
Distributed Systems 1

IV Year – I Semester 2018-19 CSE

GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521 356.

Department of Computer Science and Engineering

HANDOUT

on

Distributed Systems

Distributed Systems 2

IV Year – I Semester 2018-19 CSE

Vision

To be a Centre of Excellence in computer science and engineering education

 and training to meet the challenging needs of the industry and society.

Mission

 To impart quality education through well-designed curriculum in tune with the

growing software needs of the industry.

 To be a Centre of Excellence in computer science and engineering education and

training to meet the challenging needs of the industry and society.

 To serve our students by inculcating in them problem solving, leadership,

teamwork skills and the value of commitment to quality, ethical behavior &

respect for others.

 To foster industry-academia relationship for mutual benefit and growth

Program Educational Objectives

PEO1: Identify, analyze, formulate and solve Computer Science and Engineering

problems both independently and in a team environment by using the

appropriate modern tools.

PEO2: Manage software projects with significant technical, legal, ethical, social,

environmental and economic considerations

PEO3: Demonstrate commitment and progress in lifelong learning, professional

development, leadership and Communicate effectively with professional clients

and the public.

Distributed Systems 3

IV Year – I Semester 2018-19 CSE

HANDOUT ON DISTRIBUTED SYSTEMS

Class & Sem.:IV B.Tech – I Semester Academic Year:2018-19

Branch : CSE Credits :3
===

1. Brief History and Scope of the Subject

A distributed system is a collection of independent computers that appear
to the users of the system as a single computer

• Two aspects:
 Hardware: autonomous machines
 Software : the users think of the system as a single computer.

More general definition: A distributed system consists of multiple
autonomous computers communicate through that a computer network.

From 1945 until mid-1980s, computers were large and expensive.

 A mainframe costs millions
 A minicomputer costs tens of thousands

Start from mid-1980

 Microprocessors
 Computer networks, LAN, and WAN

Results: Distributed systems

2. Pre-Requisites
OS, Computer Networks Concepts

3. Course Objectives:

To familiarize with the concepts of distributed computing systems.

4. Course Outcomes:
Student will be able to

CO1: Understand the concepts of distributed systems

CO2: Implement different types of architectures in system models

CO3: Design an API by using TCP and UDP

CO4: Design issues of RMI

CO5: Implement Thread and its synchronization

CO6: Analyze the working of various algorithms used to achieve

synchronization.

Distributed Systems 4

IV Year – I Semester 2018-19 CSE

5. Program Outcomes:

Graduates of the Computer Science and Engineering Program will have
ability to Engineering graduate will be able to

1. Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and engineering specialization to the solution
of complex engineering problems.

2. Problem analysis: Identify, formulate, research literature, and analyze
engineering problems to arrive at substantiated conclusions using first
principles of mathematics, natural, and engineering sciences.

3. Design/development of solutions: Design solutions for complex
engineering problems and design system components, processes to meet
the specifications with consideration for the public health and safety, and
the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based
knowledge including design of experiments, analysis and interpretation of
data, and synthesis of the information to provide valid conclusions

5. Modern tool usage: Create, select, and apply appropriate techniques,
resources, and modern engineering and IT tools including prediction and
modeling to complex engineering activities with an understanding of the
limitations.

6. The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal, and cultural issues
and the consequent responsibilities relevant to the professional
engineering practice.

7. Environment and sustainability: Understand the impact of the
professional engineering solutions in societal and environmental
contexts, and demonstrate the knowledge of, and need for sustainable
development.

8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

Distributed Systems 5

IV Year – I Semester 2018-19 CSE

9. Individual and team work: Function effectively as an individual, and as a
member or leader in teams, and in multidisciplinary settings.

10. Communication: Communicate effectively with the engineering
community and with society at large. Be able to comprehend and write
effective reports documentation. Make effective presentations, and give
and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and
understanding of engineering and management principles and apply
these to one’s own work, as a member and leader in a team. Manage
projects in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and
ability to engage in independent and life-long learning in the broadest
context of technological change.

6. Mapping of Course Outcomes with Program Outcomes:

 1 2 3 4 5 6 7 8 9 10 11 12
CO1 3
CO2 1 2 3
CO3 1 3
CO4 1
CO5 2
CO6 3 1

3- High Level Mapping 2- Medium Level Mapping 1-Low Level Mapping
7. Prescribed Text Books

1. Andrew S. Tanenbaum, Distributed Operating Systems.

2. George Coulouris, Jean Dollimore, Tim Kindberg, Distributed Systems

Concepts and Design – 2nd edition.

8. Reference Text Books

1. Andrew S. Tanenbaum, Maarten Van Steen - Distributed Systems

principles and paradigms.

9. URLs and Other E-Learning Resources

 a. https://www.cs.helsinki.fi/u/jakangas/Teaching/DistSys/DistSys-08f-

 1.pdf

Distributed Systems 6

IV Year – I Semester 2018-19 CSE

b. https://www.vidyarthiplus.com/vp/attachment.php?aid=43022

10. Digital Learning Materials:

 http://192.168.0.49/videos/videosListing/270#

11. Lecture Schedule / Lesson Plan

Topic No. of Periods
Theory Tutorial

UNIT –1: Characterization of Distributed Systems
Introduction 1 1 Examples of Distributed Systems 2
Resource Sharing and the Web 3 1 Challenges 2
 8 2
UNIT – 2: System Models
Introduction 1

1

Architectural models
-Software Layers 1
-System Architecture 1

1
-Variations 1
-Interface and Objects 1
-Design requirements for Distributed
Architectures 2

Fundamental models

1 -Interaction model 1
-Failure model 1
-Security model 1
 10 3

UNIT – 3: Inter process Communication
Introduction 1 1 The API for Internet protocols

- Characteristics of Inter process
Communication 1

1 -Sockets, UDP Datagram Communication,
TCP Stream Communication 2

External Data Representation & Marshalling 2
client/server communication 1

1 group communication – IP multicast 1
-An Implementation of group communication 1
-Reliability and ordering of multicast 1
 10 3

Distributed Systems 7

IV Year – I Semester 2018-19 CSE

UNIT – 4: Distributed Objects and Remote Invocation
Introduction 1

1 Communication between distributed objects
- Object model, distributed object model 2
- Design and implementation of RMI 2
- Distributed Garbage Collection 1

1 Remote Procedure Call 1
Events and notifications 2
Case Study : JAVA RMI 1
 10 2
UNIT – 5: Operating System Support
Introduction 1

1 The Operating System layer 1
Protection 1
Processes and threads 1

1

- Address space 1
- Creation of new process 1
- Threads 2

 8 2
UNIT – 6: Coordination and Agreement -Introduction
Distributed mutual exclusion 1

1

Elections 1
Multicast communication 1
Transactions and replications 1
System model and group communication 1
Concurrency control in distributed transactions 1

1

Distributed deadlocks 1
Transaction recovery 1
Replication

-Passive Replication 1
 -Active Replication 1
 10 2

Total No.of Periods: 56 14

Distributed Systems 8

IV Year – I Semester 2018-19 CSE

UNIT – I

Objective:

To familiarize with the concepts of distributed computing systems.

Syllabus:

Unit-I: Characterization of Distributed Systems

Introduction, Examples of Distributed systems, Resource Sharing and the Web

Challenges.

Learning Outcomes:

At the end of the unit, students will be able to:

1. Understand the fundamental concepts of distributed systems

2. Identify the challenges in distributed systems

Learning Material

Introduction
CHARACTERIZATION OF DISTRIBUTED SYSTEMS

1.1 Introduction

Definition: a distributed system is one in which hardware or software
components located at networked computers communicate and coordinate
their actions only by passing messages.

Ex: Internet, Intranet, Mobile & Ubiquitous computing

Motivation : The sharing of resources is a main motivation for constructing
distributed systems.

The term ‘resource’ is extends from hardware components such as disks
and printers to software-defined entities such as files, databases and data
objects of all kinds. It includes the stream of video frames audio connection.

 Internet is a combination of many networks.

 Mobile phone networks, corporate networks, factory networks,
campus networks, home networks etc.

Distributed Systems 9

IV Year – I Semester 2018-19 CSE

All of these separately or in combination share the essential
characteristics comes under distributed systems.

 Computers are separated by any distance. They may be on separate
continents, in the same building or in the same room.

Consequences of distributed systems :

1. Concurrency: In a network of computers, concurrent program execution
is the norm. i.e sharing of resources such as web pages or files when
necessary.

o The capacity of the system to handle shared resources can be
increased by adding more resources to the network.

o Concurrently executing programs must have coordination between
them.

2. No global clock: Programs coordinate their actions by exchanging
messages. Close coordination depends on time.

o But there are limits to the accuracy of computers in a network to
synchronize their clocks – there is no single global notion of the
correct time. So, communication is done by sending messages
through a network.

3. Independent failures: Distributed systems can fail in new ways. Faults
in the network result in the isolation of the computers but that doesn’t
mean that they stop running.

o The failure of a computer, or the unexpected termination of a
program somewhere in the system (a crash), is not immediately made
known to the other components with which it communicates.

o Each component of the system can fail independently, leaving the
others still running.

1.2 Examples of distributed systems: Examples of Distributed systems are

1. Internet

2. Intranet

3. Mobile and Ubiquitous Computing

Distributed Systems 10

IV Year – I Semester 2018-19 CSE

1. Internet:

 The Internet is a interconnected collection of different types of computer
networks. Programs on the computers Communicate by passing messages.

 The design and construction of the Internet communication mechanisms
(the Internet protocols) is enabling a program running anywhere to address
messages to programs anywhere else.

 The Internet is also a very large distributed system. It enables users,
wherever they are, to make use of services such as the World Wide Web,
email and file transfer.

 The set of services is open-ended – it can be extended by the addition of
server computers and new types of service.

Fig:A typical portion of the internet

 Internet Service Providers (ISPs) are companies that provide modem links

and other type of connection to individual users and small organizations,
enabling them to access services anywhere in the Internet as well as
providing local services such as email and web hosting.

 The intranets are linked together by backbones.
A backbone is a network link with a high transmission capacity,

employing satellite connections, fibre optic cables and other high-
bandwidth circuits.

Distributed Systems 11

IV Year – I Semester 2018-19 CSE

 Multimedia services are available in the Internet enabling users to access
audio and video data including music, radio, TV channels, phone, and
video conferencing.

2. Intranet :

An intranet is a portion of the Internet that is separately administered and
has a boundary that can be configured to enforce local security policies.

Fig: A typical intranet

 It is composed of several Local Area Networks(LANs) linked by backbone

connections.
 An intranet is connected to the internet via a router, which allows the

users inside the intranet to make use of services elsewhere such as the
Web or email.

 It allows to access the services it provides. but, most of the organizations
need to protect their own services from unauthorized use by using
firewalls

 The role of a firewall is to protect an intranet by preventing unauthorized
messages from leaving or entering. A firewall is implemented by filtering
incoming and outgoing messages.

 Some organizations may not wish to connect their internal networks to the
Internet at all.

Ex: police, military, hospitals and other security and law enforcement
agencies are likely to have at least some internal networks that are isolated
from the outside world

Distributed Systems 12

IV Year – I Semester 2018-19 CSE

Main issues in the design of intranet are:

 File services are needed to enable users to share data.
 Firewall usage between internal and external users.
 The cost of software installation and support is an important issue.

3. Mobile and ubiquitous computing:

 Distributed systems make use of small and portable computing devices in
wireless networking

These devices include:

• Laptop computers.

• Handheld devices(mobile phones, smart phones, PDAs, video

cameras etc.

• Wearable devices(smart watches with functionality similar to a

PDA)

• Devices embedded in appliances such as washing machines, hi-fi
systems,
 cars and refrigerators.

 Mobile computing is to perform computing tasks while the user is on the

move, or visiting places other than their usual environment.
 In mobile computing, users who are away from their ‘home’ intranet

are still provided with access to resources via the devices they carry with
them.

 The other name for mc is location-aware or context-aware computing.

 Ubiquitous computing is the harnessing of many small, cheap

computational devices that are present in users’ physical environments,
including the home, office and even natural settings.

 The term ‘ubiquitous’ is intended to suggest that small computing devices
will eventually become so pervasive in everyday objects that they are
scarcely noticed.

 Ubiquitous and mobile computing overlap, since the mobile user can in
principle benefit from computers that are everywhere. But they are distinct,

Distributed Systems 13

IV Year – I Semester 2018-19 CSE

Ubiquitous computing could benefit users while they remain in a single
environment such as the home or a hospital.

Fig : Portable and handheld devices in a distributed system

 Both intranets are connected to the rest of the Internet. The user has

access to three forms of wireless connection. Their laptop has a means of
connecting to the host’s wireless LAN.

 This network provides coverage of a few hundred metres. It connects to the
rest of the host intranet via a gateway or access point.

 The user also has a mobile (cellular) telephone, which is connected to the
Internet using the Wireless Application Protocol(WAP) via gateway.

 The phone gives access to pages of simple, textual information, which can
communicate over an infra-red link when pointed at a corresponding device
such as a printer.

1.3 Resource sharing and the web:

Resource sharing
 We routinely share hardware resources such as printers, data resources

such as files, and resources with more specific functionality such as search
engines.

 We share hardware equipments like as printers and disks to reduce costs.

 Patterns of resource sharing may vary.

At one extreme, a search engine on the Web provides a facility to
users throughout the world, users who need never come into contact with
one another directly.

At the other extreme, in computer-supported cooperative working
(CSCW), a group of users who cooperate directly share resources such as
documents in a small, closed group.

 The term service manages a collection of related resources and presents
their functionality to users and applications.

Distributed Systems 14

IV Year – I Semester 2018-19 CSE

Ex: access shared files through a file service; send documents to
printers through a printing service; buy goods through an electronic
payment service etc.

 The only access we have to the service is via the set of operations that it
exports.

Ex: a file service provides read, write and delete operations on files.
 Resources in a distributed system are accessed from other computers by

means of communication.

 Requests are sent in messages from clients to a server and replies are sent
in messages from the server to the clients.

 A complete interaction between a client and a server, from the point when
the client sends its request to when it receives the server’s response, is
called a remote invocation.

 Most of the times distributed systems can be constructed in the form of
interacting clients and servers. The World Wide Web, email and networked
printers all fit this model.

The World Wide Web:

 The World Wide Web is an evolving system for publishing and accessing
resources and services across the Internet.

 Through commonly available web browsers, users retrieve and view
documents of many types, to listen to audio streams and view video
streams, and to interact with an unlimited set of services.

 The Web began life at the European centre for nuclear research (CERN),
Switzerland, in 1989 as a vehicle for exchanging documents.

 Web provides a hypertext structure among the documents that it stores.

The Web is an open system: It can be extended and implemented in new
ways without disturbing its existing functionality.

First, its operation is based on communication standards and document
or content standards that are freely published and widely implemented.

Ex: many types of browsers, implemented on several platforms.
Second, the Web is open with respect to the types of resource that can be
published and shared on it.

Distributed Systems 15

IV Year – I Semester 2018-19 CSE

 Ex:a resource on the Web is a web page can be presented to the
user, such as media files and PDFs(Portable Document Format).

The Web is based on three main standard technological components:

1)HyperText Markup Language (HTML), a language for specifying the
contents and layout of pages as they are displayed by web browsers.

2) Uniform Resource Locators (URLs), also known as Uniform Resource
Identifiers (URIs), which identify documents and other resources stored as
part of the Web.

3)client-server system architecture, with standard rules for interaction (the
HyperText Transfer Protocol – HTTP) by which browsers and other clients
fetch documents and other resources from web servers.

1) HTML : The Hyper Text Markup Language is used to specify the text and
images that make up the contents of a web page, and to specify how they
are laid out and formatted for presentation to the user.

 A web page contains such structured items as headings, paragraphs,
tables and images. HTML is also used to specify links and which resources
are associated with them.

 A typical piece of HTML text follows:

 The file name earth.html is stored in web server. A browser retrieves the

contents of this file from a web server.
 HTML directives, known as tags, are enclosed by angle brackets, such as

<P>.

2) URLs: The purpose of a Uniform Resource Locator is to identify a
resource in such a way as to enable the browser to locate that resource.

 Browsers examine URLs in order to fetch the corresponding resources from
web servers. Sometimes the user types a URL into the browser.

Every URL have the following components:

scheme : scheme-specific-location.

Distributed Systems 16

IV Year – I Semester 2018-19 CSE

scheme’, declares which type of URL this is. URLs are required to identify
the locations of a variety of resources
Ex: ‘mailto:joe@anISP.net’ identifies a user’s email address;
ftp://ftp.downloadIt.com/software/aProg.exe identifies a file that is to be
retrieved using the File Transfer Protocol (FTP) rather than the more
commonly used protocol HTTP.

One more example of scheme is ‘telnet’ (used to log into a computer).

 HTTP URLs are the most widely used, for accessing resources using the
standard HTTP protocol.

 An HTTP URL has two main jobs: to identify which web server maintains
the resource, and to identify which of the resources at that server is
required.

Fig:Web servers and Web browsers

Figure shows three browsers issuing requests for resources managed by
three web servers. The topmost browser is issuing a query to a search
engine. The middle browser requires the default page of another web site.

The bottommost browser requires a web page that is specified in full,
including a path name relative to the server. The files for a given web server
are maintained in one or more subtrees (directories) of the server’s file
system, and each resource is identified by a path name relative to the
server.

HTTP URLs are of the following form:
http:// servername [:port] [/pathName] [?query] [#fragment]

 Items in square brackets are optional.
 A full HTTP URL always begins with the string ‘http://’ followed by a server

name, expressed as a Domain Name System (DNS) name.

Distributed Systems 17

IV Year – I Semester 2018-19 CSE

 It is followed optional ‘port’ on which the server listens for requests, which
is 80 by default. Then comes an optional path name of the server’s
resource.

 If this is absent then the server’s default web page is required. Finally, the
URL optionally ends in a query component – for example, when a user
submits the entries in a form such as a search engine’s query page.

Publishing a resource: to publish a resource on the Web, a user first place
the corresponding file in a directory that the web server can access.

