
Mobile Application Development 1

IV Year – I Semester 2018-19 CSE

GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521 356.

Department of Computer Science and Engineering

HANDOUT

on

MOBILE APPLICATION DEVELOPMENT

Mobile Application Development 2

IV Year – I Semester 2018-19 CSE

Vision

To be a Centre of Excellence in computer science and engineering
education and training to meet the challenging needs of the
industry and society

Mission

 To impart quality education through well-designed curriculum in
tune with the growing software needs of the industry.

 To be a Centre of Excellence in computer science and engineering
education and training to meet the challenging needs of the
industry and society.

 To serve our students by inculcating in them problem solving,
leadership, teamwork skills and the value of commitment to
quality, ethical behavior & respect for others.

 To foster industry-academia relationship for mutual benefit and
growth.

Program Educational Objectives

• Identify, analyze, formulate and solve Computer Science and

Engineering problems both independently and in a team

environment by using the appropriate modern tools.

• Manage software projects with significant technical, legal, ethical,

social, environmental and economic considerations

• Demonstrate commitment and progress in lifelong learning,

professional development, leadership and Communicate effectively

with professional clients and the public.

Mobile Application Development 3

IV Year – I Semester 2018-19 CSE

HANDOUT ON MOBILE APPLICATION DEVELOPMENT

Class & Sem. :IV B.Tech – I Semester Year :2018-19
Branch : CSE & IT Credits : 3
===

1. Brief History and Scope of the Subject
As feature phones got faster the possibilities for phone apps

expanded and it was Java Micro Edition that won the race to

provide a platform for developing them.Java ME started life as JSR

68, replaced Personal Java and quickly became so popular that it

evolved into numerous standards for use across phones, PDAs and

other embedded devices like set top boxes. Devices

implement profiles (like the Mobile Information Device Profile) which

are subsets of configurations (like the Connected Limited Device

Configuration).CLDC, designed for devices with total memory of

160KB to 512KB, contains the bare minimum of Java-class

libraries required for operating a virtual machine.

MIDP, designed for mobile phones, includes a GUI, an API for data

storage and even (in MIDP 2.0) a basic 2D gaming API. Applications

here are called MIDlets. MIDP pretty much became an industry

standard for mobile phones.Java ME spawned an open source

implementation, Mika VM, which contains the class libraries for

implementing the Connected Device Configuration.JME was the

undisputed king of mobile platforms, it’s used in the Bada and

Symbian operating systems and implementation existed for

Windows CE, Windows Mobile and Android.

2. Pre-Requisites

 OOP Concepts
 Basic knowledge in core java
 XML

Mobile Application Development 4

IV Year – I Semester 2018-19 CSE

3. Course Objectives:

 To prepare students with skills and knowledge of mobile

application development using J2ME technology.
 Understand the Android OS architecture and able to develop the

applications for mobile devices.

4. Course Outcomes:
At the end of the course, the students will be able to

CO1: Configure a J2ME environment for development

CO2: Plan and design of J2ME applications

CO3: Access and work with database under J2ME

CO4: Reproduce the installation of the Android Eclipse SKD.

CO5: Implement the user interface for android applications

CO6: Use best design practices for mobile development, designing

applications for performance and responsiveness and also

implement communication between the mobile devices.

5. Program Outcomes:

Graduates of the Computer Science and Engineering Program will
have an ability to

a. apply knowledge of computing, mathematics, science and

engineering fundamentals to solve complex engineering problems.

b. formulate and analyze a problem, and define the computing

requirements appropriate to its solution using basic principles of

mathematics, science and computer engineering.

c. design, implement, and evaluate a computer based system, process,

component, or software to meet the desired needs.

d. design and conduct experiments, perform analysis and

interpretation of data and provide valid conclusions.

e. use current techniques, skills, and tools necessary for computing

practice.

Mobile Application Development 5

IV Year – I Semester 2018-19 CSE

f. understand legal, health, security and social issues in Professional

Engineering practice.

g. understand the impact of professional engineering solutions on

environmental context and the need for sustainable development.

h. understand the professional and ethical responsibilities of an

engineer.

i. function effectively as an individual, and as a team member/ leader

in accomplishing a common goal.

j. communicate effectively, make effective presentations and write and

comprehend technical reports and publications.

k. learn and adopt new technologies, and use them effectively towards

continued professional development throughout the life.

l. understand engineering and management principles and their

application to manage projects in the software industry.

6. Mapping of Course Outcomes with Program Outcomes:
 a b c d e f g h i j k l

CO1 L H H
CO2 H L M M
CO3 M H H
CO4 H
CO5 H H M
CO6 M M H

7. Prescribed Text Books
1. James Keogh J2ME: The Complete Reference,McGraw-

Hill/Osborne.

2. James C Sheusi Android Application development for java

programmers, Cengage Learning.

8. Reference Text Books
1. John W. Muchow, Core J2ME Technology by Prentice Hall PTR;
1st edition.
2. Michael juntao yuan, Enterprise J2ME : developing mobile java
applications pearson Education ,2004.

Mobile Application Development 6

IV Year – I Semester 2018-19 CSE

3. Ray Richpater, Beginning java ME platform, après,2009.
4. Wallace Jackson, Android apps for absolute Beginners Apress.
5. Wei-meng lee,wiley Begining android 4 application development.
6. Ziguord Mednieks, Laired Dornin, G.Blake Meike &Masumi
Nakameera, Programming android, Orelly

9. URLs and Other E-Learning Resources

URLs:

 http://freevideolectures.com/blog/2011/07/mobile-
application-development-courses/

 http://web.stanford.edu/class/cs193a/lectures.shtml

 https://www.youtube.com/watch?v=1g2Pdge3-88

 https://j2meprograms.blogspot.in/2016/08/video-
lecture-on-mobile-application.html

E-Learning Materials:

 Journals:

 INTERNATIONAL JOURNALS:

· IEEE Conference Publications
· IJCSNS International Journal of Computer Science and

Network Security
· International journal of Interactive mobile technologies.

 NATIONAL JOURNALS:

· Journal of Information Technology and software
Engineering

· Indian journal of science and Technology

10. Digital Learning Materials:

a. SONET CDs – J2ME platform
b. IIT CDs – Andriod App Development

Mobile Application Development 7

IV Year – I Semester 2018-19 CSE

11. Lecture Schedule / Lesson Plan

Topic No. of Periods
Theory Tutorial

UNIT –1: J2ME Overview & Architecture J2ME Overview
Inside J2ME, How J2ME Is Organized 1

1 J2ME and Wireless Devices 2
What J2ME Isn’t, Other Java Platforms for Small Computing
Devices? 1

J2ME Architecture ,Small Computing Device Requirements, 1
1 Run-Time Environment, MIDlet Programming 2

Java Language for J2ME ,J2ME Software Development Kits 2
Hello World J2ME Style Multiple MIDlets in a MIDlet Suite 2
J2ME Wireless Toolkit 1
UNIT – 2: Event Processing & Canvas Commands, Items, and Event Processing
J2ME User Interfaces ,Display Class 2 1 The Palm OS Emulator ,Command Class 2
Item Class ,Exception Handling 2

2

High-Level Display: Screens :Screen Class , Alert Class 2
Form Class ,Item Class ,List Class 2
Text Box Class, Ticker Class. 2
Canvas: The Canvas, User Interactions Graphics 2
Clipping Regions, Animation 2
UNIT – 3: Database concepts Record Management System
Record Storage ,Writing and Reading Records, Writing and Reading
Mixed Data Types 2 1
Record Enumeration ,Sorting Records 2
Searching Records Record Listener 2 1 J2ME Database Concepts: Data, Databases, Database Schema 2
Overview of the JDBC Process, Database Connection 2
UNIT – 4: Introduction to Android Installation and Configuration of android
starting an android application project
Components, debugging with eclipse 2

1 Application design: the screen layout and Main.xml file 2
Components ids, controls 1

1

Creating and configuring android Emulator 2
Communication with emulator 1
UNIT – 5: User Interface controls and user interface
Radio buttons, radio group 1 1 The spinner, data picker 1
Buttons, array adapter 2 1 View class: combining graphics with a touch listener 1
Canvas, bitmap, paint ,motion event 2
UNIT – 6: Android Applications working with images
Display images ,using images stored on android devices 2 1
Image view, working with text files, working with data tables 2

Mobile Application Development 8

IV Year – I Semester 2018-19 CSE

Using sqlite ,using xml for data exchange 2

2 Cursor, content values ,XML PUL Parser, XML Resource parser 2
Client -server applications: socket, server socket 1
HTTPURL connection ,URL 1

Total No.of Periods: 62 14

Mobile Application Development 9

IV Year – I Semester 2018-19 CSE

Learning Material

Different editions of JAVA Platforms:

 J2SE (Java Platform, Standard Edition):

 J2SE also known as Core Java, this is the most basic and
standard version of Java and a basic foundation for all other
editions.

 It consists of a wide variety of general purpose API’s (like
java.lang, java.util) as well as many special purpose APIs.

 J2SE is mainly used to create applications for Desktop
environment.

 J2EE (Java Platform, Enterprise Edition)

 J2EE stands for Java 2 Enterprise Edition for applications
which run on servers.

 J2EE uses many components of J2SE, as well as, has many
new features like Servlets, JavaBeans, Java Message Services
to support distributed/Web development.

 J2EE uses HTML, CSS, JavaScript etc., so as to create web
pages and web services. It is also one of the most widely
accepted web development standard.

 J2ME (Java Platform, Micro Edition)

 J2ME stands for Java 2 Micro Edition which is mainly
concentrated for the applications running on embedded
systems, mobiles and small devices.(which was a constraint
before it’s development)

 Constraints included limited processing power, battery
limitation, small display etc.

 The basic aim of this edition was to work on mobiles, wireless
devices, set top boxes etc.

Mobile Application Development 10

IV Year – I Semester 2018-19 CSE

 J2ME apps help in using web compression technologies,
which in turn, reduce network usage, and hence cheap
internet accessibility.

 J2ME uses many libraries and API’s of J2SE, as well as,
many of its own.

INSIDE J2ME:

 J2ME is targeted to developers of intelligent wireless devices and
small computing devices that need to incorporate cross-platform
functionality in their products.

 Consumers of mobile and small computing devices expect for quick
response time, compatibility with companion services, and full-
featured applications in a small computing device.

 Developers need to harness the power of existing front-end and
back-end software found on business computers and transfer this
power onto small, mobile, and wireless computing devices. J2ME
enables this transformation to occur with minimal modifications,
assuming that applications are scalable in design so that an
application can be custom-fitted to resources available on a small
computing device.

 To build applications that run on cell phones, personal digital
assistants, and various consumer and industrial appliances, we
have to balance between a thick client and a thin client.

 A thick client is front-end software that contains the logic to handle
a sizable amount of data processing for the system.

Mobile Application Development 11

IV Year – I Semester 2018-19 CSE

Thick client applications handle most processing locally

 A thin client is front-end software that depends on back-end
software for much of the system processing.

Thin client applications rely on server-side software for nearly all
processing

 Example: Consider a wireless small computing device is used to
transact orders on the floor of a stock exchange. The wireless device
has software to handle user interactions such as displaying an
electronic form on the screen, collecting user input, processing the
input, and displaying results of the processing on the screen. The
order form is displayed on the screen, and the user enters
information into the order form using various input conventions
commonly found in small wireless devices. The device collects the
order information and then processes the order using a
combination of software on the wireless device and software
running on a back-end system that receives the order through a
wireless connection.

 Processing on the wireless device might involve two steps:

 First the software performs a simple validation process to
assure that all fields on the form contain information. Next
the order is transmitted to the back-end system.

 The back-end system handles adjusting account balances
and other steps involved in processing the order. A
confirmation notice is returned by the back-end system to
the wireless device, which displays the confirmation notice
on the screen.

Mobile Application Development 12

IV Year – I Semester 2018-19 CSE

 A key benefit of using J2ME is that J2ME is compatible with all
Java-enabled devices. A Java-enabled device is any computer that
runs the Java Virtual Machine.

A J2ME application is a balance between local and server-side
processing.

How J2ME is organized:

 T
he lack of uniform hardware configuration among the small
computing devices poses a formidable challenge for the Java
Community Process Program, which is charged with developing
standards for the JVM and the J2ME for small computing devices.

 J
2ME must service many different kinds of small computing devices,
including screen phones, digital set-top boxes used for cable
television, cell phones, and personal digital assistants.

 T
he challenge for the Java Community Process Program is to develop
a Java standard that can be implemented on small computing
devices that have nonstandard hardware configurations.

Mobile Application Development 13

IV Year – I Semester 2018-19 CSE

J2ME Configurations: The configuration defines the basic run-time
environment as a set of core classes and a specific JVM that run on
specific types of devices. Currently, two configurations exist for J2ME,
though others may be defined in the future:

 Connected Limited Device Configuration (CLDC):

 The CLDC is designed for 16-bit or 32-bit small computing devices
with limited amounts of memory.

 CLDC devices usually have between 160KB and 512KB of available
memory and are battery powered.

 They also use an inconsistent, small-bandwidth network wireless
connection and may not have a user interface.

Mobile Application Development 14

IV Year – I Semester 2018-19 CSE

 CLDC devices use the KJava Virtual Machine (KVM)
implementation, which is a stripped-down version of the JVM.

 CLDC devices include pagers, personal digital assistants, cell
phones, dedicated terminals, and handheld consumer devices with
between 128KB and 512KB of memory.

 Connected Device Configuration (CDC):

 CDC devices use a 32-bit architecture, have at least two megabytes
of memory available, and implement a complete functional JVM.

 CDC devices include digital set-top boxes, home appliances,
navigation systems, point-of-sale terminals, and smart phones.

J2ME Profiles:

 T
he profile defines the type of devices supported by your application.
Specifically, it adds domain-specific classes to the J2ME
configuration to define certain uses for devices. Profiles are built on
top of configurations.

 C
urrently, seven Profiles exist for J2ME, though others may be
defined in the future:
Foundation Profile:
 T

he Foundation Profile is used with the CDC configuration and
is the core for nearly all other profiles used with the CDC
configuration because the Foundation Profile contains core
Java classes.

Game Profile:
 T

he Game Profile is also used with the CDC configuration and
contains the necessary classes for developing game
applications for any small computing device that uses the
CDC configuration.

Mobile Information Device Profile (MIDP):
 T

he Mobile Information Device Profile (MIDP) is used with the
CLDC configuration and contains classes that provide local

Mobile Application Development 15

IV Year – I Semester 2018-19 CSE

storage, a user interface, and networking capabilities to an
application that runs on a mobile computing device such as
Palm OS devices. MIDP is used with wireless Java
applications.

PDA Profile:
 T

he PDA Profile (PDAP) is used with the CLDC configuration
and contains classes that utilize sophisticated resources
found on personal digital assistants. These features include
better displays and larger memory than similar resources
found on MIDP mobile devices (such as cell phones).

Personal Profile:
 T

he Personal Profile is used with the CDC configuration and
the Foundation Profile and contains classes to implement a
complex user interface. The Foundation Profile provides core
classes, and the Personal Profiles provide classes to
implement a sophisticated user interface, which is a user
interface that is capable of displaying multiple windows at a
time.

Personal Basis Profile:
 T

he Personal Basis Profile is similar to the Personal Profile in
that it is used with the CDC configuration and the
Foundation Profile. However, the Personal Basis Profile
provides classes to implement a simple user interface, which
is a user interface that is capable of displaying one window
at a time.

RMI Profile:
 T

he RMI Profile is used with the CDC configuration and the
Foundation Profile to provide Remote Method Invocation
classes to the core classes contained in the Foundation
Profile.

Packages:

Mobile Application Development 16

IV Year – I Semester 2018-19 CSE

J2ME and Wireless Devices:

 The wireless devices such as cell phones keep their end users
connected to the outside world at anytime from anywhere.

 They offer great connectivity that other types of devices couldn’t
offer.

 Application development for these wireless devices is going to be in
great demand. Because mobile communication devices or wireless
devices utilize a number of different application platforms and
operating systems.

 Without changing the code, an application written for one device
cannot run on another device.

 Mobile communication devices lack a standard application platform
and operating system, which is a concern for developing
applications for these devices.

 WAP (Wireless Application Protocol)
 WAP forum became the initial group that provides standards

for wireless technology.
 The WAP forum created mobile communications device

standards referred to as the WAP standard,
 The WAP standard is an enhancement of HTML, XML, and

TCP/IP.

Mobile Application Development 17

IV Year – I Semester 2018-19 CSE

 The WAP standard provides Wireless Markup Language
specification, which consists of a mix of HTML and XML and
is used by developers to create documents that can be
displayed by a micro browser.

 A micro browser is a tiny web browser that operates on a
mobile communications device.

 The WAP standard also includes wireless Telephony
Application Interface (WTAI) specification and the WMLScript
specification.
 WTAI is used to create an interface for applications that

run on a mobile communications device.
 WMLScript is a simple version of JavaScript.

 The WAP forum provided the framework for the developers to
build applications for the mobile communication devices;
they still had to overcome a problem.
 The complexity of mobile communications devices,

rapid growth of the market, and high demand for
industrial-strength mobile communications
applications.

 J2ME
 Many applications designed for mobile communications

devices require the device to process information beyond the
capabilities of the WAP specification.

 J2ME provided the standard to process the information
which cannot be handled by WAP standard.

 J2ME applications referred to as a MIDlet can run on any
mobile communication device that implements a JVM and
MIDP (Mobile Information Device Profile).

 This encourages the developers to build applications for
mobile communication devices without the risk that the
application is device independent.

 But J2ME is not a replacement for the WAP specification
because both are opposite technologies.
 Developers whose applications are light-client based

they use WML ad WMLScript.
 Developers whose applications are heavy that requires

complicated processing on the device they turn to
J2ME.

Mobile Application Development 18

IV Year – I Semester 2018-19 CSE

What J2ME isn’t:

 Misunderstandings of J2ME

 Although J2ME is J2SE without some classes, developer’s

shouldn’t assume that existing J2SE applications would run in

the J2ME environment without requiring modification to the

code, because of the resource constraints imposed by small

computing devices.

 Some J2SE applications require classes that are not available in

J2ME. Likewise, resources required by the J2SE application may

not be available on the small computing device.

 Another misconception of J2ME is the Java Virtual Machine

implementation on the small computing device.

 Small computing devices use one of two Java Virtual Machine

implementations.

 Devices that use the CDC configuration use the full Java

Virtual Machine implementation.

 While devices that use the CLDC configuration use the

KJava Virtual Machine implementation.

 A MIDlet is not invoked the same way as a J2SE application is

invoked because many small computing devices don’t have a

command prompt.

 MIDlets are controlled by Application Management Software

(AMS).

 This AMS is provided by the manufacturer of small

computing devices or third-party vendors might also

create.

 AMS (Application Management Software) interacts with native

operations of a small computing device and controls the life cycle

of a MIDlet.

Mobile Application Development 19

IV Year – I Semester 2018-19 CSE

 The life cycle consists of installation and upgrades as well

as version management and uninstalling the application.

So, AMS is responsible for starting, managing execution,

and stopping the MIDlet.

Other Java Platforms for Small Computing Devices

J2ME isn’t the only Java platform designed for small computing devices.

Other Java platforms for small computing devices are

 Embedded Java,
 Java Card,
 PersonalJava

Embedded Java:

 Embedded Java is the Java platform used for small computing
devices that are dedicated to one purpose and have a 32-bit
processor and 512KB of ROM and RAM.

 Embedded Java is based on JDK 1.1 and is being replaced by the
CDLC configuration.

Java Card:
 Java Card is the Java platform used for smart cards, the smallest

computing device that supports Java.
 The Java Card VM runs on small computing devices that have

16KB of nonvolatile memory and 512 bytes of volatile memory.
 However, unlike the Embedded Java platform, there isn’t any

movement to replace Java Card with J2ME because of the resource
constraints of the current generation of smart cards.

 Future smart card generations will probably have great resources
available and be compatible with the CDLC configuration.

PersonalJava:
 PersonalJava is the Java platform used for small computing devices

that have a maximum of 2MB of ROM and a minimum of 1MB of
RAM, such as large PDAs and mobile communications devices.

 PersonalJava uses JDK 1.1.8 and the JVM and will be replaced by
the CDC configuration and the Personal Basis Profile and Personal
Profile.

Mobile Application Development 20

IV Year – I Semester 2018-19 CSE

J2ME Architecture:

 The J2ME architecture is designed for small computing devices that
have limited memory and limited computational capability. J2ME
architecture doesn’t replace the operating system of a small
computing device. Instead J2ME architecture consists of layers
located above the native operating system, collectively referred to as the
 Connected Limited Device Configuration (CLDC). The CLDC,
which is installed on top of the operating system, forms the run-time
environment for small computing devices.

The J2ME architecture comprises three software layers.

 The first layer is the configuration layer that includes the Java
Virtual Machine (JVM), which directly interacts with the native
operating system. The configuration layer also handles interactions
between the profile and the JVM.

 The second layer is the profile layer, which consists of the
minimum set of application programming interfaces (APIs) for the
small computing device.

 The third layer is the Mobile Information Device Profile (MIDP),
which contains Java APIs for user network connections, persistence
storage, and the user interface. It also has access to CLDC libraries
and MIDP libraries.

Mobile Application Development 21

IV Year – I Semester 2018-19 CSE

Layers of the J2ME Architecture

 A small computing device has two components supplied by the
original equipment manufacturer (OEM). These are classes and
applications.

 OEM classes are used by the MIDP to access device-specific
features such as sending and receiving messages and accessing
device-specific persistent data.

 OEM applications are programs provided by the OEM, such as an
address book. OEM applications can be accessed by the MIDP.

Small Computing Device Requirements:
 There are minimum resource requirements for a small computing
device to run a J2ME application.
 Every device must have both minimal requirements for hardware
and native operating system.
 Hardware Requirements:

 The device must have minimum of 96 × 54 pixel display that
can handle bitmapped graphics and have a way for users to
input information, such as a keypad, keyboard, or touch
screen.

 At least 128 Kilobytes (KB) of nonvolatile memory is needed to
run Mobile Information Device (MID), and 8 KB of nonvolatile
memory is needed for storage of persistent application data.

 To run JVM, 32 KB of volatile memory must be available.
 The device must also provide two-way network connectivity.

 Operating System Requirements:

 The native operating system must implement exception
handling, process interrupts, be able to run the JVM, and
provides schedule capabilities.

 Furthermore, all user input to the operating system must be
forwarded to the JVM; otherwise the device cannot run a
J2ME application.

 The native operating system doesn’t need to implement a file
system to run a J2ME application, it must be able to write
and read persistent data (data retained when the device is
powered down) to nonvolatile memory.

Mobile Application Development 22

IV Year – I Semester 2018-19 CSE

Run-Time Environment:

 A MIDlet is a J2ME application designed to operate on an MIDP
small computing device. A MIDlet is defined with at least a single
class that is derived from the
 javax .microedition.midlet.MIDlet abstract class.

 Related MIDlets are bundled into a MIDlet suite, which is
contained within the same package and implemented
simultaneously on a small computing device. All MIDlets within a
MIDlet suite are considered a group and must be installed and
uninstalled as a group.

MIDlets are packaged into MIDlet suites, which are loaded in a small
computing device.

 Members of a MIDlet suite share resources of the host environment
and share the same instances of Java classes and run within the
same JVM.

 If three MIDlets from the same MIDlet suite run the same class,
only one instance of the class is created at a time in the Java
Virtual Machine. MIDlet suite members share the same data,
including data in persistent storage such as user preferences.

 Sharing data among MIDlets exposes each MIDlet to data errors
caused by concurrent read/write access to data. This risk is
reduced by synchronization primitives on the MIDlet suite level
that restrict access to volatile data and persistent data.

 Data cannot be shared between MIDlets that are not from the same
MIDlet suite because the MIDlet suite name is used to identify data
associated with the suite.

 A MIDlet suite is installed, executed, and removed by the
application manager running on the device. The manufacturer of
the small computing device provides the application manager.

Mobile Application Development 23

IV Year – I Semester 2018-19 CSE

 Once a MIDlet suite is installed, each member of the MIDlet suite is
given access to classes of the JVM and CLDC by the application
manager.

 A MIDlet can access classes defined in the MIDP to interact with
the user interface, network, and persistent storage. The application
manager makes the Java archive (JAR) file and the Java
application descriptor (JAD) file available to members of the
MIDlet suite.

Java Archive File

 All the files necessary to implement a MIDlet suite must be
contained within a production package called a Java archive (JAR)
file.

 The files include MIDlet classes, graphic images and the
Manifest file.

 The manifest file contains a list of attributes and related
definitions that are used by the application manager to install the
files contained in the JAR file onto the small computing device.

 Nine attributes are defined in the manifest file; but six of these
attributes are optional.

 The first six attributes are required for every manifest file. Failure to
include them in the manifest file causes the application manager to
halt the installation of the JAR file.

 Example of a MIDlet:

Mobile Application Development 24

IV Year – I Semester 2018-19 CSE

 Entries in the manifest are name:value pairs and therefore can
appear in any order within the manifest file. Each pair must be
terminated with a carriage return. Whitespace between the colon
and the attribute value is ignored when the application manager
reads the manifest file.

 The MIDlet-Name attribute specifies the name of the MIDlet suite,
which is Best MIDlet in this example.

 The MIDlet-Version and MIDlet-Vendor attributes identify the
version number of the MIDlet suite and the company or person
who provided the MIDlet suite.

 The MIDlet-n attribute contains information about each MIDlet
that is in the JAR file. The number of the MIDlet replaces the letter
n. In this example, the n is replaced with the digit 1 because there
is only one MIDlet in the MIDlet suite. The MIDlet-n attribute can
contain three values that describe the MIDlet. A comma separates
each value. The first value is the name of the MIDlet, which is
BestMIDlet. Next is an optional value that specifies the icon that
will be used with the MIDlet. In this example, BestMIDlet.png is the
icon. The icon must be in the PNG image format. And the last value
for the MIDlet-n attribute is the MIDlet class name, which is
Best.BestMIDlet. The application manager uses the class name to
load the MIDlet.

 The next MIDlet-n attribute is the MicroEdition-Profile whose
value is the J2ME profile that is required to run the MIDlet. In this
example the MIDP-1.0 profile is required.

 Last MIDlet-n attribute is the MicroEdition-Configuration. The
MicroEdition-Configuration attribute identifies the J2ME
configuration that is necessary to run the MIDlet.

Java Descriptor File

 A JAD file is also used to provide the application manager with
additional content information about the JAR file to determine
whether the MIDlet suite can be implemented on the device.

Mobile Application Development 25

IV Year – I Semester 2018-19 CSE

 A JAD file is similar to a manifest in that both contain attributes
that are name: value pairs. Name: value pairs can appear in any
order within the JAD file. There are five required system attributes
for a JAD file:

 MIDlet-Name
 MIDlet-Version
 MIDlet-Vendor
 MIDlet-n
 MIDlet-Jar-URL.

 A system attribute is an attribute that is defined in the J2ME
specification. All JAD files must have the .jad extension.

 Example:

 The first three attributes in the JAD file are identical to attributes
in the manifest file. The MIDlet-Jar-URL attribute contains the URL
of the JAR file, which in this example is called bestmidlet.jar. And
the last required attribute in the JAD file is the MIDlet-n attribute
that defines a MIDlet of the MIDlet suite identical to the MIDlet-n

Mobile Application Development 26

IV Year – I Semester 2018-19 CSE

attribute of the manifest. A MIDlet-n attribute is required for each
MIDlet in the MIDlet suite.

 The values of the MIDlet-Name, MIDlet-Version, and
MIDletVendor attributes in the JAD file must match the same
attributes in the manifest. If the values are different, the JAR file is
not installed. Other attributes that are not the same are overridden
by attributes in the descriptor.

MIDlet Programming:

 Programming a MIDlet is similar to creating a J2SE application in
that we define a class and related methods. However, a MIDlet is
less robust than a J2SE application because of the restrictions
imposed by the small computing device.

 A MIDlet is a class that extends the MIDlet class and is the
interface between application statements and the run-time
environment, which is controlled by the application manager.

 A MIDlet class must contain three abstract methods that are called
by the application manager to manage the life cycle of the MIDlet.
These abstract methods are startApp(), pauseApp(), and
destroyApp().

 The startApp() method is called by the application manager when
the MIDlet is started and contains statements that are executed
each time the application begins execution.

 The pauseApp() method is called before the application manager
temporarily stops the MIDlet. The application manager restarts the
MIDlet by recalling the startApp() method.

 The destroyApp() method is called prior to the termination of the
MIDlet by the application manager.

 public class BasicMIDletShell extends MIDlet

 {

 public void startApp()

 {

 }

 public void pauseApp()

 {

Mobile Application Development 27

IV Year – I Semester 2018-19 CSE

 }

 public void destroyApp(boolean unconditional)

 {

 }

}

 Both the startApp() and pauseApp() methods are public and have
no return value nor parameter list.

 The destroyApp() method is also a public method without a return
value. However, the destroyApp() method has a boolean parameter
that is set to true if the termination of the MIDlet is unconditional,
and false if the MIDlet can throw a MIDletStateChangeException
telling the application manager that the MIDlet does not want to be
destroyed just yet.

 User interactions are managed by user interface MIDP API classes.
 These APIs enable a developer to display screens of data and

prompt the user to respond with an appropriate command. The
command causes the MIDlet to execute one of three routines:
perform a computation, make a network request, or display another
screen.

 Event Handling:

 A MIDlet is an event-based application. All routines executed in
the MIDlet are invoked in response to an event reported to the
MIDlet by the application manager.

 The initial event that occurs is when the MIDlet is started and
the application manager invokes the startApp() method.

Mobile Application Development 28

IV Year – I Semester 2018-19 CSE

 A Command object is used to present a user with a selection of
options to choose from when a screen is displayed. Each screen
must have a CommandListener.
 A CommandListener monitors user events with a screen

and causes the appropriate code to execute based on the
current event.

 User Interfaces:
 The design of a user interface for a MIDlet depends on the

restrictions of a small computing device. Some small computing
devices contain resources that provide a rich user interface,
while other more resource-constrained devices offer a modest
user interface.

 A Form is the most commonly invoked user interface element
found in a MIDlet and is used to contain other user interface
elements. Text is placed on a form as a StringItem, a List, a
ChoiceGroup, and a Ticker.
 A StringItem contains text that appears on a form that

cannot be changed by the user.
 A List is an itemized options list from which the user can

choose an option.
 A ChoiceGroup is a related itemized options list. And a

Ticker is text that is scrollable.
 A user enters information into a form by using the Choice

element, TextBox, TextField, or DateField elements.
 The Choice element returns an option that the user selected.
 TextBox and TextField elements collect textual information from

a user and enable the user to edit information that appears in
these user interface elements.

 The DateField is similar to a TextBox and TextField except its
contents are a date and time.

 An Alert is a special Form that is used to alert the user that an
error has occurred.

 An Alert is usually limited to a StringItem user interface element
that defines the nature of the error to the user.

 Device Data:

 Small computing devices don’t have the resources necessary to
run an onboard database management system (DBMS).

Mobile Application Development 29

IV Year – I Semester 2018-19 CSE

 Some of these devices lack a file system. Therefore, a MIDlet
must read and write persistent data without the advantage of a
DBMS or file system.

 A MIDlet can use an MIDP class—RecordStore—and two MIDP
interfaces— RecordComparator and RecordFilter—to write and
read persistent data.
 A RecordStore class contains methods used to write and

read persistent data in the form of a record.
 Persistent data is read from a RecordStore by using either

the RecordComparator interface or the RecordFilter
interface.

Java Language for J2ME

 CDC implements the full J2SE available, but CLDC implements a
stripped-down J2SE because of the limited resources in small
computing devices.

 Floating-point math is a missing feature of J2ME. Floating point
math requires special processing hardware to perform floating-point
calculations. But most small computing devices lack such
hardware and therefore are unable to process floating-point
calculations. So our MIDlet cannot use any floating-point data
types or calculations.

 The most notable difference between the Java language used in
J2SE and J2ME is the absence of support for the finalize()
method. The finalize() method in J2SE is automatically called
before an instance of a class terminates and typically contains
statements that free previously allocated resources. However,
resources in a small computing device are too scarce to process the
finalize() method.

 There are reduced number of error-handling exceptions that are
supported in J2ME. Exception handling drains system resources,
which are precious in a small computing device. This is the primary
reason for trimming the number of error-handling exceptions. Run-
time errors are automatically responded to by the native operating
system by restarting the small computing device.

Mobile Application Development 30

IV Year – I Semester 2018-19 CSE

 Changes were also made in the Java Virtual Machine that runs on
a small computing device because of resource constraints. One
such change occurs with the class loader. JVM for small computing
devices requires a custom class loader that is supplied by the
device manufacturer and cannot be replaced or modified.

 Another feature lacking in the JVM is the ThreadGroup class. You
cannot group threads. All threads are handled at the object level,

 Two other features of J2SE that are missing from J2ME are: weak
references and the Reflection classes.

 The standard JVM uses class file verification to protect applications
from malicious code through the use of a security manager.
However, this process is replaced with a two-step process because
of the limited resources available on small computing devices.

 The first step is called preverification and occurs outside the
small computing device prior to loading the MIDlet.
Preverification requires that additional attributes called stack
maps are inserted into a class file by software before the
second step runs. Stack maps describe the MIDlet’s variables
and operands located on the interpreter stack.

 After preverification is completed, the MIDlet class is loaded
into the device, and the verifier within the small computing
device validates each instruction in the MIDlet class. The
MIDlet class is automatically rejected if the verifier detects an
error.

J2ME Software Development Kits

 A MIDlet is built using free software packages that are
downloadable from the java.sun .com web site

 Three software packages need to be downloaded from java.sun.com.

 Java Development Kit (1.3 or greater) (java.sun.com/
j2se/downloads.html),

 Connected Limited Device Configuration (CLDC) (java.sun.
com/products/cldc/),

Mobile Application Development 31

IV Year – I Semester 2018-19 CSE

 Mobile Information Device Profile (MIDP) (java.sun.com/
products/midp/).

