be
defined

specifically for that UDDI
registry node.

UDDI version 2 also enables third parties registering new
categorization systems to control the categorization validation
process. In such case, the third party would implement a Web
service, in the same manner as UDDI does, that exposes a single
XML API function named <validate_values>.

Unchecked categorization system. Unchecked categorization
systems are used for categorization without the need for a UDDI to
perform validation of categorization code values. Businesses can
choose to make their categorization system available for
categorization as an unchecked categorization system. Registering a
new <tModel> structure and categorizing that <tModel> as a

Web Services 20

IV Year – I Semester 2018-19 CSE

categorization system would register it as an unchecked
categorization system.

Now, let’s take a look at the available programming APIs for
searching information in a UDDI registry.

Unchecked categorization system.

Unchecked categorization systems are used for categorization
without the need for a UDDI to perform validation of categorization
code values. Businesses can choose to make their categorization
system available for categorization as an unchecked categorization
system. Registering a new <tModel> structure and categorizing that
<tModel> as a categorization system would register it as an
unchecked categorization system.Now, let’s take a look at the
available programming APIs for searching information in a UDDI
registry.

Inquiry API

This section will cover all of the XML messages that perform
the functionality of inquiring certain information from a UDDI
registry. Inquiry API constitutes of two types of functions:Functions
that return zero or more homogeneous data structures containing
abbreviated informationFunctions that return zero or more
homogeneous data structures containing detailed information
Operations on UDDI Registry:
Publishing

SubmitBusiness.java shows us how to publish a business
named ACME Computer Services along with its description. In the
coming sections, we will examine the source code of
SubmitBusiness.java, followed by its compilation and execution.

Web Services 21

IV Year – I Semester 2018-19 CSE

Programming Steps for Publishing
The entire publishing logic is provided by the doSubmit()

method of the jws.ch5.SubmitBusiness class, and hence, its
implementation is of most interest to us. The following are the steps
of doSubmit(): Construct the UDDIApiPublishing object. This is the
object that we will use to actually publish to the registry. Get hold of
the authentication token from the registry with the help of the
get_authToken() API call on the UDDIApiPublishing object. Once we
have the authentication token, we should be able to publish to the
registry.

 Create the BusinessEntity structure and populate it with the

name and description of the business to submit. Note that we do
not have to create the key for this business because the registry,
upon submitting the business information, would generate it.

 Now, get hold of the SaveBusiness object. This object represents

a collection of businesses that we wish to submit at a time.
Hence, we will need to add the BusinessEntity object that we just
created to the SaveBusiness object using the addBusinessEntity()
method.

 Now, publish the business information through a save_busi-

ness() call on UDDIApiPublishing object. This method call takes
the SaveBusiness object as an argument and returns the
BusinessDetail object upon completion.

 After the publishing operation has been executed, discard the

authentication token. Finally, check whether the publishing
operation was successful or not.

Web Services 22

IV Year – I Semester 2018-19 CSE

Searching

SearchBusiness.java shows us how to search for businesses
based on the name pattern provided by the user. In the coming
sections, we will examine the source code of
SearchBusiness.java, followed by its compilation and execution.

Programming Steps for Searching

The entire querying logic is provided by the doSearch() method
of the jws.ch5.SearchBusiness class, and hence, its
implementation is of most interest to us. The following are the
steps to implementing a doSearch():

1. Construct the FindBusiness object. This object represents the

criteria for the search operation. Hence, we will need to add our
criteria, that is, the name pattern that the user supplied, using
the addName() method on this object.

2. Construct the UDDIApiInquiry object that we would use for

placing the inquiry call.

3. Finally, invoke the business inquiry operation through the find

_business() method on the UDDIApiInquiry object. This method
returns a BusinessList object containing the BusinessInfo
structures.

4. Now, check whether the businesses are found matching the
given criteria. If there are matching businesses, we need to
traverse through their BusinessInfo structures and get hold of
the name and key UUID of the business.

Deleting

5. DeleteBusiness.java demonstrates how to delete a business from

the UDDI registry based on its key UUID, which is passed by the
user as a command line argument.

Web Services 23

IV Year – I Semester 2018-19 CSE

6. You can get hold of the business key either by browsing the
Systinet registry on the Web or by executing SearchBusiness.

In the coming sections, we will examine the source code of
DeleteBusiness .java, followed by its compilation and execution.

Programming Steps for Deleting

The deletion logic is provided by the doDelete() method of the
jws.ch5.DeleteBusiness class, and hence, its implementation is
of most interest to us. The following are the steps to
implementing doDelete():

 Construct the UDDIApiPublishing object. This is the object that

we would use to actually delete information from the registry.

 Get hold of the authentication token from the registry with the

help of the get_authToken() API call on the UDDIApiPublishing
object. Once we have a valid authentication token, we should be
able to delete from the registry.

 Now, get hold of the DeleteBusiness object. This object

represents a collection of businesses that we wish to delete at a
time. Hence, we will need to add businesses referenced through
BusinessKey to this object, using the addBusinessKey() method
on DeleteBusiness.

 Now, delete the business information through the delete_busi-

ness() call on the UDDIApiPublishing object. This method call
takes the DeleteBusiness object as an argument and returns the
DispositonReport object upon completion.

 Check the DispositionReport object to see if this operation was a

success or a failure.

Web Services 24

IV Year – I Semester 2018-19 CSE

Limitations of UDDI.

UDDI is an evolving standard. Currently, the most deployed
version of UDDI (2.0) is limiting in terms of the information
model that it supports, especially when compared to other
registry specifications such as ebXML Registry/Repository.

UDDI provides support for storing only the basic data
structures, such as businesses, users, services, and service
technical descriptions.

However, storing information about business Web services
requires more than just the basic support.

For example, potential users of business Web services should be
able to publish/query extensive business-oriented information,
such as the business process models that a particular business
Web service relies upon.

This is possible only if the target registry provides a data
structure representing the business process model.

Also, UDDI is just a registry as opposed to ebXML

Registry/Repository, which is, as the name suggests, a registry
as well as repository.

The basic difference between a registry and repository is that a

registry holds just the metadata of the objects submitted,
whereas a repository actually stores the submitted objects.