3) Client-Server system architecture (standard rules of interaction-

HTTP): The Hyper Text Transfer Protocol defines the ways in which
browsers and other types of client interact with web servers.

a) Request-reply interactions: HTTP is a ‘request-reply’ protocol. The

client sends a request message to the server containing the URL of the
required resource.

 The server looks up the path name and, if it exists, sends back the
resource’s content in a reply message to the client. Otherwise, it sends
back an error response.

b) Content types: Browsers are not necessarily capable of handling every
type of content.

 When a browser makes a request, it includes a list of the types of
content it prefers – for example, in principle it may be able to display
images in ‘GIF’ format but not ‘JPEG’ format.

 The server may be able to take this into account when it returns content
to the browser. The server includes the content type in the reply
message so that the browser will know how to process it.

c) One resource per request: Clients specify one resource per HTTP
request. If a web page contains nine images, say, then the browser will
issue a total of ten separate requests to obtain the entire contents of the
page.

 Browsers typically make several requests concurrently, to reduce the
overall delay to the user.

d) Simple access control: By default, any user with network connectivity
to a web server can access any of its published resources.
 If users wish to restrict access to a resource, then they can configure
the server to issue a ‘challenge’, the corresponding user then has to

Distributed Systems 18

IV Year – I Semester 2018-19 CSE

prove that they have the right to access the resource, for example, by
typing in a password.

1.4 Challenges

The main challenges of distributed systems are

1) Heterogeneity
2) Openness
3) Security
4) Scalability
5) Failure handling
6) Concurrency
7) Transparency

1) Heterogeneity :The Internet enables users to access services and run

applications over a heterogeneous collection of computers and networks.

Heterogeneity (that is, variety and difference) applies to all of the following:

a. Networks
b. Computer hardware
c. Operating systems
d. Programming languages
e. Implementations by different developers

a) Networks:

The Internet consists of many different sorts of network, their differences
are masked. The Internet protocols are implemented over a variety of
different networks, all of the computers attached to these networks use the
Internet protocols to communicate with one another.

Ex: a computer attached to an Ethernet has an implementation of the
Internet protocols over the Ethernet, whereas a computer on a different
sort of network will need an implementation of the Internet protocols for
that network.

b) Computer hardware:
Data types may be represented in different ways on different sorts of
hardware

Ex: To represent Integer data type, there are two alternatives for the byte
ordering one is big-endian byte-order the other is little-endian byte-order.

Distributed Systems 19

IV Year – I Semester 2018-19 CSE

These differences in representation must be dealt with if messages are to
be exchanged between programs running on different hardware.

c) Operating systems:

The operating systems of all computers on the Internet need to include an
implementation of the Internet protocols, they do not necessarily all provide
the same application programming interface to these protocols.

Ex: The calls for exchanging messages in UNIX are different from the calls
in Windows.

d) Programming languages:

 Different programming languages use different representations for

characters and data structures such as arrays and records.
 These differences must be addressed if programs written in different

languages are to be able to communicate with one another.

e) Implementations by different developers
Programs written by different developers cannot communicate with one
another unless they use common standards.

 Ex: for network communication and the representation of primitive data
items and data structures in messages. For this to happen, standards need
to be agreed and adopted – as have the Internet protocols.

Middleware • The term middleware applies to a software layer that
provides a programming abstraction as well as masking the heterogeneity
of the underlying networks, hardware, operating systems and programming
languages.

Ex: CORBA , JAVA RMI

Heterogeneity and mobile code • The term mobile code is used to refer to
program code that can be transferred from one computer to another and
run at the destination Code suitable for running on one computer is not
necessarily suitable for running on another because executable programs
are normally specific both to the instruction set and to the host operating
system.

virtual machine: This approach provides a way of making code executable
on a variety of host computers:

2) Openness

 The openness of a computer system is the characteristic that determines
whether the system can be extended and re implemented in various ways.

Distributed Systems 20

IV Year – I Semester 2018-19 CSE

 The openness of distributed systems is determined primarily by the degree

to which new resource-sharing services can be added and be made
available for use by a variety of client programs.

 Openness can be achieved by the specification and documentation of the
key software interfaces of the components of a systems by the software
developers i.e., the key interfaces are published

Ex: World Wide Web Consortium (W3C) develops and publishes standards
related to the working of the Web [www.w3.org]. Systems that are designed
to support resource sharing in this way are termed open.

 distributed systems to emphasize the fact that they are extensible.

3) Security

 The information resources available and maintained in distributed systems
have a high intrinsic value to their users. Their security is therefore of
considerable importance.

Security for information resources has three components:

 Confidentiality (protection against disclosure to unauthorized
individuals),

 Integrity (protection against alteration or corruption), and
 Availability (protection against interference with the means to access

the resources)

 The challenge is to send sensitive information in a message over a network
in a secure manner. Even though a firewall can be used to form a barrier
around an intranet, not deal with ensuring the appropriate use of
resources by users, or with the appropriate use of resources in the
Internet, that are not protected by firewalls.

In a distributed system, clients send requests to access data managed by
servers, which involves sending information in messages over a network.

Ex:

1. A doctor might request access to hospital patient data or send additions to

that data

2. In e- commerce and banking, users send their credit card numbers across

The Internet.

Distributed Systems 21

IV Year – I Semester 2018-19 CSE

In both examples, the challenge is to send sensitive information in a message
over a network in a secure manner. Both of these challenges can be met by
the use of encryption techniques developed for this purpose.

The two security challenges have not yet been fully met are Denial of service
attacks, Security of mobile code.

4) Scalability

 Distributed systems operate effectively and efficiently at many different
scales, ranging from a small intranet to the Internet.

 A system is described as scalable if it will remain effective when there is a
significant increase in the number of resources and the number of users.

 The number of computers and servers in the Internet has increased
dramatically.

 The design of scalable distributed systems presents the following
 challenges

 Controlling the cost of physical resources : The demand for a resource
grows, it should be possible to extend the system, at reasonable cost, to
meet it.

 Controlling the performance loss: The management of a set of data
whose size is proportional to the number of users or resources in the
system.

 Preventing software resources running out: Lack of scalability is shown
by the numbers used as Internet (IP) addresses (computer addresses in the
Internet), in the late 1970s use 32 bits for this purpose, supply of available
Internet addresses is running out. For this reason a new version of the
protocol with 128-bit Internet addresses is adopted, it require modifications
to many software components.

 Avoiding performance bottlenecks: Algorithms should be decentralized to
avoid having performance bottlenecks

 The system and application software should not need to change when the
scale of the system increases, but this is difficult to achieve.

5) Failure handling :

 Computer systems sometimes fail. When faults occur in hardware or
software, programs may produce incorrect results or may stop before they
have completed the intended computation.

Distributed Systems 22

IV Year – I Semester 2018-19 CSE

 Failures in a distributed system are partial – that is, some components fail
while others continue to function. Therefore the handling of failures is
particularly difficult.

The following techniques for dealing with failures

 Detecting failures: Some failures can be detected. Ex: checksums can be
used to detect corrupted data in a message or a file. It is difficult or even
impossible to detect some other failures. Ex: remote crashed server in the
Internet challenge is to manage in the presence of failures that cannot be
detected but may be suspected.

 Masking failures: Some failures that have been detected can be hidden.
Two examples of hiding failures:

1. Messages can be retransmitted when they fail to arrive.

2. File data can be written to a pair of disks so that if one is corrupted, the
other may still be correct

 Tolerating failures: It would not be practical to attempt to detect and hide
all of the failures that might occur in large network with so many
components. Their clients can be designed to tolerate failures.

 Recovery from failures: Recovery involves the design of software so that
the state of permanent data can be recovered or ‘rolled back’ after a server
has crashed, it is possible through redundancy.

 Redundancy: Services can be made to tolerate failures by the use of
redundant components.

Consider the following examples:

1. There should always be at least two different routes between any two
routers in the Internet.
2. In the Domain Name System, every name table is replicated in at least
two different servers.
3. A database may be replicated in several servers to ensure that the data
remains accessible after the failure of any single server; the servers can be
designed to detect faults in their peers; when a fault is detected in one
server, clients are redirected to the remaining servers.

The design of effective techniques for keeping replicas of rapidly changing
data upto-date without excessive loss of performance is a challenge.

Distributed Systems 23

IV Year – I Semester 2018-19 CSE

 Distributed systems provide a high degree of availability in the face of
hardware faults. The availability of a system is a measure of the proportion of
time that it is available for use.

6) Concurrency:

 Both services and applications provide resources that can be shared by
clients in a distributed system. There is a possibility that several clients
will attempt to access a shared resource at the same time.

 Any object that represents a shared resource in a distributed system must
be responsible for ensuring that it operates correctly in a concurrent
environment.

 For an object to be safe in a concurrent environment, its operations must
be synchronized in such a way that its data remains consistent. This can be
achieved by standard techniques such as semaphores, which are used
in most operating systems.

7) Transparency

 Transparency is defined as the concealment from the user and the
application programmer of the separation of components in a distributed system,
so that the system is perceived as a whole rather than as a collection of
independent components.

 Access transparency enables local and remote resources to be accessed
using identical operations.

 Location transparency enables resources to be accessed without knowledge
of their physical or network location (for example, which building or IP
address).

 Concurrency transparency enables several processes to operate concurrently
using shared resources without interference between them.

 Replication transparency enables multiple instances of resources to be used
to increase reliability and performance without knowledge of the replicas by
users or application programmers.

 Failure transparency enables the concealment of faults, allowing users and
application programs to complete their tasks despite the failure of hardware or
software components.

 Mobility transparency allows the movement of resources and clients within a
system without affecting the operation of users or programs.

Distributed Systems 24

IV Year – I Semester 2018-19 CSE

 Performance transparency allows the system to be reconfigured to improve

performance as loads vary.

 Scaling transparency allows the system and applications to expand in scale
without change to the system structure or the application algorithms.

 The two most important transparencies are access and location transparency;
their presence or absence most strongly affects the utilization of distributed
resources. They are sometimes referred to together as network transparency.

Distributed Systems 25

IV Year – I Semester 2018-19 CSE

UNIT-I

Assignment-Cum-Tutorial Questions
Section A

 I.Objective Questions

1. The main motivation for the distributed system is []
A. Discovery B. Sharing C. Searching D. Transparency
2. Which of the following is the example of distributed system []
A. internet B. Intranet C. mobile computing D. All of the above

3. ISP stands for __________ []
A. Internet Service Provider B. Internet Service Publisher
C. Intranet Service Provider D. Intranet Service Publisher

4. Which of the following is a Request-Response protocol ______ []
A.SMTP B. FTP C.HTTP. D.UDP
5. CSCW stands for __________ []
A. computer-supported cooperative working
B. computer-supported coordination working
C. computer-supported couple working
D. None of the above
6. Security component in information is _____ []
A. Integrity B. Availability C. Confidentiality D. All of the above

 7. Which software layer provides programming abstraction and masking
 the heterogeneity of networks []
 A. Middleware B. Middle core C. Mobile code D. Hard core

8. What characteristic of a computer system determines whether the
 system can be extended and re-implemented in various ways. []

 A. Openness B. Closeness C. Scalability D. Redundancy
9. Openness can be achieved by_________made available to software
 developers. []
A. Key Design B. Key Software Interface

 C. Key Platform D. None of the above

 10.Which of the following approach provides a way of making code
 executable on any hardware. []

A. Host Machine B. Guest Machine C. Virtual Machine D. All of the above

11.Which security challenges have not been fully met []
 A. Password-Based Attack. B. Denial-of-Service Attack.
 C. Man-in-the-Middle Attack. D. Compromised-Key Attack.

Distributed Systems 26

IV Year – I Semester 2018-19 CSE

12. Challenges faced in the design of scalable distributed system []
 A. Controlling the cost of physical resources
 B. Controlling the performance loss
 C. Preventing software resources running out D. All of the above

 13. Failures in a distributed system are _______ []
 A. Complete B. Partial C. No failures D. All of the above

 14. Which internal networks isolated from the outside world. []
A. Police B.Hospitals C. Military
D. Law enforcement agencies E. All of the above

 15. In HTTP version 1.0, Clients specify ___ resources per HTTP request

A. 2 B. 1 C. 3 D. 4 []

Section B
 II. Descriptive Questions

1. Define Distributed System ? What is the motivation of distributed
system? Give some examples of distributed systems.

2. List the consequences of distributed systems with necessary
explanation.

3. Summarize about Internet with suitable examples.

4. Explain Intranet with the help of a neat diagram and Explain the role of
firewall.

5. Outline concurrency and transparency challenges faced in the
development of distributed systems.

6. What is meant by Mobile and Ubiquitous Computing? Explain.

7. List the standard technological components in the web.

8. List the components of WorldWideWeb.

9. Analyze the challenges heterogeneity, openness and security with
reference to Distributed system construction.

10. Examine the reasons for designing a system as a Distributed System?

Distributed Systems 1

IV Year – I Semester 2018-19 CSE

UNIT – II

Objective:

To familiarize with the concepts of different descriptive models and design issues for distributed

systems.

Syllabus:

Unit-II: System Models

Introduction, Architectural Models- Software Layers, System Architecture, Variations, Interface and
Objects, Design Requirements for Distributed Architectures, Fundamental Models-Interaction Model,
Failure Model, Security Model.

Learning Outcomes:

At the end of the unit, students will be able to:

1. Implement different types of architectures in System Models.

2. Know the difficulties and threats to distributed systems

Learning Material

Unit-2

SYSTEM MODELS

2.1 Introduction

The properties and design issues of distributed systems can be captured and discussed through the use
of descriptive models.

Each type of model is intended to provide an abstract, simplified but consistent description of a
relevant aspect of distributed system design.

There are two different models

1) Architectural models defines the way in which the components of systems interact with one
another and the way in which they are mapped onto an underlying network of computers. i.e
the location and interactions of the components.

Ex: client-server model, peer-peer model.

2) Fundamental models take an abstract perspective in order to examine individual aspects of a

distributed system.

Distributed Systems 2

IV Year – I Semester 2018-19 CSE

There are 3 fundamental models. Each fundamental model represents a set of issues that must be
addressed in the design of distributed systems.

1) Interaction Model - which consider the structure and sequencing of the communication

between the elements of the system.

2) Failure Model - which consider the ways in which a system may fail to operate correctly.

3) Security Model - which consider how the system is protected against attempts to interfere with
its correct operation or to steal its data

Their purpose is to specify the design issues, difficulties and threats resolved to fulfill tasks correctly,
reliably, securely.

Difficulties and threats for distributed systems

The problems faced by the designers of distributed systems are:

1) Varying modes of use:

 The component parts of systems are subject to wide variations in workload.

Ex: Some web pages are accessed several million times a day.

 Some parts of a system may be disconnected, or poorly connected some of the time.

Ex: when mobile computers are included in a system.

 Some applications have special requirements for high communication bandwidth and low

latency – Ex : multimedia applications.

2) Wide range of system environments:

 A distributed system must accommodate heterogeneous hardware, operating systems and

networks.

 The networks may differ widely in performance – wireless networks operate at a fraction of
the speed of local networks.

 Systems of widely differing scales, ranging from tens of computers to millions of computers,
must be supported.

3) Internal problems:

 Non-synchronized clocks, conflicting data updates and many modes of hardware and
software failure involving the individual system components.

4) External threats:

 Attacks on data integrity and secrecy, denial of service attacks.

Distributed Systems 3

IV Year – I Semester 2018-19 CSE

2.2 Architectural Models

 The architecture of a system is its structure in terms of separately specified components and their
interrelationships.

 The overall goal is to ensure that the structure will meet present and likely future demands on it.

 Major concerns are to make the system reliable, manageable, adaptable and cost-effective.

 Architecture model of a distributed system first simplifies and abstracts the functions of the
individual components of as distributed system, it considers

 The placement of components across a network of computers
 The interrelationships between the components

 Initial simplification is achieved by classifying process as

1. Sever process

2. Client process

3. Peer process

 This classification identifies the responsibilities of each and help us to assess their workloads and to
determine the impact of failures.

 Later simplification is processes that cooperate and communicate in a symmetrical manner to
perform a task.

2.2.1 Software layers

Layering : The concept of layering is a familiar one and is closely related to abstraction. In a layered
approach, a complex system is partitioned into a number of layers, with a given layer making use of the
services offered by the layer below. A given layer therefore offers a software abstraction, with higher
layers being unaware of implementation details, or indeed of any other layers beneath them.

The term software architecture referred to the structuring of software as layers in a single computer in
terms of services offered and requested between processes located in the same or different computers.

The process-and-service-oriented view can be expressed in terms of service layers. The organization of
these layers is vertical in distributed systems.

Distributed Systems 4

IV Year – I Semester 2018-19 CSE

Fig : Software and hardware service layers in distributed systems

A distributed service can be provided by one or more server processes, interacting with each other and
with client processes in order to maintain a consistent system-wide view of the service’s resources.

Ex : A network time service is implemented on the Internet based on the Network Time Protocol (NTP)
by server processes running on hosts throughout the Internet that supply the current time to any client
that requests it and adjust their version of the current time as a result of interactions with each other.

Given the complexity of distributed systems, it is often helpful to organize such services into layers.

Platform

 The lowest-level hardware and software layers are referred to as a platform for distributed systems and
applications.

These low-level layers provide services to the layers above them, which are implemented independently
in each computer, bringing the system’s programming interface up to a level that facilitates
communication and coordination between processes.

Ex: Intel x86/Windows, Intel x86/Solaris, Intel x86/Mac OS X, Intel x86/Linux and ARM/Symbian are
major examples.

Middleware

It is software layer whose purpose is to mask heterogeneity and to provide a convenient programming
model to application programmers.

Middleware is represented by processes or objects in a set of computers that interact with each other to
implement communication and resource-sharing support for distributed applications.

It is concerned with providing useful building blocks for the construction of software components that
can work with one another in a distributed system.