 We need the J2ME Wireless Toolkit to develop MIDlets for handheld
devices (java.sun.com/products/j2mewtoolkit/download.html).

 Each of these software packages contains installation instructions
that need to followed to assure proper installation of each package.

Steps for Installation

 First, install the Java development kit. The Java development kit
contains the Java compiler and the jar.exe, which is used to create
Java archive files

 After downloading the Java development kit package, unzip the
package and run the installation program. Choose default directory.

 Once the Java development kit is installed, place the c:\jdk\bin
directory, or whatever directory you selected for the Java
development kit, on the PATH environment variable.

 This enables you to invoke the Java compiler from anywhere on
your computer.

 Install the CLDC once the Java development kit is installed. Unzip
the downloaded CLDC files from the java.sun.com web site onto the
d:\j2me directory (J2ME_HOME) on your computer. We have to

Mobile Application Development 32

IV Year – I Semester 2018-19 CSE

create the j2me directory if one doesn’t exist. Unzipping the CLDC
package creates the j2me_cldc subdirectory below the j2me
directory.

 The j2me_cldc has a bin subdirectory that contains the K Virtual
Machine and the preverifier executable files for an assortment of
platforms such as win32. Each platform is in its own subdirectory
under j2me_cldc. Add the j2me\j2me_cldc\bin\win32 subdirectory
to the PATH environment variable .You should substitute win32
subdirectory with the appropriate subdirectory for your platform.

 Next, download and unzip the MIDP file. Be sure to use \j2me as
the directory for the MIDP file. Unzipping the MIDP file creates a
midp directory. The name of this directory might vary depending on
the version that you download.

 The midp1.0.3fcs directory also contains a bin subdirectory. We
need to include the \j2me\midp1.0.3fcs\bin subdirectory in the
PATH environment variable.

 Next, create two environment variables. These are CLASSPATH and
MIDP_HOME. The CLASSPATH environment variable identifies the
path to be searched whenever a class is invoked. The MIDP_HOME
environment variable identifies the location of the \lib directory that
contains the internal.config file and the system.config file. Set the
CLASSPATH to d:\j2me\midp1.0.3fcs\classes;. CLASSPATH
terminates with a period. The period implies the current directory
and will cause the current directory to be searched if a class is not
found in the \j2me\midp1.0.3fcs\classes directory.

 Set the MIDP_HOME environment variable to
d:\j2me\midp1.0.3fcs

Hello World J2ME Style

 We can create your first MIDlet once the Java development kit,
Connected Limited Device Configuration (CLDC), and Mobile
Information Device Profile (MIDP) are installed.

 Create a directory structure within which you can create and run
MIDlets. The directories that are used for examples are:

Mobile Application Development 33

IV Year – I Semester 2018-19 CSE

 j2me

 j2me\src

 j2me\src\greeting

 j2me\tmp_classes

 j2me\midlets

Creating HelloWorld

 Let us create two MIDlets in this application. The first MIDlet is
called HelloWorld and the other MIDlet is GoodbyeWorld. The
HelloWorld MIDlet shows how to create a simple MIDlet that can be
invoked directly from the class and from a Java archive file. Create
a MIDlet suite that contains two MIDlets. These are HelloWorld and
GoodbyeWorld.

The HelloWorld MIDlet can be created as follows:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class HelloWorld extends MIDlet implements
CommandListener
{
 private Display display ;
 private TextBox textBox ;
 private Command quitCommand;
 public void startApp()
 {
 display = Display.getDisplay(this);
 quitCommand = new Command("Quit",
Command.SCREEN, 1);
 textBox = new TextBox("Hello World", "My first
MIDlet", 40, 0);
 textBox .addCommand(quitCommand);

 textBox .setCommandListener(this);
 display .setCurrent(textBox);

 }
 public void pauseApp()
 {
 }
 public void destroyApp(boolean unconditional)
 {

Mobile Application Development 34

IV Year – I Semester 2018-19 CSE

 }
 public void commandAction(Command choice,
Displayable displayable)
 {
 if (choice == quitCommand)
 {
 destroy App(false);
 notifyDestroyed();
 }
 }
}

 Enter the above code into a text editor such as Notepad,
and save the file in the j2me\src\greeting directory as
HelloWorld.java.

 The MIDlet performs three basic functions:

 To display a text box

 To display a command on the screen

 Then listen to events that occur while the MIDlet is
running.

 The HelloWorld MIDlet is created by defining a class
called HelloWorld that extends the MIDlet class and implements a
CommandListener. The HelloWorld class contains three private
data members and four methods. The data members are a Display
object, a text box, and a command. The methods are startApp(),
pauseApp(), and destroyApp() and the fourth method is called
commandAction() is invoked by the application manager whenever
an event occurs.

 Two packages must be imported at the beginning of the
MIDlet to access MIDlet classes and lcdui classes.

 MIDlet classes are screen oriented and create a Display
object and then place components of the screen into the Display
object. The Display object is then invoked later in the MIDlet to
display the screen on the small computing device.

Mobile Application Development 35

IV Year – I Semester 2018-19 CSE

Compiling Hello World

 The Hello World source code files should be saved in
the new j2me\src\greeting directory as HelloWorld.java.

 Next, we’ll need to compile the HelloWorld MIDlet.
 Then open J2Me wireless tool-kit

 Click on open project , then we will see all the saved projects

Mobile Application Development 36

IV Year – I Semester 2018-19 CSE

 Select the project we want to run, then it is loaded into

run-time environment

Running Hello World:
 A MIDlet should be tested in an emulator before being

downloaded to a small computing device.
 An emulator is software that simulates how a MIDlet

will run in a small computing device.
 There are two ways to run a MIDlet.

 These are either by invoking the MIDlet class OR
 By creating a JAR file,

Then run the MIDlet from the JAR file. Let’s begin by running the
MIDlet class without the need of a JAR file. Make sure that
j2me\src\ greeting is the current directory, and then enter the
following command.
midp -classpath d:\j2me\classes greeting.HelloWorld

Deploying Hello World

 After we click on Run the application will be deployed in

emulator like this.

Mobile Application Development 37

IV Year – I Semester 2018-19 CSE

What to Do When Your MIDlet Doesn’t Work Properly:

 Sometimes a MIDlet won’t compile or run properly. Although each
MIDlet is unique, there are a few common problems that cause a
MIDlet to fail.

 Here are some of those problems
 If the compiler, preverifier, JAR program, or emulator doesn’t

run from the command line, review the value of the PATH,
CLASSPATH, and MIDP_HOME environment variables to be
sure you have included the exact path to these programs.
Also make sure that the current directory reference (a period)
is included in the CLASSPATH environment variable.

 Running out of environment space is a common problem on
some platforms. This results in not enough room to store the
complete value of an environment variable such as the PATH.
You can work around this problem by creating an executable
file, such as a batch file in Windows that sets the
environment variables for J2ME components. Run this
executable file before compiling and testing your MIDlet to

Mobile Application Development 38

IV Year – I Semester 2018-19 CSE

temporarily reset environment variables. The environment
variables return to their original values the next time you
restart your computer or log in.

 Many types of errors can occur during the compiling and
packaging process. Some are syntax errors, which you’ll be
able to fix quickly by reviewing the source code.

 Other errors can be caused by poorly formed command line
options and arguments, such as failing to insert a space
between an option and a period when referencing the current
directory.

 Another common occurrence is for a MIDlet suite to run fine
in test but fail to run after downloaded to the small
computing device. In this case, the application manager on
the small computing device might reject the MIDlet suite
because the MIDlet suite cannot be run on the device. An
oversize MIDlet suite is a likely suspect.

Multiple MIDlets in a MIDlet Suite

 Multiple MIDlets are distributed in a single MIDlet suite. The
application manager then displays each MIDlet as a menu option,
enabling the user to run one of the MIDlets.

 Let’s create a MIDlet to illustrate how to deploy a multiple MIDlet
suite.

 The new MIDlet is called GoodbyeWorld. Enter the code into a text
editor and save the file as GoodbyeWorld.java in the
j2me\src\greeting directory. Make the j2me\src\greeting directory
the current directory

 package greeting;

 import javax.microedition.midlet.*;
 import javax.microedition.lcdui.*;
 public class GoodbyeWorld extends MIDlet implements
CommandListener
 {
 private Display display ;
 private TextBox textBox ;
 private Command quitCommand;
 public void startApp()

Mobile Application Development 39

IV Year – I Semester 2018-19 CSE

 {
 display = Display.getDisplay(this);
 quitCommand = new Command("Quit", Command.SCREEN, 1);
 textBox = new TextBox("Goodbye World", "My second MIDlet", 40, 0);
 textBox .addCommand(quitCommand);
 textBox .setCommandListener(this);
 display .setCurrent(textBox);
 }
 public void pauseApp()
 {
 }
 public void destroyApp(boolean unconditional)
 {
 }
 public void commandAction(Command choice, Displayable
displayable)
 {
 if (choice == quitCommand)
 {
 destroyApp(false);
 notifyDestroyed();
 }
 }
}
Compile both the HelloWorld.java and GoodbyeWorld.java files by
entering the following command at the command line:

javac -d d:\j2me\tmp_classes -target 1.1 -bootclasspath

d:\j2me\midp1.0.3fcs\classes *.java

 Preverify these files by entering the following command at the
command line:

preverify -d d:\j2me\classes -classpath
d:\j2me\midp1.0.3fcs\classes d:\j2me\tmp_classes

 Move the cursor to the GoodbyeWorld MIDlet and select the center
button on the emulator, the emulator’s application manager
launches the GoodbyeWorld MIDlet.

Mobile Application Development 40

IV Year – I Semester 2018-19 CSE

J2ME Wireless Toolkit

 Building and running a J2ME application at the command line is
difficult, when you are creating a robust application consisting of
several MIDlets.

 Creating your application within an integrated development
environment is more productive than developing applications by
entering commands at the command line.

 An integrated development environment is the J2ME Wireless
Toolkit that is downloadable from
java.sun.com/products/j2mewtoolkit/download.html.

 The J2ME Wireless Toolkit is used to develop and test J2ME
applications by selecting a few buttons from a toolbar. The J2ME
Wireless Toolkit is a stripped-down integrated development
environment .It does not include an editor, a full debugger, and
other amenities .

Building and Running a Project

 Download the J2ME Wireless Toolkit from the Sun web site. The
Toolkit file is a selfextracting executable file. Run this executable
after downloading the file, and the installation program creates all
the directories required to run the Toolkit.

Mobile Application Development 41

IV Year – I Semester 2018-19 CSE

 The installed J2ME Wireless Toolkit is placed in the WTK104
directory, although the directory might have a variation of this
name depending on the version of the Toolkit that you download.

 Ktoolbar is the executable within the directory that launches the
Toolkit. The main window is displayed when you run ktoolbar.

Main window of the J2ME Wireless Toolkit

 Create a new project by selecting the New Project button from the
toolbar. You’ll be prompted to enter a project name and class name
Enter Hello World as the project name and greeting. HelloWorld as
the class name, which is the name of the first MIDlet that is
associated with the project.

 After selecting the Create Project button, the J2ME Wireless Toolkit
automatically creates a directory structure for the project and also
creates the manifest file and JAD file. We can see and modify
attributes of these files by selecting the Settings option, which
displays a dialog box containing a series of tabs.
 The Required tab contains a list of attributes that are

necessary for the manifest file and JAD file, as previously
discussed in this chapter.

 The Optional tab contains attributes that are common to
many projects but not required to build and deploy a J2ME
application.

Mobile Application Development 42

IV Year – I Semester 2018-19 CSE

 Required Tab Optional Tab

 The User Defined tab contains optional attributes specific to
your application. This tab will be empty until you select the
Add button and insert your own attributes.

 The MIDlets tab lists MIDlets of your project.

 User Defined Tab MIDlet Tab

 A well-organized file structure is automatically created for our
project as a result of starting a new project. Within the WTK104
directory, we see an apps subdirectory in which the projects you
create are stored. Browse the apps subdirectory to see a
subdirectory, which is the name that we gave to your project. A
subdirectory of the apps directory is created for every project. And
within the project’s subdirectory is another set of subdirectories.
These are:
 src, containing source code
 bin, containing the manifest.mf file, JAD file, and JAR file
 classes, containing the compiled classes
 tmpclasses, containing the preverify classes
 res, containing image, data, and other files required by the

application

Mobile Application Development 43

IV Year – I Semester 2018-19 CSE

UNIT-I

Assignment-Cum-Tutorial Questions

SECTION-A

I.Objective Questions

1. J2SE is mainly used for developing___________________.
2. The most widely accepted web development standard is

______________________.
3. The main aim of J2ME is to develop ________________,

_______________________ and ________________.
4. CLDC stands for_______________________.
5. CDC stands for ___________________________.
6. MIDP stands for ____________________________.
7. MIDlet is controlled by ___________________________.
8. The two components supplied by the original equipment

manufacturer (OEM) are __________and ______________________.
9. The Java development kit contains the __________ and the

__________, which is used to create Java archive files.
10. What is a MIDlet?
11. A platform, on which developers can build and implement

programs to control small computing devices, is called
______________.

12. Two packages that are to be imported at the beginning of MIDlet
programming are _____________ and ________________.

13. What is a Micro Browser?
14. J2ME architecture comprises of

____________________,_____________________ and ___________________
layers.

15. What are the abstract methods in a MIDlet?
16. What are the five system attributes of a JAD file?
17. A MIDlet is ____________ based application. []

a) App b) event c)architecture d) all
18. The method that is invoked by application manager when the

MIDlet is started []
a) startApp() b) pauseApp() c) destroyApp() d) none

19. All the files necessary to implement a MIDlet suite must be
contained within a production package called a ___________ file.
a) JAR b) JAD c) Both d) none []

20. The most commonly invoked user interface element in a MIDlet
is________ []
a) Form b)Ticker c) List d) Choice Group

21. Which of the following are JAD file attributes: []
a) MIDlet-Name b) MIDlet-Version c) MIDlet –Vendor d) All

Mobile Application Development 44

IV Year – I Semester 2018-19 CSE

22. The CLDC is designed for _____ bit small computing devices.[]
a) 16 b) 32 c) 38 d) both a & b

23. The PDA profile is used with the _________ configuration. []
a) CLDC b) CDC c) both a & b d) CPDC

24. _________ contains API used to create applications for small
computing devices including wireless JAVA applications. []
a) J2SE b) J2EE c)J2 ME d) core Java

25. _________ File contains a list of attributes and related definitions
that are used by the application manager to install the files
contained in the JAR file onto the small computing device. []
a) Manifest b) JAD c) Text d) Deployment

SECTION-B

II) Descriptive Questions

1. Show the manifest file with six attributes.
2. Show the JAD file with its attributes.
3. Distinguish between Servlets and MIDlets
4. Explain J2ME architecture
5. What is a Profile? Explain J2ME profile
6. Explain MIDlet suite?
7. Explain about J2ME configurations
8. Explain about any three profiles in J2ME.
9. Explain about the runtime environment of J2ME.
10. Differentiate between J2SE, J2EE, and J2ME.
11. Identify the features of Java that are not available in J2ME.
12. Develop a MIDlet to print “Hello World”.
13. Discuss the misunderstandings about J2ME.
14. Interpolate the requirements needed for small computing devices.
15. Discuss about the abstract methods used in MIDlet programming

with an example.
16. Demonstrate how J2ME is organized?
17. Elaborate the features of MIDlet programming?

Mobile Application Development 1

IV Year – I Semester 2018-19 CSE

UNIT – II

 Learning Material

Syllabus:

Event Processing & Canvas Commands, Items, and Event Processing: J2ME User Interfaces
,Display Class ,The Palm OS Emulator ,Command Class ,Item Class ,Exception Handling .High-
Level Display: Screens :Screen Class , Alert Class, Form Class ,Item Class ,List Class, Text Box
Class, Ticker Class. Canvas: The Canvas, User Interactions Graphics, Clipping Regions,
Animation

Objective:

To plan, design of j2me applications.

Learning Outcomes:

Student will be able to:

 Design User interfaces.
 Understand the various methods in High level Display classes.
 Understand the various methods in Low level Display classes.
 Manage Canvas on the screen.

J2ME User Interfaces:

User-interface requirements for small handheld devices are different from personal computers.
Because the display size of handheld devices is smaller. In J2ME, the CLDC itself does not
define any GUI functionality. The official GUI classes for the J2ME are included in profiles such
as MIDP and are defined by Java Community Process (JCP).

In J2ME a developer can use one of three kinds of user interfaces for an application. These are

 Command

 Form

 Canvas

Command-based User Interface:

 A Command-based user interface consists of instances of the “Command” class.

 An instance of the Command class is a button that the user presses on the device to do
a specific task.

Mobile Application Development 2

IV Year – I Semester 2018-19 CSE

 For example, Exit is an instance of the Command class associated with an Exit button
on the keypad to terminate the application.

Form-based User-Interface:

 A Form-based user interface consists of an instance of the Form class that contains
instances derived from the Item class such as text boxes, radio buttons, check boxes,
lists and other conventions used to display information on the screen and to collect
input from the user.

Canvas-based User Interface

 A canvas-based user interface consists of instances of the Canvas class within which
the developer creates images such as those used in a game.

Display Class

Display class is used to manage the objects that can be displayed on the screen.

 The device’s screen is referred to as the display, and we interact with the display by
obtaining a reference to an instance of the MIDlets Display class.

 MIDlets can be pure background applications or applications interacting with the user.

 Interactive applications can get access to the display by obtaining an instance of the
Display class.

 Every J2ME MIDlet that displays anything on the screen must obtain a reference to its
Display instance. This instance is used to show instances of Displayable class on the
screen.

 The Displayable class has two subclasses. These are the Screen class and the Canvas
class.

Mobile Application Development 3

IV Year – I Semester 2018-19 CSE

 The Screen class contains a subclass called the Item class, Item class, which has its own
subclasses used to display information or collect information from a user (such as forms,
List, radio buttons, Textbox, Alerts).

 The Screen class and its derived classes are referred to as high-level user interface
components.

 The Canvas class is used to display graphical images such as used for games.

 Displays created using the Canvas class are considered a low-level user interface and are
used whenever we need to display a customized screen.

 A MIDlet can get its Display instance by calling

 Display.getDisplay (MIDlet midlet),

 where the MIDlet itself is given as parameter.

 The Display class and all other user interface classes of MIDP are located in the
package javax.microedition.lcdui.

 The Display class provides a setCurrent () method that sets the current display content
of the MIDlet. The object that is to be displayed is passed to the setCurrent () method as
a parameter.

 The difference between Display and Displayable is that the Display class represents the
display hardware, whereas Displayable is something that can be shown on the display.

 The getCurrent () method of the Display class is used by a MIDlet to retrieve
information about the instances of derivatives of the Displayable class.

A simple example to understand the Display and Displayable class
Step 1: First, we need to import the necessary midlet and lcdui packages
 import javax.microedition.midlet.*;
 import javax.microedition.lcdui.*;
Step 2: Every MIDP application is required to extend the MIDlet class.
 public class HelloMidp extends MIDlet {

Step 3: In the constructor, we obtain the Display and create a Form
 Display display;
 Form mainForm;
 public HelloMidp ()
 {
 mainForm = new Form ("HelloMidp");

Mobile Application Development 4

IV Year – I Semester 2018-19 CSE

 }
A Form is a specialized Displayable class. The Form has a title that is given in the
constructor. We do not add content to the form yet, so only the title will be displayed.
Step 4:
When MIDlet is started the first time, or when the MIDlet resumes from a paused state,
the startApp() method is called by the program manager. Here, we set the display to
form, thus requesting the form to be displayed:
 public void startApp()
 {
 display =Display.getDisplay (this);
 display.setCurrent (mainForm);
 }
Step 5: We need to provide an empty implementation because implementation
of pauseApp() is mandatory:

 public void pauseApp()
 {
 }
Step 6: Like pauseApp(), implementation of destroyApp() is mandatory.
 public void destroyApp(boolean unconditional)
 {
 }
}

Program:

 import javax.microedition.midlet.*;
 import javax.microedition.lcdui.*;
 public class HelloMidp extends MIDlet
 {
 Display display;
 Form mainForm;
 public HelloMidp ()
 {
 mainForm = new Form ("HelloMidp");
 }
 public void startApp()
 {
 display =Display.getDisplay (this);
 display.setCurrent (mainForm);
 }
 public void pauseApp()
 {

Mobile Application Development 5

IV Year – I Semester 2018-19 CSE

 }
 public void destroyApp(boolean unconditional)
 {
 }
 }
The Palm OS Emulator:

 Before we can run the Palm OS emulator in the J2ME Wireless Toolkit, we’ll need to
download Palm OS ROM files from the Palm web site (www.palmos.com/dev).

 The ROM file contains the Palm OS required for the emulator to properly perform like a
Palm PDA.

 We’ll also need to join the Palm OS Developer Program (free) and agree to the online
license (free) for ROM files before you are permitted to download them.

 If our MIDlet is Palm device specific, we’ll need to download the ROM file that
corresponds to the Palm OS that runs on that Palm device.

 If we download the wrong ROM, because the Palm OS emulator displays an error when
running your MIDlet, indicating the proper version of the Palm OS that is required to run
your MIDlet on the Palm device that is being tested in the emulator.

Command Class:

 In contrast to desktop computers, which have plenty of screen space for displaying
buttons or menus, a different approach is necessary for mobile devices.

 The lcdui package does not provide buttons or menu, but an abstraction called
“Command”.

 The Command class is used to set command buttons on the display screen. By clicking on
these commands the applications will perform a pre-defined action.

 Commands can be added to all classes derived from the Displayable class. These classes
are Screen and its subclasses such as Form, List, and Textbox for the high-level API
and Canvas for the low-level API.

 No positioning or layout information is passed to the Command, the Displayable class
itself is completely responsible for arranging the visible components corresponding
to Commands on a device.

 We create an instance of the Command class by using the Command class constructor
within the J2ME application.

 The Command class constructor requires three parameters. These are

 command label

 command type

Mobile Application Development 6

IV Year – I Semester 2018-19 CSE

 command priority

 The Command class constructor returns an instance of the Command class.

 The different predefined command types available in Command class are

 A command type is mapped to a key on the device’s keypad, but the device does not
process the command. When the user selects the command, the application manager
detects the event and passes the selected command to application for processing.

CommandListener

 Every J2ME application that creates an instance of the Command class must also create
an instance that implements the CommandListener interface.

 The CommandListener is notified whenever the user interacts with a command by way of
the commandAction () method.

 Classes that implement the CommandListener must implement the commandAction ()
method, which accepts two parameters.

o The first parameter is a reference to an instance of the Command class

o Second parameter is a reference to the instance of the Displayable class

 The device’s application manager calls the commandAction () method and passes the
command selected by the user.

 The commandAction () method must contain all the processing that is to occur when the
user selects a command.

Mobile Application Development 7

IV Year – I Semester 2018-19 CSE

Available Methods in Command Class:

Complete Program:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class OnlineHelp extends MIDlet implements CommandListener
{
 private Display display;
 private Command back;
 private Command exit;
 private Command help;
 private Form form;
 private TextBox helpMesg;

 public OnlineHelp()
 {
 display = Display.getDisplay(this);
 back = new Command("Back", Command.BACK, 2);
 exit = new Command("Exit", Command.EXIT, 1);
 help = new Command("Help", Command.HELP, 3);
 form = new Form("Online Help Example");
 helpMesg = new TextBox("Online Help", "Press Back to return
 to the previous screen or press Exit to close this program.", 81, 0);

Mobile Application Development 8

IV Year – I Semester 2018-19 CSE

 helpMesg.addCommand(back);
 form.addCommand(exit);
 form.addCommand(help);
 form.setCommandListener(this);
 helpMesg.setCommandListener(this);
 }
 public void startApp()
 {
 display.setCurrent(form);
 }
 public void pauseApp()
 {
 }
 public void destroyApp(boolean unconditional)
 {
 }
 public void commandAction(Command command, Displayable displayable)
 {
 if (command == back)
 {
 display.setCurrent(form);
 }
 else if (command == exit)
 {
 destroyApp(false);
 notifyDestroyed();
 }
 else if (command == help)
 {
 Displayable displayable)
 display.setCurrent(helpMesg);
 }
 }
}

Exception Handling:

 The small computing device’s application manager controls the operation of a MIDlet.

 The application manager calls the startApp(), pauseApp(), and destroyApp() methods
whenever the user or the device requires a MIDlet to begin, pause, or terminate.

 However, there are times when the interruption of processing by complying with the
application manager’s request might cause permanent harm.

Mobile Application Development 9

IV Year – I Semester 2018-19 CSE

 For example, a MIDlet might be in the middle of a communication session or saving
persistent data when the destroyApp() method is called by the device’s application
manager, the request would break off communications or corrupt data.

 We can regain a little control of the MIDlet’s operation by using a
MIDletStateChangeException.

 A MIDletStateChangeException is used to temporarily reject a request from the
application manager either to start the MIDlet (startApp()) or to destroy the MIDlet
(destroyApp()).

 A MIDletStateChangeException cannot be thrown within the pauseApp() method.

 We should incorporate routines that throw a MIDletStateChangeException whenever
MIDlet has processing that should not be interrupted by the application manager.

Example:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class ThrowException extends MIDlet implements CommandListener
{
 private Display display;
 private Form form;
 private Command exit;
 private boolean isSafeToQuit;
 public ThrowException()
 {
 isSafeToQuit = false;
 display = Display.getDisplay(this);
 exit = new Command("Exit", Command.SCREEN, 1);
 form = new Form("Throw Exception");
 form.addCommand(exit);
 form.setCommandListener(this);
 }
 public void startApp()
 {
 display.setCurrent(form);
 }
 public void pauseApp()
 {
 }
public void destroyApp(boolean unconditional) throws MIDletStateChangeException
{
 if (unconditional == false)
 {

Mobile Application Development 10

IV Year – I Semester 2018-19 CSE

 throw new MIDletStateChangeException();
 }
}
public void commandAction(Command command,Displayable displayable)
{
 if (command == exit)
 {
 try
 {
 if (exitFlag == false)
 {
 StringItem msg = new StringItem ("Busy", "Please try again.");
 form.append(msg);
 destroyApp(false);
 }
 else
 {
 destroyApp(true);
 notifyDestroyed();
 }
 }
 catch (MIDletStateChangeException exception)
 {
 isSafeToQuit = true;
 }
 }
}
}

In this program the user to select the Exit command twice to terminate the MIDlet. When the
user selects the Exit command the first time, the device’s application manager calls the
destroyApp() method where a MIDletStateChangeException is thrown, causing the message
“Busy Please try again.” to be displayed on the screen. The MIDlet successfully terminates the
second time the user selects the Exit button.

Mobile Application Development 11

IV Year – I Semester 2018-19 CSE

High Level Display

 The display is a crucial component of every J2ME application since it contains objects

used to present information to the user using the application and in many cases prompts

the user to enter information that is processed by the application.

 The J2ME Display class is the parent of Displayable class.

 The Displayable class has two subclasses

 Screen

 Canvas

 The Screen class is used to create high-level J2ME displays in which the

methods of its subclasses handle details of drawing objects such as radio

buttons and check boxes.

 The Canvas class and its subclasses are used to create low-level J2ME

displays. The methods give you pixel-level control of the display, enabling us

to draw your own images and text such as those used to create games.

Screen class:
 The Screen class and its derived classes are used to create high-level J2ME displays.

 These classes contain methods that generate radio buttons, check boxes, lists, and other

familiar objects that users expect to find on the screen when interacting with the

application.

Display class hierarchy:

public class Display

 public abstract class Displayable

 public abstract class Screen extends Displayable

 public class Alert extends Screen

 public class Form extends Screen

 public class List extends Screen implements Choice

 public abstract class Item

 public class ChoiceGroup extends Item implements Choice

 public class DateField extends Item

Mobile Application Development 12

IV Year – I Semester 2018-19 CSE

 public class TextField extends Item

 public class Gauge extends Item

 public class ImageItem extends Item

 public class StringItem extends Item

 public class TextBox extends Screen

 public class Command

 public class Ticker

 public class Graphics

 public interface Choice

 public abstract class Canvas extends Displayable

 public class Graphics

 We already know that the Displayable class has two derived classes, Screen and Canvas.

 The Screen class has its own set of derived classes.

 These are TextBox, List, Alert, Form, and Item classes.

 The TextBox class is used to display multi-line text on the screen.

 The List class is used to display a list of items, as a menu, and enables the user to

choose one of those items.

 The Alert class displays a dialog box containing a message such as a warning.

 The Form class is a container class that can display multiple classes derived from

the Item class.

 The Item class has six derived classes, any number of which can be displayed

within a Form object on the screen.

 ChoiceGroup class used to display radio buttons and check boxes

 DateField class used for inputting a date into an application

 TextField class used for inputting text into an application

 Gauge class used to graphically show progress

 ImageItem class used to display an image stored in a file

 StringItem class used to display text on the screen

Mobile Application Development 13

IV Year – I Semester 2018-19 CSE

Alert Class:
 An alert is a dialog box displayed by the program to warn a user of a potential error such

as a break in communication with a remote computer.

 An alert can also be used to display any kind of message on the screen, even if the

message is not related to an error.

For example, an alert is an ideal way of displaying a reminder on the screen. We

implement an alert by creating an instance of the Alert class in the program using the

following statement. Once created, the instance is passed to the setCurrent () method of

the Display object to display the alert dialog box on the screen.

alert = new Alert("Failure", "Lost communication link!", null, null);

 display.setCurrent(alert);

 The Alert constructor requires four parameters.

 The first parameter is the title of the dialog box, which is “Failure” in this example.

 The next parameter is the text of the message displayed within the dialog box. “Lost

communication link!” is the text that appears when the Failure dialog box is shown on

the screen.

 The third parameter is the image that appears within the dialog box. If we don’t use

an image, the third parameter is set to null.

 The last parameter is the AlertType. The AlertType is a predefined type of alert. If we

don’t use any predefined AlertType, the fourth parameter is set to null.

 An alert dialog box reacts in one of two ways depending on the value of the default

timeout for the Alert object. The alert dialog box can remain visible until the user selects

Mobile Application Development 14

IV Year – I Semester 2018-19 CSE

the OK button, or the alert dialog box can be visible for a specified number of

milliseconds. An alert dialog box is referred to as a modal dialog box if the user must

select the OK button to terminate the dialog box. Otherwise, it is considered a timed

dialog box that terminates when the default timeout value is reached.

Methods in Alert Class:

setTimeout() method: The setTimeout() method determines whether an alert dialog box

is a modal dialog box or a timed dialog box. The setTimeout() method has one

parameter, which is the default timeout value. Use Alert.FOREVER as the default

timeout value for a modal alert dialog box, or pass a time value in milliseconds indicating

time to terminate the alert dialog box.

Example:

 alert = new Alert("Failure", "Lost communication link!", null, null);

 alert.setTimeout(Alert.FOREVER);

 display.setCurrent(alert);

getDefaultTimeout() method: The getDefaultTimeout() method returns the integer

value of Alert.FOREVER or the default timeout in milliseconds.

Alert Sound:

 Each AlertType has an associated sound that automatically plays whenever the alert

dialog box appears on the screen. The sound, which is different for each AlertType, is

used as an audio cue to indicate that an event is about to occur.

 An audio cue can be sounded without having to display the alert dialog box. We do this

by calling the playSound() method and passing it reference to the instance of the Display

class.

Example:

 if (exitFlag == false)

 {

 AlertType.WARNING.playSound(display);

 destroyApp(false);

 }

Mobile Application Development 15

IV Year – I Semester 2018-19 CSE

Form Class:
 A Form is a Screen that contains an arbitrary mixture of items: images, read-only text

fields, editable text fields, editable date fields, gauges, choice groups, and custom items.

 In general, any subclass of the Item class may be contained within a form.

 Syntax to create an instance of the Form class is

private Form form;
 An instance is placed with the instance of the Form class by calling one of two methods.

 These are insert() method and append() method.

 The insert() method places the instance in a particular position on the form as

specified by parameters passed to the insert() method.

 The append() method places the instance after the last object on the form.

 Example:

 private Form form;

 private StringItem message;

 form = new Form("My Form");

 message = new StringItem("Welcome, ", "glad you could come.");

 form.append(message);

The above code segment illustrates how to create an instance of the Form class and call

the append() method to place an instance of the StringItem class onto the form. After

declaring referencing for the instance of the Form class and for the instance of the

StringItem class, a new Form instance is created and given the title “My Form.” Next, a

StringItem instance with the message “Welcome, glad you could come.” is created. The

append() method is called once when both instances are created. Reference to the

StringItem instance is then passed to the form, thereby placing the StringItem instance

as the last object on the form.

Methods in Form Class:

Adding items to a Form:

 append(Item item) - Adds an Item into the Form.

 insert(int itemNum, Item item) - Inserts an item into the Form just prior to the item

specified.

Mobile Application Development 16

IV Year – I Semester 2018-19 CSE

 set(int itemNum, Item item) - Sets the item referenced by itemNum to the specified

item, replacing the previous item.

Adding strings and images to a Form:

 append(String str) - Adds an item consisting of one String to the Form.

 append(Image img) - Adds an item consisting of one Image to the Form.

Deleting items from a Form:

 delete(int itemNum) - Deletes the Item referenced by itemNum.

 deleteAll() - Deletes all the items from this Form, leaving it with zero items.

The getter methods:

 get(int itemNum) - Gets the item at given position.

 getHeight() - Returns the height in pixels of the displayable area available for items.

 getWidth() - Returns the width in pixels of the displayable area available for items.

 size() - Gets the number of items in the Form.4

Item Class:

 The Item class is derived from the Form class, and that gives an instance of the Form

class character and functionality by implementing text fields, images, date fields, radio

buttons, check boxes, and other features common to most graphical user interfaces.

 The Item class itself is an abstract base class that cannot be instantiated.

 Items can neither be placed freely nor can their size be set explicitly. Unfortunately, it is

not possible to implement Item subclasses with a custom appearance. The Form handles

layout and scrolling automatically.