Web Services 25

IV Year – I Semester 2018-19 CSE

UNIT-V
Assignment-Cum-Tutorial Questions

SECTION-A

 Objective Questions
1. UDDI stands for []
A- Uniform Description, Discovery, and Integration
B - Universal Description, Discovery, and Integration
C - Uniform Discovery, Description, and Integration
D - Uniform Discovery, Delivery, and Integration

2.The simplest solution to registration and discovery is
_____________independent protocol

3. ________enables the businesses providing services in electronic
form or in
any other medium to register information to enable the discovery of
their
services and business profile by prospective customers and/or
partners.
4. An implementation of the UDDI specification is termed as a

_____________.

5. Businesses can use a UDDI registry at three levels.

(TRUE/FALSE)

6.What are the five primary UDDI data structures defined in the
specification:

7. The _________ data structure represents the primary information
about a business, such as contact information, categorization of
the business.

 8. The ______ structure enables ____________ structures to be
categorized according to any categorization system

Web Services 26

IV Year – I Semester 2018-19 CSE

 9 . _______ are used when the publisher of a categorization system
wishes to ensure that the categorization code values registered
represent accurate and validated information

10________ are used for categorization without the need for a UDDI
to perform
validation of categorization code values.

11. UDDI enables a business to []
 A. describe its business and its services,
 B. discover other businesses that offer desired services
 C. integrate with these other businesses.
 D. All of the above
12. A Service Discovery system should provide a mechanism
for__________ []
 A. Service Registration and Discovery
 • Handling Fail over of service instances
 • Load balancing across multiple instances of a Service
 • Handling issues arising due to unreliable network.
 B. All of the above C. None of the above

13.Registry services can perform a plethora of other activities such
as__ []
 A. Authenticating and authorizing registry requests
 B. Logging registry requests
 C. Both A & B D. None of the above.
14 .Businesses that intend to register just the very basic
information about their company, such as company name,
address, contact information, unique
identifiers such as D-U-N-S numbers or Tax IDs, or Web services
use UDDI
as _______________. []
A. White pages level. B. Yellow pages level.
C. Green pages level D. Red pages level.

15.Businesses that intend to classify their information based on
categorizations (also

Web Services 27

IV Year – I Semester 2018-19 CSE

known as classification schemes or taxonomies) make use of the
UDDI registry
as __________. []
A. White pages level. C. Yellow pages level.
B. Green pages level D. Red pages level.

16. Businesses that publish the technical information describing
the behavior and supported functions on their Web ser-vices make
use of the UDDI registry as_________. []
A. White pages level. C. Yellow pages level.
B. Green pages level D. Red pages level.
17. The ______________ structure provides a description of a
particular specification or behavior of the service.
 []
 A. <businessEntity> D. <publisherAssertion>
 B. <businessService> E. <bindingTemplate>
 C. <tModel>
18. Operations on UDDI Registry:
 []
 A. Publishing, Searching & Deleting
 B .Publishing, Searching, Running & Deleting
 C .Publishing, Finding & Running
 D. All of the above
19. The ________________structure consists of pointers to technical
descriptions
and access URLs of the service.
 []
A. <businessEntity> C. <publisherAssertion>
B. <businessService> D. <bindingTemplate>
20. The basic difference between a registry and repository is that
 []
 A.A registry holds just the metadata of the objects submitted,
whereas a repository actually stores the submitted objects.
 B. A repository holds just the metadata of the objects submitted,
whereas a registry actually stores the submitted objects.
 C. Both A & B
 D. None of the above

Web Services 28

IV Year – I Semester 2018-19 CSE

SECTION-B
 SUBJECTIVE QUESTIONS:
1. Briefly explain the role of service discovery in SOA.
2. List and explain service discovery mechanisms.
3. Write a short note on UDDI Registries and their uses.
4. Distinguish between white, yellow and green pages.
5. Outline the UDDI data structures in UDDI
6. What is the Support for categorization in UDDI Registries
7. Outline the following operations on UDDI Registry:

 Publishing.
 Searching.
 Deleting.

8. Discuss the Limitations of UDDI.
9.Demonstrate the Service discovery mechanisms in UDDI.
10. Apply the concept of UDDI Registries for registering Web
 services.
12. Analyze the operations that are used in UDDI Registry.
13. Mention what are the major obstacles faced by the users using
 UDDI.
14. Where can I find information about UDDI-related products and
 tools?
15. Who developed UDDI? And illustrate the purpose of UDDI.

Web Services 29

IV Year – I Semester 2018-19 CSE

Web Services 1

IV Year – I Semester 2018-19 CSE

WEB SERVICES

UNIT - VI: Web services Interoperability

Means of ensuring interoperability

One of the goals of Web services is to solve the interoperability problem
by adopting industry standard protocols and data formats, which enable
transparent application-to-application communication and data exchange
between applications, systems, networks, and devices.

Although Web services promote interoperability, creating and testing
interoperability between Web services becomes a real challenge when
differences and limitations exist among implementations, especially because
of application-specific dependencies and characteristics such as transport
protocols, data types, XML processing, and compatibility.

In real-world scenarios involving business partner collaborations, the
Web service provider needs to take particular care to define standard
interoperability mechanisms and communication protocol for the partner
applications, enabling them to build their own service clients.

This enables partner applications using different systems to easily interact with
the Web service provider and conduct seamless transactions with them.

Interoperability in Web services becomes a real challenge when a service
requestor finds problems while invoking a method in the service provider
environment or when it does not understand a message sent by the service
provider.

This is usually caused by prerequisites and factors exposed by the
service provider or service requestor environments, and it is mostly caused by
the dependencies of the underlying SOAP runtime provider implementation.

Thus, it becomes essential for Web services offered by a service provider

to ensure that the services are usable by a variety of service requestor clients

Web Services 2

IV Year – I Semester 2018-19 CSE

to the best possible accommodation of both con-forming and non-conforming
SOAP implementations.

Different ways exist to ensure service requestor interoperability with the

service providers.

The following are the ways to interoperability
o Declaring W3C XML Schemas
o Exposing WSDL
o Creating SOAP Proxies
o Testing Interoperability

Importance of .NET and J2EE.