Distributed Systems 5

IV Year – I Semester 2018-19 CSE

It raises the level of the communication activities of application programs through the support of
abstractions are

 remote method invocation
 communication between a group of processes
 notification of events
 the partitioning, placement and retrieval of shared data objects amongst cooperating

computers
 the replication of shared data objects
 the transmission of multimedia data in real time

Widely used object oriented middleware products are

 CORBA
 Java RMI
 Web services
 Microsoft’s Distributed Component Object Model(DCOM)
 The ISO/ITU-T’s Reference Model for Open Distributed Processing (RM-ODP)

Middle ware also provide services for use by application programs. Ex: CORBA offers services like
naming, security, transactions, persistent storage and event notification.

Limitations of middleware

 Many distributed applications rely entirely on the services provided by the available middle
ware to support their needs for communication and data sharing.

Ex:An application that is suited to the client-server model such as a database of name and
addresses can rely on middleware that provides only remote method invocation.

 Some aspects of the dependability of systems require support at the application level.

Ex: transfer of large file over unreliable network. TCP provides some error detection and
correction, bit it cannot recover from major network interruptions. The mail transfer service
adds another level of fault tolerance, maintaining a record of progress and resuming
transmission using a new TCP connection if the original one breaks.

2.2.2 System Architectures

 The most evident aspect of distributed system design is the division of responsibilities
between system components (applications, servers, and other processes) and the placement
of the components on computers in the network.

 It has major implication for:
 Performance
 Reliability
 Security

Distributed Systems 6

IV Year – I Semester 2018-19 CSE

1. Client-Server model:

 Most often architecture for distributed systems.
 Client process interact with individual server processes in a separate host computers in order

to access the shared resources
 Servers may in turn be clients of other servers.

E.g. a web server is often a client of a local file server that manages the files in which the web
pages are stored.

 E.g. a search engine can be both a server and a client : it responds to queries from browser
clients and it runs web crawlers that act as clients of other web servers

Fig :Clients invoke individual servers

2. Peer-to-Peer model

 All of the processes play similar roles, interacting cooperatively as peers to perform a
distributed activities or computations without any distinction between clients and
servers or the computers that they run on.

 Peer-to-peer applications and systems have been successfully constructed that enable tens or
hundreds of thousands of computers to provide access to data and other resources that they
collectively store and manage.

 E.g., music sharing system Napster

Distributed Systems 7

IV Year – I Semester 2018-19 CSE

Fig : Peer-to-peer architecture

 Applications are composed of large numbers of peer processes running on separate computers.

 A large number of data objects are shared, an individual computer holds only a small part of the
application database, and the storage, processing and communication loads for access to
objects are distributed across many computers and network links.

 Each object is replicated in several computers to further distribute the load.

2.2.3 Variations

The problem of client-server model is placing a service in a server at a single address that does
not scale well beyond the capacity of computer host and bandwidth of network connections.

To address this problem, several variations of client-server model derived from the
consideration of the following factors:

 The use of multiple servers and caches to increase performance and resilience

 The use of mobile code and mobile agents

 Users’ need for low-cot computer with limited hardware resources that are simple to

manage.

 The requirement to add and remove mobile devices in a convenient manner.

1) Services provided by multiple servers

 Services may be implemented as several server processes in separate host computers
interacting as necessary to provide a service to client processes.

Distributed Systems 8

IV Year – I Semester 2018-19 CSE

 The servers may partition the set of objects on which the service is based and
distribute them between themselves, or may maintain replicated copies of them on
several hosts.

 The web provides a common example of partitioned data in which each web server
manages its own set of resources. A user can employ a browser to access a resource
at any one of the servers.

E.g. service based on replication data in the Sun NIS (Network Information Service), used by the
computers on a LAN when users log in. Each NIS server has its own replica of the password file
containing a list of users’ login names and encrypted passwords.

Fig : A service provided by multiple servers

2) Proxy servers and caches

 A cache is a store of recently used data objects.

 When a new object is received at a computer it is added to the cache store, replacing some

existing objects if necessary.

 When an object is needed by a client process the caching service first checks the cache and
supplies the object from there if an up-to-date copy is available.

 If not, an up-to-data copy is fetched.

 Caches may be collected with each client or they may be located in a proxy server that can be
shared by several clients.

Distributed Systems 9

IV Year – I Semester 2018-19 CSE

Fig : Web proxy server

3) Mobile code

 Applets are a well-known and widely used example of mobile code.

 Applets downloaded to clients give good interactive response.

 Mobile codes such as Applets are a potential security threat to the local resources in the

destination computer.

 Browsers give applets limited access to local resources. For example by providing no access to
local user file system.

 a stockbroker might provide a customized service to notify customers of changes in the prices
of shares; to use the service, each customer would have to download a special applet that
receives updates from the broker’s server, display them to the user and perhaps performs
automatic to buy and sell operations triggered by conditions set up by the customer and stored
locally in the customer’s computer.

a) client request results in the downloading of applet code

b) client interacts with the applet

Fig: Web applets

Distributed Systems 10

IV Year – I Semester 2018-19 CSE

4) Mobile agents

 A running program (code and data) that travels from one computer to another in a network
carrying out of a task, usually on behalf of some other process.

Examples of the tasks that can be done by mobile agents are:

 To collecting information.
 To install and maintain software maintain on the computers within an organization.
 To compare the prices of products from a number of vendors.

 Mobile agents are a potential security threat to the resources in computers that they visit.

 The environment receiving a mobile agent should decide on which of the local resources to be

allowed to use.

 Mobile agents themselves can be vulnerable
 They may not be able to complete their task if they are refused access to the information

they need.

 Mobile agents are a potential security threat to the resources in computers that they visit.

 The environment receiving a mobile agent should decide on which of the local resources to be
allowed to use.

 Mobile agents themselves can be vulnerable
 They may not be able to complete their task if they are refused access to the information

they need

5) Network computers

 It downloads its operating system and any application software needed by the user from a

remote file server.

 Applications are run locally but the files are managed by a remote file server.

 Network applications such as a Web browser can also be run.

6) Thin clients

 It is a software layer that supports a window-based user interface on a computer that is local to

the user while executing application programs on a remote computer.

 This architecture has the same low management and hardware costs as the network computer
scheme.

 Instead of downloading the code of applications into the user’s computer, it runs them on a

computer server.

Distributed Systems 11

IV Year – I Semester 2018-19 CSE

 Compute server is a powerful computer that has the capacity to run large numbers of

application simultaneously.

 The compute server will be a multiprocessor or cluster computer running a multiprocessor
version of an operation system such as UNIX or Windows.

2.2.4 Interfaces and Objects
 The set of functions available for invocation in a process is specified by one or more

interface definitions.

 In client-server architecture, each server process is seen as a single entity with a fixed
interface defining the functions that can be invoked in it.

 Distributed processes can be constructed in object-oriented manner.

 Many objects can be encapsulated in server processes, and references to them are
passed to other processes so that their methods can be accessed by remote
invocation.

 This approach is adapted by JAVA RMI and CORBA.

 In a static client-server architecture or dynamic object-oriented model the distribution
of responsibilities between processes and between computers remains an important
aspect of the design.

 In traditional model responsibilities are statically allocated. Ex : fileserver responsible
only for files not for web pages.

 In Object-oriented model new services, new types of object can be intatiated and

immediately made available for invocation.

2.2.5 Design requirements for distributed architectures

 Performance issues
Performance issues arising from the limited processing and communication capacities of
computers and networks are considered under the following subheading:

Distributed Systems 12

IV Year – I Semester 2018-19 CSE

 Responsiveness – response to interaction
E.g. a web browser can access the cached pages faster than the non-cached
pages.

 Throughput -- The rate at which computational work is done.

 Load balancing - -
 E.g. using applets on clients, remove the load on the server.

 Quality of service

 The ability of systems to meet deadlines.
 It depends on availability of the necessary computing and network resources at the

appropriate time.

 This implies a requirement for the system to provide guaranteed computing and
communication resources that are sufficient to enable applications to complete each
task on time.

E.g. the task of displaying a frame of video.

 The main properties that affect the quality of the service are:
 Reliability
 Security
 Performance
 Adaptability

 Reliability and security issues are critical in the design of computer system. These two

aspects related to the failure and security models.

 The performance aspect of quality of service was defined in terms of responsiveness

and computational throughput, performance aspect of QOS is strongly related to the
interaction model.

 Adaptability aspect of quality of service is, it able to adapt the changing system

configurations.

 QOS applies to operating systems as well as network.

 Each critical resource must be reserved by the applications that require QOS and there

must be resource managers that provide guarantees.

 Use of caching and replication

 Distributed systems overcome the performance issues by the use of data replication

and caching.

 A variety of different cache consistency protocols are used to suit different applications.

Ex: Web-caching protocol

Distributed Systems 13

IV Year – I Semester 2018-19 CSE

 Dependability issues

Dependability issues of a computer system defined as:

 Correctness
Ensuring the correctness of distributed and concurrent programs. Develop the
techniques for checking the correctness of distributed system and concurrent
programs execution.

 Security
Security is locating sensitive data and other resources only in computers that
can be secured effectively against attack.
E.g. a hospital database

 Fault tolerance
 Dependable applications should continue to function in the presence of

faults in hardware, software, and networks.
 Reliability is achieved through redundancy – the provision of multiple

resources so that the system and application software can reconfigure
and continue to perform task in the presence of faults.

2.3 Fundamental models

 Fundamental Models are concerned with a more formal description of the properties that are

common in all of the architectural models.

 All architectural models are composed of processes that communicate with each other by
sending messages over a computer networks.

 Aspects of distributed systems that are discussed in fundamental models are:

1) Interaction model
 Computation occurs within processes.
 The processes interact by passing messages, resulting in:

 Communication (information flow)
 Coordination (synchronization and ordering of activities) between processes

 Interaction model reflects the facts that communication takes place with delays.

2) Failure model
 Failure model defines and classifies the faults.

3) Security model

 Security model defines and classifies the forms of attacks.
 It provides a basis for analysis of threats to a system
 It is used to design of systems that are able to resist threats

2.3.1 Interaction model

Distributed systems are composed of many processes, interacting in the following ways:

Distributed Systems 14

IV Year – I Semester 2018-19 CSE

 Multiple server processes may cooperate with one another to provide a service
E.g. Domain Name Service

 A set of peer processes may cooperate with one another to achieve a common goal
 E.g. voice conferencing

 Two significant factors affecting interacting processes in a distributed system are:

 Communication performance is often a limiting characteristic.

 It is impossible to maintain a single global notion of time

Interaction Model-Communication Channels
2.3.1.1 Performance of communication channels

 The communication channels in our model are realized in a variety of ways in distributed
systems, for example
o By an implementation of streams
o By simple message passing over a computer network

 Communication over a computer network has the performance characteristics such as:
o Latency

 The delay between the start of a message’s transmission from one process

to the beginning of its receipt by another.

o Bandwidth
 The total amount of information that can be transmitted over a computer

network in a given time.

 Communication channels using the same network, have to share the
available bandwidth.

o Jitter
 The variation in the time taken to deliver a series of messages.
 It is relevant to multimedia data.

For example, if consecutive samples of audio data are played with
differing time intervals then the sound will be badly distorted.

Interaction Model-Computer Clock
2.3.1.2 Computer clocks and timing events

 Each computer in a distributed system has its own internal clock, which can be used by local
processes to obtain the value of the current time.

 Two processes running on different computers can associate timestamp with their events.

 Even if two processes read their clock at the same time, their local clocks may supply
different time.

Distributed Systems 15

IV Year – I Semester 2018-19 CSE

 This is because computer clock drift from perfect time and their drift rates differ from one

another.

 Clock drift rate refers to the relative amount that a computer clock differs from a perfect
reference clock.

 Even if the clocks on all the computers in a distributed system are set to the same time
initially, their clocks would eventually vary quite significantly unless corrections are applied.

 There are several techniques to correcting time on computer clocks.

For example, computers may use radio signal receivers to get readings from GPS (Global
Positioning System) with an accuracy about 1 microsecond.

Interaction Model-Variations
2.3.1.3 Two variants of the interaction model

In a distributed system it is hard to set time limits on the time taken for process execution,
message delivery or clock drift.

Two models of time assumption in distributed systems are:

1. Synchronous distributed systems
• It has a strong assumption of time

• The time to execute each step of a process has known lower and upper bounds.

• Each message transmitted over a channel is received within a known bounded time.

 Each process has a local clock whose drift rate from real time has a known bound.

2. Asynchronous distributed system

• It has no assumption about time.

• There is no bound on process execution speeds.

- Each step may take an arbitrary long time.

• There is no bound on message transmission delays.

- A message may be received after an arbitrary long time.

• There is no bound on clock drift rates.

- The drift rate of a clock is arbitrary.

2.3.2 Failure model

 In a distributed system both processes and communication channels may fail – That is, they may
depart from what is considered to be correct or desirable behavior.

Distributed Systems 16

IV Year – I Semester 2018-19 CSE

Types of failures:

 Omission Failures
 Arbitrary Failures

Omission failure
 Omission failures refer to cases when a process or communication channel fails to perform

actions that it is supposed to do.
 The chief omission failure of a process is to crash. In case of the crash, the process has

halted and will not execute any further steps of its program.
 Another type of omission failure is related to the communication which is called

communication omission failure shown in Figure.

Fig :Processes and channels

 The communication channel produces an omission failure if it does not transport a message
from “p”s outgoing message buffer to “q”’s incoming message buffer.

 This is known as “dropping messages” and is generally caused by lack of buffer space at the
receiver or at an gateway or by a network transmission error, detected by a checksum carried
with the message data.

Arbitrary failure

 Arbitrary failure is used to describe the worst possible failure semantics, in which any type of
error may occur.

E.g. a process may set wrong values in its data items, or it may return a wrong value in response
to an invocation.

 Communication channel can suffer from arbitrary failures.
E.g. message contents may be corrupted or non-existent messages may be delivered or real
messages may be delivered more than once.

 The omission failures are classified together with arbitrary failures shown in Figure

Distributed Systems 17

IV Year – I Semester 2018-19 CSE

Figure : Omission and arbitrary failures

2.3.3 Security model
 The security of a distributed system can be achieved by securing the processes and the channels

used in their interactions.
 Also, by protecting the objects that they encapsulate against unauthorized access.

Protecting objects
 Access rights

 Access rights specify who is allowed to perform the operations on a object who
is allowed to read or write its state.

 Principal

 Principal is the authority associated with each invocation and each result.
 A principal may be a user or a process.
 The invocation comes from a user and the result from a server.

 The sever is responsible for

 Verifying the identity of the principal (user) behind each invocation.
o Checking that they have sufficient access rights to perform the

requested operation on the particular object invoked. Rejecting those
that do not.

Distributed Systems 18

IV Year – I Semester 2018-19 CSE

Figure : Objects and principals

Securing processes and their interactions

 Processes interact by sending messages. The messages are exposed to attack
because the network and the communication service that they use is open.

The enemy

o To model security threats, we assume an enemy that is capable of sending

any message to any process and reading or copying any message between a
pair of processes.

Figure :The enemy

o Threats from a potential enemy are classified as:

 Threats to processes
 Threats to communication channels
 Denial of service

Distributed Systems 19

IV Year – I Semester 2018-19 CSE

UNIT-II
Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions ions

1. Which of the following applications require high communication
bandwidth and low latency?
 []

A. Multi Media Applications B. Client-Server Applications
C.Mobile Applications D.None of the above

2. Object-based architectures are []
A)Natural units of decomposition B)Accessed via interface
C)Connected via RMI D)All the above

3. Identify the examples of Platform []
A.IntelX86/windows B.IntelX86/linux
C.IntelX86/solaris D.All the above

4. The type of user interface supported by thin client is []

A.windowbased B.clientbased
C.serverbased D.peerbased

5. Structurally, a network includes a setof nodes interconnected by a set of

transmission lines, and each connection is called as []
A.Server B.Client C.Link D.Host

6. Which of the following comes under internal problems []
i)Non-synchronized clocks ii)Conflicting data updates
iii)Many modes of hardware and software iv)Denial of service

 A. i,ii,iii B. i&ii C. i&iii D. i,ii,iii & iv

7. The problem with Client-Server System is []
A)Setting up the server is a complex technical task as well as
maintaining and sorting out technical problems.
B)Servers are expensive
C)Processes requests too fast
D)Both A and B

8. Which combination of failures will be caused across the server due to

lack of reply or response from the server across the Distributed Systems
i)omission failures ii)Timing failures
iii)Arbitary failures iv)None of the above

Distributed Systems 20

IV Year – I Semester 2018-19 CSE

A. i, ii B. ii, iii C. i, iii D. iv []

9. The communication channel produces an omission failure if it does not
transport a message from p’s outgoing message buffer to q’s incoming
message buffer this is known as
a)holding message b)dropping message []
c)buffered message d)None of the above.

10. To build asynchronous distribute system, what is required for the

processes to perform tasks
 []
a)Sufficient process cycles
b)Network capacity
c)Supply clocks with bounded drift rates
d)All of the above.

Section B:

Descriptive Questions

1) Identify difficulties and threats to distributed systems.
2) Summarize the Software Layers of distributed system architectural model.
3) Explain about the protection of objects against unauthorized access.
4) Illustrate the Architectural design of distributed system.
5) List different descriptive models of Distributed System, Explain in brief.
6) Explain about design requirements for distributed architectures.
7) Illustrate the distributed application based on peer-to-peer architecture.
8) Identify different types of failure models in distributed systems and their
recovery.

9) "It is hard to set time limits on the time taken for process execution and
message delivery in the interaction model", how to resolve this problem?

10) Analyze the important aspects of Quality of service and identify non
functional properties that affect the quality of service.

Distributed Systems 21

IV Year – I Semester 2018-19 CSE

Distributed Systems 1

IV Year – I Semester 2018-19 CSE

UNIT-III

Interprocess Communication

Objective :

To familiarize the characteristics of protocols for communication between processes in a

distributed system.