Mobile Application Development 17

IV Year – I Semester 2018-19 CSE

Subclasses of Item:

Item Listener:

 Each MIDlet that utilizes instances of the Item class within a form must have an

itemStateChanged() method to handle state changes in these instances.

 The itemStateChanged() method contains one parameter, which is an instance of the

Item class.

 The instance passed to the itemStateChanged() method is the instance whose

state was changed by the user.

 The itemStateChanged() method would have appropriate logic to process a change in

each instance rather than displaying a statement at the command line.

ChoiceGroup Class:

 The ChoiceGroup is an MIDP UI widget enabling the user to choose between

different elements in a Form.

 J2ME classifies check boxes and radio buttons as the ChoiceGroup class.

Mobile Application Development 18

IV Year – I Semester 2018-19 CSE

 The primary difference between a set of check boxes and a set of radio buttons,

besides their obvious appearance, is the number of check boxes or radio buttons that

users can select. Users can choose multiple check boxes within a set of check boxes,

while they can choose only one radio button within a set of radio buttons.

 An instance of the ChoiceGroup class can be one of two types: exclusive or multiple.

 An exclusive instance appears as a set of radio buttons, and a multiple instance

contains one or a set of check boxes.

Choice Types for ChoiceGroup Object and List Object

 When the user selects either a radio button or check box, the device’s application

manager detects the event and calls the itemStateChanged() method of the MIDlet.

 The itemStateChanged() method determines whether the item selected is an instance

of the ChoiceGroup. If so, then either the getSelectedFlags() method or

getSelectedIndex() method must be called to retrieve the item selected by the user.

 The getSelectedFlags() method returns an array that contains the status of the

selected flag for each member of the instance of the ChoiceGroup class. The

MIDlet must step through each element of the array to determine whether the

selected flag status is true or false. If true, the radio button or check box that

corresponds to the index of the array element was selected by the user. If false,

the user did not make a selection.

 The getSelectedIndex() method returns the index number of the item selected by

the user, such as a radio button. The index number is typically passed to the

Mobile Application Development 19

IV Year – I Semester 2018-19 CSE

getString() method, which returns the text of the selected radio button or check

box.

Mobile Application Development 20

IV Year – I Semester 2018-19 CSE

DateField Class:

 The DateField class is used to display, edit, or input date and/or time into a MIDlet.

 A DateField class is instantiated by specifying a label for the field, a field mode, and

a time zone (time zone is optional).

 DateField datefield = new DateField("Today", DateField.DATE);

 DateField datefield = new DateField("Time", DateField.TIME, timeZone);

 Once a DateField class is instantiated, we can use DateField class methods to enter a

date and time into the date field and retrieve the date and time value that has already

been entered into the date field.

DateFiled Modes

Mobile Application Development 21

IV Year – I Semester 2018-19 CSE

DateField Methods:

Example:

 import java.util.*;
 import javax.microedition.midlet.*;
 import javax.microedition.lcdui.*;
 public class DateToday extends MIDlet implements CommandListener
 {
 private Display display;
 private Form form;
 private Date today;
 private Command exit;
 private DateField datefield;
 public DateToday()
 {
 display = Display.getDisplay(this);
 form = new Form("Today's Date");
 today = new Date(System.currentTimeMillis());
 datefield = new DateField("", DateField.DATE_TIME);
 datefield.setDate(today);
 exit = new Command("Exit", Command.EXIT, 1);
 form.append(datefield);
 form.addCommand(exit);
 form.setCommandListener(this);
 }
 public void startApp ()
 {
 display.setCurrent(form);
 }

Mobile Application Development 22

IV Year – I Semester 2018-19 CSE

 public void pauseApp()
 {
 }
 public void destroyApp(boolean unconditional)
 {
 }
 public void commandAction(Command command, Displayable displayable)
 {
 if (command == exit)
 {
 destroyApp(false);
 notifyDestroyed();
 }
 }
 }

Gauge Class:

 The Gauge class creates an animated progress bar that graphically represents the

status of a process.

 It is initialized with a label, a flag indicating whether it is interactive, and a

maximum and an initial value.

 If a Gauge is interactive, the user is allowed to change the value using a device-

dependent input method.

 Creating an instance of the Gauge class

Gauge gauge = new Gauge ("Like/Dislike Gauge", true, 100, 0);

This statement creates an interactive gauge with the caption “Like/Dislike Gauge”

and a scale of zero to 100.

 The first parameter passed to the constructor of the Gauge class is a string

containing the caption that is displayed with the gauge.

 The second parameter is a Boolean value indicating whether or not the gauge is

interactive.

 The third parameter is the maximum value of the gauge, and the last parameter

is the gauge’s initial value.

Mobile Application Development 23

IV Year – I Semester 2018-19 CSE

 Methods in Gauge Class:

StringItem Class:

 The purpose of using a StringItem class is to display a text that cannot be modified or

deleted by the user of the MIDlet.

 A StringItem class is different from other classes derived from the Item class in that a

StringItem class does not recognize events.

 This means that an instance of a StringItem class can never cause an event because the

user cannot modify the text of the StringItem.

 We create an instance of a StringItem class by passing the StringItem class constructor

two parameters.

 The first parameter is a string representing the label of the instance.

 The other parameter is a string of text that will appear on the screen.

Mobile Application Development 24

IV Year – I Semester 2018-19 CSE

 Methods used in StringItem class:

 getText():

 We can retrieve the text of the instance of a StringItem class by calling

getText () method.

 setText():

 We can replace the text by calling setText(0 method.

 The setText() method require one parameter, which is the new text that

replaces the current text of instance.

 setLabel():

 The label of the instance can be changed by calling the setLabel() method.

 The setLabel() method require one parameter, which is replacement of the

label.

 getLabel():

 The getLabel() method returns a String consisting of the label of the instance.

ImageItem Class:

 There are two types of images that can be displayed. These are immutable images and

mutable images.

 An immutable image is loaded from a file or other resource and cannot be modified once

the image is displayed.

 A mutable image is drawn on the screen using methods available in the Graphics class.

 An immutable image is drawn on a screen, and a mutable object is drawn on a canvass.
 Mutable images are displayed using the Graphics class, which is derived from the

Canvas class.
 The first step in displaying an immutable image is to create an instance of the Image class

by calling the createImage() method.

 The createImage() method requires one parameter that contains the name of the file

containing the image.(Make sure that you include the full path to the file in the

parameter.)

 The next step is to create an instance of the ImageItem class.

 The constructor of the ImageItem class requires four parameters.

Mobile Application Development 25

IV Year – I Semester 2018-19 CSE

 The first is a string that becomes the label for the image.

 The second parameter is reference to the instance of the Image class

created in step one.

 The third parameter is the layout directive.

 And the last parameter is a string referred to as alternate text that is

displayed in place of the image if for some reason the image cannot be

displayed by the device.

 Some applications won’t require you to specify a label or alternate text; therefore, use a null

as the value of the parameter in place of a string.

Image Layout Directives

 The layout directive is a request to the device’s application manager to position the image

at a particular location on the screen. The device’s application manager determines the actual

location where the image appears.

Methods used in ImageItem class:

 setLabel ():

 It replaces the current Label, with new Label which is passed as parameter.

 getLabel():

 It returns the current Label of the ImageItem class instance.

 setLayout():

 The setLayout() method replaces the current layout with a new layout whose

directive is passed as a parameter to the setLayout() method.

 getLayout():

 The getLayout () method returns the current layout directive of an instance of an

ImageItem.

 setImage():

Mobile Application Development 26

IV Year – I Semester 2018-19 CSE

 It replaces the instance of the Image class, with new instance of the Image class

which is passed as parameter.

 getImage():

 The getImage() method fetches the current image associated with the instance of

the ImageItem

 setAltText():

 It replaces the Alternative text with new text, which is passed as parameter.

 getAltText():

 It returns Alternative text of the ImageItem instance.

TextField Class:

 The TextField class is used to capture one line or multiple lines of text entered by the

user. The number of lines of a text field depends on the maximum size of the text field

when you create an instance of the TextField class.

 The instance of the TextField class is created using TextField constructor.

Textfield_instance=new TextField(“1st parameter”,”2nd parameter”,”3rd parameter”,”4th

parameter”)

 The constructor requires four parameters

 The first parameter is the label that appears when the instance is displayed on the

screen.

 The second parameter is text that you want to appear as the default text for the

instance, which the user can edit.

 The third parameter is the maximum number of characters that can be held by the

instance.

 The last parameter passed to the constructor of the TextField class is the

constraint (if any) that is used to restrict the type of characters that the user can

enter into the text field.

Mobile Application Development 27

IV Year – I Semester 2018-19 CSE

Methods used TextField class:

getString():

 The getString() method returns the content of the text field as a string

getChars():

 the getChars() method returns the text field content as a character array.

 The getChars() method requires that you pass it a character array as a parameter.

setString():

 We can place text into a text field by calling either the setString() method

 The setString() method requires one parameter, which is the string containing text

that should appear in the text field.

setChars():

 We can place text into a text field by calling either the setString() method

 The setChars() method requires three parameters.

 The first is the character array whose data will populate the text field.

 The second is the position of the first character within the array that will

be placed into the text field.

 The last parameter is the length of characters of the character array that

will be placed into the text field.

Mobile Application Development 28

IV Year – I Semester 2018-19 CSE

Insert():

 We can insert characters within the text field without overwriting the entire

content of the text field by calling the insert() method.

 The insert() method has two signatures, one for strings and the other for character

arrays.

 The insert() method used to insert a string into the contents of a text field requires

two parameters.

 The first parameter is the string that will be inserted into the text field.

 The other parameter is the character position of the current string where

the new text is inserted.

 The insert() method used to insert a character array requires four parameters.

 The first parameter is reference to the array.

 The second parameter is the position of the first character within the array

that will be placed into the text field.

 The third parameter is the number of characters contained in the array that

will be placed into the text field.

 The last parameter is the character position of the current text that will be

shifted down to make room for the inserted text.

delete():

 Text can be removed from the text field by calling the delete() method, which

requires two parameters. The first is the position of the first character to be

deleted. The other parameter is the length of characters that are to be deleted.

setConstraints():

 The constraint of a text field can be changed after the instance is created by

calling the setConstraints() method. The setConstraints() method requires you to

pass the new constraint as a parameter to the setConstraints() method.

getConstraints():

 We can determine the current constraint by calling the getConstraints() method.

setMaxSize():

 We can also change the maximum size by calling the setMaxSize() method.

Mobile Application Development 29

IV Year – I Semester 2018-19 CSE

 The setMaxSize() method requires one parameter, which is the new value for the

maximum size for the text field.

size ():

 If we need to know the length of the text in the text field you can call the size()

method, which returns an integer representing the number of characters existing in

the text field.

List Class:

 The List class is used to display a list of items on the screen from which the user can
select one or multiple items.

 There are three formats for the List class:
 radio buttons
 check boxes
 an implicit list that does not use a radio button or check box icon

 List class is functionally similar to the ChoiceGroup class, but it differs from the
ChoiceGroup class by the way events of each instance are handled by a MIDlet.

 An ItemStateListener is used to listen to events generated by an instance of a
ChoiceGroup class. Those events are then passed along to the itemStateChanged()
method for processing.

 In contrast, a list does not generate an item state change event therefore; a Command
needs to be added to initiate processing.

 A List class is derived from the Screen class and does not require a container. We can
create an instance of the List class with or without list items.

 An instance is created without list items by passing the constructor of the List class two
parameters.
 The first parameter is a string that contains the titles of the list
 other parameter is the format of the list

 We can include list items when creating the instance of a List class by passing two
additional parameters to the List class constructor.
 The first two parameters are title and list Type.
 The third parameter is a string array whose elements contain list items that can be

selected by the user of your MIDlet.
 The fourth parameter is an array of instances of the Image class, each associated

with a corresponding list item.
 List items can be added to an instance of a List object by calling the append() method or

insert() method.
 The append() method requires two parameters.

 The first parameter is the string that contains the new list item,

Mobile Application Development 30

IV Year – I Semester 2018-19 CSE

 The second parameter is an instance of the Image class of an image that is
associated with the new list item.

 The new list item is appended to the end of the list.
Methods in List Class:

 getSelectedIndex():
 The getSelectedIndex() method returns the index number of the selected
list item.

 getSelectedFlag():
 If the instance of the List class is a check box, then call the getSelectedFlag()
method. The getSelectedFlag() method requires one parameter, which is a boolean array.

 getSelectedIndex();
 The setSelectedIndex() sets the selected status for all list items. The
setSelectedIndex() requires one parameter, which is a boolean array containing the
selected status for the entire list.

 setSelectedFlags():
 The setSelectedFlags() method is used to set the selected flag of one list item and
requires two parameters. The first parameter is the index number of the list item being
selected, and the other parameter is a boolean value, where true signifies that the list item
is selected and false signifies unselected.

 set() method:
 Any list item can be replaced by calling the set() method. The set() method
requires three parameters.
 The first is the index number of the list item being replaced.
 The second parameter is the string replacing the string of the specified list item.
 The last parameter is an Image object that contains the image associated with the

replacement list item.
 delete() method:

 A list item can be removed from the list by calling the delete() method. The
delete() method requires one parameter, which is the index number of the list item being
deleted.

List implicit Example:
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class ListImplicit extends MIDlet implements CommandListener
{
private Display display;
private List list;
private Command exit;
Alert alert;

Mobile Application Development 31

IV Year – I Semester 2018-19 CSE

public ListImplicit()
{
 display = Display.getDisplay(this);
 exit = new Command("Exit", Command.EXIT, 1);
 list = new List("Menu:", List.IMPLICIT);
 list.append("New",null);
 list.append("Open",null);
 list.addCommand(exit);
 list.setCommandListener(this);
}
}
public void startApp()
{
 display.setCurrent(list);
}
public void pauseApp()
{
 }
public void destroyApp(boolean unconditional)
{
}
public void commandAction(Command command, Displayable displayable)
{
 if (command == List.SELECT_COMMAND)
 {
 String selection = list.getString(list.getSelectedIndex());
 alert = new Alert("Option Selected", selection, null, null);
 alert.setTimeout(Alert.FOREVER);
 alert.setType(AlertType.INFO);
 display.setCurrent(alert);
 }
 else if (command == exit)
 {

 destroyApp(false);
 notifyDestroyed();
 }
}
}

Mobile Application Development 32

IV Year – I Semester 2018-19 CSE

Check-Box Formatted List Class:
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class ListCheckBox extends MIDlet implements CommandListener
{
 private Display display;
 private Command exit;
 private Command submit;
 private List list;
 public ListCheckBox()
 {
 display = Display.getDisplay(this);
 list = new List("Select Media", List.MULTIPLE);
 list.append("Books", null);
 list.append("Movies", null);
 list.append("Television", null);
 list.append("Radio", null);
 exit = new Command("Exit", Command.EXIT, 1);
 submit = new Command("Submit", Command.SCREEN,2);
 list.addCommand(exit);
 list.addCommand(submit);
 list.setCommandListener(this);
 }
 public void startApp()
 {
 display.setCurrent(list);
 }
 public void pauseApp()
 {
 }
 public void destroyApp(boolean unconditional)
 {
 }
 public void commandAction(Command command, Displayable Displayable)
 {
 if (command == submit)
 {
 boolean choice[] = new boolean[list.size()];
 StringBuffer message = new StringBuffer();
 list.getSelectedFlags(choice);

Mobile Application Development 33

IV Year – I Semester 2018-19 CSE

 for(int x=0;x<choice.length; x++)
 {
 if (choice[x])
 {
 message.append(list.getString(x));
 message.append(" ");
 }
 }
 Alert alert = new Alert("Choice", message.toString(),null, null);
 alert.setTimeout(Alert.FOREVER);
 alert.setType(AlertType.INFO);
 display.setCurrent(alert);
 list.removeCommand(submit);
 }
 else if (command == exit)
 {
 destroyApp(false);
 notifyDestroyed();
 }
 }
}
}
An alert is displayed on the screen containing the text of each item selected by the user.
The Submit command is then removed from the screen, leaving the user to close the alert
dialog box and then terminate the MIDlet by selecting the Exit command.

Radio Button–Formatted List Class:
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class ListRadioButtons extends MIDlet implements CommandListener
{
 private Display display;
 private Command exit;
 private Command submit;
 private List list;
 public ListRadioButtons()
 {
 display = Display.getDisplay(this);
 list = new List("Select one", List.EXCLUSIVE);
 list.append("Male", null);

Mobile Application Development 34

IV Year – I Semester 2018-19 CSE

 list.append("Female", null);
 exit = new Command("Exit", Command.EXIT, 1);
 submit = new Command("Submit", Command.SCREEN,2);
 list.addCommand(exit);
 list.addCommand(submit);
 list.setCommandListener(this);
 }
 public void startApp()
 {
 display.setCurrent(list);
 }
 public void pauseApp()
 {
 }
 public void destroyApp(boolean unconditional)
 {
 }
 public void commandAction(Command command, Displayable Displayable)
 {
 if (command == submit)
 {
 Alert alert = new Alert("Choice",list.getString(list.getSelectedIndex()),null,
null);
 alert.setTimeout(Alert.FOREVER);
 alert.setType(AlertType.INFO);
 display.setCurrent(alert);
 list.removeCommand(submit);
 }
 else if (command == exit)
 {
 destroyApp(false);
 notifyDestroyed();
 }
 }
}

Mobile Application Development 35

IV Year – I Semester 2018-19 CSE

TextBox Class:
 The TextBox class is very similar to a TextField class; both are used to receive multiple

lines of textual data from a user.
 The TextBox class and TextField class differ in that the TextBox class is derived from

the Screen class, while the TextField class is derived from the Item class.
 This means that an instance of the Form class cannot contain an instance of the

TextBox class, while an instance of a TextField class must be contained within an
instance of the Form class.

 Another important difference between the TextBox class and the TextField class is that
the TextBox class uses a CommandListener and cannot use an ItemStateListener. An
ItemStateListener is used with an instance of the TextField class.

 An instance of the TextBox class is created by passing four parameters to the TextBox
class constructor.
 The first parameter is the title of the text box.
 The second parameter is text used to populate the instance.
 The third parameter is the maximum number of characters that can be entered into

the instance.
 This parameter is a request and may not be fulfilled by the device.
 The device determines the maximum number of characters for an instance

of the TextBox class.
 The last parameter is the constraint used to limit the types of characters that can

be placed within the instance.

Constraint Description

CONSTRAINT_MASK Used to determine the constraint’s current value

ANY Input any character

EMAILADDR Input only valid email address characters

NUMERIC Input positive and negative numbers; cannot
exclude either positive or negative numbers

PASSWORD Hide input

PHONENUMBER Input characters valid to a phone number
sometimes specific to locality and device

URL Input characters valid to a URL

Mobile Application Development 36

IV Year – I Semester 2018-19 CSE

TextBox Constraints

Example:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class TextBoxCapture extends MIDlet implements CommandListener
{
 private Display display;
 private TextBox textbox;
 private Command submit;
 private Command exit;
 public TextBoxCapture()
 {
 display = Display.getDisplay(this);
 submit = new Command("Submit", Command.SCREEN, 1);
 exit = new Command("Exit", Command.EXIT, 1);
 textbox = new TextBox("First Name:", "", 30, TextField.ANY);
 textbox.addCommand(exit);
 textbox.addCommand(submit);
 textbox.setCommandListener(this);
 }
 public void startApp()
 {
 display.setCurrent(textbox);
 }
 public void pauseApp()
 {
 }
 public void destroyApp(boolean unconditional)
 {
 }
 public void commandAction(Command command, Displayable displayable)
 {
 if (command == submit)
 {
 textbox.setString("Hello, " + textbox.getString());
 textbox.removeCommand(submit);
 }

Mobile Application Development 37

IV Year – I Semester 2018-19 CSE

 else if (command == exit)
 {
 destroyApp(false);
 notifyDestroyed();
 }
 }
}

Ticker class:

 The Ticker class is used to scroll text horizontally on the screen.

 An instance of the Ticker class can be associated with any class derived from the Screen

class and be shared among screens.

 An instance of the Ticker class can be associated with any class derived from the Screen

class and be shared among screens.

 An instance of a Ticker object is created by passing the constructor of the Ticker class a

string containing the text that is to be scrolled across the screen.

 We cannot control the location on the screen where scrolling occurs. Likewise, there is no

control over the speed of the scrolling.

Methods:

 getString ():

 We can retrieve the text associated with an instance of the Ticker class by

calling the getString () method.

 setString ():

 We can replace the text currently scrolling across the screen by calling the

setString () method.

 The setString () method requires one parameter, which is a string containing

the replacement text.

Mobile Application Development 38

IV Year – I Semester 2018-19 CSE

Low-Level Display
Canvas class

 The Displayable class has two subclasses: Screen and Canvas.

 The Canvas class and its derivatives are used to gain low-level access to the display,
which is necessary for graphic- and animation-based applications. A graphic is used with
a canvas.

 An instance of the Graphics class is similar to the artist’s tools that are used to draw an
image.

 The Canvas class and the Graphics class give you pixel control over everything that
appears on the canvas.

 If we want to display text using the high-level user interface, first, you create an instance
of a text field, text box, or string item and then associate text with the instance. Next, the
setCurrent() is called and passed the instance (or a container such as a form that contains
the instance). We are not concerned about describing how the device’s application
manager forms each character of the text on the screen.

 But displaying text using the Graphics class requires you to specify the height, width,
and other characteristics that describe how each character of the text is to be drawn on
the screen.

The Layout of a Canvas:

 The canvas is divided into a virtual grid in which each cell represents one pixel.

 Coordinates mark the column and row of a cell within the grid .The x coordinate
represents the column, and the y coordinate represents the cell’s row. The first cell
located in the upper-left corner of the grid has the coordinate location of 0, 0, where the
first zero is the x coordinate and the
other zero is the y coordinate.

Mobile Application Development 39

IV Year – I Semester 2018-19 CSE

 The size of the canvas is device dependent, since canvas size and the screen size are the
same.

 The screen size of a mobile telephone might be different from the screen size of a PDA,
but both devices are capable of running the same MIDlet.

 Our MIDlet should determine the canvas size of the device that implements our graphic
application before drawing on the screen. The canvas size is measured in pixels.

 The MIDlet should determine the canvas size of the device by calling the following
methods of the Canvas class:

 getWidth()

 getHeight()

 Proportional Coordinates:

 The values (in pixels) returned by the getWidth() and getHeight() methods can be used to
draw an image at a given location that is proportional to the size of the canvas by using
relative coordinates rather than exact coordinates on the canvas.

 If we want to draw an image on the canvas in the centre of the canvas, we need to
calculate the centre .This depends on the canvas size, which depends on the small
computing device that runs our MIDlet. The MIDlet calculates the centre coordinate
based on the return value of the getWidth() and getHeight() methods.

 x = getWidth()/2

 y = getHeight()/2

 Suppose if a MIDlet is running on a small computing device with a canvas size of 400
pixels wide by 400 pixels high. The calculation determines the center coordinate as 199,
199.

 The MIDlet can use the calculation to determine the center coordinate of any size canvas,
which means that the image will appear in the same canvas location when the MIDlet
runs on any device. Thus, calculating a specific coordinate rather than specifying a fixed
coordinate solves one problem faced by a developer of a J2ME application.

Mobile Application Development 40

IV Year – I Semester 2018-19 CSE

 Another problem is scaling an image to fit a canvas size that is device dependent. If you
know the size of the canvas, you could plot each pixel that is required to draw an image.
The image will be symmetrical within the screen. However, the symmetry is disrupted
when the size of the canvas changes and the image size remains the same.

 So we need to use relative coordinates to draw an image rather than specific coordinates
.The MIDlet must calculate the specific coordinate of each element of your image.

The Pen:

 An image is drawn on a canvas using a virtual pen.

 The pen is dropped on the canvas at a specified coordinate, filling the cell with the colour
of ink used in the pen.

 Cells change from their present colour to the colour of the ink as the pen is repositioned
on the canvas.

 For example, a horizontal line forms on the canvas when the virtual pen is dragged
horizontally across the canvas. Dragging the virtual pen vertically down the canvas draws
a vertical line.

 A virtual pen is used by instances of the Graphics class to draw rectangles, arcs, and
other graphical image components on the canvas. You don’t directly create and use a
virtual pen.

Painting:

 Graphical components used to create an image on a canvas are drawn on the canvas when
the paint() method of the Displayable class is called. This is referred to as painting.

 The paint() method is an abstract method that is used both by instances and derivatives of
the Screen class and Canvas class.

 The contents of the paint() method are statements that draw images on the screen.

 Derivatives from the Screen class have two predefined methods used to paint the
screen:

 paint (): which contains instructions that set parameters for drawing an image,
such as defining the virtual pen.

 paintContent(): which is called at the end of the paint() method and contains
statements to actually draw the image.

Mobile Application Development 41

IV Year – I Semester 2018-19 CSE

 The paint() Method:

 We cannot call the paint() method directly. Instead, the paint() method is called
automatically by the setCurrent() method when the MIDlet is started. We call the
repaint() whenever the canvas or a portion of the canvas must be refreshed.

 The paint() method requires one parameter, which is reference to the instance of the
Graphics class. For example-a paint() method that draws a rectangle on the canvas.

 protected void paint(Graphics graphics)

 {

 graphics.drawRect(12, 6, 40, 20));

 }

 The repaint() Method:

 There are two versions of the repaint() method.

 One version requires no parameters and repaints the entire canvas.

 The other version requires four parameters that define the region of the canvas
that is to be repainted. The first two parameters are the x and y coordinates for the
upper-left corner of the region, and the last two parameters are the width and
height of the region.

 We specify a region of the canvas to repaint whenever only a portion of the canvas has
changed and when you don’t want to waste time repainting the entire canvas, such as
when an animated image is displayed on the screen. This is known as clipping.

 Animation is the illusion of movement caused by rapidly changing images on the screen,
where each image is slightly different from the previous image. Each image displayed on
the screen is referred to as a frame. A key to successful animation is speed. We must
change frames in such a way that users don’t notice the change.

 If a small portion of a frame changes in an animated image, the repaint() method is
capable of repainting only the portion of the frame that changed rather than the entire
frame, which dramatically reduces the time that is necessary to change a frame on the
screen.

Mobile Application Development 42

IV Year – I Semester 2018-19 CSE

The servicePaint() Method:

 . A paint request is one of many requests a MIDlet can make to the application manager
of a small computing device. Other requests can be made to store data or to communicate
with a remote computer.

 Sometimes outstanding requests can be given a higher process priority by the device’s
application manager than a paint request. We need to override outstanding requests to
have the canvas repainted whenever an image is being animated; otherwise, a delay in
repainting the canvas destroys the effect of animation.

 The serviceRepaints() method directs the device’s application manager to override
outstanding requests for service with the repaint request. The repaint request becomes the
next request to be processed by the application manager.

 showNotify() and hideNotify():

 showNotify() method: called by the application manager immediately before the
application manager displays the canvas. It consists of statements that prepare the canvas
for display, such as initializing resources by beginning threads or assigning values to
variables as required by the application.

 hideNotify() method: is called by the application manager after the canvas is removed
from the screen. It consists of statements that free resources that were allocated when the
showNotify() method was called. This includes deactivating threads and resetting values
assigned to variables as necessary.

User Interactions

 Two techniques can be used to receive user input into your low-level J2ME application:

 To create one or more instances of the Command class. Once an instance of a
command is created, the instance is associated with the instance of the Canvas
class by calling the addCommand() method. If we associate a command with a
canvas, we need to associate a CommandListener to the canvas in order to
monitor command events generated by the user selecting a command. So we need
to define a commandAction() method that is called by the device’s application
manager to process the command event.

 To use low-level user input components that generate low-level user events.
These components are key codes, game actions, and pointers.

Mobile Application Development 43

IV Year – I Semester 2018-19 CSE

 A key code is a numerical value sent by the small computing device when
the user of your application selects a particular key. Each key on the
device’s keypad is identified by a unique key code.

 A game action is a keystroke that a person uses to play a game on the
small computing device. MIDP defines a set of constants that represent
keystrokes common to game controllers.

 A pointer event is input received from a pointer device attached to the
small computing device, such as a touch screen or mouse

Working with Key Codes:

 Each key on keypad, which is used on cellular telephones, is mapped to a standard set of
key codes. J2ME associates key code values with constants; however, use the constant
instead of the constant value.

 Using constants within the code clarifies the reference to a key because the name of the
constant contains the name of the key associated with the key code.

Keycode constants and keycode values

 There are three empty methods that are called when a particular key event occurs while
the MIDlet is running. We should override these methods if your application needs to call
them. These methods are:

 keyPressed()-method is called by the application manager whenever a key is
pressed by the user.

Mobile Application Development 44

IV Year – I Semester 2018-19 CSE

 keyReleased()-method is called when the key selected by the user is released.

 keyRepeated()-method is called by the application manager when the user holds
down the key, causing the key to be automatically repeated. Not all devices
support repeated keys. Your MIDlet can inquire whether or not the repeated key
feature is supported by calling the hasRepeatEvents() method.

 All of these methods have empty implementation. We must override each method if our
application needs to process the related key events.

 Many of the applications we create that implement a low-level user interface, will only
need to override the keyPressed() method because we need to know which key was
selected by the user.

 The keyRelease() method and the keyRepeated() method are overridden only for
applications that have special processing whenever a person releases a key or holds down
a key for an extended period.

 All three methods require one parameter, which is an integer that represents the value of
the key code passed to the method by the device’s application manager. An if statement
or switch case statement is used to compare the incoming key code with key code
constants that are processed by the MIDlet.

 import javax.microedition.midlet.*;
 import javax.microedition.lcdui.*;
 public class KeyCodeExample extends MIDlet
 {
 private Display display;
 private MyCanvas canvas;
 public KeyCodeExample ()
 {
 display = Display.getDisplay(this);
 canvas = new MyCanvas(this);
 }

 protected void startApp()
 {
 display.setCurrent(canvas);
 }
 protected void pauseApp()
 {
 }
 protected void destroyApp(boolean unconditional)
 {
 }

Mobile Application Development 45

IV Year – I Semester 2018-19 CSE

 public void exitMIDlet()
 {
 destroyApp(true);
 notifyDestroyed();
 }
 }
 class MyCanvas extends Canvas implements CommandListener
 {
 private Command exit;
 private String direction;
 private KeyCodeExample keyCodeExample;
 public MyCanvas (KeyCodeExample keyCodeExample)
 {
 direction = "2=up 8=dn 4=lt 6=rt";
 this.keyCodeExample = keyCodeExample;
 exit = new Command("Exit", Command.EXIT, 1);
 addCommand(exit);
 setCommandListener(this);
 }
 protected void paint(Graphics graphics)
 {
 graphics.setColor(255,255,255);
 graphics.fillRect(0, 0, getWidth(), getHeight());
 graphics.setColor(255, 0, 0);
 graphics.drawString(direction, 0, 0, Graphics.TOP | Graphics.LEFT);
 }
 public void commandAction(Command command, Displayable displayable)
 {
 if (command == exit)
 {
 keyCodeExample.exitMIDlet();
 }
 }
 protected void keyPressed(int key)
 {
 switch (key)
 {
 Case: KEY_NUM2: direction = “up”;
 break;
 case: KEY_NUM8: direction = “down”;
 break;
 case: KEY_NUM4: direction = “left”;
 break;
 case: KEY_NUM6: direction = “right”;
 break;
 }

Mobile Application Development 46

IV Year – I Semester 2018-19 CSE

 repaint();
 }
 }
 Detecting and Processing Key Codes: The MIDlet begins by declaring two variables.

The first variable references an instance of the Display class, the other variable
references a developer-defined class called MyCanvas.

 Two instances of classes are created within the KeyCodeExample constructor. These are
the Display class and the MyCanvas class.

 In MyCanvas class, the first statement declares a reference to an instance of the
Command class that is used to terminate the MIDlet.

 Next, reference to a String called direction is declared, followed by the creation of an
instance of the KeyCodeExample class.

 The constructor of MyCanvas is passed an instance of the KeyCodeExample class that is
referenced internally to the constructor.

 The direction string is initialized with text that describes directional keys; the text is
displayed on the screen when the device’s application manager calls the paint() method.

 The following are the steps:

Mobile Application Development 47

IV Year – I Semester 2018-19 CSE

Working with Game Actions:

 The theme may differ among computer games, but the way players interact with a game
is fairly constant across all computer games. Players can move up, down, left, right, and
they can fire.

 The directional movement causes a game piece to move in a corresponding direction or
changes the viewpoint of the player, depending on the nature of the game. Fire causes an
event to occur within the game, such as releasing a bullet from a gun.

 Directional movement and fire are called as “game actions”, and MIDP game action
defines constants that enable you to utilize game actions within our MIDlet without being
concerned about the appropriate key code that is assigned to each action.

 Each game action is associated with one or more keys on the keypad. For example, the
down game action might be associated with a down directional key and a number on the
keypad. Pressing either key causes the same game action to occur.

 Each key can be assigned to only one game action. This means pressing the down game
action key doesn’t also generate an up game action.

 The following list contains game action constants that are used when developing a game
for a small computing device. We can refer either the name of the constant or the value of
the constant within your MIDlet to determine the game action selected by the player. It is
always best to reference the constant rather than the constant value.

Mobile Application Development 48

IV Year – I Semester 2018-19 CSE

 A game action causes the keyPressed() method, keyReleased() method, and
keyRepeated() method to be called, depending on the key pressed by the player.

 We can detect which game action occurred by calling the getGameAction() method.

 getGameAction() method : requires one parameter—the key code of the key selected by
the player—which is passed as a parameter to the keyPressed(), keyReleased(), or
keyRepeated() method.

 An if statement or a switch case statement can be used to compare the incoming key code
to game action constants.

 Each game action constant is a data member of the Canvas class and is referenced by
using the name of the game action constant, such as Canvas.LEFT, Canvas.RIGHT,
Canvas.UP, Canvas.DOWN, and Canvas.FIRE.