Microsoft .NET Framework: An Overview

Microsoft .NET is part of the Microsoft .NET platform— Microsoft’s
strategy for developing distributed applications through XML Web services.

The Microsoft .NET Framework provides a full-fledged development
environment for developing XML Web services in a Microsoft Windows–based
environment.

It facilitates a runtime infrastructure and APIs for developing Web
services applications using a variety of object-oriented programming languages
such as C#, Visual Basic, and so forth.

The .NET Framework pro-vides the infrastructure for defining the overall
.NET platform. Microsoft provides .NET compilers that generate a new code
referred to as Microsoft

Intermediate Language (MSIL). MSIL is a CPU-independent code
instruction, which is able to run on any system supporting its native
machine language. The .NET compilers provided by Microsoft are as
follows:

VB.NET (Visual Basic for .NET)

C++ .NET (Visual C++ for .NET)

ASP.NET (Microsoft ASP for .NET)

Web Services 3

IV Year – I Semester 2018-19 CSE

C# .NET (New language for .NET)

JScript (Jscript for .NET)

The Microsoft .NET Framework consists of two core components, which
are described in the following sections.

Common Language Runtime (CLR)
The Common Language Runtime, or CLR, provides a managed runtime
environment (.NET Engine) for the .NET Framework. CLR enables appli-
cations to install and execute code, and it provides services such as
mem-ory management, including garbage collection, threading, exception
handling, deployment support, application runtime security, versioning,
and so on.

CLR provides a set of JIT (just-in-time) compilers, which compile MSIL to
produce native code specific to the target system. CLR defines a set of
rules as Common ype System (CTS) and Common Language System
(CLS) that specifies the .N T-supported languages required to use for
developing compilers supporting a .NET platform. This enables the com-
piler vendors to develop .NET-compliant compilers and to perform cross-
language integration. Cross language integration enables .NET-compliant
languages to run and interact with one another in a .NET environment.

.NET Framework Class Library
The .NET Framework class library acts as the base class library of the
.NET Framework. It provides a collection of classes and a type system as
foundation classes for .NET to facilitate CLR. It is included as part of the
.NET Framework SDK. The class libraries are reusable object-oriented
classes that support .NET programming tasks like establishing database
connectivity, data collection, file access, and so on. The class libraries
also support the rapid development of software applications such as the
following:

o Console applications

o Windows GUI applications
O Windows services

o ASP .NET applications

Web Services 4

IV Year – I Semester 2018-19 CSE

o .NET XML Web services

o .NET Scripting applications

o .NET Client applications

The .NET class libraries can work with any CLS-compliant language and

can use CLR. At the time of this book’s writing, the supported languages

include Microsoft Visual Studio .NET, C#, and ASP.NET.

Web services security:-XML Security frame work, XML encryption

SOAP is simplistic: it allows for basic communication between services
through structured data exchange, independent of language or platform. It
depends upon underlying transport protocols (e.g., HTTPS and others) for its
security. The initial SOAP specification focused primarily on extensibility
and made security a second-class citizen.

One principle of Web services is to build on and extend what already exists
and implement by merging existing technologies. SOAP is the foundation of
the Web services infrastructure and is the focus of emerging security efforts.
To create enterprise Web services, security considerations must extend past
the SOAP specifications and go deeper into the underlying messaging
approach. Many business transactions, such as establishing trust
relationships and exchanging confidential information, require building
additional security into SOAP.

Some of the XML specifications covered in this chapter are encryption,
digital signatures, and key management services. Other standards-based
organizations, such as OASIS and WS-I, are working on additional
specifications related to SOAP security, including Extensible Access Control
Markup Language (XACML) and Security Assertion Markup Language
(SAML). The above standards provide the security foundation for SOAP and
other XML-based messaging paradigms. This will become crucial for XML
messages that pass through intermediaries.

Web Services 5

IV Year – I Semester 2018-19 CSE

Message Layer Security

Compared to transport-based security schemes such as SSL, incorporating
security into the SOAP message provides several important advantages in Web
services architecture. First, the interoperable nature of SOAP allows it to use
a variety of transport protocols, including HTTP, SMTP, and others. In these
scenarios, the message is transported from the originator through one-to-
many intermediaries to the ultimate destination. When an intermediary
receives a SOAP message, it processes entries contained in the header
intended for itself and removes them before sending the message to the next
destination.

Design

Privacy for Web services and the sensitivity of the messages over the public
Internet could mandate the use of encryption in your architecture.
Encryption is the act of taking data (usually referred to as clear text) and a
short string (the key) and producing data (cipher text). The resulting cipher
text is meaningless to a third party who does not know the key. Decryption
is the inverse of encryption: taking cipher text and key and producing clear
text.

Password encryption derives an encryption key from a user-supplied
password. To make the task of discovering the key from the password more
time-consuming, many implementations mix in a random variable, known as
a salt, to create the key.

Several industry-standard algorithms can be chosen for a custom encryption
mechanism. One of the elements to consider is whether the encrypted data
needs to be decrypted once encrypted. Some algorithms are appropriate for
one-way encryption, typically used in login and authentication scenarios.
One-way encryption prevents the data from being reversed, which is
important for credentials. Two-way encryption allows for reversible
encryption.

A key agreement is a protocol in which two or more parties establish the
same cryptographic keys without exchanging any secret information.
Message authentication codes are a way for two parties to check the integrity
of information stored in or transmitted over an unreliable medium and are
based on a secret key. Typically, both parties have the same key, referred to
as a shared secret.

Web Services 6

IV Year – I Semester 2018-19 CSE

Using Secure Sockets Layer to access your Web service will prevent "man-in-
the-middle" attacks and stop data from being read or modified in transit. As
previously mentioned, SSL does require additional processing overhead if
done in software. This can be alleviated by using SSL accelerator network-
interface cards.

XML Digital Signatures

XML Digital Signatures is a standard that allows for specifying the syntax and
processing rules for attaching digital signatures to XML documents. An XML
digital signature takes data objects, calculates a

digest (fixed-length representation of a variable-length stream), and places the
result into the signature element.

The standard allows XML to functionally sign itself over an insecure
network. XML signatures can be attached to any form of digital content,
including XML (data objects). An XML signature can sign more than one type
of resource, such as HTML, binary-encoded data (GIFs and JPEGs), or an
XML-encoded section of an XML file.