Syllabus:

Interprocess Communication: Introduction, The API for the Internet Protocols- The

Characteristics of Interprocess communication, Sockets, UDP Datagram Communication, TCP

Stream Communication; External Data Representation and Marshalling; Client Server

Communication; Group Communication- IP Multicast- an implementation of group

communication, Reliability and Ordering of Multicast.

Learning Outcomes

At the end of the unit student will be able to

1) Design an API by using TCP and UDP

2) Implement group communication.

3.1 INTRODUCTION

 The java API for interprocess communication in the internet provides both datagram

and stream communication.

 The two communication patterns that are most commonly used in distributed programs:

 Client-Server communication

 The request and reply messages provide the basis for remote method

invocation (RMI) or remote procedure call (RPC).

Distributed Systems 2

IV Year – I Semester 2018-19 CSE

 Group communication

 The same message is sent to several processes.

Fig: Middleware layers

 Remote Method Invocation (RMI)

 It allows an object to invoke a method in an object in a remote process.

 E.g. CORBA and Java RMI

 Remote Procedure Call (RPC)

 It allows a client to call a procedure in a remote server.

 The application program interface (API) to UDP provides a message passing

abstraction.

 Message passing is the simplest form of interprocess communication.

 API enables a sending process to transmit a single message to a receiving

process.

 The independent packets containing theses messages are called datagrams.

 In the Java and UNIX APIs, the sender specifies the destination using a socket.

Distributed Systems 3

IV Year – I Semester 2018-19 CSE

 Socket is an indirect reference to a particular port used by the destination

process at a destination computer.

 The application program interface (API) to TCP provides the abstraction of a two-way

stream between pairs of processes.

 The information communicated consists of a stream of data items with no message

boundaries.

 Request-reply protocols are designed to support client-server communication in the

form of either RMI or RPC.

 Group multicast protocols are designed to support group communication.

 Group multicast is a form of interprocess communication in which one process in a

group of processes transmits the same message to all members of the group.

3.2 The API for the Internet Protocols

3.2.1 : The Characteristics of Interprocess Communication

 Synchronous and asynchronous communication

 In the synchronous form, both send and receive are blocking operations.

 In the asynchronous form, the use of the send operation is non-blocking and the

receive operation can have blocking and non-blocking variants.

 Message destinations

 Messages are send to Internet address and local port pair.

 A local port is a message destination within a computer, specified as an integer.

 A port has an exactly one receiver but can have many senders.

 Reliability

 A reliable communication is defined in terms of validity and integrity.

 A point-to-point message service is described as reliable if messages are guaranteed

to be delivered despite a reasonable number of packets being dropped or lost.

 For integrity, messages must arrive uncorrupted and without duplication.

 Ordering

 Some applications require that messages be delivered in sender order.

Distributed Systems 4

IV Year – I Semester 2018-19 CSE

3.2.2 : Sockets

 Internet IPC mechanism of Unix and other operating systems (BSD Unix, Solaris,

Linux, Windows NT, Macintosh OS)

 Processes in the above OS can send and receive messages via a socket.

 Sockets need to be bound to a port number and an internet address in order to send and

receive messages.

 Each socket has a transport protocol (TCP or UDP).

 Messages sent to some internet address and port number can only be received by a

process using a socket that is bound to this address and port number.

 Processes cannot share ports (exception: TCP multicast).

 Both forms of communication, UDP and TCP, use the socket abstraction, which

provides and endpoint for communication between processes.

 Interprocess communication consists of transmitting a message between a socket in one

process and a socket in another process.

Figure . Sockets and ports

3.2.3: UDP Datagram Communication

 UDP datagram properties

 No guarantee of order preservation

 Message loss and duplications are possible

 Necessary steps

Distributed Systems 5

IV Year – I Semester 2018-19 CSE

 Creating a socket

 Binding a socket to a port and local Internet address

 A client binds to any free local port

 A server binds to a server port

 Receive method

 It returns Internet address and port of sender, plus message.

 Issues related to datagram communications are:

 Message size

 IP allows for messages of up to 216 bytes.

 Most implementations restrict this to around 8 kbytes.

 Any application requiring messages larger than the maximum must

fragment.

 If arriving message is too big for array allocated to receive message

content, truncation occurs.

 Blocking

 Send: non-blocking

 upon arrival, message is placed in a queue for the socket that is bound to

the destination port.

 Receive: blocking

 Pre-emption by timeout possible

 If process wishes to continue while waiting for packet, use

separate thread

 Timeout

 Receive from any

 UDP datagrams suffer from following failures:

 Omission failure

 Messages may be dropped occasionally,

 Ordering

Distributed Systems 6

IV Year – I Semester 2018-19 CSE

Java API for UDP Datagrams

 The Java API provides datagram communication by two classes:

 DatagramPacket

 It provides a constructor to make an array of bytes comprising:

 Message content

 Length of message

 Internet address

 Local port number

 It provides another similar constructor for receiving a message.

 DatagramSocket

 This class supports sockets for sending and receiving UDP datagram.

 It provides a constructor with port number as argument.

 No-argument constructor is used to choose a free local port.

 DatagramSocket methods are:

 send and receive

 setSoTimeout

 connect

 Example

 The process creates a socket, sends a message to a server at port 6789 and waits to

receive a reply.

import java.net.*;

Distributed Systems 7

IV Year – I Semester 2018-19 CSE

import java.io.*;

public class UDPClient{

public static void main(String args[]){

// args give message contents and destination hostname try {

DatagramSocket aSocket = new DatagramSocket(); // create socket byte [] m =

args[0].getBytes();

InetAddress aHost = InetAddress.getByName(args[1]); // DNS lookup int serverPort = 6789;

DatagramPacket request =

new DatagramPacket(m, args[0].length(), aHost, serverPort);

aSocket.send(request); //send nessage byte[] buffer = new byte[1000];

DatagramPacket reply = new DatagramPacket(buffer, buffer.length);

aSocket.receive(reply); //wait for reply System.out.println("Reply: " + new

String(reply.getData())); aSocket.close();

}catch (SocketException e){System.out.println("Socket: " + e.getMessage());

}catch (IOException e){System.out.println("IO: " + e.getMessage());}

} finally{if (aSocket !=null)aSocket.close()}

}

}

Figure. UDP client sends a message to the server and gets a reply (Above Java Code)

 Example

 The process creates a socket, bound to its server port 6789 and waits to receive a

request message from a client.

Distributed Systems 8

IV Year – I Semester 2018-19 CSE

import java.net.*;

import java.io.*;

public class UDPServer{

public static void main(String args[]){ DatagramSocket aSocket = null;

try {

aSocket = new DatagramSocket(6789); byte []buffer = new byte[1000]; While(true){

DatagramPacket request =new DatagramPacket(buffer, buffer.length);

aSocket.receive(request);

DatagramPacket reply = new DatagramPacket(request.getData();

request.getLength(),request.getAddress(), request.getPort();

aSocket.send(reply);

}

}catch (SocketException e){System.out.println("Socket: " + e.getMessage());

}catch (IOException e){System.out.println("IO: " + e.getMessage());}

}finally{if (aSocket !=null)aSocket.close()}

}

}

Figure. UDP server repeatedly receives a request and sends it back to the client (Above

Java Code)

3.2.4: TCP Stream Communication

 The API to the TCP protocol provides the abstraction of a stream of bytes to be written

to or read from.

 Characteristics of the stream abstraction:

 Message sizes

 Lost messages

 Flow control

 Message destinations

Distributed Systems 9

IV Year – I Semester 2018-19 CSE

 Use of TCP

 Many services that run over TCP connections, with reserved port number are:

 HTTP (Hypertext Transfer Protocol)

 FTP (File Transfer Protocol)

 Telnet

 SMTP (Simple Mail Transfer Protocol)

Issues related to stream communication:

 Matching of data items

 Blocking

 Threads

 Java API for TCP streams

 The Java interface to TCP streams is provided in the classes:

 ServerSocket

 It is used by a server to create a socket at server port to listen for

connect requests from clients.

 Socket

 It is used by a pair of processes with a connection.

 The client uses a constructor to create a socket and connect it to the

remote host and port of a server.

 It provides methods for accessing input and output streams

associated with a socket.

 Example

 The client process creates a socket, bound to the hostname and server port 6789.

Example : The server process opens a server socket to its server port 6789 and listens for

connect requests.

Distributed Systems 10

IV Year – I Semester 2018-19 CSE

import java.net.*;

import java.io.*;

public class TCPServer {

public static void main (String args[]) {

try{

int serverPort = 7896;

ServerSocket listenSocket = new ServerSocket(serverPort);

while(true) {

Socket clientSocket = listenSocket.accept(); Connection c = new Connection(clientSocket);

}

} catch(IOException e) {System.out.println("Listen socket:"+e.getMessage());}

}

}

Figure:. TCP server makes a connection for each client and then echoes the client’s

request

class Connection extends Thread { DataInputStream in; DataOutputStream out;

Socket clientSocket;

public Connection (Socket aClientSocket) {

try {

clientSocket = aClientSocket;

in = new DataInputStream(clientSocket.getInputStream());

out =new DataOutputStream(clientSocket.getOutputStream());

this.start();

} catch(IOException e){System.out.println("Connection:"+e.getMessage());}

}

public void run(){

try { // an echo server String data = in.readUTF(); out.writeUTF(data);

} catch (EOFException e){System.out.println("EOF:"+e.getMessage());

Distributed Systems 11

IV Year – I Semester 2018-19 CSE

} catch (IOException e) {System.out.println("readline:"+e.getMessage());}

} finally {try{clientSocket.close();}catch(IOException e){/*close failed*/}}

}

}

Figure. TCP server makes a connection for each client and then echoes the client’s

request

3.3: External Data Representation

 The information stored in running programs is represented as data structures, whereas

the information in messages consists of sequences of bytes.

 Irrespective of the form of communication used, the data structure must be converted to a

sequence of bytes before transmission and rebuilt on arrival.

 External Data Representation is an agreed standard for the representation of data

structures and primitive values.

 Data representation problems are:

 Using agreed external representation, two conversions necessary

 Using sender’s or receiver’s format and convert at the other end

 Marshalling

 Marshalling is the process of taking a collection of data items and assembling

them into a form suitable for transmission in a message.

 Unmarshalling

 Unmarshalling is the process of disassembling a collection of data on arrival to

produce an equivalent collection of data items at the destination.

Distributed Systems 12

IV Year – I Semester 2018-19 CSE

 Three approaches to external data representation and marshalling are:

 CORBA

 Java’s object serialization

 XML

 Marshalling and unmarshalling activities is usually performed by middleware layer

 Marshalling is likely error-prone if carried out by hand

3. 3.1: CORBA Common Data Representation (CDR)

 CORBA Common Data Representation (CDR)

 CORBA CDR is the external data representation defined with CORBA 2.0.

 It consists 15 primitive types:

 Short (16 bit)

 Long (32 bit)

 Unsigned short

 Unsigned long

 Float(32 bit)

 Double(64 bit)

 Char

 Boolean(TRUE,FALSE)

 Octet(8 bit)

 Any(can represent any basic or constructed type)

 Composite type are shown in Figure

Figure. CORBA CDR for constructed types

Distributed Systems 13

IV Year – I Semester 2018-19 CSE

 Constructed types: The primitive values that comprise each constructed type

are added to a sequence of bytes in a particular order, as shown in above table

/ Figure.

 Below Figure/ table shows a message in CORBA CDR that contains the

three fields of a struct whose respective types are string, string, and

unsigned long.

 example: struct with value {‘Smith’, ‘London’, 1934}

Figure. CORBA CDR message

3.3.2 :Java object serialization

 In Java RMI, both object and primitive data values may be passed as arguments and

results of method invocation.

 An object is an instance of a Java class.

 Example, the Java class equivalent to the Person struct

Public class Person implements Serializable {

Private String name;

Private String place;

Private int year;

Public Person(String aName ,String aPlace, int aYear) {

name = aName;

Distributed Systems 14

IV Year – I Semester 2018-19 CSE

 place = aPlace;

year = aYear;

}

//followed by methods for accessing the instance variables

}

Figure ‘. Indication of Java serialization form

3.3.4 Remote Object References

 Remote object references are needed when a client invokes an object that is located on a

remote server.

 A remote object reference is passed in the invocation message to specify which object is

to be invoked.

 Remote object references must be unique over space and time.

 In general, may be many processes hosting remote objects, so remote object referencing

must be unique among all of the processes in the various computers in a distributed

system.

 generic format for remote object references is shown in below Figure.

Figure : Representation of a remote object references

 internet address/port number: process which created object

 time: creation time

Distributed Systems 15

IV Year – I Semester 2018-19 CSE

 object number: local counter, incremented each time an object is created in the creating

process

 interface: how to access the remote object (if object reference is passed from one

client to another)

3. 4: Client-Server Communication

 The client-server communication is designed to support the roles and message

exchanges in typical client-server interactions.

 In the normal case, request-reply communication is synchronous because the client

process blocks until the reply arrives from the server.

 Asynchronous request-reply communication is an alternative that is useful where clients

can afford to retrieve replies later.

 Often built over UDP datagrams

 Client-server protocol consists of request/response pairs, hence no acknowledgements at

transport layer are necessary

 Avoidance of connection establishment overhead

 No need for flow control due to small amounts of data are transferred

 The request-reply protocol was based on a trio of communication

primitives:

 doOperation, getRequest, and sendReply shown in Figure .

Figure:. Request-reply communication

 The designed request-reply protocol matches requests to replies.

Distributed Systems 16

IV Year – I Semester 2018-19 CSE

 If UDP datagrams are used, the delivery guarantees must be provided by the request-

reply protocol, which may use the server reply message as an acknowledgement of the

client request message.

 Figure outlines the three communication primitives.

Figure :. Operations of the request-reply protocol

 The information to be transmitted in a request message or a reply message is shown in

Figure .

Figure : Request-reply message structure

 In a protocol message

 The first field indicates whether the message is a request or a reply message.

 The second field request id contains a message identifier.

 The third field is a remote object reference .

 The forth field is an identifier for the method to be invoked.

 Message identifier

 A message identifier consists of two parts:

Distributed Systems 17

IV Year – I Semester 2018-19 CSE

 A requestId, which is taken from an increasing sequence of integers by the

sending process

 An identifier for the sender process, for example its port and Internet address.

 Failure model of the request-reply protocol

 If the three primitive doOperation, getRequest, and sendReply are implemented over

UDP datagram, they have the same communication failures.

 Omission failure

 Messages are not guaranteed to be delivered in sender order.

 RPC exchange protocols

 Three protocols are used for implementing various types of RPC.

 The request (R) protocol.

 The request-reply (RR) protocol.

 The request-reply-acknowledge (RRA) protocol.

Figure. RPC exchange protocols

 In the R protocol, a single request message is sent by the client to the server.

 The R protocol may be used when there is no value to be returned from the remote

method.

 The RR protocol is useful for most client-server exchanges because it is based

on request-reply protocol.

 RRA protocol is based on the exchange of three messages: request-reply-acknowledge

reply.

 HTTP: an example of a request-reply protocol

 HTTP is a request-reply protocol for the exchange of network resources between web

clients and web servers.

Distributed Systems 18

IV Year – I Semester 2018-19 CSE

 HTTP protocol steps are:

 Connection establishment between client and server at the default server port or at

a port specified in the URL

 client sends a request

 server sends a reply

 connection closure

 HTTP 1.1 uses persistent connections.

 Persistent connections are connections that remains open over a series of

request-reply exchanges between client and server.

 Resources can have MIME-like structures in arguments and results.

 A Mime type specifies a type and a subtype, for example:

 text/plain

 text/html

 image/gif

 image/jpeg

 HTTP methods

 GET

 Requests the resource, identified by URL as argument.

 If the URL refers to data, then the web server replies by returning the

data

 If the URL refers to a program, then the web server runs the program

and returns the output to the client.

Figure :. HTTP request message

Distributed Systems 19

IV Year – I Semester 2018-19 CSE

 HEAD

 This method is similar to GET, but only meta data on resource

is returned (like date of last modification, type, and size)

 POST

 Specifies the URL of a resource (for instance, a server program) that can

deal with the data supplied with the request.

 This method is designed to deal with:

 Providing a block of data to a data-handling process

 Posting a message to a bulletin board, mailing list or news group.

 Extending a dataset with an append operation

 PUT

 Supplied data to be stored in the given URL as its identifier.

 DELETE

 The server deletes an identified resource by the given URL on the server.

 OPTIONS

 A server supplies the client with a list of methods.

 It allows to be applied to the given URL

 TRACE

 The server sends back the request message

 A reply message specifies

 The protocol version

 A status code

 Reason

 Some headers

 An optional message body

3.5: Group Communication

Distributed Systems 20

IV Year – I Semester 2018-19 CSE

 The pairwise exchange of messages is not the best model for communication from one

process to a group of other processes.

 A multicast operation is more appropriate.

 Multicast operation is an operation that sends a single message from one process to

each of the members of a group of processes.

 The simplest way of multicasting, provides no guarantees about message delivery or

ordering.

 Multicasting has the following characteristics:

 Fault tolerance based on replicated services

 A replicated service consists of a group of servers.

 Client requests are multicast to all the members of the group, each of which

performs an identical operation.

 Finding the discovery servers in spontaneous networking

 Multicast messages can be used by servers and clients to locate available

discovery services in order to register their interfaces or to look up the interfaces

of other services in the distributed system.

 Better performance through replicated data

 Data are replicated to increase the performance of a service.

 Propagation of event notifications

 Multicast to a group may be used to notify processes when something

happens.

3.5.1: IP multicast

 IP multicast is built on top of the Internet protocol, IP.

 IP multicast allows the sender to transmit a single IP packet to a multicast group.

 A multicast group is specified by class D IP address for which first 4 bits are 1110 in

IPv4.

 The membership of a multicast group is dynamic.

 A computer belongs to a multicast group if one or more processes have sockets that

belong to the multicast group.

 The following details are specific to IPv4:

Distributed Systems 21

IV Year – I Semester 2018-19 CSE

 Multicast IP routers

 IP packets can be multicast both on local network and on the wider Internet.

 Local multicast uses local network such as Ethernet.