 There are two alternatives to detect the game action key selected by the player:

 getKeyCode() method: requires one parameter, which is the name of the game
action constant. It returns the key code value associated with the game action
constant that can then be directly compared to the incoming key code value
passed to the keyPressed(), keyReleased(), or keyRepeated() method.

 if (getKeyCode(FIRE) == keycode)
 {
 //fire
 }

 getKeyName() method: to determine the player’s selection is to retrieve the
name of the key that is associated with the incoming key code. It requires one
parameter, which is the key code value. It returns the name of the key
represented by the key code value.

 To use the getKeyName() method to detect the game action key selected by the player,
we must first determine the key name for each of the game action keys. This can be done
by calling the getKeyCode() method, passing it the game action constant name, and then
passing the return value from the getKeyCode() method to the getKeyName() method,
which returns the name of the key associated with the key code value. This technique is
illustrated in the following code segment:

 if (getKeyName(getKeyCode(FIRE).equals(getKeyName(keycode))))
 {
 //fire

Mobile Application Development 49

IV Year – I Semester 2018-19 CSE

 }
Working with Pointer Devices:

 A pointer device is something other than a keyboard or keypad that is used to interact
with an application. The most commonly used pointer devices are a touch screen and a
mouse.

 In a J2ME application we are not involved in the details of how a pointer device
interfaces with a small computer or how someone uses the pointer device to interact with
your MIDlet. The device manufacturer and the implementation of the Java Virtual
Machine handle those details.

 We have to develop routines within your MIDlet to process pointer events.

 A pointer event occurs whenever the person uses a pointer device to interact with your
MIDlet. There are three pointer events that your MIDlet must process. When the person:

 presses a pointer device,

 releases a pointer device,

 drags a pointer device.

 A person presses a pointer device by applying pressure to a portion of a touch screen or
by clicking the mouse button. This causes a press event. A release event occurs once
pressure is removed from the touch screen or the mouse button. And your MIDlet is
notified of a drag event whenever the person moves the pointer device during a press
event.

 The MIDlet processes pointer events by defining three methods that are automatically
called by the device’s application manager when a pointer event occurs. These methods
are:

 the pointerPressed() method,

 the pointerReleased() method,

 the pointerDragged() method.

 All three methods require two parameters.

 an integer representing the x coordinate of the pointer device

 an integer representing the y coordinate.

Mobile Application Development 50

IV Year – I Semester 2018-19 CSE

 Detecting and Processing Pointer Events: Let a MIDlet prompts the user to draw a line
across the screen using a pointer device. A line is drawn by pressing the pointer device at
a particular location on the canvas, then while pressed (or while holding down the mouse
button), the person drags the pointer device to another position on the canvas before
releasing the pointer device.

 A press event is detected and the pointerPressed() method is called when the pointer
device is pressed. The pointerPressed() method receives the coordinate of the pointer on
the canvas.That is the starting coordinate.

 Dragging the pointer device is a drag event and causes the pointerDragged() method to
be invoked continuously until the person stops dragging the pointer device. The
pointerDragged() method is called each time the pointer device is dragged and is passed
the coordinate of the pointer device when the drag event occurs. These coordinates are
the current coordinates.

 Finally, the release event occurs when the person removes pressure from the pointer
device (removes the finger or implement from the touch screen or releases the mouse
button). The pointerReleased() method is then called and passed the pointer device’s
coordinate on the canvas where the person released the pointer device. These are the end
coordinates.

Graphics

 The canvas is organized into a grid in which each cell of the grid is a pixel. Coordinates
identify each cell.

 An image is drawn on the canvas by using a virtual graphical device called a graphic
context, such as the rectangle and line. A graphic context is an instance of the Graphics
class.

 Reference to the graphic context is passed to the paint() method.

 Once the MIDlet leaves the paint() method, the graphic context goes out of scope. The
graphic context can no longer be used to draw on the canvas, even if reference to the
graphic context is retained.

 But, a graphic context created in association with a mutable image remains available to
the MIDlet as long as reference to the image and the image itself remains in scope.

1. Stroke Style and Color:

 Every graphic context has two characteristics you can control from within the MIDlet.
These are :

Mobile Application Development 51

IV Year – I Semester 2018-19 CSE

 Stroke style:

 Stroke style defines the appearance of lines used to draw an image on the
canvas.

 We use two kinds of stroke styles when drawing images on the canvas:

 Solid: As the names imply, the solid stroke style causes the
graphic context to use a solid line when drawing the image. The
solid stroke style is the default.

 Dotted: the dotted stroke style results in the image being drawn
using a dotted line. Skipping pixels along the lines of the image
creates the dotted stroke. The small computing device determines
the number of pixels skipped.

 Color:

 It specifies the background and foreground color of the image.

 Combining degrees of red, green, and blue creates the foreground and
background color of a graphic context. The degree of each color is
specified as an integer value within the range of 0 to 255. Zero produces
the darkest possible value of the color, and 255 produces the lightest
possible value.

 Color values 0, 0, 0 (red, green, blue) produce black, and color values 255,
255, 255 produce white.

 All integers in Java are 32 bits. Of those 32 bits, 8 bits are used to
represent each color-red, blue, and green. All color values are stored in
one integer. The 8 highest order bits are not used.

 Methods Used in stroke style:

 setStrokeStyle() method :

 determines the stroke style that will be used by a graphic context.

 void setStrokeStyle(int style)- Set the stroke style of a graphic context,
where style is either SOLID or DOTTED.

 A stroke style setting is particular to each graphic context and does not
affect other graphic contexts.

Mobile Application Development 52

IV Year – I Semester 2018-19 CSE

 For example, one graphic context can be set to a dotted stroke style and
another set to a solid stroke style. Both graphic contexts can be used to
draw images on the same canvas without affecting each other’s stroke
style.

 It requires one parameter, which is a constant that represents a stroke style.
There are two constants: SOLID and DOTTED, both of which are
members of the Graphics class.

 You can change the stroke style of a graphic context anytime within your
MIDlet by calling the setStrokeStyle() and passing the setStrokeStyle() the
constant that represents a different stroke style.

 getStrokeStyle():

 We can determine the current stroke style of a graphic context by calling
this method. It returns an integer that can be compared within your MIDlet
to the stroke style constants.

 int getStrokeStyle()

 Methods Used in Color:

 isColor():

 We have to determine whether a device supports color and the number of
colors or shades of gray that are supported by calling the appropriate
Display class method within your MIDlet.

 It returns a boolean value that is true if color is supported; otherwise a
false value is returned, indicating that the device supports the gray scale
instead of color.

 numColors():

 It returns an integer representing the number of colors or shades of gray
supported by the device.

 setColor():

 we can set the color of a graphic context by calling the setColor() method
of the Graphics class.

 The setColor() method requires either one parameter or three parameters
depending on how you represent your choice of color. A color can be

Mobile Application Development 53

IV Year – I Semester 2018-19 CSE

represented as one integer or three integers, where each of the three
integers represents a color value of red, green, and blue.

 void setColor(int RGB) -Change the current color to the integer
represented by RGB. Red, green, and blue color values are consolidated
into one integer value and passed to the setColor() method.

 void setColor(int red, int green, int blue)- Change the current color to
integers represented by red, green, and blue color values.

 getColor():

 Retrieve the integer value that represents the current color.

 retrieves the 32-bit color value, then using a bit mask , we have to extract
each component of the color.

 int getColor()

 int getBlueComponent():Retrieve the blue color value.

 int getGreenComponent(): Retrieve the green color value.

 int getRedComponent() : Retrieve the red color value.

 void setGrayScale(int value): Change the value of the current gray scale.

 int getGrayScale() :Retrieve the value of the current gray scale.

2. Lines

 Lines are drawn on the canvas by calling the drawLine() method.

 The thickness of the line, referred to as the weight, is typically measured in point size,
where zero is the thinnest possible line.

 We cannot easily change the weight of a line drawn on the canvas because the weight is
always one pixel. The only way to create a heavier (thicker) line is to draw multiple,
abutting lines, which appear as one thicker line on the screen.

 Method:

 drawLine() method :

 creates a line from a starting coordinate to an ending coordinate. Four
parameters are required by the drawLine() method. The first two
parameters are integers representing the starting x, y coordinate of the

Mobile Application Development 54

IV Year – I Semester 2018-19 CSE

line. The other two parameters are integers representing the ending x, y
coordinate of the line.

 Void drawLine(int x1, int y1, int x2, int y2)

 The color of the line is determined by the color setting of the graphic context used to
draw the line. We can set the color of the line by calling the setColor() method before
invoking the drawLine() method.

3. Rectangles

 A rectangle is an area of the canvas defined by four corners. We define a rectangle’s
dimensions by identifying coordinates for the upper-left corner and the lower-right
corner.

 Four types of rectangles can be drawn on a canvas. These are :

 an outlined rectangle-line segments connecting the corners are drawn. The
inside of the rectangle remains the same color as the outside of the rectangle

 filled rectangle-draws line segments to connect corners, but the inside of the
rectangle is filled with the same color as the drawn line segments

 outlined rectangle with rounded corners

 a filled rectangle with rounded corners.

 The color used to draw a rectangle must be set using the setColor() method before
drawing the rectangle. Otherwise the current color of the graphic context is used both to
color the outline and fill the inside of the rectangle, depending on the type of rectangle
being drawn.

 Methods used with Rectangle:

 drawRect() method:

 void drawRect(int x1, int y1, int x2, int y2)

 Draw a outlined rectangle, where x1, y1 represents the coordinate of the
upper-left corner of the rectangle, and x2, y2 represents the width and
height of the rectangle.

 The first two parameters are the coordinates of the upperleft corner of the
rectangle (x1, y1), and the last two parameters are the width and height of
the rectangle (x2, y2).

Mobile Application Development 55

IV Year – I Semester 2018-19 CSE

 fillRect() method:

 void fillRect(int x1, int y1, int x2, int y2)

 Draw a filled rectangle, where x1, y1 represents the coordinate of the
upper-left corner of the rectangle, and x2, y2 represents the width and
height of the rectangle.

 void drawroundRect() method:

 void drawroundRect(int x1, int y1, int x2, int y2, int arcW, int arcH).

 We must specify the horizontal and vertical diameter of the arc used to
create the round corners. The horizontal diameter is referred to as the arc
width, and the vertical diameter is referred to as the arc height.

 Used to draw a rounded rectangle, where x1, y1 represents the coordinate
of the upper-left corner of the rectangle, and x2, y2 represents the width
and height of the rectangle. arcW is the angle for the width of the arc, and
arcH is the angle for the height of the arc..

 The diameter represents the sharpness of the corner, where the smaller
the diameter, the sharper the corner appears. Both the horizontal and
vertical diameters are defined as integers.

 fillRoundRect() method:

 void fillRoundedRect (int x1, int y1, int x2, int y2, int arcW, int arcH)

 Used to draw a rounded filled rectangle, where x1, y1 represents the
coordinate of the upper-left corner of the rectangle, and x2, y2 represents
the width and height of the rectangle. arcW is the angle for the width of
the arc, and arcH is the angle for the height of the arc.

4. Arcs

 An arc is a curved line segment that is used to draw circles, ovals, and other curved
images.

 Drawing an arc is a bit difficult because you must define the area of the canvas that will
be covered by the arc and the angle used to draw the arc.

 The first step in drawing an arc is to decide the area of the canvas that will be covered
by the arc. The area is defined as a rectangle rather than the circumference of the arc.This
is a box in which an arc is drawn.

Mobile Application Development 56

IV Year – I Semester 2018-19 CSE

 A rectangle is defined by specifying two sets of coordinates. The first set of coordinates
(x1, y1) set the upper-left corner of the rectangle. The other set of coordinates (x2, y2) set
the lower-right corner of the rectangle.

 Once the rectangle is defined, you must define two angles used to draw the arc. An
angle is defined in degrees from 0 to 360 degrees. The first angle is the starting point of
the arc, and the other angle is the end point of the arc.

 Picture a clock. The 3 o’clock position is 0 degree. Degrees are incremented as you
move counterclockwise. The 12 o’clock position is 90 degrees, 9 o’clock is 180 degrees,
and 6 o’clock is 270 degrees. Degrees decrement as you move clockwise. Based on the
picture of the clock, you must select the angle where the arc begins to be drawn.
Likewise, you select the angle where the arc terminates.

 You can draw two kinds of arcs:

 an outlined arc: In an outlined arc, only the circumference of the arc is drawn
(like a smile).

 a filled arc- In a filled arc, the circumference of the arc is drawn, and the area
within the center and the circumference is filled with the color of the graphic
context used to draw the arc (a colored circle, for example).

 Methods used in arc:

 void drawArc():

 Void drawArc(int x1, int y1, int x2, int y2, startAngle, endAngle)

 Draw an outline arc within the rectangle defined as the first four
parameters beginning with the startAngle and terminating with the
endAngle.

 Void fillArc():

 Void fillArc(int x1, int y1, int x2, int y2, startAngle, endAngle)

 Draw a filled arc within the rectangle defined as the first four parameters
beginning with the startAngle and terminating with the endAngle

5. Text:

 Displaying text using the low-level user interface differs from displaying text with the
high-level user interface.

Mobile Application Development 57

IV Year – I Semester 2018-19 CSE

 Using the high-level user interface, text is displayed by calling one of several methods
and passing the text as a parameter to those methods. Each method determines how to
display the text without requiring any direction from the user.

 When displaying text using the low-level user interface, the user controls the details of
how text is displayed.

 The user can determine the appearance of each letter of the text, the height and width of
every character, and the size of the space between characters, and other such details.

 The font used to display text determines the appearance of text on the screen. We identify
fonts by name, such as Times Roman and Arial. A font name represents a set of font
metrics that determine the pixels necessary to generate alphanumeric characters and
symbols on the screen and on a printed page.

 The J2SE specification defines the FontMetrics class that is used to specify every detail
of the font; but the J2ME specification does not support the FontMetrics class.There
are three font metrics that are controllable by a MIDlet. These are :

 The font face- font face is similar to selecting the font name in a word
processing. The selections are:

 default system font face- is the font face that the device chooses

 monospace font face- e is a font face in which all characters are the same
width.

 proportional font face- is a font face in which the width of a character is
determined by the nature of the character. For example, the letter W is
wider than the letter A, and the letter I has a smaller width than A.

 the font style- There are four font styles to choose from, which are identical to
styles available in a word processor. These are plain, bold, italic, and underlined.
You can apply multiple font styles to text by using the OR (|) operator.

 the font size- Font sizes are small, medium, and large. The small computing
device determines the actual size of the font.

 Font faces, font styles, and font sizes are associated with font constants that are used to
identify your font request.

Mobile Application Development 58

IV Year – I Semester 2018-19 CSE

Font Constants

 The selection of a font is a request and not a directive to the device. The device will
match your request to available fonts, but there is no guarantee that your request will be
fulfilled.

 Methods used in text:

 void drawChar(char character, int x, int y, int anchor)-

 Used for drawing one character on the canvas.

 It requires four parameters. The first parameter is the character. The next
two parameters are the x, y coordinates of the upper-left corner of the
boundary box. And the last parameter is the anchor point.

 It draws a character at the x, y coordinate on the canvas using the specified
anchor point.

 void drawChars(char[] data, int offset, int len, int x, int y, int anchor)

 It is used to draw an array of characters or a subset of a character array.

 The drawChars() method requires six parameters. The first parameter is
the character array. The second parameter is an integer representing the
offset in the array where the first character to be drawn is located. The
third parameter indicates how many characters are to be drawn starting at
the offset specified by the second parameter. The fourth and fifth
parameters are the x, y coordinates of the boundary box’s anchor point.

Mobile Application Development 59

IV Year – I Semester 2018-19 CSE

 Draw a subset of a character array the length specified by len and
beginning with the character indicated by the offset. Draw the subset at the
x, y coordinate on the canvas using the specified anchor point.

 void drawString (String str, int x, int y, int anchor)

 It requires four parameters. The first parameter is the string. The second
and third parameters are the x, y coordinates that specify the anchor point
coordinate. And the last parameter specifies the part of the boundary box
to locate the anchor point.

 Draw a string at the x, y coordinate on the canvas using the specified
anchor point.

 void drawSubstring(String str, int offset, int len, int x, int y, int anchor)-
Draw a substring the length specified by len and beginning with the character
indicated by the offset. Draw the substring at the x, y coordinate on the canvas
using the specified anchor point.

 Font getFont()-Return the font of the graphic context.

 void setFont(Font font)-

 It is a member of the Graphics class. It is used to set the font of the graphic
context, where font is the new font.

 It requires one parameter, which is an instance of the Font class. obtain the
instance of the Font class by calling the getFont() method. The getFont()
method requires three parameters. The first parameter is the font face, the
second parameter is the font style, and the last parameter is the font size.

graphics.setFont(Font.getFont(Font.PROPORTIONAL,Font.BOLD|Font.ITALIC,
Font.SMALL);

 Aligning Text:

 When drawing text on the canvas we must know measurements of text that is
already on the canvas as well as measurements of text being drawn.

 Text is drawn within a virtual bounding box, which is an invisible box that
defines the boundaries of the text.

 First you specify a position on the screen by setting coordinates. Let’s call them x,
y. Next, you specify an anchor point that identifies the relationship of the
coordinate to the bounding box.

Mobile Application Development 60

IV Year – I Semester 2018-19 CSE

Anchor Point Constants

 Suppose you want the coordinates to be the upper-left corner of the boundary box,
then we specify the anchor point TOP | LEFT. If we want the coordinates to
represent the lower-right corner of the boundary box, then use the BOTTOM |
RIGHT anchor point.

 The width and height of the text determine the coordinate of the opposite corner
of the boundary box. There are three horizontal values, LEFT, HCENTER,
and RIGHT, and three vertical values, TOP, BASELINE, and BOTTOM.
Horizontal and vertical values define the location within the bounding box of the
specified coordinate. The values are combined to define an anchor point. We pick
a location on the screen, and if we want that position to be the upper-right of the
bounding box, we set the anchor point to GRAPHICS.TOP | GRAPHICS.RIGHT.

 Text is measured by following parameters:

 Ascent- is the measurement from the baseline of the text to the top of the
highest character in the text.

 The ascent is measured by calling the getBaselinePosition()
method. No parameters are required by this method because the
method analyzes text already associated with the graphic context
used to draw text on the canvas. It returns an integer that represents
the pixels between the baseline and the top character within the
text.

 Descent- is from the baseline to the lowest character in the text. Let’s
examine the following text to identify the ascent and descent: “We work
together.” The ascent is the distance between the bottom and the top of the
W because the W is the highest character in the text. The bottom of the W
is the baseline. The descent is the distance between the bottom of the g

Mobile Application Development 61

IV Year – I Semester 2018-19 CSE

and the bottom of the W, or the bottom of any of the other characters of
the text, because the g is the lowest character within the text

 Leading- is the distance between the descent and ascent of abutting lines
of text.

 font height- is the sum of the ascent, leading, and descent.

 The font height is measured by calling the getHeight() method.
The getHeight() method does not require any parameters and
returns an integer representing the pixel measurement of the font
height

 Advance- is the text length, including spaces between characters. We can
determine the advance by calling the following methods:

 The charWidth() method of Font class measures the width of
one character and requires one parameter, which is a character.
This method returns an integer representing the width of the
character in pixels.

 The charsWidth() method measures a series of characters in a
character array. This method requires three parameters. The first
parameter is the character array. The second parameter is an
integer representing the first character of the series being
measured. The last parameter is an integer representing the length
of the series.

 The substringWidth() method measures a substring of characters
within a string and also requires three parameters. The first
parameter is the string. The second parameter is an integer
representing the first character of the substring, and the last
parameter is an integer representing the length of the substring.

6. Images

 An image is an instance of an Image object that has been previously created either by
your MIDlet using a graphic context, or by graphics software.

 There are two kinds of images:

 a mutable image can be modified by your MIDlet

 an immutable image cannot be modified by your MIDlet

Mobile Application Development 62

IV Year – I Semester 2018-19 CSE

 Methods used in Image:

 createImage() method:

 It requires one parameter or two parameters depending on whether you are
drawing a mutable or immutable image.

 One parameter is required for the createImage() method if the
instance is used to draw an immutable image. The parameter is the
file name of the image, including the full directory path.

 Image image = Image.createImage(“/myImage.png”);

 Two parameters are required for the createImage() method if the
instance is used to draw a mutable image. These parameters define
the height and width in pixels of the memory block used to store
the mutable image as it is being drawn. The following code
segment creates a block of memory 20 pixels high and 10 pixels
wide for a total image size of 200 pixels.

 Image tmpImg = Image.createImage(20, 10);

 drawImage() method:

 void drawImage(Image img, int x, int y, int anchor)

 Draw the image specified in img, where the upper-left corner of the image
is positioned at coordinate x, y using anchor point referenced by anchor.

 We can create a mutable image by calling the getGraphics() method of the
Image class to return an instance of the Graphics class, which is the
graphic context used to draw the mutable image.

 Image image = Image.createImage(20, 10);

 Graphics graphic = image.getGraphics();

 graphic.drawLine(5, 5, 20, 20);

 The drawImage() requires four parameters.

 The first parameter is the instance of the Image class that
references the image.

 The next two parameters are integers that represent the coordinate
used to position the image on the canvas. The image is drawn

Mobile Application Development 63

IV Year – I Semester 2018-19 CSE

within a virtual boundary box similar to the boundary box used to
draw text on the canvas. The coordinate represents the upper-left
corner of the boundary box.

 The last parameter is an integer that represents the portion of the
image bounding box that is anchored at the specified coordinate.
The image anchor point is used to finely adjust the location of the
image within the boundary box.

6. Repositioning Text and Images

 Each position on a canvas is organized by a row and column grid, where each coordinate
identifies a pixel. The upper-left corner of the canvas is always coordinate 0, 0.

 Coordinates are used with methods of a graphic context to identify locations on the
canvas for drawing and positioning an image.

 Coordinates are passed explicitly to these methods by providing exact coordinates, such
as 5, 10, or implicitly by referencing an offset of an explicit coordinate, such as 5 + 3, 10
+ 3. In either case, coordinates are based on the 0, 0 coordinate being the upper-left
corner of the canvas.

 Sometimes we need to proportionally shift all text and images to a new location on the
canvas. There are two techniques we can use to make this move:

 We can change all coordinates of an image to reflect its new position,

 We can move the entire grid and let the device adjust all the coordinates based on
the new position of the upper-left corner of the grid on the canvas. This technique,
called translating coordinates.It is a more efficient way of moving text and
images than modifying coordinates within your MIDlet.

Mobile Application Development 64

IV Year – I Semester 2018-19 CSE

 Methods used for translate():

 void translate (int x, int y)- Translate the specified by x, y coordinate.

 int getTranslateX()- Retrieve the translated x coordinate.

 int getTranslateY() -Retrieve the translated y coordinate.

Clipping Regions:

 Clipping is a region in which we can define a region on the screen

 Anything included or passing in the clipping region is been displayed and the rest is
rejected.

 Clipping is mostly used while creating animations.

 A clipping region is a rectangular box on the canvas that is used to draw image.

 The entire canvas is the default clipping region, so the image is always drawn fully when
we use the drawImage () method.

 If we define a clipping region than the portion of the image that appears within the
clipping region is drawn on the canvas, other portion of image still exist but are not
drawn.

 Methods:

 setClip():

 We set the clipping region by calling the setClip() method of the Graphics class.

 The setClip() method requires four parameters.

 The first two parameters are integers representing the upper-left corner
coordinates of the clipping region,

 The third and fourth parameters are integers representing the width and
height of the clipping region.

 clipRect():

 We can reduce the size of the clipping region by calling the clipRect() method,
which requires four parameters which we used in setClip() method.

 There are another four methods available to get the attribute information about the
 clipping region. Those are

Mobile Application Development 65

IV Year – I Semester 2018-19 CSE

 getClipX(),getClipY(),getClipHeight(),getClipWidth()

 The getClipX() method and getClipY() method return upper-left coordinates of
the existing clipping region.

 The getClipHeight() method returns the height and getClipWidth() method
returns the width of the existing clipping region.

Animation:

 Animation is the simulation of motion on the screen caused by the timed drawing of a
series of related images.

 Each image is referred to as a cell in animation terminology but, we’ll use the term image
instead because a cell also refers to an intersection of the grid used for positioning objects
on the canvas.

 Each image in the animation must relate to the image currently displayed and the next
image to be displayed.

 The first step in animation is to carefully lay out the progression of images that we’ll
need to display in order to create the illusion of movement.

 Next, create each image so that each is slightly different from the previous image.

 We can create these images as either mutable or immutable.

 A mutable image is created using methods described in this chapter.

 An immutable image is created using graphics software or digital photography.

 Once images are drawn or loaded from a file, you display each image by first calling the
createImage () method to create an instance of the Image class and then calling the
drawImage () method.

 Timing the display of each image is controlled by a timing loop (sometimes within a
while loop) so that the animation recycles to the first image after the last image is
displayed.

Mobile Application Development 66

IV Year – I Semester 2018-19 CSE

UNIT-II

Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1) Which of the following is a low level display []
a) Alert b) TextBox c) Canvas d) Screen

2) The three parameters required by Command class constructor are
____________, _____________, ____________.
3) Classes that implement Command Listener must implement ____________
 method.
4) The method itemStateChanged() is in the ______ class. []
a) ChoiceGroup b) Item c) Canvas d) Command
5) commandAction() takes instances of ___________ as parameters. []
 a) Command Class b) Displayable Class c) both a & b d) none
6) ___________ class is used for displaying error and warning messages on the
 screen. []
 a) Alert b) Canvas c) Item d) Ticker
7) ________class is used to display message on the screen. []
 a) Alert b) Canvas c) Item d) StringItem
8) An immutable image is drawn on a _________ and immutable image is drawn
 on a __________. []
 a) Screen, canvas b) canvas, screen c) screen, screen d) Canvas, Canvas
9) TextBox class is derived from _________ where as TextField class is derived
 from __________. []
 a) Screen, Item b) Item, Screen c) Item, Item d) Screen, Screen.
10) ___________ class is used to scroll the text horizontally. []
a) Alert b) Canvas c) Item d) Ticker
11) What is the purpose of paint() method of Displayable class?
12) What are the low level components that generate low level events?
13) The Item class is derived from the_________ class. []

a) Canvas b) Screen c) Form d) All
14) An exclusive instance of ChoiceGroup class appears as a set of

____________. []
a) Radio Buttons b) Check Boxes c) TextField d) ImageItem

15) Every graphic context has two characteristics____________ and
_____________. []
a) Stroke-style b) color c) Paint d) both a & b

Mobile Application Development 67

IV Year – I Semester 2018-19 CSE

16) The ______________ class creates an animated progress bar that graphically
represents the status of a process. []
a) Gauge b) Canvas c)Bar d) none

17) The screen class and its derived classes are referred to as __________ user
interface components. []
a) High level Display b) Low level Display c) Graphical Display d) None

18) An image is drawn on a canvas using ___________________. []
a) Pen b) Virtual Pen c) Pointer d) both a&b

19) The action performed by “Priority” Parameter in Command Class is
___________ []
a) To set the Place of Commands b) To resolve conflicts when priorities equal
c) Application Manager dependent d) All the above

20) Alert dialogue box is designed to ______________ []
a) To display any type of message b) Retrieve input from the user
c) To display error Message d) None

21) By using Ticker class we can control______________ []
 a)Location on the screen where Scrolling occurs b) Speed of Scrolling
 c) both a&b d) None
22)The instance of the TextBox class______________ []
 a) Must be contained in an instance of Form class
 b) Must not be contained in an instance of Form class
 c) May or may not be contained in an instance of Form class
 d) None
23) The DateField class is used to _______date/time into a MIDlet. []
 a) Display b) edit c) input d) All the above
24) A Command event is automatically generated when the user selects an item
 from an instance of ___ []
 a) ChoiceGroup class b) List class c) Radio Group class d) All of the above

SECTION-B

Descriptive Questions

1. Explain about the methods used in Display class with an example?

2. Explain about Command class with an example

3. Explain about Ticker class with an example.

4. Write the Display class hierarchy?

Mobile Application Development 68

IV Year – I Semester 2018-19 CSE

5. Explain about methods used in a) Form class b) Alert class

6. Differentiate between TextField and TextBox.

7. Write about any 10 methods used inn Graphics Class?

8. Write short notes on

 a) Canvas Layout b) User interactions

9. Differentiate between List class and ChoiceGroup class?

10. Demonstrate working of CommandListener Interface with an example?

11. Discuss how warning message and error messages can be displayed on the
screen?

12. Discuss how StringItem and ImageItem class differs from other classes
derived from Item class?

13. Discuss how TextBox class differs from TextField class?

14. Show how the user interactions will be done in Low-Level Display?

15. Discuss how Displaying Text in Low-Level User Interface differs from
displaying Text with High-Level User Interface?

16. Create an animated progress bar that graphically represents the status of a
process.

17. Develop a MIDlet that prints your name on emulator.

Mobile Application Development 1

IV Year – I Semester 2018-19 CSE

Unit-III

Objective:

 To access and work with database under the J2ME.

Syllabus:

Database concepts Record Management System: Record Storage, Writing and Reading Records,

Writing and Reading Mixed Data Types, Record Enumeration, Sorting Records, Searching

Records, Record Listener. J2ME Database Concepts: Data, Databases, Database Schema,

Overview of the JDBC Process, Database Connection.

Learning Outcomes:

Student will be able to:

 Organize records in Record store.

 Search and sort single data type records in a Record store.

 Search and sort Mixed data type records in a Record store.

 Explain about database schema.

 Load the JDBC driver and establish a connection to database.

 Create and Execute an SQL statement.

Mobile Application Development 2

IV Year – I Semester 2018-19 CSE

Record Management System

Record Storage:
 Many operating environments contain a file system that is used to store information

in nonvolatile resources such as a CD-ROM and disk drive.
 Not all small computing devices have a file system and therefore are unable to store

information.
 The Record Management System (RMS) provides a file system–like environment

that is used to store and maintain persistence in a small computing device.
 RMS is a combination file system and database management system that enables to

store data in columns and rows similar to the organization of data in a table of a
database.

 We can use RMS to perform the functionality of database management software
(DBMS). That is, we can insert records, read records, search for particular records,
and sort records stored by the RMS.

 Although RMS provides database functionality, but RMS is not a relational database,
and therefore we cannot use SQL to interact with the data.

 Instead, we’ll use the RMS application programming interface and the enumeration
application programming interface to sort, search, and otherwise manipulate
information stored in persistence.

The Record Store:
 RMS stores information in a record store.
 A record store compares to a flat file used for data storage in a traditional file system

and to a table of a database.
 A record store is a collection of records organized as rows (records) and columns

(fields).
 RMS assigns to each row a unique integer that identifies the row in the record store,

which is called the record ID.
 Conceptually we can visualize a record store as rows and columns, technically there

are two columns. The first column is the record ID, and the other column is an array
of bytes that contains the persistent data.

Record Store Scope:
 We can create multiple record stores as required by our MIDlet as long as the name of

each record store is unique.
 The name of a record store must be a minimum of one character and not more than 32

characters. Characters are Unicode, and the name is case sensitive.
 Record stores can be shared among MIDlets that are within the same MIDlet suite.
 Record stores must be uniquely named within a MIDlet suite, although duplicate

names can be used for record stores in other MIDlet suites.

Mobile Application Development 3

IV Year – I Semester 2018-19 CSE

Setting up a Record Store:

 The openRecordStore () method is called to create a new record store and to open an
existing record store.

 This method creates or opens a record store depending on whether the record store
already exists within the MIDlet suite.

 The openRecordStore () method requires two parameters. The first parameter is a
string containing the name of the record store.

 The second parameter is a boolean value indicating whether the record store should
be created if the record store doesn’t exist.
 A true value causes the record store to be created if the record store isn’t in

the MIDlet suite and also opens the record store.
 A false value does not create the record store if the record store isn’t located.

 We close a record store by calling the closeRecordStore() method. The
closeRecordStore() method does not require any parameters.

 A record store remains in nonvolatile memory even after the small computing device
is powered down.

 We can manage nonvolatile memory by removing all record stores that are no longer
being used by MIDlets running on the device.

 A record store can be deleted by calling the deleteRecordStore() method.
 This method requires one parameter, which is a string containing the name of

the record store that is to be removed from the device.

Writing and Reading Records:

 Once our MIDlet opens a record store, the MIDlet can write records to the record store

and read information already stored there using one of two techniques for writing and

reading records.

Mobile Application Development 4

IV Year – I Semester 2018-19 CSE

 The first technique is used to write and read a string of data and is used primarily

whenever you have one data column in the record store.

 The other technique is used to write and read multiple columns of data of different

types such as string, integer, and boolean.

Let’s we discuss the technique for writing a string to a record store.

 addRecord():

 The addRecord() method is used to write a record to the record store.

 The addRecord() method requires three parameters.

 The first parameter is a byte array containing the byte value of the string being

written to the record store.

 The second parameter is an integer representing the index of the first byte of the

byte array that is to be written to the record store.

 The third parameter is the total number of bytes that is to be written to the record

store.

 The first step in writing a string to a record store is to create an instance of a String and

assign text to the instance. Next, the string must be converted to a byte array by calling

the getBytes() method, as shown here. The getBytes() method returns a byte array.

string.getBytes()

 The second parameter of the addRecord() method is usually zero, and the third parameter

is the length of the byte array, indicating that the entire byte array should be written to the

record store.

getNumRecords():

 Our MIDlet needs to know the number of records in a record store in order to read all the

records from the record store.

 The getNumRecords() method of the RecordStore class returns an integer that represents

the total number of records in the record store.

getRecord():

 The getRecord() method returns bytes from the RecordStore, which are stored in a byte

array that you create.

 The getRecord() method requires three parameters.

Mobile Application Development 5

IV Year – I Semester 2018-19 CSE

 The first parameter is the record ID, as described earlier in this chapter.

 The second parameter is the byte array that you create for storing the record.

 The third parameter is an integer representing the position in the record from

which to begin copying into the byte array.

Creating a New Record and Reading an Existing Record:
Writing and Reading String-Based Records

Here are the steps required to write and read string-based records:

 1. Declare references to classes.

 2. Create instances of classes and assign those instances to references.

 3. Open a record store and create a new record store if the record store

 doesn’t exist.