Security Assertions Markup Language

Security Assertions Markup Language (SAML) is an XML-based framework
used to exchange security information between business partners over the
Internet. The driving force behind the creation of SAML is to enable
interoperability between different security service providers. Prior to Web
services, security was implemented primarily within a single organization.
Now that organizations need to collaborate with business partners
electronically, the ability to authenticate a user or service across
organizations becomes imperative.

A Web services transaction started by one Web service can be completed at a
different Web service and may require security information to be shared
across all services involved in the transaction. SAML allows services to
exchange authentication, authorization, and attribute information without
organizations and their partners having to modify their current security
solutions. SAML is designed to work with multiple industry-standard
protocols such as HTTP and SMTP and integrates document-exchange
protocols such as SOAP, BizTalk, and EbXML.

Web Services 7

IV Year – I Semester 2018-19 CSE

Extensible Access Control Markup Language

Extensible Access Control Markup Language (XACML) defines standardized
security access control using XML to state authorization rules over a public
connection. XACML also allows validation and revocation, based on defined
authorization rules.

Key Management Specification

XML Key Management Specification (XKMS) is a standard that detail protocols
for registration and distribution of public keys, so that the keys can be used in
combination with XML digital signatures and encryption. XKMS was created
to simplify the integration of digital certificates and public key infrastructure
(PKI) with a multitude of applications. Applications that use this specification
can easily integrate authentication, digital signature, and encryption services.
XKMS includes support for certificate processing and revocation status
checking.

Encryption Algorithm Selection

Algorithms can be generically categorized as either symmetric or asymmetric. A
symmetric-key algorithm, better known as a shared secret, uses a single key for
encryption and decryption. This is suitable when two parties have
established a relationship in advance. bellow Table shows some of the
algorithms that can be used in a symmetric scenario.

Web Services 8

IV Year – I Semester 2018-19 CSE

Table: Symmetric Algorithms

Algorithm Length of key Block size

AES 256 128

Blowfish 576 64

CAST-256 256 128

GOST 256 64

IDEA 128 64

RC-6 2040 128

Serpent 256 128

Twofish 256 128

Asymmetric algorithms are better known as public/private-key. This encryption
is best used between two parties who have no prior knowledge of each other
but want to exchange data securely. Unlike symmetric algorithms, asymmetric
algorithms use two different cryptographic keys to encrypt and decrypt plain
text. The two keys have a mathematical relationship. A message encrypted by
the algorithm using one key can be decrypted by the same algorithm using the
other key. Some asymmetric algorithms have the property that one key is
deducible from the other. These algorithms are typically incorporated into
public/private-key algorithms commonly used by certificate providers.

Encryption mechanisms typically use various algorithms for their routines.
Listed below are some of the algorithms that can be used to develop your own
encryption mechanism, along with their relative strengths and weaknesses.
Many other encryption algorithms can be part of your toolkit but are not in
widespread usage. If you want to go down this path, we recommend Applied
Cryptography, by Bruce Schneier (Wiley, 1996).

Web Services 9

IV Year – I Semester 2018-19 CSE

Blowfish

Blowfish is a 64-bit block cipher algorithm. This essentially means that data
is encrypted in 64-bit chunks. The Blowfish algorithm allows for varying key
lengths, from 32 to 448 bits, and uses sixteen iterations of the main
algorithm. The number of iterations is exponentially proportional to the time
required to find a key using a brute-force attack. As the number of iterations
increases, so does the algorithm's security.

SkipJack

SkipJack is 64-bit algorithm that transforms a 64-bit input block into a 64-
bit output block. The transformation is parameterized by an 80-bit key and
involves performing 32 iterations of a nonlinear complex function. In a key-
based algorithm, the number of possible keys is directly related to the length
of the key. Since SkipJack uses 80-bit keys, it means that there are 280, or
more than one trillion trillion, possible keys.

Twofish

Twofish is a 128-bit block cipher algorithm. This essentially means that data
is encrypted in 128-bit chunks. The Twofish algorithm allows for varying key
lengths. It also uses sixteen iterations of its main algorithm, to ensure
maximum security. This algorithm has been compromised with five iterations
but never with sixteen. More
than sixteen iterations can be used, but the tradeoff in slower speed is not
worth the higher security.

Triple DES

The DES algorithm was invented by IBM around 1970 and was initially
designed with a key size of 128 bits. This algorithm has been successfully
cracked by a group of Internet users (DESCHALL) using spare computer
cycles. Based on current computer technology, this

algorithm can be cracked in anywhere from six hours to as little as three
minutes. Triple DES uses the DES algorithm but encrypts data with DES
three times, using three different keys. It is useful for securing low-security
data, such as grade books or diaries.

MD5 and SHA1

A digest, such as MD5 or SHA1, takes an arbitrary-sized byte array and
generates a fixed-size output, commonly referred to as a digest or hash. The

Web Services 10

IV Year – I Semester 2018-19 CSE

fundamental requirements of a digest are that it should never reveal anything
about the input used to generate it. While two different messages could
potentially generate the same hash value, it should be computationally
infeasible to do so. These algorithms are typically used for "fingerprinting" or
digital signatures.

S/MIME

S/MIME is an emerging standard that uses a 40-bit symmetrical encryption
for all messages. The message contains a digital signature the receiving party
must receive before decrypting the message.

Ralph Merkle's Puzzle Protocol

A puzzle is a string that takes precisely a known amount of time to decrypt.
For example, one way to create a puzzle is to encrypt a message with a
symmetric cipher and a very short key of 20 bits.
Let us say that no better way exists for attacking the cipher than brute force.
Therefore, anyone attempting to crack the puzzle will have to try every
possible 20-bit key. Searching the entire key space will take 220 operations.
The odds are good that the key will be discovered halfway through, so it is
expected to take 219 operations.
Diffie-Hellman
The Diffie-Hellman key agreement protocol, developed in 1996, allows two
users to exchange a secret key over an insecure medium without any prior
secrets. This protocol depends on a discrete logarithmic problem for its
security. It makes the assumption that it is computationally unfeasible to
calculate a shared secret key, given two public values that are sufficiently
large. This protocol has limitations, in that it does not validate either party.