 To limit the distance of propagation of a multicast datagram, the sender can

specify the number of routers it is allowed to pass- called the time to live, or TTL

for short.

 Multicast address allocation

 Multicast addressing may be permanent or temporary.

 Permanent groups exist even when there are no members.

 Multicast addressing by temporary groups must be created before use and

cease to exit when all members have left.

 The session directory (sd) program can be used to start or join a multicast

session.

 session directory provides a tool with an interactive interface that allows users

to browse advertised multicast sessions and to advertise their own session,

specifying the time and duration.

 Java API to IP multicast

 The Java API provides a datagram interface to IP multicast through the class

MulticastSocket, which is a subset of DatagramSocket with the additional

capability of being able to join multicast groups.

 The class MulticastSocket provides two alternative constructors ,

allowing socket to be creative to use either a specified local port, or any free local

port.

Distributed Systems 22

IV Year – I Semester 2018-19 CSE

Figure :. Multicast peer joins a group and sends and receives datagrams

 A process can join a multicast group with a given multicast address by invoking the

joinGroup method of its multicast socket.

 A process can leave a specified group by invoking the leaveGroup method of its multicast

socket.

 The Java API allows the TTL to be set for a multicast socket by means of the

setTimeToLive method. The default is 1, allowing the multicast to propagate only on

the local network.

3.5.2 Reliability and Ordering of Multicast

Some examples of the effects of reliability and ordering .We now consider the effect of the

failure semantics of IP multicast on the four examples of the use of replication.

Distributed Systems 23

IV Year – I Semester 2018-19 CSE

1. Fault tolerance based on replicated services:

 Consider a replicated service that consists of the members of a group of servers that

start in the same initial state and always perform the same operations in the same

order, so as to remain consistent with one another.

 This application of multicast requires that either all of the replicas or none of them

should receive each request to perform an operation – if one of them misses a request,

it will become inconsistent with the others.

2. Discovering services in spontaneous networking:

 One way for a process to discover services in spontaneous networking is to multicast

requests at periodic intervals, and for the available services to listen for those

multicasts and respond.

3. Better performance through replicated data:

 Consider the case where the replicated data itself, rather than operations on the data,

are distributed by means of multicast messages. The effect of lost messages and

inconsistent ordering would depend on the method of replication and the importance

of all replicas being totally up-to-date.

4. Propagation of event notifications:

 The particular application determines the qualities required of multicast.

Distributed Systems 24

IV Year – I Semester 2018-19 CSE

UNIT-III
Assignment-Cum-Tutorial Questions

SECTION-A

 Objective Questions
1. The granting of the use of a resource for a period of time is called as []
a)lease b)rent c)revoke d)grant
2. A remote procedure call is initiated by []

a) server b) client c) both a and b d) none of them

3. Socket style API for windows is known as []

a) wsock b) winsock c) wins d) all of the above

4. Whic of the following is a TCP name for a transport service access point []
a) port b) pipe c) node d) link
5. Which of the following is the type of socket []

a)Datagram b)Stream c)Raw d)all of the above
6. Which of the following allows a client to call a procedure in a remote server. []

a) Remote procedure call(RPC) c) Remote process call
b) Remote access call d) none of the above

7. JavaAPI provides a datagram interface to IP multicast through which of the following clas

[]

a)multicastsocket b)multipinsocket c)clientsocket d)serversocket
8. Which operation is performed repeatedly with the same effect as if it had been
 performed Exactly once . []
a) identical operation b)idempotent operatio c)unique operation d)single operation

9. In which format we have to store the records correspondence between local object references

In that process and remote object references []

a)remote object table b)remote method call

c)remote procedure call d)port table

Distributed Systems 25

IV Year – I Semester 2018-19 CSE

10. Recognize the different objects involved in the Jini distributed event specification

i)eventgenerators ii)remoteeventlisteners
iii)remoteevents iv)thirdpartyagents []
a)i&ii b)ii&iv c)i&ii&iii&iv d)iii&iv

11. Identify type of module that is responsible for translating between local and remote object

references and for creating remote object references. []

a)remote reference b)object referenc c)local reference d)module reference

SECTION-B
 SUBJECTIVE QUESTIONS

1) List different characteristics of IPC.

2) Identify the issues related to datagram communication.
3) Does java supports object serialization? Support your argument with necessary explanation.
4) Summarize the design issues for RMI.
5) Differentiate TCP stream communication and client Server communication.
6) Write CORBACDR message format for structwithvalue{‘smith’,’london’,1934} and List

different primitive types used in CORBA Common Data Representation(CDR).
7) Sketch the format of the client-server request-reply communication protocol and
 outline the different communication primitives syntax.
8) Illustrate the concept of socket and ports with internet addresses ranging from
 138.37.94.248 to 138.37.94.249.
9) Identify the problems in external data representation and suggest approaches for external data

representation and marshalling.
How is RMI implemented in java?

Distributed Systems 1

IV Year – I Semester 2018-19 CSE

Distributed Systems 1

IV Year – I Semester 2018-19 CSE

Unit-IV
Distributed Objects and Remote Invocation

Syllabus: Distributed Objects and Remote Invocation: Introduction, Communication
between Distributed Objects- Object Model, Distributed Object Modal, Design Issues for
RMI, Implementation of RMI, Distributed Garbage Collection; Remote Procedure Call,
Events and Notifications, Case Study: JAVA RMI

Topic 01: INTRODUCTION

 Objects that can receive remote method invocations are called remote objects and they

implement a remote interface.

 Programming models for distributed applications are:

 Remote Procedure Call (RPC)

 Client calls a procedure implemented and executing on a remote
computer

 Call as if it was a local procedure

 Remote Method Invocation (RMI)

 Local object invokes methods of an object residing on a remote computer

 Invocation as if it was a local method call

 Event-based Distributed Programming

 Objects receive asynchronous notifications of events happening on

remote computers/processes

 Middleware

 Software that provides a programming model above the basic building blocks of
processes and message passing is called middleware.

 The middleware layer uses protocols based on messages between processes to

provide its higher-level abstractions such as remote invocation and events.

(Figure 1)

Figure 1. Middleware layers

Distributed Systems 2

IV Year – I Semester 2018-19 CSE

 Transparency Features of Middleware

 Location transparency:

 In RMI and RPCs, the client calls a procedeure/method without

knowledge of the location of invoked method/procedure.

 Transport protocol transparency:

 E.g., request/reply protocol used to implement RPC can use either UDP
or TCP.

 Transparency of computer hardware

 They hide differences due to hardware architectures, such as byte

ordering.

 Transparency of operating system

 It provides independency of the underlying operating system.

 Transparency of programming language used

 E.g., by use of programming language independent Interface Definition
Languages (IDL), such as CORBA IDL.

// In file Person.idl

struct Person {

string name;

string place;

long year;

} ;

interface PersonList {

readonly attribute string listname;

void addPerson(in Person p) ;

void getPerson(in string name, out Person p);

long number();

};
Figure 2. CORBA IDL example

 Interfaces for RMI and RPC

 An explicit interface is defined for each module.

Distributed Systems 3

IV Year – I Semester 2018-19 CSE

 An Interface hides all implementation details.

 Accesses the variables in a module can only occur through methods specified in

interface.

 Interface in distributed system

 No direct access to remote variables is possible

• Using message passing mechanism to transmit data objects and
variables

» Request-reply protocols

» Local parameter passing mechanisms (by value,

by reference) is not applicable to remote

invocations

• Specify input, output as attribute to parameters

» Input: transmitted with request message

» Output: transmitted with reply message

 Pointers are not valid in remote address spaces

• Cannot be passed as argument along interface

• RPC and RMI interfaces are often seen as a client/server system

 Service interface (in client server model)

• Specification of procedures and methods offered by a server

 Remote interface (in RMI model)

• Specification of methods of an object that can be invoked by
objects in other processes

 Interface Definition Languages (IDL)

 Impossible to specify direct access to

variables in remote classes

 Hence, access only through specified

interface

 Desirable to have language-independent

IDL that compiles into access methods in application programming
language

Distributed Systems 4

IV Year – I Semester 2018-19 CSE

 Example: CORBA IDL

(Figure 2)

Topic No 2: Remote Procedure Call (RPC)

• A remote procedure call (RPC) is similar to a remote method invocation (RMI).

• A client program calls a procedure in another program running in a server process.

• RPC, like RMI, may be implemented to have one of the choices of invocation semantics -
at-least-once, at-most-once are generally chosen.

• RPC is generally implemented over a request-reply protocol.

• The software that support RPC is shown in Figure 3.

Figure 3. Role of client and server stub procedures in RPC in the context of a procedural
language

• RPC only addresses procedure calls.

• RPC is not concerned with objects and object references.

• A client that accesses a server includes one stub procedure for each procedure in the

service interface.

• A client stub procedure is similar to a proxy method of RMI (discussed later).

• A server stub procedure is similar to a skeleton method of RMI (discussed later).

RPC Example 1: Local Program

* A first program (hello.c) to test rpc. Use of this program is for

* testing the logic of the rpc programs.

#include <stdio.h>

Distributed Systems 5

IV Year – I Semester 2018-19 CSE

int

main (void) {

static char * result;

static char msg[256];

printf("getting ready to return value\n");

strcpy(msg, "Hello world");

result= msg;

printf("Returning %s\n", result);

return (0);

} /

Protocol Definition Program

• The name of this program is hello.x

• The number at the end is version number and should be updated each time the service is
updated to make sure the active old copies is not responding to the client program.

program HELLO {

version ONE{

string PRINT_HELLO() = 1;

} = 1 ;

} = 0x2000059;

Client Program

• Now we are ready to use rpcgen (command for generating the required programs).

• Note that so far we have only hello.c and hello.x

• After running “rpcgen -a -C hello.x” the directory contain following files:

-rw-rw-r-- 1 aabhari aabhari 131 Oct 5 12:15 hello.c

-rw-rw-r-- 1 aabhari aabhari 688 Oct 5 12:19 hello.h

-rw-rw-r-- 1 aabhari aabhari 90 Oct 5 12:18 hello.x

-rw-rw-r-- 1 aabhari aabhari 776 Oct 5 12:19 hello_client.c

-rw-rw-r-- 1 aabhari aabhari 548 Oct 5 12:19 hello_clnt.c

Distributed Systems 6

IV Year – I Semester 2018-19 CSE

-rw-rw-r-- 1 aabhari aabhari 316 Oct 5 12:19 hello_server.c

-rw-rw-r-- 1 aabhari aabhari 2076 Oct 5 12:19 hello_svc.c

• The two templates that we should modify for this example are hello_client.c and

hello_server.c.

Template of hello_client Program

* This is sample code generated by rpcgen.

* These are only templates and you can use them as a guideline for developing your own
functions.

#include "hello.h"

void hello_1(char *host)

{

CLIENT *clnt;

char * *result_1;

char *print_hello_1_arg;

#ifndef DEBUG

clnt = clnt_create (host, HELLO, ONE, "udp");

if (clnt == NULL) {

clnt_pcreateerror (host);

exit (1);

}

#endif /* DEBUG */

result_1 = print_hello_1((void*)&print_hello_1_arg, clnt);

if (result_1 == (char **) NULL) {

clnt_perror (clnt, "call failed");

}

#ifndef DEBUG

clnt_destroy (clnt);

#endif /* DEBUG */

}

Distributed Systems 7

IV Year – I Semester 2018-19 CSE

Int main (int argc, char *argv[])

{

char *host;

if (argc < 2) {

printf ("usage: %s server_host\n", argv[0]);

exit (1);

}

host = argv[1];

hello_1 (host);

exit (0);

}

hello_client Program

 We have to modified hello_client template program.

 The modifications for our first example are very simple.

 Next show the modified program of hello_client that needs only few lines.

 * This is sample code generated by rpcgen.

 * These are only templates and you can use them as a guideline for developing your own
functions.

#include "hello.h"

#include <stdlib.h>

#include <stdio.h>

void

hello_1(char *host)

{

CLIENT *clnt;

char * *result_1;

char *print_hello_1_arg;

Distributed Systems 8

IV Year – I Semester 2018-19 CSE

#ifndef DEBUG

clnt = clnt_create (host, HELLO, ONE, "udp");

if (clnt == NULL) {

clnt_pcreateerror (host);

exit (1);

}

#endif /* DEBUG */

result_1 = print_hello_1((void*)&print_hello_1_arg, clnt);

if (result_1 == (char **) NULL)

clnt_perror (clnt, "call failed");

else printf(" from server: %s\n",*result_1);

#ifndef DEBUG

clnt_destroy (clnt);

#endif /* DEBUG */

}

int

main (int argc, char *argv[])

{

char *host;

if (argc < 2) {

printf ("usage: %s server_host\n", argv[0]);

exit (1);

}

host = argv[1];

hello_1 (host);

exit (0);

} //end clinet_server.c

Distributed Systems 9

IV Year – I Semester 2018-19 CSE

Template of hello-server Program

* This is sample code generated by rpcgen.

* These are only templates and you can use them as a guideline for developing your own
functions.

#include "hello.h"

char **

print_hello_1_svc(void *argp, struct svc_req *rqstp)

{

static char * result;

/* insert server code here */

return &result;

}

hello-server Program

* This is sample code generated by rpcgen.

* These are only templates and you can use them as a guideline for developing your own
functions.

#include "hello.h"

char **

print_hello_1_svc(void *argp, struct svc_req *rqstp)

{

static char * result;

static char msg[256];

printf("getting ready to return value\n");

strcpy(msg, "Hello world");

result= msg;

printf("Returning\n");

return &result;

Distributed Systems 10

IV Year – I Semester 2018-19 CSE

}

Making Client and Server Program

• To compile the client

leda% gcc hello_client.c hello_clnt.c -o client -lnsl

• To compile the server

leda% gcc hello_server.c hello_svc.c -o server -lnsl

• To run the server use

leda% ./server

• To run the client use

elara% ./client leda

RPC

• rpcgen facilitates the generation of client and server stubs from the IDL program.

• It even generates client and server template programs.

• The option -a is passed to rpcgen and also all the generation of all support files including
the make files.

• The -a option causes the rpcgen to halt with warnings if template files with default

names exist.

• Consider turning a factorial program into a client-server program using RPC.

RPC Example 2

/* A program to calculate factorial numbers. */

#include <stdio.h>

void main(void){

long int f_numb, calc_fact(int);

int number;

printf("Factorial Calculator\n") ;

printf("Enter a positive integer value");

scanf("%d", &number);

if (number < 0)

printf("Positive value only!\n");

Distributed Systems 11

IV Year – I Semester 2018-19 CSE

else if ((f_numb = calc_fact(number)) > 0)

printf("%d! = %d\n", number, f_numb);

else

printf("Sorry %d! is out of my range!\n", number);

}

/* Calculate the factorial number and return the result or return 0 if

the value is out of range. */

long int calc_fact(int n) {

long int total = 1, last = 0;

int idx;

for (idx = n; id<= 1; --idx) {

total *=idx;

if (total < last) /* Have we gone out of range? */

return (0);

last = total;

}

return (total);

}

/* The protocol definition file for the factorial program.

the file name is fact.x */

program FACTORIAL {

version ONE{

long int CALC_FAC(int) = 1;

} = 1 ;

} = 0x2000049;

• We may now use rpcgen with the option flags -a -C to generate header file, the client and
the server stub files and in addition, the client and server template programs.

Distributed Systems 12

IV Year – I Semester 2018-19 CSE

• The content of the fact_client.c program is as shown below.

/* This is sample code generated by rpcgen.

These are only templates and you can use them as aguideline for developing your own
functions. */

#include “fact.h”

void factorial_1(char *host)

{

CLIENT *clnt;

long *result_1

int calc_fac_1_arg;

#ifndef DEBUG

clnt = clnt_create(host, FACTORIAL, ONE, “netpath”);

if (clnt == (CLIENT *) NULL) {

clnt_pcreateerror(host);

exit(1);

}

#endif /* DEBUG */

result_1 = calc_fac_1(&calc_fac_1_arg, clnt);

if (result_1 == (long *) NULL) {

clnt_perror(clnt, “call failed”);

}

#ifndef DEBUG

clnt_destroy(clnt);

#endif /* DEBUG */

}

main(int argc, char *argv[])

{

char *host;

Distributed Systems 13

IV Year – I Semester 2018-19 CSE

if (arg < 2) {

printf(“usage: %s server_host\n”, argv[0]);

exit(1);

}

host = argv[1];

factorial_1(host);

}

• The template code for client needs to be modified to conform our original program.

/* This is sample code generated by rpcgen.

These are only templates and you can use them

as aguideline for developing your own functions. */

#include “fact.h”

#include <unistd.h> /* added because we will call exit*/

long int factorial_1(int calc_fac_1_arg, char *host)

{

CLIENT *clnt;

long *result_1;

#ifndef DEBUG

clnt = clnt_create(host, FACTORIAL, ONE, “netpath”);

if (clnt == (CLIENT *) NULL) {

clnt_pcreateerror(host);

exit(1);

}

#endif /* DEBUG */

result_1 = calc_fac_1(&calc_fac_1_arg, clnt);

if (result_1 == (long *) NULL) {

clnt_perror(clnt, “call failed”);

Distributed Systems 14

IV Year – I Semester 2018-19 CSE

}

#ifndef DEBUG

clnt_destroy(clnt);

#endif /* DEBUG */

return *result_1;

}

main(int argc, char *argv[])

{

char *host;

/* Add own declarations here */

long int f_numb;

int number;

if (arg < 2) {

printf(“usage: %s server_host\n”, argv[0]);

exit(1);

}

host = argv[1];

/* This is the code from the previous main in program fact.c */

printf(“Factorial Calculation\n”);

printf(“Enter a positive integer value”);

scanf(“%d”, &number);

if (number < 0)

printf(“Positive values only\n”);

else if ((f_numb = factorial_1(number, host)) >0)

printf(“%d! = %d\n”, number, f_numb);

else

printf(“Sorry %d! is out of my range!\n”, number);

Distributed Systems 15

IV Year – I Semester 2018-19 CSE

}

• Here is the fact_server.c template generated by rpcgen

/* This is sample code generated by rpcgen.