 4. Display any errors that occur when opening/creating a record store.

 5. Create data in the form of a string.

 6. Convert data to a byte array.

 7. Write the byte array to the record store.

 8. Create a byte array before reading data from the record store.

 9. Determine the number of records in the record store.

 10. Loop through each record in the record store.

 11. Determine whether the size of the current record exceeds the length of the

 byte array. If so, then create a new byte array large enough to hold the record.

 12. Copy the current record from the record store to the byte array.

 13. Convert the byte array to a string and display the string on the screen.

 14. Close the record store and display any errors that occur as the record store

 is closed.

 15. Remove the record store and display any errors that occur as the record

 store is being removed.

import javax.microedition.rms.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.io.*;
public class WriteReadExample extends MIDlet implements CommandListener
{

Mobile Application Development 6

IV Year – I Semester 2018-19 CSE

 private Display display;
 private Alert alert;
 private Form form;
 private Command exit;
 private Command start;
 private RecordStore recordstore = null;
 public WriteReadExample()
 {
 display = Display.getDisplay(this);
 exit = new Command("Exit", Command.SCREEN, 1);
 start = new Command("Start", Command.SCREEN, 1);
 form = new Form("Record");
 form.addCommand(exit);
 form.addCommand(start);
 form.setCommandListener(this);
 }
 public void startApp()
 {
 display.setCurrent(form);
 }
 public void pauseApp()
 {
 }
 public void destroyApp(boolean unconditional)
 {
 }
 public void commandAction(Command command, Displayable displayable)
 {
 if (command == exit)
 {
 destroyApp(true);
 notifyDestroyed();
 }
 else if (command == start)
 {
 try
 {
 recordstore= RecordStore.openRecordStore("myRecordStore", true);
 }
 catch (Exception error)

Mobile Application Development 7

IV Year – I Semester 2018-19 CSE

 {
 alert=new Alert("Error Creating",error.toString(), null, AlertType.WARNING);
 alert.setTimeout(Alert.FOREVER);
 display.setCurrent(alert);
 }
 try
 {
 String outputData = "First Record";
 byte[] byteOutputData = outputData.getBytes();
 recordstore.addRecord(byteOutputData, 0,byteOutputData.length);
 }
 catch (Exception error)
 {
 alert = new Alert("Error Writing",error.toString(), null, AlertType.WARNING);
 alert.setTimeout(Alert.FOREVER);
 display.setCurrent(alert);
 }
 try
 {
 byte[] byteInputData = new byte[1];
 int length = 0;
 for(intx=1;x<=recordstore.getNumRecords(); x++)
 {
 if (recordstore.getRecordSize(x) > byteInputData.length)
 {
 byteInputData = new byte[recordstore.getRecordSize(x)];
 }
 length = recordstore.getRecord(x, byteInputData, 0);
 }
alert = new Alert("Reading", new String(byteInputData, 0,
 length), null, AlertType.WARNING);
 alert.setTimeout(Alert.FOREVER);
 display.setCurrent(alert);
}
catch (Exception error)
{
alert = new Alert("Error Reading", error.toString(),
null, AlertType.WARNING);
alert.setTimeout(Alert.FOREVER);
display.setCurrent(alert);

Mobile Application Development 8

IV Year – I Semester 2018-19 CSE

}
try
{
recordstore.closeRecordStore();
}
catch (Exception error)
{
alert = new Alert("Error Closing", error.toString(),
null, AlertType.WARNING);
alert.setTimeout(Alert.FOREVER);
display.setCurrent(alert);
}
if (RecordStore.listRecordStores() != null)
{
try
{
RecordStore.deleteRecordStore("myRecordStore");
}
catch (Exception error)
{
alert = new Alert("Error Removing", error.toString(),
null, AlertType.WARNING);
alert.setTimeout(Alert.FOREVER);
display.setCurrent(alert);
}
}
}
}

Writing and Reading Mixed Data Types:
 It is common for records to consist of mixed data types such as string, boolean, and

integer.

 For example, We might store the customer name, customer number, and gender.

Astring is used to store a customer name, an integer to store the customer number,

and a boolean to indicate gender.

Writing and Reading Mixed Data Type Records

Here are the steps required to write and read mixed data type records:

Mobile Application Development 9

IV Year – I Semester 2018-19 CSE

1) Declare references to classes.

2) Create instances of classes and assign those instances to references.

3) Open a record store and create a new record store if the record store doesn’t exist.

4) Display any errors that occur when opening/creating a record store.

5) Create data in the appropriate data type.

6) Convert data to a byte array output stream.

7) Create a data output stream using the byte array output stream.

8) Write each column of the record to the data output stream.

9) Convert the data output stream to a byte array.

10) Write the record to the record store.

11) Close the output byte array output stream and the data output stream.

12) Display any errors that might occur while writing to the record store.

13) Create a buffer of bytes sufficient to hold a record.

14) Create a byte array input stream and a data input stream.

15) Loop through the record store, copying each column from the record store to a
variable.

16) Display the data in a dialog box.
17) Display any errors that occur when reading records from the record store.
18) Close and remove the record store.

import javax.microedition.rms.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.io.*;
public class WriteReadMixedDataTypesExample extends MIDlet implements
 CommandListener
{
 private Display display;
 private Alert alert;
 private Form form;
 private Command exit;
 private Command start;
 private RecordStore recordstore = null;
 public WriteReadMixedDataTypesExample ()
 {
 display = Display.getDisplay(this);

Mobile Application Development 10

IV Year – I Semester 2018-19 CSE

 exit = new Command("Exit", Command.SCREEN, 1);
 start = new Command("Start", Command.SCREEN, 1);
 form = new Form("Mixed Record");
 form.addCommand(exit);
 form.addCommand(start);
 form.setCommandListener(this);
 }
 public void startApp()
 {
 display.setCurrent(form);
 }
 public void pauseApp()
 {
 }
 public void destroyApp(boolean unconditional)
 {
 }

 public void commandAction(Command command, Displayable displayable)
 {
 if (command == exit)
 {
 destroyApp(true);
 notifyDestroyed();
 }
 else if (command == start)
 {
 try
 {
 recordstore = RecordStore.openRecordStore("myRecordStore", true);
 }
 catch (Exception error)
 {
 alert = new Alert("Error Creating", error.toString(), null, AlertType.WARNING);
 alert.setTimeout(Alert.FOREVER);
 display.setCurrent(alert);
 }
 try
 {
 byte[] outputRecord;

Mobile Application Development 11

IV Year – I Semester 2018-19 CSE

 String outputString = "First Record";
 int outputInteger = 15;
 boolean outputBoolean = true;
 ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
 DataOutputStream outputDataStream =new DataOutputStream(outputStream);
 outputDataStream.writeUTF(outputString);
 outputDataStream.writeBoolean(outputBoolean);
 outputDataStream.writeInt(outputInteger);
 outputDataStream.flush();
 outputRecord = outputStream.toByteArray();
 recordstore.addRecord(outputRecord, 0, outputRecord.length);
 outputStream.reset();
 outputStream.close();
 outputDataStream.close();
 }
 catch (Exception error)
 {
 alert = new Alert("Error Writing",
 error.toString(), null, AlertType.WARNING);
 alert.setTimeout(Alert.FOREVER);
 display.setCurrent(alert);
 }
 try
 {
 String inputString = null;
 int inputInteger = 0;
 boolean inputBoolean = false;
 byte[] byteInputData = new byte[100];
ByteArrayInputStream inputStream = new ByteArrayInputStream(byteInputData);
DataInputStream inputDataStream =new DataInputStream(inputStream);
for (int x = 1; x <= recordstore.getNumRecords(); x++)
{
 recordstore.getRecord(x, byteInputData, 0);
 inputString = inputDataStream.readUTF();
 inputBoolean = inputDataStream.readBoolean();
 inputInteger = inputDataStream.readInt();
 inputStream.reset();
}
inputStream.close();
inputDataStream.close();

Mobile Application Development 12

IV Year – I Semester 2018-19 CSE

alert = new Alert("Reading", inputString + " " +inputInteger + " " +inputBoolean, null,
 AlertType.WARNING);
alert.setTimeout(Alert.FOREVER);
display.setCurrent(alert);
}
catch (Exception error)
{
alert = new Alert("Error Reading",
error.toString(), null, AlertType.WARNING);
alert.setTimeout(Alert.FOREVER);
display.setCurrent(alert);
}
try
{
recordstore.closeRecordStore();
}
catch (Exception error)
{
alert = new Alert("Error Closing",
error.toString(), null, AlertType.WARNING);
alert.setTimeout(Alert.FOREVER);
display.setCurrent(alert);
}
if (RecordStore.listRecordStores() != null)
{
try
{
RecordStore.deleteRecordStore("myRecordStore");
}
catch (Exception error)
{
 alert = new Alert("Error Removing",
 error.toString(), null, AlertType.WARNING);
 alert.setTimeout(Alert.FOREVER);
 display.setCurrent(alert);
}
}
}
}
}

Mobile Application Development 13

IV Year – I Semester 2018-19 CSE

Record Enumeration:
 A record store is more like a flat file than a database management system and therefore

lacks many sophisticated features that you find in a database management system.

 For example, we cannot send an SQL query to a record store, nor can we ask a record

store to search for keywords or sort records, which is commonly performed by a database

management system.

 However, we can still perform searches and sorts of records in a record store by using the

RecordEnumeration interface.

 An Enumeration provides a way to traverse data elements.

 The Enumeration object manages how data is retrieved from the record store.

 Changes to the record store are reflected when the record store’s content is

iterated.

 We obtain a record enumeration by calling the enumerateRecords() method.

 The enumerateRecords() method requires three parameters.

 The first is the record filter used to exclude records returned from the record store.

 The second is reference to the record comparator, which is a method used to

compare records returned from the record store.

 The last parameter is a boolean value indicating whether or not the enumeration is

automatically updated when changes are made to the underlying record store.

RecordEnumeration recordEnumeration= Recordstore.enumerateRecords (null,

 null, false);

 There isn’t any filter or comparator method, and the record enumeration is not

automatically updated when a change is made to the record store.
 You then use methods of the RecordEnumeration to interact with records in the

RecordEnumeration.

 One of the most common interactions that you’ll have with a RecordEnumeration is

to step through each record of the RecordEnumeration.

 The hasNextElement() method is called to evaluate whether or not there is another

record in the RecordEnumeration.

Mobile Application Development 14

IV Year – I Semester 2018-19 CSE

 Aboolean true is returned if another record exists; otherwise, a boolean false

is returned.

while (recordEnumeration.hasNextElement())

 {

//do something

 }

 You can retrieve a record from the RecordEnumeration using one of two techniques.

 The first technique is designed to read a record that has a single data type such

as a string from the RecordEnumeration.

 The other technique reads a record that has a compound data type.

 The nextRecord() method, which returns a copy of the next record in the

RecordEnumeration. The record is passed to the constructor of the String class and is

assigned to the string variable.

String string = new String(recordEnumeration.nextRecord());

 You can move forward or back within the RecordEnumeration by calling the

nextRecord() method or previousRecord()

 The nextRecord() method is used to move to the next record,

 The previousRecord() method, which moves back one record.

 Both the nextRecord() method and the previousRecord() method return a byte array

containing a copy of the record.

Record Enumeration:

 A record store is more like a flat file than a database management system and therefore

lacks many sophisticated features that we find in a database management system.

 For example, we cannot send an SQL query to a record store, nor can we ask a

record store to search for keywords or sort records.

 However, we can still perform searches and sorts of records in a record store by using the

RecordEnumeration interface.

 An Enumeration provides a way to traverse data elements.

 Changes to the record store are reflected when the record store’s content is iterated.

 We obtain a record enumeration by calling the enumerateRecords () method.

Mobile Application Development 15

IV Year – I Semester 2018-19 CSE

 The enumerateRecords () method requires three parameters.

 The first is the record filter used to exclude records returned from the record store.

 The second is reference to the record comparator, which is a method used to

compare records returned from the record store.

 The last parameter is a boolean value indicating whether or not the enumeration is

automatically updated when changes are made to the underlying record store.

RecordEnumeration recordEnumeration = recordstore.enumerateRecords (null, null,

false);

 The enumerateRecords() method returns a RecordEnumeration.

 There isn’t any filter or comparator method, and the record enumeration is not

automatically updated when a change is made to the record store.

 You then use methods of the RecordEnumeration to interact with records in the

RecordEnumeration.

 One of the most common interactions that you’ll have with a RecordEnumeration is to

step through each record of the RecordEnumeration.

 The hasNextElement() method is called to evaluate whether or not there is another

record in the RecordEnumeration.

 You can retrieve a record from the RecordEnumeration using one of two techniques.

 The first technique is designed to read a record that has a single data type such as

a string from the RecordEnumeration.

 The other technique reads a record that has a compound data type.

nextRecord():

 The nextRecord() method, which returns a copy of the next record in the

RecordEnumeration.

 The record is passed to the constructor of the String class and is assigned to the

string variable.

String string = new String(recordEnumeration.nextRecord());

 The record is passed to the constructor of the String class and is assigned to the

string variable.

Mobile Application Development 16

IV Year – I Semester 2018-19 CSE

 We can move forward or back within the RecordEnumeration by calling either the

nextRecord() method, which moves to the next record, or the previousRecord()

method, which moves back one record. Both the nextRecord() method and the

previousRecord() method return a byte array containing a copy of the record.

When we create a RecordEnumeration, it is positioned at the top. The top is not the first

record.

 We must call the nextRecord() method to move to the first record.

 We can move to the last record by calling the previousRecord() method while at

the top of the RecordEnumeration.

 We can return to the top of the RecordEnumeration by calling the reset() method.

 numRecords() method is used to determine the number of records there are in the

RecordEnumeration.

 The numRecords() method returns an integer representing the total

number of records.

 nextRecordId() method is used to determine the record ID of the next record.

 previousRecordId() method is used to determine the record ID of the previous

record.

 The keepUpdated() method is used to set automatic updating of the

RecordEnumeration.

 The keepUpdated() method has one parameter, which is a boolean value

indicating whether or not the RecordEnumeration is automatically updated.

 We can check the status of the automatic updating feature by calling the

isKeptUpdated() method. This method returns a boolean value indicating

whether or not the RecordEnumeration is automatically updated.

 We can manually cause the RecordEnumeration to be rebuilt by calling the

rebuild() method. The rebuild() method should be called whenever records in the

underlying record store change and the automatic update feature is deactivated.

 We can call the destroy method to empty the contents of a RecordEnumeration

and release resources used by the RecordEnumeration. This should be done as

Mobile Application Development 17

IV Year – I Semester 2018-19 CSE

soon as the MIDlet no longer requires the RecordEnumeration in order to free

those resources for other purposes.

Reading a Record of a Simple Data type into a RecordEnumeration:

Here are the steps required to read a record of a string data type into a

RecordEnumeration:

 Declare references to classes.

 Create instances of classes and assign those instances to references.

 Open a record store and create a new record store if the record store doesn’t

exist.

 Display any errors that occur when opening/creating a record store.

 Create data in the appropriate data type.

 Convert data to a byte array.

 Write the record to the record store.

 Display any errors that might occur while writing to the record store.

 Create a RecordEnumeration.

 Loop through the RecordEnumeration, copying each record to a variable.

 Display the data in a dialog box.

 Display any errors that occur when reading records from the

RecordEnumeration.

 Close and remove the RecordEnumeration and the record store.

 import javax.microedition.rms.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.io.*;
public class RecordEnumerationExample extends MIDlet implements CommandListener
{
 private Display display;
 private Alert alert;
 private Form form;
 private Command exit;
 private Command start;
 private RecordStore recordstore = null;
 private RecordEnumeration recordEnumeration = null;
 public RecordEnumerationExample ()
 {

Mobile Application Development 18

IV Year – I Semester 2018-19 CSE

 display = Display.getDisplay(this);
 exit = new Command("Exit", Command.SCREEN, 1);
 start = new Command("Start", Command.SCREEN, 1);
 form = new Form("RecordEnumeration");
 form.addCommand(exit);
 form.addCommand(start);
 form.setCommandListener(this);
 }
 public void startApp()
 {
 display.setCurrent(form);
 }
 public void pauseApp()
 {
 }
 public void destroyApp(boolean unconditional)
 {
 }
 public void commandAction(Command command, Displayable displayable)
 {

 if (command == exit)

 {

 }

 destroyApp(true);

 notifyDestroyed();

 else if (command == start)

 {

 try

 {

 recordstore = RecordStore.openRecordStore("myRecordStore", true);

 }

 catch (Exception error)

 {

 alert = new Alert("Error Creating",

 error.toString(), null, AlertType.WARNING);

 alert.setTimeout(Alert.FOREVER);

 display.setCurrent(alert);

Mobile Application Development 19

IV Year – I Semester 2018-19 CSE

 }

 try

 {

 String outputData[] = {"First Record","Second Record", "Third Record"};

 for(intx=0;x<3;x++)

 {

 byte[] byteOutputData = outputData[x].getBytes();

 recordstore.addRecord(byteOutputData, 0, byteOutputData.length);

 }

 }

 catch (Exception error)

 {

 alert = new Alert("Error Writing",error.toString(), null, AlertType.WARNING);

 alert.setTimeout(Alert.FOREVER);

 display.setCurrent(alert);

 }

 try

 {

 StringBuffer buffer = new StringBuffer();

 recordEnumeration =recordstore.enumerateRecords(null, null, false);

 while (recordEnumeration.hasNextElement())

 {

 buffer.append(new String(recordEnumeration.nextRecord()));

 buffer.append("\n");

 }

 alert = new Alert("Reading",buffer.toString(), null, AlertType.WARNING);

 alert.setTimeout(Alert.FOREVER);

 display.setCurrent(alert);

 }

 catch (Exception error)

Mobile Application Development 20

IV Year – I Semester 2018-19 CSE

 {

alert = new Alert("Error Reading", error.toString(), null, AlertType.WARNING);

 alert.setTimeout(Alert.FOREVER);

 display.setCurrent(alert);

 }

 try

 {

 recordstore.closeRecordStore();

 }

 catch (Exception error)

 {

 alert = new Alert("Error Closing",

 error.toString(), null, AlertType.WARNING);

 alert.setTimeout(Alert.FOREVER);

 display.setCurrent(alert);

 }

 if (RecordStore.listRecordStores() != null)

 {

 try

 {

 RecordStore.deleteRecordStore("myRecordStore");

 recordEnumeration.destroy();

 }

 catch (Exception error)

 {

alert = new Alert("Error Removing", error.toString(), null, AlertType.WARNING);

 alert.setTimeout(Alert.FOREVER);

 display.setCurrent(alert);

 }

}

}

Mobile Application Development 21

IV Year – I Semester 2018-19 CSE

}

}

 Reading a Mixed Data Type Record into a RecordEnumeration:

Here are the steps required to read a mixed data type record into a RecordEnumeration:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Open a record store and create a new record store if the record store doesn’t exist.

4. Display any errors that occur when opening/creating a record store.

5. Create data in the appropriate data type.

6. Convert data to a byte array output stream.

7. Create a data output stream using the byte array output stream.

8. Write each column of the record to the data output stream.

9. Convert the data output stream to a byte array.

10. Write the record to the record store.

11. Close the output byte array output stream and the data output stream.

12. Display any errors that might occur while writing to the record store.

13. Create a buffer of bytes sufficient to hold a record.

14. Create a byte array input stream and a data input stream.

15. Create a RecordEnumeration.

16. Loop through the RecordEnumeration, copying each column from the record store to

a variable.

17. Display the data in a dialog box.

18. Display any errors that occur when reading records from the record store.

19. Close and remove the RecordEnumeration and the record store.

Program:
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.DataInputStream;
import java.io.DataOutputStream;

import javax.microedition.lcdui.Alert;
import javax.microedition.lcdui.AlertType;
import javax.microedition.lcdui.Command;

Mobile Application Development 22

IV Year – I Semester 2018-19 CSE

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;
import javax.microedition.midlet.MIDlet;
import javax.microedition.rms.RecordStore;

public class J2MEWriteReadMixedDataTypesExample extends MIDlet implements
CommandListener {
 private Display display;

 private Alert alert;

 private Form form = new Form("Mixed Record");

 private Command exit = new Command("Exit", Command.SCREEN, 1);

 private Command start = new Command("Start", Command.SCREEN, 1);

 private RecordStore recordstore = null;

 public J2MEWriteReadMixedDataTypesExample() {
 display = Display.getDisplay(this);
 form.addCommand(exit);
 form.addCommand(start);
 form.setCommandListener(this);
 }

 public void startApp() {
 display.setCurrent(form);
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }

 public void commandAction(Command command, Displayable displayable) {
 if (command == exit) {

Mobile Application Development 23

IV Year – I Semester 2018-19 CSE

 destroyApp(true);
 notifyDestroyed();
 } else if (command == start) {
 try {
 recordstore = RecordStore.openRecordStore("myRecordStore", true);
 byte[] outputRecord;
 String outputString = "First Record";
 int outputInteger = 15;
 boolean outputBoolean = true;
 ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
 DataOutputStream outputDataStream = new DataOutputStream(outputStream);
 outputDataStream.writeUTF(outputString);
 outputDataStream.writeBoolean(outputBoolean);
 outputDataStream.writeInt(outputInteger);
 outputDataStream.flush();
 outputRecord = outputStream.toByteArray();
 recordstore.addRecord(outputRecord, 0, outputRecord.length);
 outputStream.reset();
 outputStream.close();
 outputDataStream.close();
 String inputString = null;
 int inputInteger = 0;
 boolean inputBoolean = false;
 byte[] byteInputData = new byte[100];
 ByteArrayInputStream inputStream = new ByteArrayInputStream(byteInputData);
 DataInputStream inputDataStream = new DataInputStream(inputStream);
 for (int x = 1; x <= recordstore.getNumRecords(); x++) {
 recordstore.getRecord(x, byteInputData, 0);
 inputString = inputDataStream.readUTF();
 inputBoolean = inputDataStream.readBoolean();
 inputInteger = inputDataStream.readInt();
 inputStream.reset();
 }
 inputStream.close();
 inputDataStream.close();
 alert = new Alert("Reading", inputString + " " + inputInteger + " " + inputBoolean, null,
 AlertType.WARNING);
 alert.setTimeout(Alert.FOREVER);
 display.setCurrent(alert);
 recordstore.closeRecordStore();

Mobile Application Development 24

IV Year – I Semester 2018-19 CSE

 if (RecordStore.listRecordStores() != null) {
 RecordStore.deleteRecordStore("myRecordStore");
 }
 } catch (Exception error) {
 alert = new Alert("Error Removing", error.toString(), null, AlertType.WARNING);
 alert.setTimeout(Alert.FOREVER);
 display.setCurrent(alert);
 }
 }
 }

}

Sorting Records

 Records within a RecordEnumeration are sorted by defining a comparator class that is
an implementation of the RecordComparator interface.

 Within the comparator class, we define a method that has the logic to compare each
record to determine whether the record is equal to the current record or should precede or
follow the current record within the RecordEnumeration.

 The method compare(), requires two parameters, which are two byte arrays that contain
the current record and the next record.

 int compare(byte[], rec1, byte[] rec2)- Compare two records represented as byte
array rec1 and byte array rec2 to determine the sort sequence of a
RecordEnumeration.

 These byte arrays are then converted to two strings that are compared by using the
compareTo() method of the String class:The compareTo() method returns an integer that
is equal to zero, less than zero, or greater than zero.

 A zero indicates that both strings are the same.

 An integer less than zero indicates that the next record precedes the current record in
the RecordEnumeration.

 An integer greater than zero indicates that the next record follows the current record
in the RecordEnumeration

 Based on the return value of the compareTo() method, the compare() method returns a
predefined comparison value. These are:

Mobile Application Development 25

IV Year – I Semester 2018-19 CSE

 RecordComparator.EQUIVALENT

 RecordComparator.PRECEDES

 RecordComparator.FOLLOW

 We pass reference to the instance of the RecordComparator() as the second parameter of
the enumerateRecords() method. The enumerateRecords() then calls the compare()
method whenever there is a need to sort records within the RecordEnumerator.

 The direction of the sort is controlled by the logic that you create within the compare()
method.

 If you want the sort to appear in ascending order, then return the
RecordComparator .PRECEDES when the return value of the compareTo()
string is less than the current record , RecordComparator.FOLLOW when
the return value is greater than the current record.

 If you want the sort to appear in descending order, then return the
RecordComparator.FOLLOW when the return value of the compareTo()
string is less than the current record and RecordComparator.PRECEDES
when the return value is greater than the current record.

Mobile Application Development 26

IV Year – I Semester 2018-19 CSE

Sorting Single Data Type Records in a RecordEnumeration:

 The following are the steps to sort single type Records in a RecordEnumeration:

Mobile Application Development 27

IV Year – I Semester 2018-19 CSE

Sorting Mixed Data Type Records in a RecordEnumeration:

 The following are the steps to sort Mixed type Records in a RecordEnumeration:

Searching Records

 Searching is referred to as filtering, where the filter is defined by the search criteria.

 Records that match the search criteria are copied into the RecordEnumeration. Those not
matching the search criteria are filtered from the RecordEnumeration.

 The RecordFilter interface is used when searching for a record. You must define two
methods when defining an implementation of the RecordFilter interface.

Mobile Application Development 28

IV Year – I Semester 2018-19 CSE

 matches() method –

 contains the logic necessary to determine whether a column fits the search
criteria and returns a boolean value indicating whether or not there is a
match.

 Logic contained in the matches() method reads one or multiple columns
from the current record and then applies logical operators to determine
whether the record meets the search criteria.

 We determine the logic used to decide whether or not a record should or
should not be included in the RecordEnumeration.

 We can sort the filtered records by first searching for a subset of records in
the record store, then sorting those records.

boolean matches(byte[] candidate)-Search a record for a specific value.

 filterClose() method-frees resources used by the implementation of the
RecordFilter interface once the search is completed.

Searching Single Data Type Records:

 The following are the steps required to search using a data type of a record:

Mobile Application Development 29

IV Year – I Semester 2018-19 CSE

 Searching Mixed Data Type Records:

 Here are the steps required to search a mixed data type record:

RecordListener:

 Applications have the ability to receive notifications whenever a record is added,
removed or changed in a record store.

 The instance of the RecordListener interface is notified whenever one of three changes is
made to the record store.

 These are when a record is added, modified, or deleted from the record store.

 The RecordListener interface must define three methods:

 recordAdded()

Mobile Application Development 30

IV Year – I Semester 2018-19 CSE

 recordChanged()

 recordDeleted()

 All three methods require two parameters.

 The first parameter is reference to the record store that has changed,

 The second is an integer indicating the record ID that was added, modified, or
removed from the record store.

J2ME Database Concepts

DATA

 A CDC-based J2ME application interacts with commercial DBMSs by using a
combination of Java data objects that are defined in the Java Database Connection
(JDBC) specification and by using the Structured Query Language (SQL).

 The JDBC interface forms a communications link with a DBMS, while SQL is the
language used to construct the message (called a query) that is sent to the DBMS to
request, update, delete, and otherwise manipulate data in the DBMS.

 We use data in everyday life, such as when you dial a telephone number or log into a
computer network using a user ID and password. The telephone number, user ID, and
password are types of data.

 Information consists of one or more words that collectively infer a meaning, such as a
person’s address.

Mobile Application Development 31

IV Year – I Semester 2018-19 CSE

 Data refers to an atomic unit that is stored in a DBMS and is sometimes reassembled into
information.

 Examples of data are a person’s street address, city, state, and zip code. Each of these is
an atomic unit that is commonly found in a DBMS.

 A J2ME application can access one or multiple atomic units as required by the
application. Data is organized in a database so that a J2ME application can quickly find,
retrieve, update, or delete one or more data elements.

DATABASES

 A database is a collection of data.

 Java and Java’s IO classes can create a own database, or can interact with a commercially
available DBMS.

 DBMSs use proprietary and public domain algorithms to assure fast and secure
interaction with data stored in the database. Most DBMSs use widely accepted relational
database model.

 A database model is a description of how data is organized in a database. In a relational
database model, data is grouped into tables using a technique called normalization.

 Once a database and at least one table are created, a J2ME application can send SQL
statements to the DBMS to perform the following:

 Save data

 Retrieve data

 Update data

 Manipulate data

 Delete data

 Tables:

 A table is the component of a database that contains data in the form of rows and
columns.

 A row contains related data such as clients’ names and addresses. A column contains like
data such as clients’ first names. Each column is identified by a unique name, called a
column name that describes the data contained in the column.

Mobile Application Development 32

IV Year – I Semester 2018-19 CSE

 An attribute describes the characteristic of data that can be stored in the column.
Attributes include size, data type, and format.

 Database name, table name, column name, column attributes, and other information that
describe database components are known as metadata. Metadata is data about data.

 Metadata is used by J2ME applications to identify database components without needing
to know details of a column, table, or the database.

 A J2ME application can request from the DBMS the data type of a specific column. The
column type is used by a J2ME application to copy data retrieved from the DBMS into a
Java collection.

Database Schema

 A database schema is a document that defines all components of a database, such as
tables, columns, and indexes.

 A database schema also shows relationships between tables; the relationships are used to
join rows of two tables.

Mobile Application Development 33

IV Year – I Semester 2018-19 CSE

 To create a database schema, you must perform six steps:

 1. Identify information used in the existing system or legacy system that is being replaced by the
J2ME application.

2. Decompose this information into data.

 3. Define data.

4. Normalize data into logical groups.

5. Create primary and foreign keys.

6. Group data together into logical groups.

1. Identifying Information:

 The initial step in defining a database schema is to identify all information used by the
system that is being converted to J2ME technology. Information is associated with
objects—also known as entities.

 Identifying Entity. Each entity is defined by attributes. An attribute is information that
describes an entity, such as a customer name for a customer entity. The following
illustrates the entities for an order system:

Mobile Application Development 34

IV Year – I Semester 2018-19 CSE

 An entity attribute differs from data attributes .An entity attribute provides general
information about an entity, while a data attribute provides information about data that is
used by the entity.

 For example, a customer name is an entity attribute, and a customer first name and
customer last name are data attributes.

 Identifying attributes: An attribute is information commonly used to describe an entity.
For example, a customer name and address are information normally used to describe a
customer. Therefore, customer name and address are easily recognizable as attributes of a
customer entity.

 The best way to identify attributes of an entity is by analyzing instances of the entity. An
entity is like an empty order form and an instance is an order form that contains order
information. Looking at instances of an entity helps to identify attributes because we are
viewing a real entity. Instead of looking at a blank order form, we are looking at an order
form that represents a real order. We will find instances of an entity in the existing
system.

 Characteristics of an attribute: Once attributes are identified, you must describe the
characteristics of each attribute. The common characteristics found in many attributes:

Mobile Application Development 35

IV Year – I Semester 2018-19 CSE

 Attribute name: The name of the attribute uniquely distinguishes the attribute
from other attributes of the same entity.

 “First name” is an attribute name. Duplicate attribute names within the
same entity are prohibited.

 However, two entities can use the same attribute name. That is, the
customer entity and the sales representative entity can both have an
attribute called first name.

 Attribute type: An attribute type is nearly identical to the data type of a column
in a table.

 Common attribute types include numeric, character, alphanumeric, date,
time, Boolean, integer, float, and double, among other attribute types.

 Attribute size: The attribute size describes the number of characters used to store
values of the attribute. This is similar to the size of a column in a table.

 Attribute range: An attribute range contains minimum and maximum values that
can be assigned to an attribute.

 For example, the value of the “total amount” attribute of an order entity is
likely to be greater than zero and less than 10,000, assuming that no order
has ever been received that had a total amount of more than 9,999. This
range is then used to throw an error should an order be received with a
total amount outside this range.

 Attribute default value: An attribute default value is the value that is
automatically assigned to the attribute if the attribute isn’t assigned a value by the
J2ME application.

 For example, the J2ME application uses the default system date for the
date of an order if a sales representative fails to date the order. The system
date is the attribute default value.

 Acceptable values: An acceptable value for an attribute is one of a set of values
established by the business unit and includes zip codes, country codes, methods of
delivery, and simply “yes” or “no.”

 Required value: An attribute may require a value before the attribute is saved to a
table.

 For example, an order entity has an order number attribute that must be
assigned an order number.

Mobile Application Development 36

IV Year – I Semester 2018-19 CSE

 Attribute format: The attribute format consists of the way an attribute appears in
the existing system, such as the format of data.

 Attribute source: The attribute source identifies the origin of the attribute value.
Common sources are from data entry and J2ME applications (such as using the
system date as the value of the attribute).

 Comments: A comment is free-form text used to describe an attribute.

2. Decomposing Attributes to Data:

 Once attributes of entities are identified, they must be reduced to data elements. This
process is called decomposing.

 In decomposing an attribute we can easily recognize whether an attribute is already at an
atomic level. The nature of the system will determine whether or not additional
decomposition is required for an attribute.

 For example: customer name and customer address attributes. Both attributes are
not atomic, but the attributes must be at atomic level.—first name, last name, city,
state, and zip code.

 For example, customer number attribute is already atomic. So there is no need of
decomposing it. But sometimes it may be decomposed. If customer number
consists of three numbered segments: 12-24-1001. The first segment (12)
represents the sales region where the customer is located. The second segment
(24) is the branch in the sales region that handles the relationship with the
customer. And the final segment (1001) is the number that identifies the customer
within the branch and region.