DSA

The National Institute for Standards and Technology (NIST) published the
Digital Signature Algorithm (DSA) as part of the government's Capstone
project, which seeks to develop a standard for publicly available
cryptography. The Capstone project used 80-bit symmetric keys.

DSA signature generation is significantly faster than signature verification and
is therefore not an optimal algorithm compared to RSA. Typically, a message
may be signed once but read many times. Therefore, it is advantageous to have
faster signature verification.

Web Services 11

IV Year – I Semester 2018-19 CSE

RSA

The first known asymmetric algorithm was invented by Clifford Cocks but was
not public. It was therefore reinvented by Ronald Rivest, Adi Shamir, and
Leonard Adelman, (RSA) at MIT during the 1970s. RSA is a public-key
cryptographic approach that allows for both encryption and digital signatures.
The RSA algorithm relies for its security on factoring very large integers.
Encryption and authentication occur without sharing private keys. Each party
uses the other's public key or its own private key for operations. Any party can
send an encrypted message and/or verify a signed message, but only the party
that possesses the correct private key can decrypt or sign a message. RSA has
certain weaknesses and is vulnerable to attack by factoring the modulus part
of the public key.

Elliptic Curves

Elliptic-curve algorithms, created by Victor Miller and Neal Koblitz in the mid-
1980s, are analogs of existing public-key approaches in which elliptic curves
replace modular arithmetic operations. An elliptic curve is a mathematical
construction from number theory and algebraic geometry and can be defined
over any field.

Example: Asymmetric Puzzles

Let us look at the procedure for using Merkle's Puzzle to encrypt legal
documents sent between Flute Bank's Loan Officer (Rodney) and a
customer (Alicia):

Alicia creates a puzzle using the signed contract received from Rodney.
Alicia encrypts her signed contract with a very long, randomly chosen key,
using a symmetric algorithm such as Blowfish. Since the key is large, Alicia
will not wait for Rodney to read the contract, because it will take a long time
to be decrypted. Alicia sends the puzzle to Rodney and asks for a return
receipt.

Alicia receives the return receipt, whereby Rodney asks for a "hint" for the
puzzle. Rodney will use this hint to solve the puzzle instead of computing it
himself. The hint does not reveal the contract (message).

Alicia in turn sends Rodney the first few bits of the key and asks for a
return receipt for the hint.

Web Services 12

IV Year – I Semester 2018-19 CSE

When Alicia receives no additional requests for hints, this means that
either the mathematical combinations have been reduced to a point where
they are easy to calculate or the puzzle has been solved.

 When Rodney sends Alicia a return receipt for the puzzle, she knows he
possesses enough information to reconstruct the message. Every time she
receives a request for a hint from him, she knows how much time is left until
he can read the message. Also, because she does not give out hints until
Rodney requests them by sending a return receipt, she knows how much of a
hint he has. You may have noticed that asymmetric algorithms are slower than
comparably secure symmetric algorithms—sometimes on the order of
magnitude of one hundred times slower. Many cryptographic systems use a
combination of both approaches, where a receiver's public key encrypts a
symmetric-key algorithm used to encrypt a message. This uses the best of both
worlds when properly done.
Organizations that operate outside the United States and Canada must be
aware of national laws and export regulations. Many of the encryption
algorithms that use large keys cannot be exported to certain foreign countries:
Afghanistan, Cuba, Iran, Iraq, Libya, North Korea, Serbia, Sudan, Syria, and
others. France also has its own unique laws in this regard. For further
information on export rules, visit www.bxa.doc.gov.

Many open source activities, such as www.openjce.org, provide additional
algorithms that are secure and do not have export restrictions. It is up to you
to determine which of the listed algorithms fits your business needs and falls
within legal guidelines.

XML digital signature

XML Signature (also called XMLDSig, XML-DSig, XML-Sig) defines an
XML syntax for digital signatures and is defined in the W3C recommendation
XML Signature Syntax and Processing.

Functionally, it has much in common with PKCS#7 but is more
extensible and geared towards signing XML documents. It is used by various
Web technologies such as SOAP, SAML, and others.

XML signatures can be used to sign data–a resource–of any type,
typically XML documents, but anything that is accessible via a URL can be
signed.

Web Services 13

IV Year – I Semester 2018-19 CSE

An XML signature used to sign a resource outside its containing XML
document is called a detached signature; if it is used to sign some part of its
containing document, it is called an

7
enveloped signature; if it contains the signed data within itself it is called an
enveloping signature.

An XML Signature consists of a Signature element in the
http://www.w3.org/2000/09/xmldsig# namespace. The basic structure is as
follows:

<Signature>
<SignedInfo>
<CanonicalizationMethod />
<SignatureMethod />
<Reference>
<Transforms>
<DigestMethod>
<DigestValue>
</Reference>
<Reference />
</SignedInfo>
<SignatureValue />
<KeyInfo />
<Object />
</Signature>

The SignedInfo element contains or references the signed data and

specifies what algorithms are used.

The SignatureMethod and CanonicalizationMethod elements are used by

the SignatureValue element and are included in SignedInfo to protect them

from tampering.One or more Reference elements specify the resource being

signed by URI reference; and any transforms to be applied to the resource prior

to signing. A transformation can be a XPath-expression that selects a defined

subset of the document tree.

DigestMethod specifies the hash algorithm before applying the hash.

Web Services 14

IV Year – I Semester 2018-19 CSE

DigestValue contains the Base64 encoded result of applying the hash

algorithm to the transformed resource(s) defined in the Reference element

attributes.

The SignatureValue element contains the Base64 encoded signature

result - the signature generated with the parameters specified in the

SignatureMethod element - of the SignedInfo element

after applying the algorithm specified by the CanonicalizationMethod.

KeyInfo element optionally allows the signer to provide recipients with

the key that validates the signature, usually in the form of one or more X.509

digital certificates. The relying party must identify the key from context if

KeyInfo is not present.

The Object element (optional) contains the signed data if this is an

enveloping signature. When validating an XML Signature, a procedure called

Core Validation is followed.

Reference Validation: Each Reference's digest is verified by retrieving the
corresponding resource and applying any transforms and then the specified
digest method to it. The result is compared to the recorded DigestValue; if they
do not match, validation fails.