These are only templates and you can use them

as aguideline for developing your own functions. */

#include “fact.h”

long int * calc_fac_1_srv(int *argp, struct svc_req *rqstp)

{

static long result;

/* insert server code here */

return(&result);

}

• Here is the fact_server.c template with modification code

/* This is sample code generated by rpcgen.

These are only templates and you can use them

as aguideline for developing your own functions. */

#include “fact.h”

long int * calc_fac_1_srv(int *argp, struct svc_req *rqstp)

{

static long int result;

/* insert server code here */

long int total = 1, last = 0;

int idx;

for(idx = *argp; idx – 1; --idx)

total *= idx;

if (total <= last) /* Have we gone out of range? */

Distributed Systems 16

IV Year – I Semester 2018-19 CSE

{

result = 0;

return (&result);

}

last = total;

}

result = total;

return (&result);

}

• Here is a modified makefile.fact

• # This is a template make file generated by rpcgen

#parameters

#added CC = gcc to use gcc

CC = gcc

CLIENT = fact_client

SERVER = fact_server

SOURCES_CLNT.c =

SOURCES_CLNT.h =

SOURCES_SVC.c =

SOURCES_SVC.h =

SOURCES.x = fact.x

TARGETS_SVC.c = fact_svc.c fact_server.c

TARGETS_CLNT.c = fact_clnt.c fact_client.c

TARGETS = fact.h fact_clnt.c fact_svc.c fact_client.c fact_server.c

OBJECT_CLNT = $(SOURCES_CLNT.c:%.c=%.o) $(TARGETS_CLNT.c:%.c=%.o)

OBJECT_SVC = $(SOURCES_SVC.c:%.c=%.o) $(TARGETS_SVC.c:%.c=%.o)

Distributed Systems 17

IV Year – I Semester 2018-19 CSE

Compiler flags

CFLAGS += -g

LDLIBS += -lnsl

added –C flag to PRCGENFLAGS or add –lm to LDLIBS

RPCGENFLAGS = -C

#Targets

all : $(CLIENT) $(SERVER)

$(TARGETS) : $(SOURCES.x)

rpcgen $(RPCGENFLAGS) $(SOURCES.x)

$(OBJECTS_CLNT) : $(SOURCES_CLNT.c) $ (SOURCES_CLNT.h) \

$(TARGETS_CLNT.c)

$(OBJECTS_SVC) : $(SOURCES_SVC.c) $ (SOURCES_SVC.h) \

$(TARGETS_SVC.c)

$(CLIENT) : $(OBJECTS_CLNT)

$ (LINK.c) –o $(CLIENT) $(OBJECTS_CLNT) $(LDLIBS)

$(SERVER) : $(OBJECTS_SVC)

$ (LINK.c) –o $(SERVER) $(OBJECTS_SVC) $(LDLIBS)

Clean:

$(RM) core $(TARGETS) $(OBJECTS_CLNT) $(OBJECTS_SVC) \

$(CLIENT) $(SERVER)

Strength and Weaknesses of RPC

 RPC is not well suited for adhoc query processing. Consider the use of RPC to make SQL
requests on servers that return arbitrary size of rows and number of tuples.

 It is not suited for transaction processing without special modification.

 A separate special mode of quering is proposed – Remote Data Access (RDA).

 RDA is specially suited for DBMS.

 In a general client_server environment both RPC and RDA are needed.

Distributed Systems 18

IV Year – I Semester 2018-19 CSE

Topic No 3: Java RMI

 Java RMI extends the Java object model to provide support for distributed objects in the
Java language.

 It allows object to invoke methods on remote objects using the same syntax as for local

invocation.

 It is a single language system – remote interfaces are defined in the Java language.

 An object making a remote invocation needs to be able to handle RemoteExceptions that
are thrown in the event of communication subsystem failures

 A remote object must implement Remote interface.

 The next example is a simple Hello world program that is implemented in Java RMI

Java RMI- Example 1

 In this example we do the followings:

 Define the remote interface

 Implement the server

 Implement the client

 Compile the source files

 Start the Java RMI registry, server, and client

Hello.java - a remote interface

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface Hello extends Remote {

String sayHello() throws RemoteException;

}

// Implement the server

import java.rmi.registry.LocateRegistry;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class Server implements Hello {

Distributed Systems 19

IV Year – I Semester 2018-19 CSE

public Server() {}

public String sayHello() {

return "Hello, world!";

}

public static void main(String args[]) {

try {

Server obj = new Server();

Hello stub = (Hello) UnicastRemoteObject.exportObject(obj, 0);

// Bind the remote object's stub in the registry

Registry registry = LocateRegistry.getRegistry();

registry.bind("Hello", stub);

System.err.println("Server ready");

} catch (Exception e) {

System.err.println("Server exception: " + e.toString());

e.printStackTrace();

}

}

}

// Implement the client

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class Client {

private Client() {}

public static void main(String args[]) {

String host = (args.length < 1) ? null : args[0];

try {

Registry registry = LocateRegistry.getRegistry(host);

Distributed Systems 20

IV Year – I Semester 2018-19 CSE

Hello stub = (Hello) registry.lookup("Hello");

String response = stub.sayHello();

System.out.println("response: " + response);

} catch (Exception e) {

System.err.println("Client exception: " + e.toString());

e.printStackTrace();

}

}

}

 The source files for this example can be compiled as follows:

 javac Hello.java Server.java Client.java

 Start the Java RMI registry :

 rmiregistry

 Start the Server: java Server

 Start the Client: java Client

Java RMI Example 2

 Shared whiteboard

» It allows a group of users to share a common view of

a drawing surface containing graphical objects.

» The server maintains the current state of a

drawingClients can poll the server about the latest

shape of a drawing.

» The server attaches version numbers to new arriving

shapes.

 Remote Interface

 Remote interfaces are defined by extending an interface called Remote provided
in the java.rmi package.

 Figure 4 shows an example of two remote interface called Shape and ShapeList.

Distributed Systems 21

IV Year – I Semester 2018-19 CSE

import java.rmi.*;

import java.util.Vector;

public interface Shape extends Remote {

int getVersion() throws RemoteException;

GraphicalObject getAllState() throws RemoteException; 1

}

public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException; 2

Vector allShapes() throws RemoteException;

int getVersion() throws RemoteException;

}

Figure 4. Java Remote interfaces Shape and ShapeList

 In this example, GraphicalObject is a class that holds the state of a graphical
object.

 GraphicalObject must implement the Serializable interface.

 Ordinary and remote objects can appear as input and output arguments.

 Parameter and result passing

 Passing remote objects

 The result is passed by (object) reference.

 In line2, the return value of the method newShape is defined as shape - a

remote interface.

 When a remote object reference is received, an RMI can be issued on the
object refered to by this reference.

 Passing non-remote objects

 The result is passed by value.

 A new object is created locally, with the state differing from the original

object.

 Downloading of Classes

 Classes can be transferred from one Java VM to another.

 Parameters are passed by value or by reference.

Distributed Systems 22

IV Year – I Semester 2018-19 CSE

 If the recipient does not yet possess the class of an object passed by value, its
code is downloaded automatically.

 If the recipient of a remote object reference does not yet possess the class for a

proxy, its code is downloaded automatically.

 RMIregistry

 The RMIregistry is the binder for Java RMI.

 The RMIregistry runs on every server that hosts remote objects.

 It maps local object names of the form //computerName:port/objName to object
references.

 This service is not a global service.

 Clients need to query a particular host to get reference.

(Figure 5)

Figure 5. The Naming class of Java RMIregistry

Distributed Systems 23

IV Year – I Semester 2018-19 CSE

Figure 6. Java class ShapeListServer with main method

 In Figure 6:

 Security Manager

 implements various security policies for client accesses

 Main method

 1: create instance of ShapeListServant

 2: binds name "ShapeList" to newly created instance

in RMIRegistry

 ShapeListServant implements ShapeList

 Figure 7 gives an outline of the class ShapeListServant.

 1: UnicastRemoteObject - objects that live only as

long as creating process

 2: factory method - client can request creation of a

new object

Figure 7. Java class ShapeListServant implements interface ShapeList

Distributed Systems 24

IV Year – I Semester 2018-19 CSE

 Client program

 A simplified client for the ShapeList sever is illustrated in Figure 8.

 polling loop:

• 1: look up remote reference

• 2: invoke allShapes() in remote object

Figure 8. Java client of ShapeList

 Figure 9 shows the inheritance structure of the classes supporting Java RMI servers.

Figure 9. Classes supporting Java RMI

Distributed Systems 25

IV Year – I Semester 2018-19 CSE

UNIT-IV
Assignment-Cum-Tutorial Questions

SECTION-A

 Objective Questions
1. In RMI Architecture which layer Intercepts method calls made by the

client/redirects these calls to a remote RMI service? []
a.Stub&SkeletonLayer b.ApplicationLayer
c.RemoteReferenceLayer d.TransportLayer
2. An RMI Server is responsible for_______ []
a.Creating an instance of the remote object
b.Exporting the remote object
c.Binding the instance of the remote object to the RMI registry
d.All the above
3. In RMI, the objects are passed by_____. []
a.Value b.Reference
c.Value and Reference d.None of the above
4. Which of the following exceptions needs to be handled in an RMI

client program? []
a.RemoteException b.NotBoundException
c.MalFormedURLException d. All the above
5. Which allows client programs to call procedures in server programs

running in separate process and generally in different computers from
the client []

a)RMI b)RPC c)IDL d)TCP
6. Which of the following is an instance of a class which provides the

body of a remote object []
a)server b)servent c)client d)none of the above
7. Which method keeps a history of result messages to enable lost results

to be retransmitted without re-executing the operations of the server
 []

a)retransmission of results b) retransmission of request
c)retransmission of process d)retransmission of messages
8. Which of the following retransmits the request message until either a reply is

received or the server is assumed to have failed []

a)retry request message b)request message
c)retransmit message d)exit message
9. Which method of the Naming class (found in java.rmi) is used to update the

RMI registry on the server machine? []

a)rebind() b)lookup() c)Both A & B d)None of the above
10. In RMI which layer defines and supports the invocation semantics

of the RMIconnection and this layer maintains the session during the
method call?

Distributed Systems 1

a)The Stub & Skeleton Layer b)The Application Layer
c)The Remote Reference Layer d)The Transport Layer []

SECTION-B

 SUBJECTIVE QUESTIONS
1. List the design issues for remote method invocation.
2. Summarize the following

 i)javaRMI ii)Events and Notifications

3. Illustrate the implementation of RMI in distributed system.
4. How distributed garbage collector works in cooperation with the local

garbage collectors.

5. Describe the process of RPC and Identify its strengths and

weaknesses.

6. Explain about the different types of interfaces used in distributed systems.

7. Explain the communication between distributed objects by RMI.

8. Illustrate the invocation semantics of remote method invocation.
9. Illustrate dealing room system with the help of events and notifications

concept.
10. How would you incorporate persistent asynchronous

communication in to a model of communication based on RMI to
remote objects?

Distributed Systems 1

IV Year – I Semester 2018-19 CSE

Unit-5
Operating System Support

Syllabus: Introduction, the Operating System Layer, Protection, Process and Threads;

Address Space, Creation of a New Process, Threads

Topic 01: INTRODUCTION

� Many distributed operating systems have been investigated, but there are none in
general/wide use.

� But network operating system are in wide use for various reasons both technical and
non-technical.

� Users have much invested in their application software; they will not adopt a
new operating system that will not run their applications.

� The second reason against the adoption of distributed operating system is that
users tend to prefer to have a degree of autonomy for their machines, even in a
organization.

� Unix and Windows are two examples of network operating systems.

� Those have a networking capability built into them and so can be used to access remote
resources using basic services such as rlogin and telnet.

� The combination of middleware and network operating systems provides an acceptance
balance between the requirement of autonomy and network transparency.

� The network operating systems allows users to run their favorite word processor and
other standalone applications.

Distributed Systems 2

IV Year – I Semester 2018-19 CSE

� Middleware enables users to take advantage of services that become available in their
distributed system.

Topic 02: Operating System Layer

OS: kernel,
libraries &
servers

Middleware

OS1

OS2

Computer &

Computer &

Platform

Node 1 Node 2

Figure 1. System layers

Distributed Systems 3

IV Year – I Semester 2018-19 CSE

� Figure 1 shows how the operating system layer at each of two nodes supports a
common middleware layer in providing a distributed infrastructure for applications and
services.

� Kernels and server processes are the components that manage resources and
present clients with an interface to the resources.

� The OS facilitates:
� Encapsulation
� Protection
� Concurrent processing

� Invocation mechanism is a means of accessing an encapsulated resource.

� The core OS components:

� Process manager

� Thread manager

� Memory manager

� Communication manager

� Supervisor

Topic 03: Protection

� Protection means protecting resources (files) from illegitimate accesses.
Kernels and protection
� The kernel is a program that is distinguished by the facts that it always runs and

its code is executed with complete access privileges for the physical
resources on its host computer.

� It can control the memory management unit and set the processor registers so
that no other code may access the machine’s physical resources except in
acceptable ways.

� A kernel process executes with the processor in supervisor (privileged) mode;
� The kernel arranges that other processes execute in user (unprivileged) mode.
� The kernel also sets up address spaces to protect itself and other processes

from the accesses of an aberrant process
� To provide processes with their required virtual memory layout.
� An address space is a collection of ranges of virtual memory locations, in each of

which a specified combination of memory access rights applies, such as read only
or read-write. A process cannot access memory outside its address space.

� The terms user process or user-level process are normally used to describe one
that executes in user mode and has a user-level address space.

� When a process executes application code, it executes in a distinct user-level
address space for that application.

� When the same process executes kernel code, it executes in the kernel’s address space.

Distributed Systems 4

IV Year – I Semester 2018-19 CSE

� The process can safely transfer from a user-level address space to the kernel’s
address space via an exception such as an interrupt or a system call trap –
the invocation mechanism for resources managed by the kernel.

� A system call trap is implemented by a machine-level TRAP instruction, which
puts the processor into supervisor mode and switches to the kernel address space.

Topic 04: Process and Threads

� Process

� A process consists of an execution environment together with one or
more threads.

� A thread is the operating system abstraction of an activity.

� An execution environment is the unit of resource management: a
collection of local kernel managed resources to which its threads have
access.

� An execution environment consists of :
� An address space
� Thread synchronization and communication resources (e.g.,

semaphores, sockets)
� Higher-level resources (e.g., file systems, windows)

� Address spaces
 � An address space is a unit of management of a process’s virtual memory.
 � It is large (typically up to 232 bytes, and sometimes up to 264 bytes) and
consists of

one or more regions, separated by inaccessible areas of virtual memory.
� A region is an area of contiguous virtual memory that is

accessible by the threads of the owning process.

� Regions do not overlap.
� The aim of having multiple threads of execution is :

� its extent (lowest virtual address and size);
� read/write/execute permissions for the process’s threads;
� whether it can be grown upwards or downwards

Motivation for Indefinite Number of Regions:
• Need to support a separate stack for each thread.
• To enable files

� Mapped file is one that is accessed as an array of bytes in memory.

• The need to share memory between processes or between processes and the kernel
� A shared memory region(shared region) is one that is backed by the

same physical memory as one or more regions belonging to other address
spaces.

• The uses of shared regions include the following:

� Libraries

Distributed Systems 5

IV Year – I Semester 2018-19 CSE

� Kernel
� Data sharing and communication

Topic 05: Creation of a new process

� For a distributed system, the design of the process-creation mechanism has to
take into account the utilization of multiple computers;
consequently, the process-support infrastructure is divided into separate
system services.

� The creation of a new process can be separated into two independent aspects:

� The choice of a target host, for example, the host may be chosen
from among the nodes in a cluster of computers acting as a
compute server.

� The creation of an execution environment.
CHOICE OF PROCESS HOST

� The choice of the node at which the new process will reside – the process
allocation decision – is a matter of policy.

� In general, process allocation policies range from always running new processes at their
originator’s workstation to sharing the processing load between a set of computers.

� The transfer policy determines whether to situate a new process
locally or remotely(load).

� The location policy determines which node should host a new process
selected for transfer.

� Process location policies may be static or adaptive.
� The static policies operate without regard to the current state of the system, although

they are designed according to the system’s expected long-term characteristics.
� They are based on a mathematical analysis aimed at optimizing a parameter such

as the overall process throughput.
� They may be deterministic or probabilistic,
� Adaptive policies, apply heuristics to make their allocation decisions,

based on unpredictable runtime factors such as a measure of the load on each
node.

� Load-sharing systems may be centralized, hierarchical or decentralized.
� In the first case there is one load manager component
� In the second there are several, organized in a tree structure.
� Load managers collect information about the nodes and use it to
allocate new processes to nodes.
� In hierarchical systems, managers make process allocation decisions as far
down the tree as possible, but managers may transfer processes to one another,
via a common ancestor, under certain load conditions.
� In a decentralized load-sharing system, nodes exchange information
with one another directly to make allocation decisions.

Distributed Systems 6

IV Year – I Semester 2018-19 CSE

� The Spawn system for example, considers nodes to be ‘buyers’ and
‘sellers’ of computational resources and arranges them in a (decentralized) ‘market
economy’.
� In sender-initiated load-sharing algorithms, the node that requires a new
process to be created is responsible for initiating the transfer decision. It
typically initiates a transfer when its own load crosses a threshold.
� By contrast, in receiver-initiated algorithms, a node whose load is below a
given threshold advertises its existence to other nodes so that relatively loaded
nodes can transfer work to it.
� Migratory load-sharing systems can shift load at any time, not just when
a new process is created. They use a mechanism called process migration: the
transfer of an executing process from one node to another.

CREATION OF A NEW EXECUTION ENVIRONMENT

� Once the host computer has been selected, a new process requires an
execution environment consisting of an address space with initialized contents.

� There are two approaches to defining and initializing the address space of a
newly created process.