 How to Decompose Attributes: The process of decomposing attributes begins by
analyzing the list of entities and their attributes. The list of attributes represents all the
information used by the existing system. The objective is to reduce each attribute to a list
of data that represents the atomic level of the attribute. It is as follows:

1. Look at each attribute and ask yourself if the attribute is atomic.

2. If the attribute isn’t atomic, it must be further decomposed. Create a list of data derived from
the attribute.

Mobile Application Development 37

IV Year – I Semester 2018-19 CSE

3. If the attribute is atomic, no further decomposition is necessary for that attribute.

4. Place the name of the attribute on the data list.

5. Review the data list developed in step 2 and repeat the decomposition process until all
attributes are atomic.

 Decomposing by Example:

The following are attributes for the customer entity:

 Customer number

 Customer name

 Customer address

 Customer telephone number

 Once the list of attributes is assembled, each attribute on the list must be decomposed.
The customer address attribute is decomposed in this example. The same process can be applied
to the other attributes. The customer address attribute is not atomic, therefore the customer
address attribute must be decomposed into the following data elements:

Mobile Application Development 38

IV Year – I Semester 2018-19 CSE

 Street address 1

 Street address 2

 City

 State

 Country

 Country code

 Postal code

 Address type (home or business)

3. Defining Data:

 Decomposing attributes results in the identification of data elements used by the existing
system. Each data element can be defined as follows:

 Data name: The unique name given to the data element, which should reflect the
kind of data

 Data type: A data type describes the kind of values associated with the data

 Data size: The size of text data is the maximum number of characters required to
represent values of the data. The size of numeric data is usually either the number
of digits or the number of bytes for binary representation.

 Data Types: A data type describes the characteristics of data associated with a data
element.

 For example, a street address is likely to be an alphanumeric data type because a
street address has a mixture of characters and numbers.

 It is very important to select the data type of a data element because the data type
that we choose typically becomes the data type of the column in the table that
contains the data.

 Many commercially available DBMSs have a common set of data types based on
the SQL set of data types:

 Character- also referred to as text Stores alphabetical characters and
punctuation

 Alpha -Stores only alphabetical characters

Mobile Application Development 39

IV Year – I Semester 2018-19 CSE

 Alphanumeric - Stores alphabetical characters, punctuation, and numbers

 Numeric- Stores numbers only

 Date/Time -Stores dates and time values

 Logical (Boolean) - Stores one of two values: true or false, 0 or 1, or yes
or no

 LOB (large object) -Stores large text fields, images, and other binary
data

4. Normalizing Data

 Normalization is the process of organizing data elements into related groups to minimize
redundant data and to assure data integrity.

 Redundant data elements occur naturally since multiple entities have the same data
elements.

 For example, an order form and invoice are both entities that contain a customer name
and address. Therefore, customer name and address are redundant.

 Redundant data makes a database complex, inefficient, and exposes the database to
problems referred to as anomalies when the DBMS maintains the database.

 Anomalies occur whenever new data is inserted into the database and when existing data
is either modified or deleted, and can cause a violation to referential integrity of the
database.

 For reporting data, the redundancy rules are violated a little because redundant data is
more efficient. It minimizes the number of joins and allows data to be summarized into
logical groups.

 Errors caused by redundant data are greatly reduced and possibly eliminated by applying
the normalization process to the list of data elements that describe all the entities in a
system. This is called normalizing the logical data model of a system.

 The normalization process consists of applying a series of rules called normal forms to
the list of data elements to:

 Remove redundant data elements.

 Reorganize data elements into groups.

Mobile Application Development 40

IV Year – I Semester 2018-19 CSE

 Define one data element of the group (called a primary key) to uniquely identify
the group. Often, two or more data elements make up the primary key, which is
referred to as a composite key.

 Make other data elements of the group (called non-key data elements)
functionally dependent on the primary key.

 Relate one group to another using the primary key.

 For example, a customer number is the primary key of a group that contains customer
information. Other data contained in the group such as the customer first name and last
name are referred to as non-key data elements. Non-key data elements are functionally
dependent on the primary key. That is, a customer name, address, and related information
cannot exist in the customer group without being assigned a customer number.

 The Normalization Process: There are five normal forms. But many industry leaders
have concluded that the fourth and fifth normal forms are difficult to implement and
unnecessary. The first three normal forms:

 First normal form (1NF) requires that information is atomic.

 Second normal form (2NF) requires data to be in the first normal form. In
addition, data elements are organized into groups eliminating redundant data.
Each group contains a primary key and non-key data, and non-key data must be
functionally dependent on a primary key.

 Third normal form (3NF) requires that data elements be in the second normal
form, and non-key data must not contain transitive dependencies.

5. Grouping Data:

 A common way to organize data elements into groups is to first assemble a list of all data
elements.

 When this is done, some data elements are duplicated because they are used by more than
one entity.

 Duplicate data elements must be removed from the list. We must be careful, because not
all data elements with similar sounding names are duplicates.

 For example, there are two data elements: zip code and postal code. These appear to have
the same meaning. A zip code is another term for postal code. A zip code is a specific
kind of postal code used in the United States. Postal code is a general term that also
applies to postal codes used by countries other than the United States.

Mobile Application Development 41

IV Year – I Semester 2018-19 CSE

6. Creating Primary Keys & Foreign Keys:

 Primary Keys: A primary key is a data element that uniquely identifies a row of data
elements within a group.

 The data selected to become the primary key may or may not exist in the data list
.Sometimes a data element, such as an order number, alone is used as the primary key.

 DBMS can be requested to automatically generate a primary key whenever a column in
the group isn’t suitable to be designated the primary key.

 Consider customer entity. A customer has a name and address as attributes. These
attributes decompose to first name, last name, street, city, state, and zip code.

 None of these data elements are suited to become a primary key because
individually and collectively none uniquely identify a customer.

 The customer first name and last name seem to uniquely identify a customer,
but upon closer analysis we see that more than one customer might have the same
first name and last name.

 If neither a single data element nor a combination of data elements uniquely identifies a
row, then we must create another data element to serve as the primary key of the table,
which is what is required in the previous example. Alternatively, you can request the
DBMS to generate a primary key automatically.

 Commercial DBMSs can generate primary keys to make the database thread safe and
reliable.

 If a J2ME application that generates a key must contain the logic to be sure that none of
the components running on different servers accidentally generate the same key.

 Foreign Keys: A foreign key is a primary key of another group used to draw a
relationship between two groups of data elements.

 Relationships between two groups are made using the value of a foreign key.

 For example: there are two groups, one contains customer information, and the other
contains order information. The primary key in the customer information group is the
customer number, and the primary key in the order information group is the order
number. Each row in the order group contains the customer number of the customer who
placed the order. The customer number in the order group is a foreign key. That is, the
customer number in the order group is the primary key of the customer information
group.

Mobile Application Development 42

IV Year – I Semester 2018-19 CSE

 The DBMS is able to join information about a customer along with information about
orders placed by that customer by joining together the customer number in both the
customer information group and the order group.

Overview of the JDBC Process

 The interaction of J2ME applications with DBMS is divided into five routines:

1. loading the JDBC driver

2. connecting to the DBMS

3. creating and executing a statement

4. processing data returned by the DBMS

5. terminating the connection with the DBMS

1. Load the JDBC Driver:

 The JDBC driver must be loaded before the J2ME application can connect to the DBMS.
The Class.forName() method is used to load the JDBC driver.

 If a developer wants to work offline and write a J2ME application that interacts with
Microsoft Access on the developer’s PC. The developer must write a routine that loads
the JDBC/ODBC Bridge driver called sun.jdbc.odbc.JdbcOdbcDriver.

 The driver is loaded by calling the Class.forName() method and passing it the name of
the driver:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

2. Connect to the DBMS:

 Once the driver is loaded, the J2ME application must connect to the DBMS using the
DriverManager.getConnection() method.

 The java.sql.DriverManager class is the highest class in the java.sql hierarchy and is
responsible for managing driver information.

 The DriverManager.getConnection() method is passed the URL of the database, along
with the user ID and password if required by the DBMS.

 The URL is a String object that contains the driver name and the name of the database
that is being accessed by the J2ME application.

Mobile Application Development 43

IV Year – I Semester 2018-19 CSE

 The DriverManager.getConnection() returns a Connection interface that is used
throughout the process to reference the database.

 The java.sql.Connection interface is another member of the java.sql package that
manages communications between the driver and the J2ME application.

 It is the java.sql.Connection interface that sends statements to the DBMS for processing.

 The following code shows the DriverManager.getConnection() method to load the
JDBC/ODBC Bridge and connect to the CustomerInformation database.

3. Create and Execute an SQL Statement:

 The next step after the JDBC driver is loaded and a connection is successfully made with
a particular database managed by the DBMS is to send an SQL query to the DBMS for
processing.

 An SQL query consists of a series of SQL commands that direct the DBMS to do
something, such as return rows of data to the J2ME application.

 The Connect.createStatement() is used to create a Statement object. The Statement object
is then used to execute a query and return a ResultSet object that contains the response
from the DBMS, which is usually one or more rows of information requested by the
J2ME application.

 The query is assigned to a String object, which is passed to the Statement object’s
executeQuery() method.

 The close() method is called to terminate the statement.

 The following code retrieves all the rows and columns from the Customers table:

Mobile Application Development 44

IV Year – I Semester 2018-19 CSE

4. Process Data Returned by the DBMS:

 The java.sql.ResultSet object is assigned the results received from the DBMS after the
query is processed.

 The java.sql.ResultSet object consists of methods used to interact with data that is
returned by the DBMS to the J2ME application.

 The following code is an abbreviated example that gives a preview of a commonly used
routine for extracting data returned by the DBMS:

 J2ME application requested a customer’s first name and last name from a table. The
result returned by the DBMS is already assigned to the ResultSet object called
Results. The first time that the next() method of the ResultSet is called, the ResultSet
pointer is positioned at the first row in the ResultSet and returns a boolean value. If
false, this indicates that no rows are present in the ResultSet.

 A true value returned by the next() method means at least one row of data is present
in the ResultSet, which causes the code to enter the do…while loop. The getString()
method of the ResultSet object is used to copy the value of a specified column in the
current row of the ResultSet to a String object. The getString() method is passed the

Mobile Application Development 45

IV Year – I Semester 2018-19 CSE

name of the column in the ResultSet whose content needs to be copied, and the
getString() method returns the value from the specified column.

5. Terminate the Connection to the DBMS:

 The connection to the DBMS is terminated by using the close() method of the
Connection object once the J2ME application is finished accessing the DBMS.

 The close() method throws an exception if a problem is encountered when
disengaging the DBMS.

 Although closing the database connection automatically closes the ResultSet, it is
better to close the ResultSet explicitly before closing the connection.

 Db.close();

Database Connection

 A J2ME application does not directly connect to a DBMS.

 The J2ME application connects with the JDBC driver that is associated with the DBMS.
Before this connection is made, the JDBC driver must be loaded and registered with the
DriverManager.

 The purpose of loading and registering the JDBC driver is to bring the JDBC driver into
the Java Virtual Machine (JVM).

 The JDBC driver is automatically registered with the DriverManager once it is loaded
and is therefore available to the JVM and can be used by J2ME applications.

 The Class.forName(), is used to load the JDBC driver. The Class.forName() throws a
ClassNotFoundException if an error occurs when loading the JDBC driver. Errors are
trapped using the catch {} block whenever the JDBC driver is being loaded.

try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
}
 catch (ClassNotFoundException error)
 {
 System.err.println("Unable to load the JDBC/ODBC bridge." + error.getMessage());
System.exit(1);
}

Mobile Application Development 46

IV Year – I Semester 2018-19 CSE

The Connection:

 After the JDBC driver is successfully loaded and registered, the J2ME application must
connect to the database. The database must be associated with the JDBC driver, which is
usually performed by either the database administrator or the system administrator.

 The data source that the JDBC component will connect to is defined using the URL
format. The URL consists of three parts:

 jdbc, which indicates that the JDBC protocol is to be used to read the URL

 which is the JDBC driver name

 which is the name of the database

 The connection to the database is established by using one of three getConnection()
methods of the DriverManager object.

 The getConnection() method requests access to the database from the DBMS. It is up to
the DBMS to grant or reject access.

 A Connection object is returned by the getConnection() method if access is granted,
otherwise the getConnection() method throws an SQLException.

 DBMS can grant access to a database :

 To anyone: In this case, the J2ME application uses the getConnection(String url)
method. One parameter is passed to the method because the DBMS only needs the
database identified.

Mobile Application Development 47

IV Year – I Semester 2018-19 CSE

 Limit access to authorized users: This require the J2EE to supply a user ID and
password with the request to access the database. In this case, the J2ME
application uses the getConnection(String url, String user, String password)
method.

 when a DBMS requires information besides a user ID and password before
the DBMS grants access to the database: The additional information is referred
to as “properties” and must be associated with a Properties object, which is passed
to the DBMS as a getConnection() parameter. The properties used to access a
database are stored in a text file, the contents of which are defined by the DBMS
manufacturer. The J2ME application uses a FileInputStream object to open the
file and then uses the Properties object load() method to copy the properties into a
Properties object.

Mobile Application Development 48

IV Year – I Semester 2018-19 CSE

Timeout:

 Competition to use the same database is a common occurrence and can lead to
performance degradation.

 Multiple applications might attempt to access a database simultaneously. The DBMS may
not respond quickly for a number of reasons, one of which might be that database
connections are not available.

 Rather than wait for a delayed response from the DBMS, the J2ME application can set a
timeout period after which the DriverManager will cease trying to connect to the database
by using the following method:

 public static void DriverManager.setLoginTimeout(int seconds)- establish the
maximum time the DriverManager waits for a response from a DBMS before
timing out.

 public static int DriverManager.getLoginTimeout()-used to retrieve from the
DriverManager the maximum time the DriverManager is set to wait until it times
out. It returns an int that represents seconds.

Connection Pool:

 Connecting to a database is performed on a per-client basis. That is, each client must
open its own connection to a database, and the connection cannot be shared with
unrelated clients.

 A client that needs to interact frequently with a database must either open a connection
and leave the connection open during processing, or open or close and reconnect each
time the client needs to access the database.

 Leaving a connection open might prevent another client from accessing the database
because the DBMS have a limited number of connections available. Connecting and
reconnecting is simply time consuming and causes performance degradation.

 The release of the JDBC 2.1 Standard Extension API introduced connection pooling to
address the problem.

 A connection pool is a collection of database connections that are opened once and
loaded into memory so these connections can be reused without having to reconnect to
the DBMS. Clients use the DataSource interface to interact with the connection pool.

Mobile Application Development 49

IV Year – I Semester 2018-19 CSE

 The connection pool itself is implemented by the application server and other J2EE-
specific technologies, which hide details on how the connection pool is maintained from
the client.

 There are two types of connections made to the database:

 Physical connection: which is made by the application server using
PooledConnection objects. PooledConnection objects are cached and reused.

 Logical connection: A logical connection is made by a client calling the
DataSource.getConnection() method, which connects to a PooledConnection
object that has already made a physical connection to the database.

Mobile Application Development 50

IV Year – I Semester 2018-19 CSE

UNIT-III

Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1. ___________ is the process of organizing data elements into related groups to
minimize redundant data.

2. _______________is a combination file system and database management
system.

3. Within the same suite, there cannot be two RecordStores with the same
name. (T/F)

4. ________________package contains a RecordStore class that provides basic
access to data in a record store.

5. MIDP provides a mechanism for MIDlets to persist data so it can be used in
later executions of the MIDlet, or to be shared among MIDlets. This
mechanism is known as a ________________________

6. A_____________ is the component of a database that contains data in the
form of rows and columns.

7. RecordStore has the following properties:_________________,_________________
and ____________.

8. Searching of records is referred to as __________________.
9. ________________ method returns the number of records in the

RecordEnumeration.
10. The method that is called whenever a record is added to the record store is

_________________.
11. An ____________describes the characteristic of data that can be stored in

the column.
12. The ________________ method is called to create a new record store and to

open an existing record store. []
 a) openRecordStore() b) openNewRecordStore()
 c) createRecordStore() d.none
13. Each RecordStore is composed of ______________ records. []
a) zero or more b) one or more c) two or more d)none
14. If an invalid record number was used, ____exception is raised. []
a) InvalidRecordIDException() b) InvalidRecordNumException()
c) InvalidRecordException() d) none
15. ________________ retrieve the date of the last modification made to the

record store. []
 a) getLastModified() b) getLastDateModified() c) getLastTimeModified() d) none
16. ____________ method is used to insert a record into a record store.
 a) addRecord() b) setRecord() c) insertRecord() d)none. []
17. Normalization is the process to assure _________________. []

Mobile Application Development 51

IV Year – I Semester 2018-19 CSE

 a) Data Integrity b) Data consistency c) Data Isolation d) Data Durability
18. ______________ requires that information is atomic. []
 a) 1NF b) 2NF c) 3NF d) BCNF
19. Each group must contain a primary key and non-key data, and non-key

data must be functionally dependent on a primary key. This is constraint of
______________. []

 a) 1NF b) 2NF c) 3NF d) BCNF
20. ______________ functional dependency must be eliminated so that the

table is in 2NF? []
 a) Trivial b) Partial c) non-trivial d) Transitional
21. _______________interface is used to search and sort records in a record

store. []
 a) RecordState b) RecordListener c) RecordEnumeration d) none
22. -------------------- method is called to evaluate whether or not there is

another record in the RecordEnumeration. []

 a) hasNextElement() b) hasOneElement() c) hasElement() d) none

SECTION-B

Descriptive Questions

1. Discuss about Record Listener?
2. Explain the characteristics of Attributes of an entity?
3. Explain about a) searching records b) sorting records
4. Define Normalization and discuss about different normal forms in

normalization?
5. Discuss about :

a) loading the JDBC driver
b) connecting to the DBMS

 6. Discuss about different record management exceptions?
 7. Explain about the six steps that are used to create a database schema?
 8. Explain about the common characteristics of an attribute?

9. Develop a program which illustrates the overview of JDBC process
(loading, connecting, creating, processing and terminating).

 10.Develop a program that establishes a database connection for a J2ME
 MIDlet?
 11. Develop a program to create, open, close and remove a record from the
 RecordStore.
 12. Develop a program to read and write a String-Based record from the
 RecordStore.
 13.Develop a program to read a Mixed-Data type record into
 RecordEnumeration.
 14. Illustrate the procedure to set up a Record Store?
 15. Enumerate the procedure and the methods used, to manage records using
 Record Enumeration?
 16. Illustrate how attributes can be decomposed to data with an example?

Mobile Application Development 1

IV Year – I Semester 2018-19 CSE

UNIT-IV

Objective:

 To reproduce the installation of the Android Eclipse SDK.

Syllabus:

Introduction to Android Installation and configuration of android, starting an android
application project: components, debugging with eclipse. Application design: the screen
layout and Main.xml file, components ids, controls, creating and configuring android
Emulator, communication with emulator.

Outcomes:

Student will be able to:

 Explain the installation of Eclipse, java and ADK.

 Create and configure the android emulator.

 Communicate with emulator.

 Apply few simple controls.

 Illustrate Screen Layout and main.xml file.

 Explain component IDs

Mobile Application Development 2

IV Year – I Semester 2018-19 CSE

What is Android?

 Android is an open source and Linux-based Operating System for mobile devices
such as smart phones and tablet computers. Android was developed by the Open
Handset Alliance, led by Google, and other companies.

 Android offers a unified approach to application development for mobile devices
which means developers need only develop for Android, and their applications should
be able to run on different devices powered by Android.

Installation and Configuration of Android

Installing and Eclipse and Java:

Eclipse is available from www.eclipse.org, and the JDK is available
from www.oracle.com/technetwork/java/javase/downloads/index.html. The current
version of the Java Standard Edition is version 7.

Step1: Download and install the JDK first. There are two possible downloads:

 JDK and the JRE.

 The JDK is the development software, and the JRE is simply the “run-time
environment,” a piece of software required by an operating system to host a Java
application. Download and install the JDK. It contains and installs a copy of the JRE,
so there is no need to install them separately.

Step 2: Set the path variable. After the JDK installs, you will want to set its location in your
computer system’s PATH variable. It is as follows:

1. Click the Start button. Then right-click on Computer on the right side of the Start menu
and choose Properties.

Fig: Windows 7 System Settings panel

Mobile Application Development 3

IV Year – I Semester 2018-19 CSE

2. Choose Advanced System Settings on the left.

Fig: Windows 7 Environment Variables panel.

3. If it isn’t selected already, select the advanced tab at the top. Then click the Environment
Variables button at the bottom-right. You will see the window shown in Figure 1.3.

Fig: Windows 7 Environment Variables panel.

4. In the bottom System Variables area, select Path from the list of variables, and click the
Edit button. At the end of that line, insert a semicolon (;) followed by the path to your
installed JDK, probably a line similar to the following:

c:\program files\java\jdk1.6.0_24\bin\

Mobile Application Development 4

IV Year – I Semester 2018-19 CSE

5. Finally, click OK and work your way out of the windows.

Step 3: Install Eclipse.

 You can download it at www.eclipse.org. The Eclipse website offers documentation
to help you with the install.

 The Eclipse installation should use the system’s path variable to find JDK. Eclipse
does not install like most Windows software installs.

 It comes as a ZIP file that can be placed anywhere on the system and unzipped.

 Create a folder in the Program Files folder on a Windows system called Eclipse or
something equally appropriate and unzip the ZIP file there. You might also want to
create a shortcut for the Eclipse start icon and place it on your desktop.

INSTALLING THE ANDROID DEVELOPMENT KIT

Install the Android Development Kit (ADK). There are actually two steps to getting Android
configured.

Step 1: Configure Eclipse. You can download the ADK
at http://developer.android.com/sdk. Once you have it installed, you need to make a change
to your PATH environment variable as follows: c:\program files (x86)\android\android-
sdk\tools\. (Don’t forget to separate entries with a semicolon.)

Step 2: Configure the Eclipse plug-in for Android. Start Eclipse and select Install New
Software from the Help menu.

Fig: Eclipse Install New Software panel

Mobile Application Development 5

IV Year – I Semester 2018-19 CSE

 In the Work With field, enter the following website: http://dl-
ssl.google.com/android/eclipse/. After clicking Add and waiting a moment, a
Developer Tools line appears below. Put a check in the box that appears in the screen
below, click next, and follow the prompts to the end of the process. You need to agree
to all the licenses to get to the Finish button

Step 3: Testing the Android installation: It is similar to testing the Java installation. Again,
select the File menu on Eclipse, select New, Project, and you should see Android Project as a
choice. If it is there, you should be good to go. If not, check your steps and look for some
online troubleshooting help.

Starting an Android Application Project:

 After we correctly configured Eclipse with Java and the Android Development Kit
(ADK), it’s time to write the first application.

 Eclipse creates a directory, or folder, to store our programming projects called
Workspace.

 When Eclipse is installed, the installer is prompted for the desired location for this
directory. After installation, Eclipse allows for the creation of new Workspace
directories and allows us to change Workspace directories each time we open Eclipse.

 To start a project on the Eclipse desktop, select File, New, and Project. We are
presented with a new dialog box. Select Android Project under the Android heading,
and then select next.

Mobile Application Development 6

IV Year – I Semester 2018-19 CSE

 Choose a project name, such as Project_1. Notice the check box labelled Use Default
Location. It is checked and contains a path with “workspace” as the final directory in
the path.

 Next, the Build Target area refers to the version of the Android operating system (OS)
you want your application to be used on.

 The lower the application programming interface (API) we choose, the more
inclusive you will be of devices that will run our application.

 On the other hand, the lower the number we choose, the fewer features of
devices and advances in the Android platform your application will be able to
take advantage of.

 The complete list of versions and corresponding APIs

 Next, we need to choose an application name. Android device owners who download
your application will see this name and identify the application on their device by this
name.

Mobile Application Development 7

IV Year – I Semester 2018-19 CSE

 The Package Name is a little more complicated and refers to the Java structure
referred to as a package.

 A package is a related set of classes.
 Our project could contain many classes, related to each other by a single

purpose: to provide the functionality of your Android app.
 All the package names in the Android system must be unique.
 Package is name must use a domain-style naming system.
 Here we use reverse domain naming convention.(Example:

com.sheusi.TipCalculator).

 The activity name is actually the class name for the primary Java class of our project,
so we must follow the Java class naming conventions.

 We need to enter an integer to indicate the minimum SDK version for our project.
 Entry of this value determines which versions of the Android OSs on devices

that ultimately will want to download your application will be compatible, and
which features our application will be able to use.

 After we click the Finish button, Eclipse creates an empty project framework for us.

Mobile Application Development 8

IV Year – I Semester 2018-19 CSE

 The right side of the screen is the editor space and on the left side is the Package
Explorer window.

Eclipse Package Explorer: (Android Application Components)

1) The first subdirectory is src.

This subdirectory or subfolder contains all the
source code for the classes we intend to create for
your application.

We should recognize the package name that we
used in the dialog box in the first level below the src
icon, and the activity name we chose with
the .java extension added. This is the primary class of
the application.

2) Next is the directory named gen.

The primary file here is called R.java, and it is
created based on our configuration of
the main.xml and strings.xml at a minimum.

3) The next component is a collection of API files
based on the version we chose in the dialog box in the
beginning.
4) The next directory is res, which is short for
resources.

It contains folders whose names begin
with drawable.

These contain graphics files such as the launch
icons for the application. If we intend to use a launch

icon other than the standard Android “robot” icon, we need to put a graphic of a specified
size and type in each of these folders.

5) The layout and values subdirectories under res contain XML files.

 The layout directory contains XML files that configure the screens of the
application.

 The values folder contains values for text strings and a couple of other data types
we might use in our application.

 Assignments can be made here in the XML file, and they will be available
throughout the coded application. These XML files together allow you to design
the whole user interface without having to write a single line of Java code.

Mobile Application Development 9

IV Year – I Semester 2018-19 CSE

6) The next file is Android Manifest.xml file.

 This file can be viewed as the “instruction book” the target device uses to run the
application.

 It contains things like permissions to use features on the device such as the GPS
system, references to the files that should be included when the application is bundled
up for deployment.

 This fie contains information about version and revision numbers, API
information.

Following is a basic manifest file.

<?xml version="1.0" encoding="utf-8"?>

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.sheusi.CheckBook"
 android:versionCode="1"

 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="8" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">

 <activity
 android:name=".CheckBook"

 android:label="@string/app_name">
 <intent-filter>

 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>
 </activity>

 </application>

 </manifest>
 Under the manifest tag is the package name, which is set at the beginning of the

project.
 There’s also a version code; it’s a numeric value only, and it’s used internally to be

sure that subsequent installs of the same application are newer versions.
 There’s also a version name and it is the version information that the user will see,

and it is used only for this purpose.

Mobile Application Development 10

IV Year – I Semester 2018-19 CSE

 The <uses-sdk> can contain more than one specification. The minSdk
Version specification shown here prevents devices with a lower API than we specify
from installing your application.

 Inside the <application> tag,
o The parameter android: icon represents the graphic to be used as the launch

icon on the device.
o The android: label parameter is the name we gave the application when we

started the project.
 Inside the <activity> tag,

o The first parameter, android: name, which is the activity name we specified in
the project setup. This will be the name of the Java class file that extends
the Activity class.

o The android: label parameter is the same as the previous android: label.
 Inside the <intent-filter> tag,

o The parameter android: name is set to .MAIN.
o It is an action built into the Android Intent class that instructs the device to

open this application to the home screen.
o The second parameter is android.name parameter, which is set

to .LAUNCHER, defines the starting point.

Debugging with Eclipse:

 One of the biggest benefits to using an integrated development environment (IDE)
such as Eclipse over using a simple editor to write source code is the extensive error
detection and debugging facilities included in the IDE.

 The common errors that occur in application development fall into one of three
common categories:

o Syntax Error
o Logical Error
o Run-time Error

 The logic error is impossible for the IDE to detect and diagnose, because these errors
are flaws in the approach to solving the problem that the application is meant to do.

 The other errors are different.
o Take syntax errors, for example. These errors can include missing or

incorrectly matching curly braces in code, missing semicolons at the end of a
line, incorrect uppercase or lowercase letters, and so on.

o In other words, they’re what we could call “spelling and grammar.”
o These errors could also be use of classes without including the correct import

statements, mistakes in variable scope, and other language-based errors.
o In fact, these are the most obvious and easiest errors to fix.

 The error, indicated by a red circle, indicates a missing semicolon at the end of the
line, a punctuation error.

Mobile Application Development 11

IV Year – I Semester 2018-19 CSE

 The last type of error, the run-time error, can be the most frustrating. That is because
this error occurs when the application is running, and there is no indication at compile
time that anything is wrong. A run-time error turns up in the emulator when the
application is running.

 Due to the nature of run-time errors, they don’t occur every time the application runs.
Unlike syntax errors, when run-time errors occur, the emulator gives no explanation.

 This is where the Debug perspective in Eclipse is the biggest help.
 In Eclipse there is a panel in lower-right corner with a tab marked LogCat. This is the

first place to check for the source of the error. Any text in red is what We should
examine.

LogCat Panel

 We can also use the Eclipse debugger to check the values of variables at run-time by
setting breakpoints in our code.

 The use of breakpoints to check values is useful during application design and testing
and need not involve errors.

 We may want to check intermittent values during execution of a loop, or values of
variables during calculation of a complex formula.

 To set a breakpoint, just double-click on the line number (or the left margin if we are
not using line numbers) next to the line we would like execution to pause at.

 Next, switch to the debug perspective, and start the application by using the green bug
icon instead of the green circle icon at the top of the screen.

 When execution reaches the line where you set the breakpoint, that line becomes
highlighted in the code screen, and the variables and corresponding values appear one

Mobile Application Development 12

IV Year – I Semester 2018-19 CSE

by one under the Variables tab on the upper right.

Eclipse debug screen showing a breakpoint

 Android applications are event driven, so we may need to bring up the emulator and
perform the necessary actions on it for the debugger to reach the breakpoint, such as
clicking a button onscreen.

 If we want execution to continue beyond the breakpoint, you can use the following
function keys to obtain the corresponding results.

Activity:
 Class Activity

 Package android.app

 Extends Android.view.ContextThemeWrapper

 An activity is generally a single-purpose screen and user interface. The activity takes
care of creating the window on which the application designer places controls that
allow the user to interact with the activity.

Simple Activity class state chart.

Mobile Application Development 13

IV Year – I Semester 2018-19 CSE

 The onCreate () method, which responds to the start of the application. Most of the
screen configuration, initialization of variables, and design of event listeners take
place in the onCreate () method.

onStart() Called When the activity becomes visible to the user.
onResume() Called when the Activity starts interacting with the user
onPause() Called when the application/system resumes a previous activity. It is

typically used to commit data to persistent storage.
onStop() Called When the activity is no longer visible to the user.

Application Design:

 In Android, the Graphical User Interface (GUI) application paradigm used is “Model-
View Controller”.

 The concept involves the developer considering three main areas when developing an

application.
 The model represents what the application does and the coding behind what it is

intended to do.
 The view is concerned with rendering the results on the display.
 The controller deals with how the user will interact with the application, including

mouse movements, button clicks, and so on.
 When developing Android applications, we can easily isolate the view from the model

and controller components.
 The view or layout of components is written in XML format in the main.xml file.

o Once the programmer determines which controls are necessary for the
application, such as lists, text fields, buttons, and so on, he can plan and code
their arrangement, size, labels, fonts, and colors in the main.xml file.

Mobile Application Development 14

IV Year – I Semester 2018-19 CSE

The Rules to write XML files:

1. All XML elements must have opening and closing tags.
2. XML tags are case sensitive.
3. XML elements must be properly nested.
 ex.

 <tag1>
 <tag2>

 </tag2>
 </tag1>

4. XML documents must have a root element. A single tag pair must surround all
other elements of the document. This is the root element.
5. XML attribute values must be quoted using either single or double quotes.

THE SCREEN LAYOUT AND THE MAIN.XML FILE
 Eclipse creates a functional application as soon as we create a new project.
 The screen configuration is controlled by the main.xml file that Eclipse generates.
Main.xml File:
<? xml version="1.0" encoding="utf-8"?>

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

<TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/hello"

 />

</LinearLayout>

 The LinearLayout class is indeed a Java class found in the Android software
development kit (SDK).

 It is one of many subclasses of the ViewGroup class.
 The attributes that are set in the XML file, namely orientation, layout_width,

and layout_length, can be set in Java code by using methods that belong to
the LinearLayout class.

 Using the main.xml file, we can separate form from functionality and design our user
interface without writing a line of Java code.

Mobile Application Development 15

IV Year – I Semester 2018-19 CSE

 The outermost LinearLayout object normally represents the whole screen in an
application, similar to the way a Frame class represents the application window in a
PC Java application.

 The orientation attribute set to Vertical means that objects are added top to bottom.
 The two attributes, layout_width and layout_height, have two values

 fill_parent
 The fill_parent value is a special value that is always equal to the

parent size. If it's used as the value for the android:layout_width
attribute then it's the width of the parent view.

 If it's used in the android: layout_height attribute, it would be equal
to the height of the parent view instead.

 wrap_content
 The value wrap_content can be used much like a preferred size in

Java AWT or Swing.
 It says to the View object, "Take as much space as you need to, but no

more".
 The only valid place to use these special attribute values is in the

android: layout_width and android: layout_height attributes.

 The “layouts” for Android applications are subclasses of the ViewGroup class. There
are four layouts in Android:

 FrameLayout,

 AbsoluteLayout

 TableLayout

 RelativeLayout

AbsoluteLayout

 The AbsoluteLayout allows the programmer to specify the exact x,y coordinates of
the components on the screen.

 Its use is limited because it doesn’t adjust for variations in the screen resolution of
multiple target devices. So if the programmer is writing for only one type of device,
say for a specific client, it may be useful.

FrameLayout:

 The FrameLayout layers multiple controls one on top of the other.

 This layout might be useful for graphics in an application.

 To see how the FrameLayout responds to text controls such as the Text-View control,
we have to modify our main.xml file as follows and then restart the application:

Mobile Application Development 16

IV Year – I Semester 2018-19 CSE

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="horizontal"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/hello"

 />

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Text View number two"

 />

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Text View number three"

 />

</FrameLayout>

RelativeLayout:

 The RelativeLayout allows the programmer to position controls such as buttons on the
screen relative to each other.

Mobile Application Development 17

IV Year – I Semester 2018-19 CSE

 To use a RelativeLayout, we have to modify our main.xml as follows, and then restart
your application:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="horizontal"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

<TextView

 android:id="@+id/centertext"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/hello"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 />

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Text View number two"

 android:layout_above="@id/centertext"

 />

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Text View number three"

Mobile Application Development 18

IV Year – I Semester 2018-19 CSE

 android:layout_below="@id/centertext"

 />

</RelativeLayout>

 The second and third TextViews appear at the top and bottom, respectively. In
 main.xml file, the android:id attribute for the first TextView is as follows:

android:id=“@+id/centertext”

This is required because the other two TextView objects need to refer to the position of the
first and need a way to identify it.