Signature Validation: The SignedInfo element is serialized using the
canonicalization method specified in CanonicalizationMethod, the key data is
retrieved using KeyInfo or by other means, and the signature is verified using
the method specified in SignatureMethod.
This procedure establishes whether the resources were really signed by the
alleged party.

However, because of the extensibility of the canonicalization and transform
methods, the verifying party must also make sure that what was actually
signed or digested is really what was present in the original data, in other
words, that

the algorithms used there can be trusted not to change the meaning of the
signed data.

Web Services 15

IV Year – I Semester 2018-19 CSE

Because the signed document's structure can be tampered with leading to
"signature wrapping" attacks, the validation process should also cover XML
document structure.

Signed element and signature element should be selected using absolute XPath
expression, not getElementByName methods

Benefits

XML Signature is more flexible than other forms of digital signatures
such as Pretty Good Privacy and Cryptographic Message Syntax, because it
does not operate on binary data, but on the XML Infoset, allowing to work on
subsets of the data, having various ways to bind the signature and signed
information, and perform transformations.

Another core concept is canonicalization, that is to sign only the
"essence", eliminating meaningless differences like whitespace and line
endings.

XML Digital Signatures

Consider a scenario where you are developing a healthcare Web service for a
hospital that exposes medical records and other patient information. An
insurance company or HMO would need to see the details of a lab test and
the interactions between the doctor and patient. A doctor would need to see
details not only of a patient's current stay at the hospital but also any past
visits. The doctor should not need to know whether the patient has insurance
deductibles. A nurse may need to see information related only to the current
visit. A medical researcher may need to see medical history but not personal
details. Many other combinations of information could, of course, be
contained in an XML message.
The W3C and the Internet Engineering Task Force (IETF) have put together a
joint proposal for using XML-based digital signatures. Java Community
Process (www.jcp.org) is also working to define a specification for XML Digital
Signatures (JSR-105) within Java. Digitally signing the entire XML document
is simplistic. What if a document such as a medical record requires digital
signatures on different portions by different medical personnel? Furthermore,
signature in this scenario implies order. The admissions department should
ideally sign its section before the discharge department does.

The primary use for digital signatures is for nonrepudiation. For example,
Flute Bank can receive a signed document and know exactly who sent it,
because the signature contains a message digest signed by using the sender's
private key. XML signatures define a signature element that contains the

Web Services 16

IV Year – I Semester 2018-19 CSE

information to process a digital signature. Each digital signature refers to one
of three things:

An XML element in the signature element

An external XML document referenced by a URI in the document

An external non-XML resource referenced by a URI in the XML document

Consider the following XML document for placing a check order:

<flutebank:checkOrder
xmlns:flutebank="http://flutebank.com/CheckOr
<flutebank:checkType>flutebank:Dilbert</flutebank:checkType>
<flutebank:quantity>1,000</flutebank:quantity>
<flutebank:account>ABC123</flutebank:account>
<flutebank:startnum>2000</flutebank:startnum>

</flutebank:checkOrder>

If a customer of Flutebank.com sent this order to our Web service, the service
will need to validate that the order truly came from the account holder,
regardless of the specified account number. One approach would be for the
customer to digitally sign the above XML document, as in Listing 15.1.

Listing 15.1: Signed check order

<flutebank:signedCheckOrder

xmlns:flutebank="http://flutebank.com/C <Signature

xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig

Web Services 17

IV Year – I Semester 2018-19 CSE

<Reference URI=""/>

<Transforms>

<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#e

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#
<DigestValue>j6lbgp5EPmSfTb3atsSuNbeVu8nk=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>aiYECAxGoPiL0v3sSamm3rXup5zJa ...
</SignatureVa <KeyInfo>
<X509Data>

<X509Certificate>MIIDa1sY+mAyIBA ... </X509Certificate>
</X509Data>
</KeyInfo>

</Signature>

<flutebank:checkOrder>

<flutebank:OrderID>64B4A0D1-814E-4FF6-918A-
DD7E7E1AECEA</fluteb
<flutebank:checkType>flutebank:Dilbert</flutebank:checkType>

<flutebank:quantity>1,000</flutebank:quantity>

<flutebank:account>ABC123</flutebank:account>

<flutebank:startnum>2000</flutebank:startnum>

</flutebank:checkOrder>

</flutebank:signedCheckOrder>

Here, the original checkOrder now becomes a child element of the root
signedCheckOrders and adds an additional child, the signature element,
which contains the digital signature information. Included it are elements

Web Services 18

IV Year – I Semester 2018-19 CSE

that identify the algorithms used to canonicalize the data, the digest
algorithm, and the signature algorithm.

The reference element points to the data we are interested in validating. In
Listing 15.1, the element contains a null URI, which means that the entire
XML document containing the signature element should be signed. This
attribute could also include an XPointer reference, to state a specific portion of
the document used to compute the signature.

The transforms element performs an XPath transform that removes the
signature element. This is required in this scenario, because we are signing
the entire document that envelops the signature. The DigestValue, calculated
as part of the signing process, will obviously change if you include the digest
itself. The transforms element removes the entire signature element from the
data that must be digested and signed. This approach prevents recursion
issues.

XPath is a language that describes a method to locate and process items
within XML documents. The method uses an addressing syntax on a path
through the document's logical structure or hierarchy.
The keyinfo element holds key information required for validation of the
signature. In our scenario, it contains an X.509 certificate, which holds the
public key for the account holder. This is how Flute Bank can validate that the
check order originated from a specific account holder.
The final feature that is critical in this example is the OrderID element. It
contains a unique identifier that could be based on a timestamp or other
calculated value. We have provided an additional level of protection by tagging
each order with a unique identifier, preventing the success of a replay attack.
Without the unique identifier, an attacker could simply replay the signed
message, causing hundreds of duplicate orders to be created. This could be
used to drain the bank account. The Flute Bank Check Order Web service
checks to see if it has already processed an order with this unique identifier
and ignores any duplicates.