� The first approach is used where the address space is of a statically defined
format. For example, it could contain just a program text region, heap region and
stack region.

� Address space regions are initialized from an executable file or filled with
zeros as appropriate

� Alternatively, the address space can be defined with respect to an existing
execution environment

� In the case of UNIX fork semantics, for example, the newly created child
process physically shares the parent’s text region and has heap and stack regions
that are copies of the parent’s in extent (as well as in initial contents).

� This scheme has been generalized so that each region of the parent process
may be inherited by (or omitted from) the child process.

� An inherited region may either be shared with or logically copied from the
parent’s region. When parent and child share a region, the page frames
(units of physical memory corresponding to virtual memory pages) belonging
to the parent’s region are mapped simultaneously into the corresponding child
region.

Copy-on-write
• Copy-on-write is a general technique – for example, it is also used in copying

large messages – so we take some time to explain its operation here.

Distributed Systems 7

IV Year – I Semester 2018-19 CSE

• Let us follow through an example of regions RA and RB, whose memory is shared
copy-on-write between two processes, A and B .

• For the sake of definiteness, let us assume that process A set region RA to be
copy-inherited by its child, process B, and that the region RB was thus created in
process B.
• We assume, for the sake of simplicity, that the pages belonging to region A are

resident in memory.
• Initially, all page frames associated with the regions are shared between the two

processes’ page tables.
• The pages are initially write-protected at the hardware level, even though

they may belong to regions that are logically writable.
• If a thread in either process attempts to modify the data, a hardware exception

called a page fault is taken.
• Let us say that process B attempted the write.
• The page fault handler allocates a new frame for process B and copies the original

frame’s data into it byte for byte.
• The old frame number is replaced by the new frame number in one process’s page table

– it does not matter which – and the old frame number is left in the other page table.

• The two corresponding pages in processes A and B are then each made
writable once more at the hardware level. After all of this has taken place,
process B’s modifying instruction is allowed to proceed.

Threads:

Threads are schedulable activities attached to processes.

The aim of having multiple threads of execution is :
To maximize degree of concurrent execution between operations

� To enable the overlap of computation with input and output
� To enable concurrent processing on multiprocessors.

� Threads can be helpful within servers:

� Concurrent processing of client’s requests can reduce the tendency for
servers to become bottleneck.

� E.g. one thread can process a client’s request while a
second thread serving another request waits for a
disk access to complete.

Processes vs. Threads
� Threads are “lightweight” processes,
� Processes are expensive to create but threads are easier to create and destroy.

Threads programming
� Thread programming is concurrent programming.
� Java provides methods for creating, destroying and synchronizing threads.

� Programs can manage threads in groups.
� Every thread belongs to one group assigned at thread creation time.
� Thread groups are useful to shield various applications running in parallel on one Java

Virtual Machine (JVM).

Distributed Systems 8

IV Year – I Semester 2018-19 CSE

� A thread in one group cannot perform management operations on a
thread in another group.

� E.g., an application thread may not interrupt a system windowing (AWT) thread.
�Thread synchronization

�The main difficult issues in multi-threaded programming are the

sharing of objects and the techniques used for thread coordination and
cooperation.

�Each thread’s local variables in methods are private to it.

�Threads have private stack.

Threads do not have private copies of static (class) variables or object
instance variables.

Java provides the synchronized keyword for thread coordination.

any object can only be accessed through one invocation of any of its
synchronized methods.
an object can have synchronized and non-synchronized methods.

synchronized addTo() and removeFrom() methods to serialize requests in
worker pool example.

 Threads can be blocked and woken up

The thread awaiting a certain condition calls an object’s wait() method.

The other thread calls notify() or notifyAll() to awake one or all
blocked threads.

 example

� When a worker thread discovers that there are no requests to
process, it calls wait() on the instance of Queue.

� When the I/O thread adds a request to the queue, it calls the
queue’s notify() method to wake up the worker.

Distributed Systems 9

IV Year – I Semester 2018-19 CSE

UNIT-V
Assignment-Cum-Tutorial Questions

SECTION-A

 Objective Questions

1. Which system call returns the process identifier of a terminated cild?
a)wait b)exit c)fork d)get

2. Which one of the following is not shared by threads? []
a)program counter b)stack c)both(a)and(b) d)none of the above
3. A process can be
a)single threaded b)multi threaded
c)both(a)and(b) d)none of the above
4. Which one of the following is not a valid state of a thread? []
a)running b)parsing
c)ready d)blocked
5. Which of the following cannot be scheduled by the kernel? []
a)kernel level thread b)user level thread c)process d)none of the above
6. A heavy weight process: []
a)has multiple threads of execution
b)has a single thread of execution
c)can have multiple or a single thread for execution
d)None of these
7. Which process can be affected by other processes executing in the

system?
a)cooperating process b)child process []
c)parent process d)init process
8. If a process is executing in its critical section, then no other processes can

be executing in their critical section. This condition is called []
a)mutual exclusion b)critical exclusion
c)synchronous exclusion d)asynchronous exclusion
9. Which one of the following is a synchronization tool? []
a)thread b)pipe c)semaphore d)socket
10.If a kernel thread performs a blocking system call,__________.
a. the kernel can schedule another thread in the application for execution.
b.the kernel can not schedule another thread in the same

application for execution.
c.the kernel must schedule another thread of a different application

for execution.
d.the kernel must schedule another thread of the same application on a

different processor.
11. In the Many to One model, if a thread makes a blocking system call: []
a. the entire process will be blocked
b. a part of the process will stay blocked, with the rest running
c. the entire process will run
d. None of these
12. Multithreading an interactive program will increase responsiveness

to the user by: []

Distributed Systems 10

IV Year – I Semester 2018-19 CSE

a. continuing to run even if a part of it is blocked
b. waiting for one part to finish before the other begins
c. asking the user to decide the order of multi threading
d. None of these
13. If the kernel is single threaded, then any user level thread performing a

blocking system call will: []
a. cause the entire process to run along with the other threads
b. cause the thread to block with the other threads running
c. cause the entire process to block even if the other threads are

available to run
d. None of these
14. Thread synchronization is required because []
a. all threads of a process share the same address space
b. all threads of a process share the same global variables
c. all threads of a process can share the same files
d. all the above

15. Which one of the following hides the location where in the network
the file is stored?

a)transparent distributed file system
b)hidden distributed file system
c)escaped distribution file system
d)spy distributed file system
16. The address of the next instruction to be executed by the current

process is provided by the []
a)CPU registers b)program counter c)process stack d)pipe

SECTION-B
 SUBJECTIVE QUESTIONS

1. Identify the need for protection? Explain various protection mechanisms
supported by operating systems

2. Summarize the elements of an address space?
3. Illustrate the architecture of multi threaded server
4. Outline the operating system address space of threads in a distributed

systems?
5. Summarize operating systems architecture.
6. How is new process created in a distributed systems? How is it different

from Unix operating system.
7. Differentiate the process and thread in distributed environment.
8. Identify different constructors and management methods used in

threads programming.
9. Compare the worker-pool multithreading architecture with the thread per

request architecture.
10. How does copy-on-write of an inherited region done from parent to child

process with an example

Distributed Systems 1

Unit-6
Coordination and Agreement

Syllabus: Introduction, Distributed Mutual Exclusion, Elections, Multicast, Communication.

Transactions & Replications: Introduction, System Model and Group Communication,

Concurrency Control in Distributed Transactions, Distributed Deal Locks, Transaction

Recovery; Replication-Introduction, Passive (primary) Replication, Active Replication..

Topic01: INTRODUCTION

Failure Assumptions and Failure Detectors

reliable communication channels

process failures: crashes

failure detector: object/code in a process that detects failures of other processes

unreliable failure detector

unsuspected or suspected (evidence of possible failures)

each process sends ``alive'' message to everyone else

not receiving ``alive'' message after timeout

most practical systems

reliable failure detector

unsuspected or failure

synchronous system

few practical systems

Figure : A network Partition

Distributed Systems 2

Topic 02: Distributed Mutual Exclusion

Distributed mutual exclusion for resource sharing

A collection of process share resources, mutual exclusion is needed to
prevent interference and ensure consistency. (critical section)

No shared variables or facilities are provided by single local kernel to solve it.
Require a solution that is based solely on message passing.

Application level protocol for executing a critical section

– enter() // enter critical section-block if necessary

– resrouceAccess() //access shared resoruces

– exit() //leave critical section-other processes may enter

Essential requirements:

ME1: (safety)

at most one process may execute in the critical section

ME2: (liveness) Request to enter and exit the critical
section eventually succeed.

ME3(ordering) One request to enter the CS happened-before another,
then entry to the CS is granted in that order.

ME2 implies freedom from both deadlock and starvation. Starvation involves fairness

condition. The order in which processes enter the critical section. It is not possible to use the

request time to order them due to lack of global clock. So usually, we use happen-before

ordering to order message requests.

Performance Evaluation

Bandwidth consumption, which is proportional to the number of messages sent in
each entry and exit operations.

The client delay incurred by a process at each entry and exit operation.

throughput of the system. Rate at which the collection of processes as a whole can
access the critical section. Measure the effect using the synchronization delay

IV Year-I Semester UNIT-VI CSE

Distributed Systems 3

between one process exiting the critical section and the next process entering it; the
shorter the delay is, the greater the throughput is.

Sub topic 1.2:Central Server Algorithm

The simplest way to grant permission to enter the critical section is to employ a server.

A process sends a request message to server and awaits a reply from it.

If a reply constitutes a token signifying the permission to enter the critical section.

If no other process has the token at the time of the request, then the server replied
immediately with the token.

If token is currently held by other processes, the server does not reply but queues the
request.

Client on exiting the critical section, a message is sent to server, giving it back

the token.

Figure: Central Server algorithm: managing a mutual exclusion token for a set of processes

IV Year-I Semester UNIT-VI CSE

Distributed Systems 4

Sub topic 1.3: Ring-based Algorithm

Simplest way to arrange mutual exclusion between N processes without requiring an
additional process is arrange them in a logical ring.

Each process pi has a communication channel to the next process in the ring,
p(i+1)/mod N.

The unique token is in the form of a message passed from process to process in
a single direction clockwise.

If a process does not require to enter the CS when it receives the token, then it
immediately forwards the token to its neighbor.

A process requires the token waits until it receives it, but retains it.

To exit the critical section, the process sends the token on to its neighbor.

Fig: A ring of processes transferring a mutual exclusion token.

Sub topic 1.4 :Using Multicast and logical clocks

Mutual exclusion between N peer processes based upon multicast.

Processes that require entry to a critical section multicast a request message, and can
enter it only when all the other processes have replied to this message.

The condition under which a process replies to a request are designed to ensure

ME1
ME2 and ME3 are met.

IV Year-I Semester UNIT-VI CSE

Distributed Systems 5

Each process pi keeps a Lamport clock. Message requesting entry are of the form<T,

pi>.

Each process records its state of either RELEASE, WANTED or HELD in a
variable state.

– If a process requests entry and all other processes is RELEASED, then all

processes reply immediately.

– If some process is in state HELD, then that process will not reply until it is
finished.

– If some process is in state WANTED and has a smaller timestamp than the

incoming request, it will queue the request until it is finished.

– If two or more processes request entry at the same time, then whichever bears
the lowest timestamp will be the first to collect N-1 replies.

Fig: Ricart and Agrawala’s algorithm

IV Year-I Semester UNIT-VI CSE

Distributed Systems 6

Sub topic 1.5 :Multicast synchronization

P1 and P2 request CS concurrently. The timestamp of P1 is 41 and for P2 is 34. When
P3 receives their requests, it replies immediately. When P2 receives P1’s request, it
finds its own request has the lower timestamp, and so does not reply, holding P1
request in queue. However, P1 will reply. P2 will enter CS. After P2 finishes, P2 reply
P1 and P1 will enter CS.

Granting entry takes 2(N-1) messages, N-1 to multicast request and N-1

replies.
Bandwidth consumption is high.

Client delay is again 1 round trip time

Synchronization delay is one message transmission time.

Figure: Multicast synchronization

Sub topic 1.6: Maekawa’s voting algorithm

It is not necessary for all of its peers to grant access. Only need to obtain permission to
enter from subsets of their peers, as long as the subsets used by any two processes
overlap.

Think of processes as voting for one another to enter the CS. A candidate process must
collect sufficient votes to enter.

Processes in the intersection of two sets of voters ensure the safety property ME1 by
casting their votes for only one candidate.

A voting set Vi associated with each process pi.

IV Year-I Semester UNIT-VI CSE

Distributed Systems 7

there is at least one common member of any two voting sets, the size of all voting set
are the same size to be fair.

The optimal solution to minimizes K is K~sqrt(N) and M=K.

~ C {Pl'P2,···,PN}

such that for all i, j == 1,2, ... JV:

P

. EV.

l l

V.nV.°*0

l }

V. l==K

l

Each process is contained in M of the voting set~

On initialization

stall' := RELEASED:
,·oted:=FALSE:

Forp, to enter the critical
section state := WANTED:
Multicast request to all processes in V,:
Hait until (number of replies received= J...):
state := HELD:

On receipt of a requestfront Pi at p1
if(state = HELD or voted= TRUE)

Forp, lo exit the critical section

stall' := RELEASED:
Multicast re/east' to all processes in V,:

011 receipt of a releasefrom Pi at p1
if(queue ofrequests is non-empty)
then

remove head of queue - from Pk.· say:
send reply to Pie:
, 'oted :=

TRUE: else

Ihm rnted:=FALSE:

queue request from Pi without mdif

replying:

else

send replv to Pi:

,·oted:= TRUE:

end if

IV Year-I Semester UNIT-VI CSE

Distributed Systems 8

Fig: Maekawa’s algorithm – part 1

Maekawa’s algorithm:

ME1 is met. If two processes can enter CS at the same time, the processes in the
intersection of two voting sets would have to vote for both. The algorithm will only
allow a process to make at most one vote between successive receipts off a release
message.

Deadlock prone. For example, p1, p2 and p3 with V1={p1,p2}, V2={p2,

p3}, V3={p3,p1}.
If three processes concurrently request entry to the CS, then it is possible for p1 to reply to
itself and hold off p2; for p2 rely to itself and hold off p3; for p3 to reply to itself and hold
off p1. Each process has received one out of two replies, and none can proceed.

Bandwidth utilization is 2sqrt(N) messages per entry to CS and sqrt(N) per exit.

Client delay i s the sam e as Ric art and Agrawala’s algori thm , one round -trip

time.

Synchronization delay is one round-trip time.

Fault tolerance

What happens when messages are lost?

What happens when a process crashes?

None of the algorithm that we have described would tolerate the loss of messages if

the channels were unreliable.

– The ring-based algorithm cannot tolerate any single process crash failure.

– Maekawa’s algirithm can tolerate some process crash failures: if a crashed

process is not in a voting set that is required.

– The central server algorithm can tolerate the crash failure of a client process that

neither holds nor has requested the token.

IV Year-I Semester UNIT-VI CSE

Distributed Systems 9

– The Ricart and Agrawala algorithm as we have described it can be adapted to

tolerate the crash failure of such a process by taking it to grant all requests

implicitly.

Topic 02 : Elections

Algorithm to choose a unique process to play a particular role is called an election
algorithm. E.g. central server for mutual exclusion, one process will be elected as the
server. Everybody must agree. If the server wishes to retire, then another election is
required to choose a replacement.
Requirements:

elected, = L or elected, = P:
– E1(safety): a participant pi
has

Where P is chosen as the non-crashed process at the end of run with the largest identifier.

(concurrent elections possible.)

– E2(liveness): All processes Pi participate in election process and eventually set

Sub topic 2.1: A ring based election algorithm

All processes arranged in a logical ring.

Each process has a communication channel to the next process.

All messages are sent clockwise around the ring.

Assume that no failures occur, and system is asynchronous.

Goal is to elect a single process coordinator which has the largest identifier.

IV Year-I Semester UNIT-VI CSE

Distributed Systems 10

A ring-based election in progress

IV Year-I Semester UNIT-VI CSE

Distributed Systems 11

Sub Topic 2.2: The Bully Algorithm

Allows process to crash during an election, although it assumes the message delivery
between processes is reliable.

Assume system is synchronous to use timeouts to detect a process failure.

Assume each process knows which processes have higher identifiers and that it can
communicate with all such processes.

Three types of messages:

– Election is sent to announce an election message. A process begins an
election

when it notices, through timeouts, that the coordinator has failed.

T=2Ttrans+Tprocess From the time of sending

– Answer is sent in response to an election message.

– Coordinator is sent to announce the identity of the elected process.

Best case the process with the second highest ID notices the coordinator’s

failure. Then

it can immediately elect itself and send N-2 coordinator messages.

The bully algorithm requires O(N^2) messages in the worst case - that is, when the

process with the least ID first detects the coordinator’s failure. For then N-1 processes

altogether begin election, each sending messages to processes with higher ID.

IV Year-I Semester UNIT-VI CSE

Distributed Systems 12

Figure: The bully Algorithm

Topic 03 : Multicast communication

IP multicast :

IP multicast – an implementation of group communication

– built on top of IP (note IP packets are addressed to computers)

– allows the sender to transmit a single IP packet to a set of computers that form a
multicast group (a class D internet address with first 4 bits 1110)

– Dynamic membership of groups. Can send to a group with or without joining it

– To multicast, send a UDP datagram with a multicast address

– To join, make a socket join a group (s.joinGroup(group) enabling it to
receive

IV Year-I Semester UNIT-VI CSE

Distributed Systems 13

messages to the group

Multicast routers

– Local messages use local multicast capability. Routers make it efficient by

choosing other routers on the way.