 The programmer can choose any ID for the control; We can choose a short name that
identifies the control.

 The coding @+id/: When we start an Android Application Project, the R.java Java
file generated by Eclipse. This file will contain several inner classes. One such inner
class is called id. This prefix on the id name causes the actual identification value to
be entered in that inner class.

 Double-click the R.java entry in the Package Explorer window on the left side of the
Eclipse Screen (it’s in the gen folder), and it opens in the editor. You will see the
entry centertext in the id inner class.

TableLayout:

 The TableLayout is similar in appearance to the Java Frame’s GridLayout.

 Within the TableLayout, the programmer makes one or more TableRow entries.

 Controls are placed inside the TableRow and appear in the order in which they are
entered into the XML file.

 Columns are created as entries are made. To skip a column, the programmer can make
a zero-based column specification.

 f only one row is specified, no gap appears between columns, even if there is a gap
specified in the column indexes.

 If multiple rows are used, gaps appear where column index values are skipped.

 The column index is specified by the android:layout_column attribute:

 (android:layout_ column=”1”).

Mobile Application Development 19

IV Year – I Semester 2018-19 CSE

 To use a TableLayout, we have to modify our main.xml as follows, and then restart
your application:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TableRow>
<TextView

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Column 1"
 android:layout_column="0"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Column 2"
 android:layout_column="1"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Column 3"
 android:layout_column="3"
 />
 </TableRow>
<TableRow>
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Column 1"
 android:layout_column="0"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Column 2"
 android:layout_column="2"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Column 3"
 android:layout_column="4"
 />
 </TableRow>

Mobile Application Development 20

IV Year – I Semester 2018-19 CSE

</TableLayout>

 We are using five columns, indexed zero through four (0,1,2,3,4), and they are
specified by the attribute : android:layout_column. They have nothing to do with the
attribute android:text, although we are using the word Column in the text.

Fig: Emulator image showing rows and columns.

COMPONENT IDS

 We have used one of the controls a name with an android:id attribute. The line of
code from the main.xml file:

android:id=“@+id/centertext”

 The @ sign in the ID is a signal to the XML parser how to deal with the ID
string.

 The + indicates that this is an ID the user has created; it is not part of the
Android framework namespace.

 The android:id attribute is important to the RelativeLayout, but it is also important if
the programmer wants to identify components from the XML layout file in the
application’s Java code.

Mobile Application Development 21

IV Year – I Semester 2018-19 CSE

 Suppose we write an application with a text field where the user would enter her
name.

 The programmer would need a way to identify that particular text field to
extract the entered name to do something with it.

 There must be a way to link a component from the static design of the screen
during development (the XML file) to the application at run-time (the Java
code).

 In the Java code, we declare and assign an instance of an object matching the class of
the element in the XML. In the case we are describing, it would be
an EditText control. The assignment step uses the ID from the XML file to make
the connection.

 It is a good to put an android:id attribute on our layouts.

 For example, you could identify the lowest level layout, the one represented
with the first opening tag, as “base.” When we added two TableLayouts to the
underlying LinearLayout, the LinearLayout could be IDed as “base,” the
first TableLayout as level 2a or table_1.

CONTROLS

 We should build some functional controls into a main.xmlfile to actually watch an
application doing something.

 We have used TextView objects to display some simple text. There are two more
basic useful controls, or widgets :

 EditText

 Button.

 EditText controls are similar to TextFields. Android TextView is similar to the
Java Label class.

 The following is a simple application that will take the contents of a
predefined TextView and use a button to cause the application to take that text,
convert it to uppercase, and display it in an EditText field. A basic main.xml file
could look like the following:

 <?xml version="1.0" encoding="utf-8"?>

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

Mobile Application Development 22

IV Year – I Semester 2018-19 CSE

 android:layout_height="fill_parent"

 android:id="@+id/base"

 >

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="My first android application"

 android:id="@+id/my_TextView"

 />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Touch me"

 android:id="@+id/my_Button"

 />

 <EditText

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:id="@+id/my_EditText"

 />

 </LinearLayout>

 R.java is a file that is created based on the configuration of the main.xml. Let us see
how the id attributes are interpreted in the R.java file:

package com.sheusi.DemoApp;

public final class R {

 public static final class attr {

Mobile Application Development 23

IV Year – I Semester 2018-19 CSE

 }

 public static final class drawable {

 public static final int icon=0x7f020000;

 }

 public static final class id {

 public static final int base=0x7f060000;

 public static final int my_Button=0x7f060002;

 public static final int my_EditText=0x7f060003;

 public static final int my_TextView=0x7f060001;

 }

 public static final class layout {

 public static final int main=0x7f030000;

 }

 public static final class string {

 public static final int app_name=0x7f040001;

 public static final int hello=0x7f040000;

 }

 public static final class style {

 public static final int shout=0x7f050000;

 }

}

 Eclipse builds a basic framework for the main Java file. It is found in
the src subdirectory and has the name that we filled into the Create Activity field,
when we started the project.

 There will be only enough code to put something into the emulator, so we just know
that the application was created, and not much more.

 Our first step is to decide what our application is designed to do. This is our model
in the MVC paradigm.

Mobile Application Development 24

IV Year – I Semester 2018-19 CSE

 Our application is meant to take the contents of a text field, convert them to
uppercase, and place the results in another text field. Our view includes the original
text in a text field, a button to start the conversion, and a text field to hold the results.
The following is the java code:

 package com.sheusi.DemoApp;

 import android.app.Activity;

 import android.os.Bundle;

 import android.view.*;

 import android.widget.*;

 import android.view.View.OnClickListener;

 public class Demo extends Activity implements nClickListener

 {

 /** Called when the activity is first created. */

 Button b=null;

 EditText et=null;

 TextView tv=null;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 b=(Button)findViewById(R.id.my_Button);

 et=(EditText)findViewById(R.id.my_EditText);

 tv=(TextView)findViewById(R.id.my_TextView);

 b.setOnClickListener(this);

 }

 public void onClick(View v){

Mobile Application Development 25

IV Year – I Semester 2018-19 CSE

 String temp=tv.getText().toString();

 temp=temp.toUpperCase();

 et.setText(temp);

 }

 }

 The first statement starts with the word package.

package com.sheusi.DemoApp;

We chose the package name when you created the project.

 Next, the statements that begin with the word import. Java, like other object
oriented languages, uses groups of predefined classes called packages.

 Packages generally have multipart names separated by periods, such
as android.view.View.Button.

 When packages are built, they have a tree-style organization, and the periods let
the Java compiler navigate through the structure.

 The import statements are a convenience that relieves us from having to type the
whole package name each time we use a class from the package. Here is an
example.

 Without the import statement, if we wanted to declare and assign a couple of
buttons, we would need these statements:

 android.widget.Button b1;

 android.widget.Button b2;

 b1= new android.widget.Button("click me");

 b2= new android.widget.Button("quit");

 Using the import statement,

import android.widget.Button;

If we want to indicate all classes in a given package, we can use an asterisk (*) as a wild card.
For example:

 import android.widget.*;

 The declarations and assignments need only the class name:

Mobile Application Development 26

IV Year – I Semester 2018-19 CSE

 Button b1;

 Button b2;

 b1= new Button("click me");

b2= new Button("quit");

 The next line is the public class. We have provided the name for the public class
when you created the project:

public class Demo extends Activity implements OnClickListener{

 The core of an Android application is built on the Activity class. When we
create an application, we customize the Activity class, or extend it .

 Eclipse generates the beginning of this statement. We add the words implements
OnClickListener as we customize the application.

 The class OnClickListener, as the name implies, lets our application “listen” or
check for actions on the user interface, namely the Android device screens,
hardware buttons, and so on. Only certain objects can send click messages, but the
Android device knows what these are, and the Android application programming
interface (API) tells the programmer what they are.

 The next three lines declare the text areas and Button for the application’s user
interface. A TextViewis similar to a Java Label class in that it contains text but
cannot be edited by simply typing into it at run-time. For this, we use
the EditText class.

 Button b=null;

 EditText et=null;

 TextView tv=null;

 The next section is where we define whatever we want to happen when the
application starts, including laying out the screen, setting initial values to
variables, and so on.

 In our application, we assign values to our control (widget) objects, and we
connect the application’s “listener” code to the Button:

 public void onCreate(Bundle savedInstanceState)

 {

Mobile Application Development 27

IV Year – I Semester 2018-19 CSE

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 b=(Button)findViewById(R.id.my_Button);

 et=(EditText)findViewById(R.id.my_EditText);

 tv=(TextView)findViewById(R.id.my_TextView);

 b.setOnClickListener(this);

 }

 All the statements that include R.id.*** are the id attribute values we added to the
sections of the main.xml file. These statements connect our screen objects to the Java
code. Finally, the Button variable, b, connects the listener code.

 The last section defines what we want to happen when we touch the button on the
screen

 public void onClick(View v){

 String temp=tv.getText().toString();

 temp=temp.toUpperCase();

 et.setText(temp);

 }

 In the above code the following is the summary of what we have done:

 We create a text string

 Assign to it the contents of the TextView on the screen.

 The TextView got its original text from the android:text statement in
the main.xml file.

 Then, through a built-in method of Java’s String class, we convert all the
letters to uppercase.

 Finally, we assign the converted text string to the text property of
the EditText field.

 Edit your .java file to match the previous code, run the application, and see
what happens.

Mobile Application Development 28

IV Year – I Semester 2018-19 CSE

Fig:Emulator image of the application designed earlier.

 Let us add a second Button to close the application.

 Go back to the main.xml file and add another button directly below
the EditText set of tags.

 Use the original button as our model. You can even copy and paste, but set the :

 android:text attribute to Quit

 android:id to @+id/quit.

 Take care to align the opening and closing markers, < and />, correctly. Eclipse
automatically makes corresponding changes to the R.java file, so there is no need
to edit that manually. Finally, make the necessary changes to the Java file so that
it matches the following:

package com.sheusi.DemoApp;

import android.app.Activity;

import android.os.Bundle;

import android.view.*;

import android.widget.*;

import android.view.View.OnClickListener;

public class Demo extends Activity implements OnClickListener{

 /** Called when the activity is first created. */

Mobile Application Development 29

IV Year – I Semester 2018-19 CSE

 Button b=null;

 EditText et=null;

 TextView tv=null;

 Button quitbutton=null;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 b=(Button)findViewById(R.id.my_Button);

 quitbutton=(Button)findViewById(R.id.quit);

 et=(EditText)findViewById(R.id.my_EditText);

 tv=(TextView)findViewById(R.id.my_TextView);

 b.setOnClickListener(this);

 quitbutton.setOnClickListener(this);

 }

 public void onClick(View v){

 if(v==b){

 String temp=tv.getText().toString();

 temp=temp.toUpperCase();

 et.setText(temp);

 }

 if(v==quitbutton){

 this.finish();

 }

 }

}

Mobile Application Development 30

IV Year – I Semester 2018-19 CSE

 We can declare an additional Button object and the same syntax as the
original Button object. We can assign the same OnClickListener to the
second Button.

 If we assign the same listener, the application would not know which Button was
touched or clicked. We solve that problem with decision statements based on the
parameter :

View v in the onClick() statement.

 Because the Button class is a child class of the View class in the Android SDK, the
parameter can represent the buttons. The decision statements assess which Button was
clicked or touched.

 The .finish() method is a method of the Activity class that ends the activity. Because
our application extends the Activity class, we can use this method to end the
application.

 The word this simply refers to the class using the .finish() method—the Demo class.

 When working with EditText controls on the screen, we may want the application to
respond to a particular keystroke rather than requiring the user to touch a button or
take some other action.

 For instance, you may want to respond to keypad input as soon as the user touches
the Enter key. We can do that by associating a KeyListener with a given input
field.

 package com.sheusi.DemoApp;

 import android.app.Activity;

 import android.os.Bundle;

 import android.view.*;

 import android.widget.*;

 import android.view.View.OnClickListener;

 import android.view.View.OnKeyListener;

 public class DemoAppActivity extends Activity implements OnClickListener,
OnKeyListener

 First, there is a new import statement to add the OnKeyListener interface to our
namespace.

 import android.view.View.OnKeyListener;

Mobile Application Development 31

IV Year – I Semester 2018-19 CSE

 The implementation of interfaces requires that certain methods be defined in the code.
In the case of the OnKeyListener interface, it is the onKey()method. The method
takes three arguments, or parameters,

 a View object,

 an integer representing the key you want to respond to.

 The keyCode integer variable also represents a set of symbolic constants
defined in the KeyEvent’s documentation; there is a constant for each of
the keys on the keypad.

 a KeyEvent object. The KeyEvent object will represent one of two actions on a
given key:

 When it is touched or pushed, and when it is released. These are
represented by symbolic constants that can be found in the KeyEvent’s
documentation: Symbolic constants are represented in all uppercase letters.

ACTION_DOWNand ACTION_UP.

 public boolean onKey(View v, int keyCode, KeyEvent event)

 {

 if(event.getAction()==KeyEvent.ACTION_DOWN){

 if(keyCode==KeyEvent.KEYCODE_ENTER){

 String temp=et.getText().toString();

 temp=temp.toUpperCase();

 et.setText(temp);

 } } }

 The common non character keys on the Android devices and their corresponding
symbolic constants are as follows:

Mobile Application Development 32

IV Year – I Semester 2018-19 CSE

CREATING AND CONFIGURING AN ANDROID EMULATOR

 There are different releases of the Android platform and the improvements and
features added to the subsequent releases. Each of those versions had a version
number starting at 1.0 and running to 3.2.

 We choose an API for our project to correspond with the target platform when the
project is started.

 Finally, we need to configure an emulator that will properly simulate the use of our
application. It is necessary to add features such as GPS and SD card for external
storage.

 We can add features to existing emulators and create new emulators through Eclipse.
Eclipse will maintain several emulators so the application designer can switch among
several choices during development of a single application.

 Under the Window menu in Eclipse, choose Android SDK and AVD Manager. AVD
stands for Android Virtual Device, the emulator.

Fig: Window menu open showing Android SDK and AVD Manager choice.

 Choosing that will give you the window, We will get:

Mobile Application Development 33

IV Year – I Semester 2018-19 CSE

Fig: Emulator configuration panel.

 Our screen may have only the “default” emulator in the list; there will be New and
Edit buttons on the right, which can be used to modify the chosen emulator or
create new ones.

 When we decide to create a new emulator, we have to remember the platforms and the
features each offers. If we are writing an application that wants to take advantage of
particular device features, we have to build an emulator at that level. Otherwise, our
application will not run in the emulator as we might expect.

 To choose the emulator you want to use for your project development, you can click
the down-facing arrow next to the green-circle icon and choose Run Configurations as
indicated in Figure :

Fig: Run Configurations choice revealed in menu.

Mobile Application Development 34

IV Year – I Semester 2018-19 CSE

 Alternatively, you can choose Project, Properties, Run/Debug Settings. Then choose
your project and choose the Edit button on the right. Either way, you will end up with
the window shown in Figure :

Fig: Run Configurations panel.

 On this screen, you would select the Target tab and pick your emulator.

COMMUNICATING WITH THE EMULATOR

 An application developer can communicate with a running emulator in two ways.

 One way is through a Telnet connection, which is a network-type connection
that requires a Telnet/SSH client on the development machine.

 The second way to connect to a running emulator is through the Android
Debug Bridge (ADB).

 The ADB is a stand-alone executable file that comes with the Android Development
Kit (ADK).

 We can run it by starting a console session on your development machine. If you
are using windows:

Mobile Application Development 35

IV Year – I Semester 2018-19 CSE

 Click the Start button or Windows icon (Windows 7).

 In the search box, type cmd. This starts a terminal screen.

 Navigate to the android-sdk directory, and in that directory we should find
a subdirectory called platform-tools.

 Navigate into the platform-tools directory and type adb (enter) on the
command line to run the program.

 The adb utility also allows the user to connect to his actual Android device if it is
connected through a cable.

 The adb command is used in conjunction with a keyword to cause a particular action.
Some commands are as follows:

Mobile Application Development 36

IV Year – I Semester 2018-19 CSE

UNIT-IV

Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1. Android is _____________ and _________________ operating System.
2. To develop an Android application Eclipse must be configured with

______and _____.
3. R. java file is created based on ______________ and ________________ files.
4. Which method of the Activity class is called when the activity becomes

visible to the user___________________?
5. Which method of the Activity class is called when the activity starts

interacting with the user___________________?
6. Which method of the Activity class is called when the application

resumes previous activity___________________?
7. Which method of the Activity class is called when the activity needs to be

end___________________?
8. The two attributes necessary for any layout in android are___________,

__________.
9. The two settings for layout attributes are

________________,_________________.
10. Which classes need to be extended to use the functionality of Button

and TextField Controls.
11. Which software need to be installed first to develop an android

application_______ []
a. a) Eclipse b) Android SDK c) JDK d)none
12. The directory created by Eclipse to store projects is named __[]
a. a) Workbook b) Projects c) Eclipse d) Workspace
13. The “Install New Software” menu choice is found under which Eclipse

menu? []
a. a) File b) Project c) Window d) Help
14. The base class for Android applications is the ______________. []
a. a) Applet class b) Activity Class c) Swing class d) none
15. Which XML files allow us to design the user interface without having

to write a single line of java code? []
a. a) main.xml b) AndroidManifest.xml c) strings.xml

d) both a&c e) both a&b
16. Which type of error is impossible for the IDE to detect and diagnose?
a. a) Syntax b) Run-Time c) Logic d) Undefined []
17. ______ Layout is used to design graphics in an application []
a. a) Absolute Layout b) Frame Layout c) Table Layout d) Relative

Layout
18. _____ Layout is used to position the controls on the screen []
a. a) Absolute Layout b) Frame Layout c) Table Layout d) Relative

Layout

Mobile Application Development 37

IV Year – I Semester 2018-19 CSE

19. If we want the layout component to stretch all the way from left to
right, we have to set android:layout_width to_______________ [
]

20. fill_parent b) wrap_content c) fill_content d) wrap_parent
21. If we do not want the layout component to stretch all the way from top

to bottom, we have to set android:layout_height to_______________ [
]

22. fill_parent b) wrap_content c) fill_content d) wrap_parent

SECTION-B

Descriptive Questions

1. Write the steps to install Eclipse and JAVA?
2. Draw and explain the Eclipse Package Explorer
3. Discuss about Debugging with Eclipse?
4. Draw and explain the Activity Class state Chart.
5. Explain about creating and configuring an Android Emulator?
6. Discuss about Communicating with the Emulator?
7. Explain about them following layouts:

(i) Frame Layout (ii) Absolute Layout (iii) Table Layout (iv) Relative
Layout

8. Explain about core components of Android?
9. Illustrate the Screen Layout and Main.xml File?

10 Manipulate the XML settings for TextView Control in the main.xml file.
11 Manipulate the XML settings for Button Control in the main.xml file.
12. Manipulate the XML settings for EditText Control in the main.xml

file.
13. Develop an android application that implements Button control?
14. Illustrate the Emulator Responses based on the different

adbCommands?
15. Develop an android application that implements Relative layout.
16. Develop an android application that places the controls by specifying

x, y coordinates.

Mobile Application Development 1

IV Year – I Semester 2018-19 CSE

Objective:

To implement the user interface for android applications.

Syllabus:

User Interface controls and user interface:
Radio buttons, radio group, the spinner, date picker, buttons, array adapter. View class:
combining graphics with a touch listener, canvas, bitmap, paint, motion event.

Outcomes:
Student will be able to:

 Understand the keyclasses and methods in RadioButtons
 Understand the keyclasses and methods in RadioGroup
 Understand the keyclasses and methods in Spinner
 Understand the keyclasses and methods in DatePicker
 Understand the keyclasses and methods in ArrayAdapter
 Combine the graphics with the Touch Listener
 Understand the keyclasses and methods in Canvas
 Understand the keyclasses and methods in Bitmap
 Understand the keyclasses and methods in Paint
 Understand the keyclasses and methods in MotionEvent

Mobile Application Development 2

IV Year – I Semester 2018-19 CSE

Radio Buttons:
 A radio button is a two-state button that can be either checked or unchecked. When

the radio button is unchecked, the user can press or click it to check it.

 Radio buttons are normally used together in a RadioGroup. When several radio buttons

live inside a radio group, checking one radio button unchecks all the others

 Radio Buttons are mutually exclusive (i.e) if one is selected, all the others are

automatically deselected.

Key classes and Methods used in Radio Buttons:
Class RadioButton

Package android.widget

Extends android.widget.CompoundButton

Overview The radio button is a two-state widget similar to the CheckBox; however, once

it is checked, the user cannot uncheck it.

Methods:
1) Void setOnCheckChangedListener (CompundButton.OnCheck-

ChangedListener occl)

Inherited from CompoundButton.

2) toggle()

Forces the state to be changed from the current state to the opposite state.

3) boolean isChecked()

This method returns the state of the Checkbox. Inherited from CompoundButton.

4) boolean performClick()

Calls the view’s onClickListener, if it is defined. Inherited from CompoundButton.

Radio Group:

 This class is used to create a multiple-exclusion scope for a set of radio buttons.

Checking one radio button that belongs to a radio group uncheck any previously

checked radio button within the same group.

 Initially, all of the radio buttons are unchecked. While it is not possible to uncheck a

particular radio button, the radio group can be cleared to remove the checked state.

Key classes and Methods used in Radio Group:

Class RadioButton

Package android.widget

Mobile Application Development 3

IV Year – I Semester 2018-19 CSE

Extends android.widget.LinearLayout

Overview This class creates a multiple exclusion group of radio buttons. In other words.

If one radio button is checked, all others will become unchecked. Only one

radio button in a group can be checked at a time. Initially, all buttons are

unchecked. RadioButtons are added to a RadioGroup in a Layout XML file

similar to the way TableRows are added to a Table Layout.

Methods:

1) Void setOnCheckChangedListener (CompundButton.OnCheck-ChangedListener occl)

Inherited from CompoundButton. Assigns a listener to the RadioGroup.

2) Void clearCheck()

Clears all the RadioButtons in the group.

3) Void Check (int ID)

Checks the RadioButton indicated by the ID.

4) Void addView(View child, int index, ViewGroup.LayoutParams params)

Adds a child view with the specified layout parameters.

5) Int getCheckedRadioButtonId()

Returns the identifier of the currently selected radio button in this group.

6) Void clearCheck()

Clears the current selection.

Spinner:

 Spinners provide a quick way to select one value from a set. In the default state, a

spinner shows its currently selected value. Touching the spinner displays a dropdown

menu with all other available values, from which the user can select a new one.

 The choices we provide for the spinner can come from any source, but must be

provided through an SpinnerAdapter, such as an ArrayAdapter if the choices are

available in an array or a CursorAdapter if the choices are available from a database

query.

 If the available choices for our spinner are pre-determined, you can provide them with

a string array defined in a string.xml

Key classes and Methods used in Spinner:

Class Spinner

Mobile Application Development 4

IV Year – I Semester 2018-19 CSE

Package android.widget
Extends android.widget.AbsSpinner
Overview A view that displays one child at a time and lets the user pick among them.

Methods:

1) Void setOnItemSelectedListener (AdapterView.OnItemSelectedListener listener)

Assigns a listener to the Spinner. Inherited from AdapterView.

2) setAdapter(SpinnerAdapter adapter)

Associates an adapter to the Spinner. The Adapter is the source of the items in the

Spinner.

3) setPrompt(CharSequence prompt)

Sets the prompt to display when the Spinner is shown.

4) Int getCount()

Retrieves the prompt from the Spinner.

5) CharSequence getPrompt()

Retrieves the prompt from the Spinner.

6) Void setPromptId(int id)

Sets the prompt to display when the dialog is shown.

7) Void setGravity()

Describes how the selected item view is positioned.

8) Object getSelectedItem()

Returns selected item. Inherited from AdapterView.

9) Long getSelectedItemID()

Returns selected item id. Inherited from AdapterView.

ArrayAdapter:

 An adapter is a bridge between UI component and data source that helps us to fill data

in UI component. It holds the data and send the data to adapter view then view can

takes the data from the adapter view and shows the data on different views

like listview, gridview, spinner etc.

 ArrayAdapter is more simple and commonly used Adapter in android.

 Whenever you have a list of single type of items which is backed by an array, we can

use ArrayAdapter. For instance, list of phone contacts, countries or names.

Mobile Application Development 5

IV Year – I Semester 2018-19 CSE

 By default, ArrayAdapter expects a Layout with a single TextView, If we want to use

more complex views means more customization in grid items or list items, please

avoid ArrayAdapter and use custom adapters.

 ArrayAdapter is an implementation of BaseAdapter so if we need to create a custom

list view or a grid view then we have to create our own custom adapter and extend

ArrayAdapter in that custom class. By doing this we can override all the function’s of

BaseAdapter in our custom adapter.

Key classes and Methods used in Array Adapter:

Class ArrayAdapter

Package android.widget

Extends android.widget.BaseAdapter

Overview A BaseAdapter that is backed by an array of arbitrary objects. If the

ArrayAdapter is used for anything other than a TextView, care must be taken

to choose the correct constructor.

Methods:

1) Void setDropDownViewResource (int resource)

Sets the layout resource to create the drop-down views.

2) Void add(Object object)

Adds an object at the end of the array.

3) Void remove(Object object)

Removes the specified object from the array.

4) Void insert(Object object, int index)

Inserts the specified object at the specifiedindex position.

5) Object getItem(int position)

6) Returns the object at the specified position.

7) Int getPosition(Object item)

Returns the position of the specified item in the array.

DatePicker:

 Android Date Picker allows you to select the date consisting of day, month and year

in your custom user interface. For this functionality android provides DatePicker and

DatePickerDialog components.

Mobile Application Development 6

IV Year – I Semester 2018-19 CSE

 DatePicker is a widget to select date. It allows you to select date by day, month and

year. Like DatePicker, android also provides TimePicker to select time.

Key classes and Methods used in Date Picker:

Class DatePicker

Package android.widget

Extends android.widget.FrameLayout

Overview This class is a widget for selecting a date. The date is set by a series of

Spinners. They date can be selected by a year, month, and day. Spinners or a

CalenderView object.

Methods:

1) init (int year, int month, int day, DatePicker.OnDateChangedListener

onDateChangedListener)

 This method sets the initial date for the Datepicker object and assigns

onDateChangedListener.

2) CalenderView getCalenderView()

Returns the day of month set on this object

3) int getMonth()

Returns the month set on this object

4) int getYear()

Returns the year set on this object.

5) boolean getSpinnerShown()

Gets whether the Spinners are shown

6) boolean isEnabled()

Gets whether the DatePicker is enabled.

7) Void setEnabled(boolean enabled)

Sets the enabled state of this view.

8) Void updateDate(int year, int month, int dayOfMonth)

Updates the current date.

DatePicker.OnDateChangedListener

Class DatePicker.OnDateChangedListener (interface)
Package android.widget
Extends ------

Mobile Application Development 7

IV Year – I Semester 2018-19 CSE

Overview Signals that the user has changed the date on the DatePicker associated with
this listener.

Methods:

Public abstract void onDateChanged (DatePicker view, int year, int month, int day)

Combining graphics with a touch listener
Up to now we have been using widgets included in the Android software development kit

(SDK). Sometimes we want to build custom widgets that will actually extend a built-in base

class.

One Example for combining Graphics with a Touch Listener

This example extends the View class and attaches a touch listener to become a “doodle pad.”

First, take a look at the main.xml for the project:

<?xml version=“1.0” encoding=“utf-8”?>

<LinearLayout xmlns:android=“http://schemas.android.com/apk/res/android”

 android:orientation=“vertical”

 android:layout_width=“fill_parent”

 android:layout_height=“fill_parent”

 android:id=“@+id/base”

 >

<TextView

 android:layout_width=“fill_parent”

 android:layout_height=“wrap_content”

 android:text=“My Doodle Pad”

 android:textSize=“15pt”

 />

</LinearLayout>

 In this XML file it contains only a LinearLayout in the background, and a single

embedded TextView. What we should also notice is something it doesn’t have: any kind

of an element to represent a doodle pad on the screen.

 In this example, we will design that in the Java code and attach it dynamically to the

screen.

 Here, android: id attribute is important because, we need to use the identifier in the Java

code to attach our custom class object.

Mobile Application Development 8

IV Year – I Semester 2018-19 CSE

package com.sheusi.FingerDraw;

import android.app.Activity;
import android.os.Bundle;
import android.widget.*;
import android.content.Context;
import android.view.View.OnTouchListener;
import android.graphics.*;
import android.view.MotionEvent;
import android.view.View;
import java.util.ArrayList;

public class DoodlePad extends Activity
{
 /** Called when the activity is first created. */
 LinearLayout ll=null;
 DoodleView dv=null;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 ll=(LinearLayout)findViewById(R.id.base);
 dv=new DoodleView(this);
 ll.addView(dv,1);
 }
}
class DoodleView extends TextView implements OnTouchListener
{
 ArrayList<dot> sketch =new ArrayList<dot>();
 Paint myPaint=new Paint();

 public DoodleView(Context myContext)
 {
 super(myContext);
 this.setBackgroundColor(Color.WHITE);
 this.setHeight(120);
 this.setFocusable(true);
 this.setFocusableInTouchMode(true);
 this.setOnTouchListener(this);
 myPaint.setColor(Color.BLACK);

 myPaint.setStyle(Paint.Style.FILL_AND_STROKE);

Mobile Application Development 9

IV Year – I Semester 2018-19 CSE

}
public void onDraw(Canvas c)
{

 for (dot d:sketch)
 c.drawCircle(d.x,d.y,2,myPaint);

}

public boolean onTouch(View v, MotionEvent me)
{

 if (me.getAction()==MotionEvent.ACTION_DOWN){}
 if (me.getAction()==MotionEvent.ACTION_MOVE)
{

sketch.add(new dot(me.getX(),me.getY()));
 }
 if (me.getAction()==MotionEvent.ACTION_UP){}
 invalidate();
 return true;

}
class dot
{

 private float x;
 private float y;
 //constructor
 public dot(float x, float y)
{

 this.x=x;
 this.y=y;

 }
}
}

 Here we create a LinearLayout object variable and assign it using findViewById

(R.id.base). This allows us to manipulate the object that appeared first in

the main.xml file. You will notice that the source code actually has two classes: the

“main” class that extends the Activity class and another class that extends

the TextView class. This additional class defines our doodle pad.

 The doodle pad works by saving a series of dots and repainting the screen every time

a dot is added.

 The “dot” class stores the x, y coordinates any time the user’s finger is moved across

the screen.

Mobile Application Development 10

IV Year – I Semester 2018-19 CSE

 Because MotionEvent.ACTION_UP and MotionEvent. ACTION_DOWN are

empty methods, nothing will happen when the user touches the screen or the pad.

 The invalidate() method causes the redraw.

 The onDraw() method instructs the device to redraw all the dots that are in

the ArrayList of dots called “sketch.”

 Here we are adding a widget subclass to the screen in the Java code instead of

the main.xml file. The following line does that:

ll.addView (dv, 1);

 The name of the Linear Layout’s variable is ll (el-el) and the addView () method adds

the widget represented by dv to position one in the list.

 The widget at position zero is the TextView specified in the main.xml file.

Our application in the emulator should look like
Canvas:

 The Canvas class holds the "draw" calls. To draw something, you need 4 basic

components: A Bitmap to hold the pixels, a Canvas to host the draw calls (writing

into the bitmap), a drawing primitive (e.g. Rect, Path, text, Bitmap), and a paint (to

describe the colors and styles for the drawing).

Canvas Paint
provides a method to draw a line provides methods to define that line's color

has a method to draw a rectangle
defines whether to fill that rectangle with a

color or leave it empty

defines shapes that you can draw
on the screen

defines the color, style, font, and so forth of
each shape you draw.

Key classes and Methods used in Canvas
Class Canvas
Package android.graphics
Extends java.lang.Object

Mobile Application Development 11

IV Year – I Semester 2018-19 CSE

Overview Holds the “draw” calls that write to a Bitmap
Methods:

1) Void drawCircle(float cx, float cy, float radius, Paint paint)
Draws a circle at the specified x,y coordinates with the specified radius and other features

specified by the Paint object variable, such as the color.
2) Void drawLine(float startX, float startY, float stopX, float stopY, Paint paint)

Draws a Line from start x,y coordinates to stop x,y coordinates using features
specified in the Paint object variable, such as the color.

3) Void drawRect(float left, float top, float right. Float bottom, Paint paint)
Draws a rectangle from top, left to bottom, right using features specified in the Paint
object variable, such as the color

4) Void drawCircle(float cx, flat cy, float radius, Paint paint)
Draw the specified circle using the specified paint.

5) Void drawColor(int color)
Fill the entire canvas bitmap with the specified color.

6) Void drawPicture(Picture picture)
Save the canvas state, draw the Picture, and then restore the canvas state.

7) Void drawPoint(float x, float y, Paint paint)
Draws a single point at the coordinates indicated.

8) int getWidth()
Returns the width of the current drawing Layer

9) int getHeight()
Returns the Height of the current drawing Layer

10) int save()
Saves the current matrix and clip into a private stack.

Bitmap:

 We can say that the bitmap is the foundation of any use of Android graphics. The

reason is that no matter how a graphic is specified or created, it is a bitmap that is

eventually created and displayed on the screen.

 There are many ways of creating or obtaining a bitmap. We have already seen how a

bitmap file, .jpg, gif or .png can be included in the drawable/ resource directory and

displayed in an ImageView control.

Key classes and Methods used in Bitmap
Class Bitmap

Package android.graphics

Extends java.lang.Object

Overview Holds the “draw” calls that write to a Bitmap

Mobile Application Development 12

IV Year – I Semester 2018-19 CSE

Methods:
1) boolean compress (Bitmap.CompressFormat format, int quality, OutputStream

stream)

Writes a compressed version of the Bitmap to the output stream.