In the above example, the check order was sent directly from the client to Flute
Bank. If the check order were routed through other intermediaries, changing
the order identifier would cause the signature validation check to fail.
Remember that a digest is calculated based on the contents of the message.
Rearranging the order within the document will also cause the message digest
value to change. Likewise, replaying the same order would be flagged and
ignored. Detection of replay attacks can be part of the message or header and

Web Services 19

IV Year – I Semester 2018-19 CSE

can use one or more of the following approaches: timestamps, sequence
numbers, expiration message, and correlation.

The XML digital signature specification also incorporates the XML canonical
specification for generating the physical document, for scenarios where two
XML documents may differ in their exact textual representation but are
logically equivalent. Otherwise, documents may become suspect without valid
cause. Both digital signature generation and validation are typically done using
message digests. For a signature, the digest is calculated on the XML's
canonical form. If the digests between two canonical forms of XML match, you
can be sure the document has not been tampered with, even though the
textual forms may vary.

A message digest takes an input message of arbitrary length and produces a
fixed-length output.

If you decide to use digital signatures as part of your Web service, you must
become aware of the security implications involved. Digital signatures require
public and private key pairs, and the validity of the public key has to be
provided by other technologies. A certificate trust model is required—either
peer-to-peer or hierarchical. A method to generate and maintain trusted key
pairs and certificates is also necessary. Finally, it must be possible to validate
that the certificate has not been revoked.

For additional information on XML digital signatures, please visit

www.w3.org/TR/2002/REC-xmldsig-core-20020212.

Many implementations of XML digital signatures are available,
including:

IAIK XML Signature Library:

http://jcewww.iaik.tu-
graz.ac.at/products/ixsil/index.php

IBM's XML Security Suite:
www.alphaworks.ibm.com/tech/xmlsecuritysuite

InfoMosaic SecureXML: www.infomosiac.net

Web Services 20

IV Year – I Semester 2018-19 CSE

NEC XML Digital Signature Software Library:

www.sw.nec.co/jp/soft/xml_s/appform_e.html

Phaos XML: www.phaos.com/e_security/dl_xml.html

RSA BSAFE: www.rsasecurity.com/products/bsafe/certj.html

Verisign XML Signature SDK:

www.xmltrustcenter.org/xmlsig/developer/verisign/index.htm

Providing digital signatures as part of a Web services architecture increases
the ability to support nonrepudiation and signer authentication aspects of
your services.

XML Encryption

The W3C and IETF are working on an XML encryption specification. Java
Community Process (www.jcp.org) is working to define a standard Java API for
XML Encryption (JSR-106). In our discussion above, we outlined how to use
SSL for encryption of messages over the transport. SSL addresses the needs to
secure the document over the transport but does not handle the security
requirements of a document once it is persisted. It also does not address when
different parts of a document require different levels of protection.

The core element in XML encryption is the EncryptedData element, used with
the EncryptedKey element to transport encryption keys from the originator to

Web Services 21

IV Year – I Semester 2018-19 CSE

a known recipient. It derives from the EncryptedType abstract type. When an
element is encrypted, the EncryptedData element replaces the element in the
encrypted version of the XML document. The easiest way to demonstrate XML
encryption is by showing unencrypted and encrypted XML documents, as in
Listings 15.4 and 15.5.

Listing 15.4: Unencrypted XML document

<?xml version='1.0'?>

<InsuranceInfo

xmlns='http://insurance.org/HMOv2'>
<Name>Sylvester James</Name> <Employer>Planet
Fruit</Employer>
<IDCard Deductible='5,000'

Currency='TT'> <Number>XJABAC
34534</Number> <Issuer>Dispute
Insurance</Issuer>
<Expiration>04/02</Expiration>
</IDCard>

<Insured>Soogia

Rattan</Insured>
</InsuranceInfo>

Listing 15.5: Encrypted XML document

<?xml version='1.0'?>

<InsuranceInfo

xmlns='http://insurance.org/HMOv2'>
<Name>Sylvester James</Name> <Employer>Planet
Fruit</Employer>
<EncryptedData

Type='http://www.w3.org/2001/04/xmlenc#Element'
xmlns='http://www.w3.org/2001/04/xmlenc#'>

Web Services 22

IV Year – I Semester 2018-19 CSE

<CipherData><CipherValue>A1B2C3D4E5F</CipherValue></Ci pherD
</EncryptedData>

<Insured>Soogia Rattan</Insured>

</InsuranceInfo>

In the above example, we have hidden the currency amounts. Sometimes it is
necessary to encrypt the entire document (Listing 15.6).

Listing 15.6: Completely encrypted XML document

<?xml version='1.0'?>

<EncryptedData

xmlns='http://www.w3.org/2001/04/xmlenc#'
Type='http://www.isi.edu/in-
notes/iana/assignments/media-types/
<CipherData><CipherValue>B1CH3TR1N1</CipherValue><</Ci
pherData>
</EncryptedData>

Business messages must ensure authenticity (Who was the sender?), data
privacy (Was it modified in transit?) and nonrepudiation (Can the sender
deny sending it?) So far, we have discussed using Web server authentication
for knowing the sender. We have considered use of SSL to secure the
transport. We have thought about using either custom or XML encryption to
make sure documents cannot be modified by intermediate parties.

In our solution, we have not considered whether we need to support non-
repudiation. Flute bank needs to ensure that transactions sent to Flute Bank

services come from authorized customers who cannot deny having sent
transactions. This can be handled using multiple techniques.

Public key infrastructure (PKI) describes the processes, policies, and
standardgovern the issuance and revocation of the certificates and public and
private keys that encryption and signing operations use. Public-key
cryptography allows Web services to exchange data across an insecure network

Web Services 23

IV Year – I Semester 2018-19 CSE

such as the Internet with the assurance that messages will neither be modified
nor inappropriately accessed.

The basis premise is that data is transformed according to an algorithm
parameterized by a pair of keys (public and private). Each participant in the
exchange has such a pair of keys. Users make their public key freely available
to anyone wishing to establish a dialog with their services and keep the other
key private and appropriately secured. Information encoded using one key can
be decoded using the other. If someone else intercepts a message, it would
remain unusable, because the private key is needed decrypt the message.

The advantages of using public-key infrastructure over other approaches
based on shared secrets are not only scalability, in not having to distribute
the secret to unknown parties in advance, but also the ability to validate the
sender, because everyone has a unique private key.