2) Void copyPixelsFromBuffer (Buffer src)

Copy the pixels from the buffer, beginning at the current position, overwriting the

Bitmap’s pixels.

3) Static Bitmap createBitmap(Bitmap source)

Returns an immutable Bitmap from the source Bitmap.

4) final int getByteCount()

Returns the number of bytes used to store this Bitmap’s pixels.

5) int getDensity()

Returns the density for this Bitmap.

6) Final int getHeight()

Returns the height of this Bitmap.

7) Final int getWidth()

Returns the width of this Bitmap.

Paint:
The Paint class holds the style and color information about how to draw geometries, text and

bitmaps.

Key classes and Methods used in Paint
Class Paint

Package android.graphics

Extends java.lang.Object

Overview Holds the “draw” calls that write to a Bitmap

Methods:

1) setColor(int color)

Sets the Paint’s color.

2) setStyle(Paint.Style style)

Sets the Paint’s style. Paint.Style sets how the line is filled, stroked, or both. Three

choices are available: FILL, FILL_AND_STROKE, and Stroke.

3) setTextSize(float size)

Sets the Paint’s text size.

Mobile Application Development 13

IV Year – I Semester 2018-19 CSE

4) Int getColor()

Returns the Paint’s current color setting.

5) Float measureText(String text)

Returns the width of the text.

6) Void setStrokeWidth(float width)

Sets the width for stroking.

7) Void setStyle(Paint.Style style)

Set the Paint’s style, used for controlling how primitives’ geometrics are interpreted.

Motion Event:
 Motion events describe movements in terms of an action code and a set of axis values.

The action code specifies the state change that occurred such as a pointer going down

or up. The axis values describe the position and other movement properties.

 For example, when the user first touches the screen, the system delivers a touch event

to the appropriate View with the action code ACTION_DOWN and a set of axis

values that include the X and Y coordinates of the touch and information about the

pressure, size and orientation of the contact area.

 Some devices can report multiple movement traces at the same time. Multi-touch

screens emit one movement trace for each finger. The individual fingers or other

objects that generate movement traces are referred to as pointers. Motion events

contain information about all of the pointers that are currently active even if some of

them have not moved since the last event was delivered.

Key classes and Methods used in MotionEvent

Class MotionEvent

Package android.view

Extends Android.view.InputEvent

Overview Used to report movement

Symbolic constants used:

ACTION_DOWN Signals the start of the gesture.Contans the starting location

ACTION_MOVE Signals a change has happened since ACTION_DOWN

ACTION_UP Signals a gesture has finished.Conatians the release location.

Mobile Application Development 14

IV Year – I Semester 2018-19 CSE

Methods:
1) final long getDownTime(float size)

Returns the time(in ms) when the user originally pressed Down

2) final int getRawX()

Returns the original raw X coordinate of the event.

3) final int getActionX()

Returns the kind of action being performed.

4) final int getButtonState()

Gets the state of all buttons that are presses, such as mouse or stylus button.

5) final int getDeviceId()

Gets the identification for the device that this event came from.

6) final int getEventTime()

Gets the time in milliseconds when this specific event was generated.

7) final int getSource()

Get the source of the event.

Mobile Application Development 15

IV Year – I Semester 2018-19 CSE

UNIT-V

Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1. The purpose of Motion event is______________________.
2. The class need to be extended to use the functionality of MotionEvent
is __________________.
3. The purpose of ArrayAdapter is______________________.
4. The class need to be extended to use the functionality of ArrayAdapter
is __________________.
5. The purpose of DatePicker is______________________.
6. The class need to be extended to use the functionality of DatePicker is
__________________.
7. The purpose of Spinner is______________________.
8. The class need to be extended to use the functionality of Spinner is
__________________.
9. The purpose of RadioGroup is______________________.

10. The class need to be extended to use the functionality of RadioGroup
is __________________.

11. The important difference between checkboxes and radio buttons is
________________ []
a) their shape b) the shape of the checkmark
c) that only one radio button can be checked at a time
d) how many can go on a screen

12. Radio buttons on the same ______________ are mutually exclusive, i.e.
only one can be used at once. []
a) screen b) LinearLayout c) RadioGroup d)
column

13. There are actually two Java Date classes, one is found in the java.util
package, the other is found in the java.____ package []
a) java.sql b) javax.swing c) java.io d) None of these

14. One feature of the Eclipse editor is showing or hiding blocks of code,
which makes it easier to scroll through source code. Which of the
following is the correct name for this in Eclipse?
 []
 a) Code folding b) Expand/Collapse c) Section hiding d) Open/close

15. Many of the characteristics of coded graphics is determined by the
__________ class. []
a) Paint class b) Brush class c) Pencil class d) Pen class

16. Testing the graphical user interface (GUI) during the early stages of
development is best done using which of the following methods? []
a) Desk-checking b) On physical devices
 c) Using the emulator d) You can’t test the GUI.

17. The DatePicker object responds to changes using _________________
listener. []

Mobile Application Development 16

IV Year – I Semester 2018-19 CSE

a)OnDateChangedListener b) DateChangedListener.
C) onDateChanged() d) none

18. The TimePicker object responds to changes using _________________
listener. []
a)OnTimeChangedListener b) TimeChangedListener.
C) onTimeChanged() d) none

19. __________ widget is ideal , when a programmer wants to contend with
many items that must be displayed on the screen and many choices for a
given item. []
a) Spinner b) Radio Group c) CheckBox d) All the above

20. ________________ method writes a compressed version of the Bitmap to
the output Stream. []
a) int compress() b) string compress() c) boolean compress() d) none

SECTION-B

 Descriptive Questions

1. Explain about the key classes and the methods used in Paint?
2. Explain about the key classes and the methods used in MotionEvent?
3. Explain about key classes and the methods used in Bitmap?
4. Explain about key classes and the methods used in RadioGroup?
5. Explain about key classes and the methods used in Spinner?
6. Explain about key classes and the methods used in Array Adapter?
7. Explain about the key classes and the methods used in DatePicker?
8. Explain about key classes and the methods used in Canvas?
9. Write a XML file to develop a TipCalculator application using Radio

Buttons?
10. Write java source code for the TipCalculator using the XML file

developed in the above question?
11. Write a XML file to develop a State& district Selection application

using Spinner?
12. Write java source code for the State& district Selection using the

XML file developed in the above question?
13. Write a XML file to select a date using DatePicker?
14. Write java source code to select a date using DatePicker using the

XML file developed in the above question?

Mobile Application Development 1

IV Year – I Semester 2018-19 CSE

Objective:

To use best design practices for mobile development, designing applications for performance

and responsiveness and also implement communication between the mobile devices.

Syllabus:

Android Applications working with images :display images ,using images stored on android

devices ,image view, working with text files,working with data tables, using sqlite ,using xml

for data exchange, cursor, content values ,XML PUL Parser, XML Resource parser. Client –

server applications: socket, server socket ,HTTPURL connection ,URL.

Syllabus:

 Student will be able to:

 Display image in an android application.

 Work with text files.

 Implement SQLite database.

 Use XML parsers to exchange data.

 Design client server applications.

Mobile Application Development 2

IV Year – I Semester 2018-19 CSE

Displaying Images:

 Displaying images on the Android device is fairly simple.

 Android supports the four common image formats: PNG, JPG, BMP, and GIF.

 Images that we want to bundle with our application are stored in the res directory.

 Users can have some control over the resolution of their images by storing three

versions of the same image. The correct version will be displayed depending on the

device the end user employs.

 We will notice that in the Package Explorer in Eclipse, the res directory has three

subdirectories: drawable-ldpi (low resolution), drawable-mdpi (medium resolution),

and drawable-hdpi (high resolution).

 Images are displayed in an ImageView object.

 Like a TextView object, an ImageView object can be added to the screen in the XML

file that is used to lay out the screen, such as main.xml, or it can be declared and

assigned in the Java code.

 A particular image can be assigned to an ImageView either in the XML file or in the

Java code, the latter allowing the application to change the image while it is running.

Main.xml file for ImageView:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/hello"

 />

 <ImageView

 android:id="@+id/myimage"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

Mobile Application Development 3

IV Year – I Semester 2018-19 CSE

 android:src="@drawable/harbor"/>

 <ImageView

 android:id="@+id/myimage2"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"/>

 </LinearLayout>

Java code:

import android.app.Activity;

import android.os.Bundle;

import android.widget.ImageView;

public class ImageDisplay extends Activity {

 /** Called when the activity is first created. */

 ImageView myImageView=null;

 ImageView myImageView2=null;

 @Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 myImageView=(ImageView)findViewById(R.id.myimage);

 myImageView2=(ImageView)findViewById(R.id.myimage2);

 myImageView2.setImageResource(R.drawable.lighthouse);

 }

}

USING IMAGES STORED ON THE ANDROID DEVICE

 Up to now we learned how to display default images with the application on the

screen.

 Now we will learn how to pull images from the gallery on the mobile phone into our

phone application.

 To select the photo from the gallery, we use the built-in activity ACTION_PICK.

 Android devices can store data items internally or externally (using an SD card).

 There are two constructs we will look at for retrieving data from these sources.

Mobile Application Development 4

IV Year – I Semester 2018-19 CSE

 The Android operating system (OS) can worry about where the data is stored

internally on an actual device we just need to use the construct for internal storage.

The same applies for the SD card. On the emulator we will use the SD card and the

“external” code construct.

 To place images in the SD card

 Under the Eclipse window menu, choose Android AVD and SDK Manager.

Pick the emulator we wish to check and click the Edit button.

 If we have already configured the emulator for an SD card, it will be in the list

on the left. If we cannot find it in the list, select the New button to the right of

the list and find SD card in the pick list seen here on the right; then click OK.

After that, close all the pop-ups and get back to Eclipse.

 Now take one or two small images we want to add to the SD card image in the

emulator. Android will work with JPG, BMP, GIF, or PNG formats.

 We can install images to the emulator, start it through the Android AVD and

SDK Manager screens or just start an application in a project. When the

emulator of choice is running, open the Window menu on Eclipse and choose

Open Perspective. We have to choose DDMS.

 DDMS stands for Dalvic Debug Monitor Server and is part of the Android

plug-in for Eclipse; it’s not part of the basic Eclipse configuration. If it is not

on the list, open other and we should find it in the expanded list. When the

perspective is open, find the tab named File Explorer. It will list the contents

of the emulator just like the File Explorer does on our development machine.

 As you move in on the mnt folder, eventually you will arrive at

the sdcard folder. Open the sdcard folder as you see in the figure.

Mobile Application Development 5

IV Year – I Semester 2018-19 CSE

 At the upper-right corner of the illustration, you will see two icons. One is

an orange arrow pointing left on a floppy disk; the other is an arrow

pointing right on a cell phone. The icon on the right is used to move files

from an external source to the emulator.

 Select the latter and it will open a File Explorer on your development

machine. Find the file(s) you want to transfer and load them to the

emulator.

 Now we design image retrieving and viewing application.

 We need a simple main.xml file, which includes only a button to summon the

image picker activity, and an ImageView element in which to load a chosen

image.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="My Image Viewer"

/>

<Button

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Touch to view gallery"

 android:id="@+id/gallerybutton"

/>

<ImageView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:id="@+id/imageview"

/>

Mobile Application Development 6

IV Year – I Semester 2018-19 CSE

</LinearLayout>

Java Code:

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.widget.*;

import android.view.*;

import android.net.Uri;

public class ImageViewerActivity extends Activity {

 /** Called when the activity is first created. */

 Button b=null;

 ImageView iv=null;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 b=(Button)findViewById(R.id.gallerybutton);

 iv=(ImageView)findViewById(R.id.imageview);

 b.setOnClickListener(new View.OnClickListener(){

 public void onClick(View v){

 Intent myIntent=new Intent(Intent.ACTION_PICK,

android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

 startActivityForResult(myIntent,2);

 }

 });

Mobile Application Development 7

IV Year – I Semester 2018-19 CSE

 }

 @Override

 public void onActivityResult(int requestID, int resultID, Intent i)

{

 super.onActivityResult(requestID,resultID, i);

 if (resultID==Activity.RESULT_OK){

 Uri selectedImage=i.getData();

 iv.setImageURI(selectedImage);

 }

 }

}

In these lines

Intent myIntent=new Intent(Intent.ACTION_PICK,

 android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

 startActivityForResult(myIntent,2);

 The construct for sd card is EXTERNAL_CONTENT_URI.

Mobile Application Development 8

IV Year – I Semester 2018-19 CSE

Key class and methods used in ImageView:

Class ImageView

Package android.view

Extends java.view.View

OverView Displays an arbitrary image such as an icon. The ImageView class can

load images from various sources, take care of computing its measurement

from the image to properly display it, and show options such as scaling

and tinting.

Mobile Application Development 9

IV Year – I Semester 2018-19 CSE

Methods:

1) Void setImageResource(int resid)

Sets a Drawable object as this ImageView’s content.

2) Void setImageUri(Uri uri)

Sets the content for this ImageView to the specified uniform resource identifier.

3) Void setImageDrawable(Drawable drawable)

Sets a Drawable object as the content of this ImageView.

4) Void setColorFilter(int color)

Sets a tinting option for the image to be displayed.

5) Void setMaxHeight(int maxheight)

Sets the maximum height for this ImageView.

6) Void setMAxWidth(int maxwidth)

Sets the maximum width for this ImageView.

7) Void setBaseline(int baseline)

Sets the offset of the widget’s text baseline from the widget’s top boundary.

8) Int getBaseline()

Returns the offset of the widget’s text baseline from the widget’s top.

WORKING WITH TEXT FILES

 Our application design requires the ability to store and retrieve persistent data.

 We can do this in two ways:

 a freeform text file, such as text notes,

 Organized data such as a data table.

 In android, there are two choices for the application designer, regarding text files.

 A text file can be built as part of an application and delivered with the

application, but these text files will be read-only.

 To build the application so the user can create, modify, and delete his own

files.

 To create a text file that the application will use,

 Create a new folder in the res folder by right-clicking the res folder in the

Package Explorer and choosing New, Folder.

 Call the folder raw, which indicates to Eclipse and the Android software

development kit (SDK) that it will contain media and plain text files.

Mobile Application Development 10

IV Year – I Semester 2018-19 CSE

 Right-click on new folder name and select New, File. Name the

file params.txt and place a few words of text in it.

 R.java file: The first run-through of the application will create an R.java file similar to

the following code. The class called raw, came from our folder creation of the same

name, and the field called params, based on our naming of the text file.

package com.sheusi.FileWerx;

public final class R {

 public static final class attr {

 }

 public static final class drawable {

 public static final int icon=0x7f020000;

 }

 public static final class id {

 public static final int FileViewer=0x7f060000;

 }

 public static final class layout {

 public static final int main=0x7f030000;

 }

 public static final class raw {

 public static final int params=0x7f040000;

 }

 public static final class string {

 public static final int app_name=0x7f050001;

 public static final int hello=0x7f050000;

 }

}

Mobile Application Development 11

IV Year – I Semester 2018-19 CSE

 Main.xml file: Next, we modify the main.xml file and add a TextView to display the

contents of the text file. Generally, the text file would not necessarily be displayed,

and it doesn’t have to contain readable text; instead, it may contain data that is only

important to the application. But now, we will read it and some parameters are to

the TextView element .

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

<TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/hello"

 />

 <TextView

android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:minLines="3"

 android:maxLines="3"

 android:textColor="#000000"

 android:textSize="12px"

 android:background="#ff0000"

 android:text=""

 android:id="@+id/FileViewer"

Mobile Application Development 12

IV Year – I Semester 2018-19 CSE

 />

</LinearLayout>

 Java file: Finally, we can take a look at the Java file. First, we cannot simply link to a

raw resource, in this case the text file, by using findViewByID(), because a file is not

an object of the View class. Instead, we use the openRaw-Resource() method of

the Resources class. The following are the steps:

 .

 The getResources() method of the Activity class assigns the Resourses class

variable.

 The openRawResource() call returns an InputStream from the file

 We wrap that in a DataInput-Stream object to make the file contents

retrievable.

 Finally, we assign the contents to a String and display it in the TextView we

created for that purpose.

package com.sheusi.FileWerx;

import android.app.Activity;

import android.os.Bundle;

import android.widget.*;

import java.io.*;

import android.content.res.Resources;

public class FileWerx extends Activity {

 /** Called when the activity is first created. */

 InputStream is=null;

 DataInputStream dis=null;

 Resources myResources=null;

 TextView tv=null;

 @Override

Mobile Application Development 13

IV Year – I Semester 2018-19 CSE

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 myResources=this.getResources();

 tv=(TextView)findViewById(R.id.FileViewer);

 is=myResources.openRawResource(R.raw.params);

 dis=new DataInputStream(is);

 String someText=null;

 try{

 someText=dis.readLine();

 }catch(IOException ioe){

 someText="Couldn’t read the file";

 }

 tv.setText(someText);

 }

}

Working with SQLite Database:

 SQLite is an open source SQL database that stores data to a text file on a device.

 Android comes in with built in SQLite database implementation.

 SQLite supports all the relational database features. In order to access this database,

we don't need to establish any kind of connections for it like JDBC, ODBC e.t.c.

Database - Package

 The main package is android.database.sqlite that contains the classes to manage our

own databases.

Mobile Application Development 14

IV Year – I Semester 2018-19 CSE

Database – Creation:

 In order to create a database you just need to call openOrCreateDatabase() method

with our database name and mode as a parameter.

Syntax:

SQLiteDatabase mydatabase = openOrCreateDatabase("your database

name",PRIVATE_MODE,null);

Database – Insertion:

 We can create table or insert data into table using execSQL() method defined in

SQLiteDatabase class.

Syntax:

mydatabase.execSQL("CREATE TABLE IF NOT EXISTS

TableName(Username VARCHAR,Password VARCHAR);");

Database – Retrieving:

 We can retrieve anything from database using an object of the Cursor class.

 We will call a method of this class called rawQuery() and it will return a resultset

with the cursor pointing to the table.

 We can move the cursor forward and retrieve the data.

Syntax:

Cursor resultSet=mydatabase.rawQuery(“Select * from TableName”,null);

resultSet.moveToFirst();

String username=resultSet.getString(0);

String password=resultSet.getString(1);

Key class and Methods used in SQLiteDatabase:

Class SQLiteDatabase

Mobile Application Development 15

IV Year – I Semester 2018-19 CSE

Package android.database.sqlite

Extends android.databse.sqlite.SQLiteClosable

Overview This class exposes methods used to manage a SQLite database.

Methods:

1) openOrCreateDatabase("Database name", Mode, null);

creates a database with the specified name and specified mode. The third parameter is

a Cursor factory object which can be set to null.

2) Void execSQL(String sql)

Executes a single SQL statement that is not a SELECT statement or any other

statement that returns data.

3) Cursor query(String table, String[] columns, String selection, String[]

selectionargs, String having, String groupBy, String orderBy,int length)

The query() method takes 8 parameters.

Those are: Database name, String array of columns, Selection, Selection Criteria,

GroupBy Specification, having Specification, Orderby Specification, number of rows

to be retrieved.

4) Cursor rawQuery(String sql, int limit)

Executes the SELECT statement and limit is the number of records to be returned.

5) Void close()

Closes the databse.

6) boolean isReadOnly()

Returns whether the database is opened read-only.

Key class and Methods used in Cursor:

Class Cursor (Interface)

Mobile Application Development 16

IV Year – I Semester 2018-19 CSE

Package android. Database

Extends --------------------

Overview The interface provides random access to the result set returned by a query.

Methods:

1) int getCount()

Returns the number of rows in the Cursor (Result set)

2) boolean moveToFirst()

Moves the cursor to the first row

3) boolean moveToNext()

Moves the cursor to the next row.

4) boolean moveToLast()

Moves the cursor to the last row.

5) Boolean moveToPosition (int position)

Moves the Cursor to an absolute position.

6) int getColumnCount()

Returns the number of columns in the Cursor (result set)

7) int getInt(int columnIndex)

Returns the int value from the column specified by columnIndex.

8) double getDouble(int columnIndex)

Returns the double value from the column specified by columnIndex.

9) Void close()

Closes the cursor, releasing all of its resources and making it invalid.

Mobile Application Development 17

IV Year – I Semester 2018-19 CSE

10) float getFloat(int columnIndex)

Returns the value of requested column index as a float.

11) Long getLong()

Returns the value of the requested columns as a Long

12) String getString(int columnIndex)

Returns the value of the requested column as a string

13) Boolean isFirst()

Returns whether the cursor is pointing to the first row.

14) Boolean isLast()

Returns whether the cursor is positioning to the last row.

Key Class and Methods used in ContentValues:

Class ContentValues

Package android.content

Extends java.lang.Object

Overview This class is used to store a set of values that the Content Resolver can process

Methods:

1) Void put(string key, String value)

Adds a value of String type to the set

2) Void put(String key, int value)

Adds a value of Integer type to the set.

3) Void put(String key, Double value)

Adds a value of double type to the set.

Mobile Application Development 18

IV Year – I Semester 2018-19 CSE

4) Void put(String key, Long value)

Adds a value of Long type to the set.

5) Void put(String key, Float value)

Adds a value of Float type to the set.

6) Void put(String key, Boolean value)

Adds a value of Boolean type to the set.

7) Double getAsDouble(String key)

Retrieves a value and converts it to the Double type.

8) Float getAsfloat(String key)

Retrieves a value and converts it to the Float type.

9) Integer getAsInteger(String key)

Retrieves a value and converts it to the Integer type.

10) Long getAsLong(String key)

Retrieves a value and converts it to the Long type.

11) String getAsString(String key)

Retrieves a value and converts it to the String type.

12) Void remove(String key)

Removes a single value.

13) Int size()

Returns the number of values.

USING XML FOR DATA EXCHANGE

 The plain text files can be used to manage unorganized data and SQLite is used to

manage the most structured data,

Mobile Application Development 19

IV Year – I Semester 2018-19 CSE

 We can turn our attention to a third alternative: XML files.

 XML, Extensible Markup Language, is a way to manage organized data while

allowing us to create our own structure to suit our purpose.

 Anything from a document to an RSS feed to a web commerce site is structured with

XML.

 XML distinguishes from an SQL data table in following ways:

1. XML file is plain text. No database management overhead is needed. Because

of this, we don’t have to worry about exchanging data between incompatible

database management systems; we can convert data from one system to XML,

and convert back at the other end.

 In XML, documents have to be structurally perfect, well-formed. All the tags have to

be in perfect pairs, with perfect placement.

 XML does not display data.. Because they are simply text files, they need no special

handling. They just organize data so the target application can make sense of what is

being delivered. This is why formatting of these files must be done correctly.

 We have to write a utility that extracts data from an XML file (we call such a utility

a parser). A programmer can use one of many prewritten utilities that are designed to

handle the basic structure of an XML document and not be concerned with the

specific tag names and document tag levels. An Android programmer can use

packages that are written into the Java Development Kit (JDK), the Android

Development Kit (ADK).

 There are two essential sides to using XML files:

 assembling and exporting a file,

 disassembling and displaying its contents.

 Several packages are available to handle all the operations necessary to process an

XML file. One of the easiest to use is the org.xmlpull.v1 package.

Mobile Application Development 20

IV Year – I Semester 2018-19 CSE

 The following example shows a simple XML file and displays its contents with a

small amount of formatting. The XML file, called book.xml, is a simple file

consisting of two “book” elements with title and author elements in them, surrounded

by a root tag called “inventory.” Following is a listing of book.xml:

<?xml version="1.0" encoding="utf-8"?>

<inventory>

<book>

<title>android tutorial</title>

<author>jim sheusi</author>

</book>

<book>

<title>info security</title>

<author>tom calabrese</author>

</book>

</inventory>

 There is only one instance of the inventory tag pair: the root element.

 Each book’s record would have values for the title and the author.

 We would have two tag pairs, title and author, within each book pair. Each

pair opens and closes within another open-close pair.

 XML file is processed as follows:

 Include an XML file in the application. To do this, we create a sub-folder in

the resources (res) folder in the Package Explorer of Eclipse. Just right-click

Mobile Application Development 21

IV Year – I Semester 2018-19 CSE

on the res folder, Choose New from the menu, and pick Folder. Name the new

folder xml, in lowercase.

 Right-click on the new xml folder and choose New, then File, and you will

get a clean editing window. Name the file book.xml and type the above code

in that file.

 The application itself only needs an EditText field, so your main.xml file can look

like the following example:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

<TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="XML Parser"

/>

<EditText

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:id="@+id/et1"

/>

Mobile Application Development 22

IV Year – I Semester 2018-19 CSE

</LinearLayout>

 The java code is as follows:

package com.sheusi.XMLWork;

import android.app.Activity;

import android.content.res.Resources;

import android.os.Bundle;

import java.io.*;

import android.widget.*;

import android.util.Log;

import org.xmlpull.v1.*;

import android.content.res.*;

public class XMLWorkActivity extends Activity {

 /** Called when the activity is first created. */

 EditText et1=null;

 InputStream is=null;

 Resources myRes=null;

 @Override

 public void onCreate(Bundle savedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 et1=(EditText)findViewById(R.id.et1);

 this.getRecordsFromXML(this);

Mobile Application Development 23

IV Year – I Semester 2018-19 CSE

 }

 private void getRecordsFromXML(Activity activity){

 try{

 Resources res=activity.getResources();

 XmlResourceParser xrp=res.getXml(R.xml.book);

 xrp.next();// skips descriptor line in XML file

 int eventType=xrp.getEventType();

 while(eventType!=XmlPullParser.END_DOCUMENT){

 //while we haven’t reached the end of the xml file

 if(eventType==XmlPullParser.START_DOCUMENT){

 et1.append("My Library:\n");

 }

 if(eventType==XmlPullParser.START_TAG){

 if(xrp.getName().equals("book "))

 et1.append("\n"+xrp.getName()+":");

 if(xrp.getName().equals("author"))

 et1.append(" by ");

 if(xrp.getName().equals("title"))

 et1.append("\n");

 }

 if(eventType==XmlPullParser.END_TAG){}

 if(eventType==XmlPullParser.TEXT){

Mobile Application Development 24

IV Year – I Semester 2018-19 CSE

 et1.append(xrp.getText());

 }

 eventType=xrp.next();

 }

 }catch(Exception e){

 et1.append("App Error");

 Log.e("xml_error",e.getMessage());

 }

 }

}

 “activity” is the parameter passed to the XML processing method. It

represents the main activity of the application here. We create an instance of

the XmlResourceParser class and assign it the file that we put in

the xml subfolder of the res folder.

 The line xrp.next(); causes the code to skip this line in processing.

 the getName() method refers to what’s in the tags, and getText() refers to the

values between the tags.

 The XmlPullParser class has several symbolic constants that represent integer

variables. The symbolic constants have names that adequately describe the

events that can be encountered when processing the incoming XML document

stream.

 The START_DOCUMENT and END_DOCUMENT are associated

with the outermost and innermost tags in the document, and

the START_TAG and END_TAGevents are associated with other

pairs as they are encountered. The parser uses the TEXT symbolic

constant to represent the encounter with data between tags.

Mobile Application Development 25

IV Year – I Semester 2018-19 CSE

 getName() method is used to match the tags encountered with the various

tags .

 We pull the data value from between the tags with the getText() method.

Key Class and Methods used in XML PullParser:

Class XMLPullParser (interface)

Package xmlpull.vl

Extends ------------

Overview An interface that defines parsing functionality

Methods:

1) int getAttributeCount()

Returns the number of attributes for the current start tag.

2) String getAttributeName(int index)

Returns the local name of the attribute specified by the index parameter if namespaces

are enabled, or just the attribute name if namespaces are disabled.

3) String getAttributeValue(int index)

Returns the given attribute’s value.

Mobile Application Development 26

IV Year – I Semester 2018-19 CSE

4) String getAttributeType(int index)

Returns the type of the specified attribute. If the parser is nonvalidating it must return

CDATA.

5) int getDepth()

Returns the current depth of the element

6) int getEventType()

Returns the type of the current event (START_TAG, END_TAG, and so an).

7) String getInputEncoding()

Returns the input encoding, if known; null otherwise.

8) int getLineNumber()

Returns the current line number stating at 1.

9) String getText()

Returns the text content of the current event as a String.

Key Class and Methods used in XMLResourceParser:

Class XMLResourceParser (Interface)

Package android.content.res

Extends Implements AttributeSet, XmlPullParser

Overview The XML parsing interface returned for an XML resource. This is the standard

XmlPullParser interface.

Methods:

1) int getAttributeCount()

Returns the number of attributes for the current start tag

2) String getAttributeName(int index)

Mobile Application Development 27

IV Year – I Semester 2018-19 CSE

Returns the local name of the attribute specified by the index parameter if namespaces

are enabled, or just the attribute name if namespaces are disabled.

3) String getAttributeValue(int index)

Returns the given attribute’s value

4) int next()

Gets next parsing event

5) Void close()

Closes this interface to the resource.

Key Class and Methods used in Socket:

Class: Socket

Package: java.net

Extends: java.lang.Object

Overview This class implements client sockets (also called just "sockets"). A socket is an

endpoint for communication between two machines.

Methods:

1) Inputstream getInputStream()

Returns an input stream for this socket.

2) Outputstream getOutputStream()

Returns an output stream for this socket.

3) Void connect(socketAddress address, int timeout)

Connects this socket to the server.

4) int getLocalPort()

Returns the local port number to which this socket is bound.

Mobile Application Development 28

IV Year – I Semester 2018-19 CSE

5) InetAddress getInetAdress()

Returns the address to which the socket is connected.

6) Void close()

Closes this socket.

7) int getPort()

8) boolean isConnected()

Key Class and Methods used in ServerSocket:

Class: ServerSocket

Package: java.net

Extends: java.lang.Object

Over View This class implements server sockets. A server socket waits for requests to

come in over the network. It performs some operation based on that request,

and then possibly returns a result to the requester.

Methods:

1) Socket accept()

2) int getLocalPort()

Returns the local port number to which this socket is bound.

3) InetAddress getInetAdress()

Returns the address to which the socket is connected.

4) int getSoTimeout()

Returns setting for SO_TIMEOUT.

5) boolean isBound()

Returns the binding state of the socket.

Mobile Application Development 29

IV Year – I Semester 2018-19 CSE

6) boolean isClosed()

Returns the closed state of the socket.

7) void bind(SocketAddress endpoint)

Binds the socket to a local address.

Key Class and Methods used in HttpURLConnection:

Class: HttpURLConnection

Package: java.net

Extends: java.lang.Object

Overview: Each HttpURLConnection instance is used to make a single request but the

underlying network connection to the HTTP server may be transparently

shared by other instances.

Methods:

1) InputStream getInputStream()

2) String getRequestMethod()

3) Void disconnect()

4) Boolean usingProxy()

5) Permission getPermission()

6) String getResponseMessage()

Key Class and Methods used in URL:

Class: URL

Package: java.net

Extends: java.lang.Object

Mobile Application Development 30

IV Year – I Semester 2018-19 CSE

Overview The Java URLConnection class represents a communication link between the

URL and the application. This class can be used to read and write data to the

specified resource referred by the URL.

Methods:

1) URLConnection openConnection()

2) InputStream openStream()

3) Uri toUri()

4) int getPort()

5) String getHost()

6) String getPath()

7) Object getConnect()

Mobile Application Development 31

IV Year – I Semester 2018-19 CSE

UNIT-VI

Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1. The three resolution folders available under res directory for image in

android are ______, _________ and __________.

2. Images are displayed by using ___________ object.

3. The image formats supported by android are ________, __________,

_________ and __________.

4. __________________________ method is called to set a drawable object as

ImageView’s content.

5. _________________ Built-in activity is used to select photo from the

gallery.

6. The purpose of XML pull parser

is___.

7. The purpose of XML resource parser is

_______________________________________.

8. The purpose of ContentValues is

__.

9. The purpose of cursor

is__.

10. The _________ folder under res directory indicates to Eclipse and

SDK,

 that it will contain media and plain text files.

 11. The ___________ file contains the words of text in raw file. []

a) Params.txt b) res.txt c) raw.txt d) all the above

 12.If the cursor returns zero, it indicates that []

a) There is no such table b) there is a table

c) there is table but no data d) none

 13. The package that is to be imported for a sqlite database operations

Mobile Application Development 32

IV Year – I Semester 2018-19 CSE

 is_________ []

 a) android.sqlite b) android.database.sqlite

c) android.database d)both b & c

 14. ___________ seperates XML file from an SQL data table []

 a) XML file is a plain text b) No database management overhead is

needed.

 c) No problem with exchanging data between incompatible database management systems

 d) all the above

 15. The package that is to be extended for XML operations is_____ []

 a) org.xmlpull.v1 b) xmlpull.org.v1 c) xml.org.v1 d) pull.org.v1

 16. ____________ interface defines parsing functionality. []

 a) XML pull parser b) XML resource parser c) XML parser d) both a & b

 17. __________ interface provides random access to the result set returned

 by a query. []

 a) SQLite b) XML parser c) Cursor d) both a & c

 18. _____________ method is called to execute a single SQL statement that

 is not a SELECT statement or any other statement that return data.

 a) query() b) insert() c) execSQL() d) update() []
SECTION-B

Descriptive Questions
1. Explain about Key classes and methods used in ImageView?

2. Explain about Key classes and methods used in SQLiteDatabase?

3. Explain about Key classes and methods used in Cursor?

4. Explain about Key classes and methods used in ContentValues?

5. Explain about Key classes and methods used in XML PullParser?

6. Explain about Key classes and methods used in XML ResourceParser?

7. Write main.xml file and java code for displaying image in android

application.

8. Explain about the common image formats supported by Android.

9. Illustrate how images can be displayed in Android with an example

program?

10. Illustrate how XML is used to exchange data?

Mobile Application Development 33

IV Year – I Semester 2018-19 CSE

11. Illustrate the procedure to create a text file that can be used by

android application with main.xml file.

12. Illustrate the procedure to create the database and tables in SQLite

database?

13. Illustrate the procedure to search a particular record in data table in

SQLite database?

14. Illustrate the procedure to insert or edit a record in data table in

SQLite database?

15. Develop an android application to retrieve an image from photo gallery

on your phone and display it in the application.