To digitally sign a message, an algorithm that accepts the sender's private key
transforms the data in the message. The detransformation can occur in reverse
only if it uses the sender's public key, This

assures the recipient of the message's true origin. If the data can be confirmed
using the sender's public key, it must have been signed using the
corresponding private key, to which only the sender has access. A certificate
authority provides an assertion of a public key's validity and asserts that it
actually does belong to the sender. Otherwise, an impostor could arbitrarily
create or steal others' certificates, presenting himself as the owner.

Typically, public-key approaches do not encode an entire message. Instead,
they create a small, unique thumbprint of the document, typically referred to
as a digest or hash. Hashing algorithms are aware of changes to a source
message and therefore provide a way for the recipient to validate that the
message has not been altered. The digest is transformed using the sender's
private key, creating a digital signature. This also allows the recipient to verify
that the sender performed the transformation.

Listed below are some of the implementations of XML encryption:

Phaos XML: www.phaos.com/e_security/prod_xml.html

Trust Services Integration Kit:

www.xmltrustcenter.org/developer/verisign/tsik/indes.htm

Web Services 24

IV Year – I Semester 2018-19 CSE

XML Security Library: www.aleksey.com/xmlsec

XML Security Suite: www.alphaworks.ibm.com/tech/xmlsecuritysuite

XKMS structure

XML Key Management Specification (XKMS) uses the web services
framework to make it easier for developers to secure inter-application
communication using public key infrastructure (PKI).

XML Key Management Specification is a protocol developed by W3C
which describes the distribution and registration of public keys.

Services can access an XKMS compliant server in order to receive
updated key information for encryption and authentication.

XKMS consists of two parts:
X-KISS
XML Key Information Service Specification
X-KRSS
XML Key Registration Service Specification

The X-KRSS defines the protocols needed to register public key
information. X-KRSS can generate the key material, making key recovery easier
than when created manually.

X-KISS

The X-KISS outlines the syntax that applications should use to delegate
some or all of the tasks needed to process the key information element of an
XML signature to a trust service.

In both cases the goal of XKMS is to allow all the complexity of
traditional PKI implementations to be offloaded from the client to an external
service.

While this approach was originally suggested by Diffie and Hellman in

their New Directions paper this was generally considered impractical at the
time leading to commercial development focusing on the certificate based
approach proposed by Loren Kohnfelder.

X-KISS allows a client to delegate part or all of the tasks required to process
XML Signature <ds:KeyInfo> elements to a Trust service.
A key objective of the protocol design is to minimize the complexity of
applications using XML Signature.

Web Services 25

IV Year – I Semester 2018-19 CSE

By becoming a client of the trust service, the application is relieved of the
complexity and syntax of the underlying PKI used to establish trust
relationships, which may be based upon a different specification such as
X.509/PKIX, SPKI or PGP.

By design, the XML Signature Specification does not mandate use of a
particular trust policy. The signer of a document is not required to include any
key information but may include a <ds:KeyInfo> element that specifies the key
itself, a key name, X.509 certificate, a PGP Key Identifier etc. Alternatively, a
link may be provided to a location where the full <ds:KeyInfo> information may
be found.

The information provided by the signer may therefore be insufficient by itself to
perform cryptographic verification and decide whether to trust the signing key,
or the information may not be in a format the client can use. For example:

The Key may be specified by a name only.

The local trust policy of the client may require additional information in
order to trust the key.The Key may be encoded in an X.509 certificate that the
client cannot parse.In the case of an encryption operation:

The client may not know the public key of the recipient.

X-KRSS

X-KRSS describes a protocol for registration of public key information. A
client of a conforming service may request that the Registration Service bind
information to a public key. The information bound may include a name, an
identifier or extended attributes defined by the implementation.

The key pair to which the information is bound may be generated in
advance by the client or, to support key recovery, may be generated on request
by the service. The Registration protocol may also be used for subsequent
recovery of a private key

The protocol provides for authentication of the applicant and, in the case
that the key pair is generated by the client, Proof of Possession (POP) of the
private key. A means of communicating the private key to the client is provided
in the case that the private key is generated by the Registration Service.

Guidelines for signing XML documents.

Guidelines for Signing XML Documents

Rules for digitally signing XML.

Web Services 26

IV Year – I Semester 2018-19 CSE

Just as in nonelectronic life, a user should only sign what is seen.

Because XML relies on transformations and substitutions during the

processing of an XML document, special care needs to be taken when working

with the XML Security Framework.

For instance, if an XML document includes an embedded style sheet

(such as when XSLT is used), it is the transformed document

that should be represented to the user and signed rather than the document

without the style sheet.

In addition, when a document references an external style sheet, the

content of that external style sheet should also be signed.

Content presentation may introduce changes.

If signing is intended to convey the judgment of a user about document

content, then it is important that what gets signed is the information that was

presented to that user.

However, when content is presented on a screen or viewed in a printout

based on some XML source, the signer must be careful to sign not only the

original XML but also any style sheets or other information that may affect the

presentation.

Transformations may alter content.

Some applications might operate with the original or intermediary data,

but a signer should be careful about potential weaknesses introduced between

the original and transformed data.

Web Services 27

IV Year – I Semester 2018-19 CSE

This is a trust decision about the character and meaning of the

transforms that an application needs to make.

Consider a canonicalization algorithm that normalizes character case

(lower to upper) or character composition ("e and accent " to " accented -e").

An adversary could introduce changes that are normalized and thus

inconsequential to signature validity but material to a Document Object Model

processor.

For instance, by changing the case of a character one might influence the

result of an XPath selection, introducing a serious risk if that change is

normalized for signature validation but the XML processor operating over the

original data returns a different result than intended.

Care should be taken that all documents associated with a core XML

document be part of the signature process.

Similarly, care must be taken by applications executing algorithms

specified in an XML signature when additional information is supplied as

parameters such as XSLT transforms.

The algorithms specified in the document will often be implemented via a

trusted library, yet perverse parameters might cause unacceptable processing

or memory demand.

As in any security infrastructure, the security of an overall system will

depend on the security and integrity of procedures and personnel as well as

procedural enforcement.

Web Services 28

IV Year – I Semester 2018-19 CSE