Failure model

– Omission failures Þ some but not all members may receive a message. e.g.

a recipient may drop message, or a multicast router may fail

– IP packets may not arrive in sender order, group members can receive messages
in different orders

Introduction to multicast:

Multicast communication requires coordination and agreement. The aim is for
members of a group to receive copies of messages sent to the group

Many different delivery guarantees are possible

– e.g. agree on the set of messages received or on delivery ordering

A process can multicast by the use of a single operation instead of a send to each
member

– For example in IP multicast aSocket.send(aMessage)

– The single operation allows for:

efficiency I.e. send once on each link, using hardware multicast
when available, e.g. multicast from a computer in London to two
in Beijing

delivery guarantees e.g. can’t make a guarantee if multicast

is
implemented as multiple sends and the sender fails. Can also do ordering

System model:

The system consists of a collection of processes which can communicate reliably over
1-

1 channels

IV Year-I Semester UNIT-VI CSE

Distributed Systems 14

Processes fail only by crashing (no arbitrary failures)

Processes are members of groups - which are the destinations of multicast

messages In general process p can belong to more than one group Operations

– multicast(g, m) sends message m to all members of process group g

– deliver (m) is called to get a multicast message delivered. It is different
from

receive as it may be delayed to allow for ordering or reliability.

Multicast message m carries the id of the sending process sender(m) and the id of
the destination group group(m)

We assume there is no falsification of the origin and destination of messages.

Open and closed groups:

Closed groups

– only members can send to group, a member delivers to itself

– they are useful for coordination of groups of cooperating servers

Open

– they are useful for notification of events to groups of interested processes

IV Year-I Semester UNIT-VI CSE

Distributed Systems 15

Reliability of one-to-one communication:

The term reliable 1-1 communication is defined in terms of validity and integrity as
follows:

validity:

– any message in the outgoing message buffer is eventually delivered to the

incoming message buffer;

integrity:

– the message received is identical to one sent, and no messages are delivered
twice.

How do we achieve validity: validity - by use of acknowledgements and retries

How do we achieve integrity: integrity

by use checksums, reject duplicates (e.g. due to retries).

If allowing for malicious users, use security techniques

Sub Topic 3.1 : Basic multicast

A correct process will eventually deliver the message provided the multicaster does
not crash

– note that IP multicast does not give this guarantee

The primitives are called B-multicast and B-deliver

A straightforward but ineffective method of implementation:

IV Year-I Semester UNIT-VI CSE

Distributed Systems 16

– use a reliable 1-1 send (i.e. with integrity and validity as above) To B-

multicast(g,m): for each process p e g, send(p, m);
On receive (m) at p: B-deliver (m) at p

Problem

– if the number of processes is large, the protocol will suffer from ack-implosion

What are ack-implosions: A practical implementation of Basic Multicast may be achieved over
IP
multicast

Implementation of basic multicast over IP

Each process p maintains:

– a sequence number, S
p

g for each group it belongs to and

– R
q

g, the sequence number of the latest message it has delivered from process q

For process p to B-multicast a message m to group g

– it piggybacks Sg
p

 on the message m, using IP multicast to send it

– the piggybacked sequence numbers allow recipients to learn about messages
they have not received

On receive (g,m, S) at p:

– if S = R
q

g +1 B-deliver (m) and increment R
q

g by 1

– if S < R
q

g +1 reject the message because it has been delivered before

– if S > R
q

g +1 note that a message is missing, request missing message from
sender. (will use a hold-back queue to be discussed later on)

If the sender crashes, then a message may be delivered to some members of the group
but not others.

Sub topic 3.2: Reliable multicast

The protocol is correct even if the multicaster crashes

it satisfies criteria for validity, integrity and agreement

IV Year-I Semester UNIT-VI CSE

Distributed Systems 17

it provides operations R-multicast and R-deliver

Integrity

-

a

correct

process,

p

delivers

m

at

most

once.
Also p e group(m) and m was supplied to a multicast operation by sender(m)

Validity - if a correct process multicasts m, it will eventually deliver m

Agreement - if a correct process delivers m then all correct processes in group(m)
will eventually deliver m

Integrity as for 1-1 communication, validity - simplify by choosing sender as the one process
, agreement - all or nothing - atomicity, even if multicaster

crashes. Reliable multicast algorithm over basic multicast

processes can belong to several closed groups

Validity - a correct process will B-deliver to itself,

Integrity - because the reliable 1-1 channels used for B-multicast guarantee integrity,
Agreement - every correct process B-multicasts the message to the others. If p does not R-
deliver then this is because it didn’t B-deliver - because no others did either.

(Reliable multicast can be implemented efficiently over IP multicast by holding back
messages until every member can receive them.)

IV Year-I Semester UNIT-VI CSE

Distributed Systems 18

Reliable multicast over IP multicast

This protocol assumes groups are closed. It uses:

– piggybacked acknowledgement messages

– negative acknowledgements when messages are missed

Process p maintains:

– S
p

g a message sequence number for each group it belongs to and

– R
q

g sequence number of latest message received from process q to g

(the piggybacked values in a message allow recipients to learn about messages they have not
yet received)

For process p to R-multicast message m to group g

– piggyback Sg
p

and +ve acks for messages received in the form <q, R
q

g >

– IP multicasts the message to g, increments S
p

g by 1

A process on receipt by of a message to g with S from p.

– Iff S=R
p

g+1 R-deliver the message and increment R
p

g by 1

– If S≤ R
p

g discard the message

– If S> R
p

g + 1 or if R<R
q

g (for enclosed ack <q,R>)

then it has missed messages and requests them with negative
acknowledgements

puts new message in hold-back queue for later delivery

The hold-back queue for arriving multicast messages

The hold back queue is not necessary for reliability as in the implementation using IP
muilticast, but it simplifies the protocol, allowing sequence numbers to represent sets
of messages. Hold-back queues are also used for ordering protocols.

IV Year-I Semester UNIT-VI CSE

Distributed Systems 19

Figure: The hold-back queue for arriving multicast messages

Reliability properties of reliable multicast over IP

Integrity - duplicate messages detected and rejected.

IP multicast uses checksums to reject corrupt messages

Validity - due to IP multicast in which sender delivers to itself

Agreement - processes can detect missing messages. They must keep copies
of messages they have delivered so that they can re-transmit them to others.

discarding of copies of messages that are no longer needed :

– when piggybacked acknowledgements arrive, note which processes have

received messages. When all processes in g have the message, discard it.

– problem of a process that stops sending - use ‘heartbeat’ messages.

This protocol has been implemented in a practical way in Psynch and Trans

Sub topic 3.3: Ordered multicast

The basic multicast algorithm delivers messages to processes in an arbitrary order.
A

variety of orderings may be implemented:

FIFO ordering

– If a correct process issues multicast(g, m) and then multicast(g,m’), then
every correct process that delivers m’ will deliver m before m’ .

Causal ordering

IV Year-I Semester UNIT-VI CSE

Distributed Systems 20

– If multicast(g, m) ® multicast(g,m’), where ® is the happened-before relation

between messages in group g, then any correct process that delivers m’ will
deliver m before m’ .

Total ordering

– If a correct process delivers message m before it delivers m’, then any other

correct process that delivers m’ will deliver m before m’.

Ordering is expensive in delivery latency and bandwidth consumption

Ordered multicast delivery is expensive in bandwidth and latency. Therefore the less
expensive orderings (e.g. FIFO or causal) are chosen for applications for which they
are suitable

Figure: Total, FIFO and causal ordering of multicast messages

Display from a bulletin board program

Users run bulletin board applications which multicast messages

One multicast group per topic (e.g. os.interesting)

Require reliable multicast - so that all members receive messages

Ordering:

IV Year-I Semester UNIT-VI CSE

Distributed Systems 21

Figure: Display from a bulletin board program

Implementation of FIFO ordering over basic multicast

We discuss FIFO ordered multicast with operations FO-multicast and FO-deliver for
non-overlapping groups. It can be implemented on top of any basic multicast

Each process p holds:

– S
p

g a count of messages sent by p to g and
– g the sequence number of the latest message to g that p delivered from q

R
q

For p to FO-multicast a message to g, it piggybacks S
p

g on the message, B-
multicasts it and increments S

p
g by 1

On receipt of a message from q with sequence number S, p checks whether S g + 1. If
= R

q

so, it FO-delivers it.
if S > g + 1 then p places message in hold-back queue until intervening messages

Rq have

IV Year-I Semester UNIT-VI CSE

Distributed Systems 18

been delivered. (note that B-multicast does eventually deliver messages unless the
sender crashes)

Implementation of totally ordered multicast

The general approach is to attach totally ordered identifiers to multicast messages

– each receiving process makes ordering decisions based on the identifiers

– similar to the FIFO algorithm, but processes keep group specific

sequence numbers

– operations TO-multicast and TO-deliver

we present two approaches to implementing total ordered multicast over basic
multicast

– using a sequencer (only for non-overlapping groups)

– the processes in a group collectively agree on a sequence number for each

message.

Total ordering using a sequencer

Distributed Systems 19

Discussion of sequencer protocol

Since sequence numbers are defined by a sequencer, we have total ordering.

Like B-multicast, if the sender does not crash, all members receive the message

Kaashoek’s protocol uses hardware-based multicast The sender transmits one message to
sequencer, then the sequencer multicasts the sequence number and the message but IP
multicast is not as reliable as B-multicast so the sequencer stores messages in its history
buffer for retransmission on request members notice messages are missing by inspecting
sequence numbers

What can the sequencer do about its history buffer becoming full?

Sol: Members piggyback on their messages the latest sequence number they have seen

What happens when some member stops multicasting?

Sol: Members that do not multicast send heartbeat messages (with a sequence number)

The ISIS algorithm for total ordering

this protocol is for open or closed groups

ISIS total ordering - agreement of sequence numbers

Each process, q keeps:

– A
q

g the largest agreed sequence number it has seen and

– P
q

g its own largest proposed sequence number

Distributed Systems 20

1. Process p B-multicasts <m, i> to g, where i is a unique identifier for m.

2. Each process q replies to the sender p with a proposal for the message’s
agreed

sequence number of
– P

q
 := Max(A

q
 ,

) + 1.

Pq
g g g

– assigns the proposed sequence number to the message and places it in its hold-

back queue

3. p collects all the proposed sequence numbers and selects the largest as the next

agreed sequence number, a. It B-multicasts <i, a> to g. Recipients set A
q

g :=

Max(A
q

g, a) , attach a to the message and re-order hold-back queue.

Discussion of ordering in ISIS protocol

Hold-back queue

ordered with the message with the smallest sequence number at the front of the

queue when the agreed number is added to a message, the queue is re-ordered

when the message at the front has an agreed id, it is transferred to the delivery queue

– even if agreed, those not at the front of the queue are not transferred every

process agrees on the same order and delivers messages in that order, therefore

Distributed Systems 21

we have total ordering.

Latency

– 3 messages are sent in sequence, therefore it has a higher latency than

sequencer method
– this ordering may not be causal or FIFO Causally ordered multicast

We present an algorithm of Birman 1991 for causally ordered multicast in non-
overlapping, closed groups. It uses the happened before relation (on multicast
messages only)

– that is, ordering imposed by one-to-one messages is not taken into account

It uses vector timestamps - that count the number of multicast messages from each
process that happened before the next message to be multicast

Figure: Causal ordering using vector timestamps

Comments

after delivering a message from pj, process pi updates its vector timestamp

– by adding 1 to the jth element of its timestamp

compare the vector clock rule where

Vi[j] := max(Vi[j], t[j]) for j=1, 2, ...N

Distributed Systems 22

– in this algorithm we know that only the jth element will increase

for an outline of the proof see page 449

if we use R-multicast instead of B-multicast then the protocol is reliable as well as
causally ordered.

If we combine it with the sequencer algorithm we get total and causal ordering

Comments on multicast protocols

we need to have protocols for overlapping groups because applications do need to
subscribe to several groups

definitions of ‘global FIFO ordering’ etc on page 450 and some references to papers

on
them

multicast in synchronous and asynchronous systems

– all of our algorithms do work in both

reliable and totally ordered multicast

– can be implemented in a synchronous system

– but is impossible in an asynchronous system (reasons discussed in consensus
section - paper by Fischer et al.)

Transactions and replications:
Introduction to replication
Replication of data: - the maintenance of copies of data at multiple
computers

performance enhancement
– e.g. several web servers can have the same DNS name and the servers are

selected in turn. To share the load.
– replication of read-only data is simple, but replication of changing data has

overheads
fault-tolerant service

– guarantees correct behaviour in spite of certain faults (can include timeliness)
– if f of f+1 servers crash then 1 remains to supply the service
– if f of 2f+1 servers have byzantine faults then they can supply a correct service

availability is hindered by
– server failures

Distributed Systems 23

Replicate data at failure- independent servers and when one fails,
client may use another. Note that caches do not help with
availability(they are incomplete).

– network partitions and disconnected operation
Users of mobile computers deliberately disconnect, and then on re-
connection, resolve conflicts

e.g. : a user on a train with a laptop with no access to a network will prepare by copying data
to the laptop, e.g. a shared diary. If they update the diary they risk missing updates by other
people.
Requirements for replicated data

Replication transparency
– clients see logical objects (not several physical copies)

they access one logical item and receive a single
result

Consistency
– specified to suit the application,

e.g. when a user of a diary disconnects, their local copy may be
inconsistent with the others and will need to be reconciled when they
connect again. But connected clients using different copies should get
consistent results. These issues are addressed in Bayou and Coda.

Topic 02: System
model:

each logical object is implemented by a collection of physical copies called replicas
– the replicas are not necessarily consistent all the time (some may have

received updates, not yet conveyed to the others)
we assume an asynchronous system where processes fail only by crashing
and generally assume no network partitions
replica managers

– an RM contains replicas on a computer and access them directly
– RMs apply operations to replicas recoverably

i.e. they do not leave inconsistent results if they crash
– objects are copied at all RMs unless we state otherwise
– static systems are based on a fixed set of RMs
– in a dynamic system: RMs may join or leave (e.g. when they crash)
– an RM can be a state machine, which has the following properties:

State machine
applies operations atomically
its state is a deterministic function of its initial state and the operations applied
all replicas start identical and carry out the same operations
Its operations must not be affected by clock readings etc.

A basic architectural model for the management of replicated data

Distributed Systems 24

A collection of RMs provides a service to clients
Clients see a service that gives them access to logical objects, which are in fact
replicated at the RMs
Clients request operations: those without updates are called read-only requests the
others are called update requests (they may include reads)

Clients request are handled by front ends. A front end makes replication
transparent. Five phases in performing a request (What can the FE hide from a

client?) issue request
– the FE either

sends the request to a single RM that passes it on to the others
or multicasts the request to all of the RMs (in state machine approach)

coordination
– the RMs decide whether to apply the request; and decide on its ordering

relative to other requests (according to FIFO, causal or total ordering)
execution

– the RMs execute the request (sometimes tentatively)
agreement

– RMs agree on the effect of the request, .e.g perform 'lazily' or immediately
response

– one or more RMs reply to FE. e.g.

for high availability give first response to client.
to tolerate byzantine faults, take a vote

FIFO ordering: if a FE issues r then r', then any correct RM handles r
before r' Causal ordering: if r ® r', then any correct RM handles r before r'
Total ordering: if a correct RM handles r before r', then any correct RM handles r
before r' Bayou sometimes executes responses tentatively so as to be able to
reorder them
RMs agree - I.e. reach a consensus as to effect of the request. In Gossip, all RMs
eventually receive updates.
Topic 03: Group Communication
We require a membership service to allow dynamic membership of groups

Distributed Systems 25

process groups are useful for managing replicated data

– but replication systems need to be able to add/remove RMs
group membership service provides:

– interface for adding/removing members
create, destroy process groups, add/remove members. A process
can generally belong to several groups.

– implements a failure detector (section 11.1 - not studied in this course)
which monitors members for failures (crashes/communication),
and excludes them when unreachable

– notifies members of changes in membership
– expands group addresses

multicasts addressed to group identifiers,
coordinates delivery when membership is changing

e.g. IP multicast allows members to join/leave and performs address expansion,
but not the other features

Services provided for process groups.

We will leave out the details of view delivery and view synchronous group communication
A full membership service maintains group views, which are lists of group
members, ordered e.g. as members join group.
A new group view is generated each time a process joins or leaves the group.
View delivery p 561. The idea is that processes can 'deliver views' (like
delivering multicast messages).

– ideally we would like all processes to get the same information in the same
order relative to the messages.

view synchronous group communication (p562) with reliability.
– Illustrated in Fig below

Distributed Systems 26

– all processes agree on the ordering of messages and membership changes,
– a joining process can safely get state from another member.
– or if one crashes, another will know which operations it had already performed
– This work was done in the ISIS system (Birman)

Figure : View-synchronous group communication

Topic 04: Distributed transactions – introduction

a distributed transaction refers to a flat or nested transaction that accesses
objects managed by multiple servers
When a distributed transaction comes to an end

– the either all of the servers commit the transaction
– or all of them abort the transaction.

one of the servers is coordinator, it must ensure the same outcome at all of the servers.
the ‘two-phase commit protocol’ is the most commonly used protocol for achieving

this
Concurrency control in distributed transactions

Each server manages a set of objects and is responsible for ensuring that they
remain

consistent when accessed by concurrent transactions
– therefore, each server is responsible for applying concurrency control to its

own objects.
– the members of a collection of servers of distributed transactions are jointly

responsible for ensuring that they are performed in a serially equivalent
manner

Distributed Systems 27

– therefore if transaction T is before transaction U in their conflicting access to

objects at one of the servers then they must be in that order at all of the
servers whose objects are accessed in a conflicting manner by both T and U

Sub Topic 4.1 : Locking
In a distributed transaction, the locks on an object are held by the server that
manages it.

– The local lock manager decides whether to grant a lock or make the
requesting transaction wait.

– it cannot release any locks until it knows that the transaction has
been committed or aborted at all the servers involved in the transaction.

– the objects remain locked and are unavailable for other transactions during
the atomic commit protocol

an aborted transaction releases its locks after phase 1 of the
protocol. Interleaving of transactions T and U at servers X and

Y in the example on page 529, we have
– T before U at server X and U before T at server Y

different orderings lead to cyclic dependencies and distributed deadlock
– detection and resolution of distributed deadlock in next section

Sub topic 4.2 :Timestamp ordering concurrency control
Single server transactions

– coordinator issues a unique timestamp to each transaction before it starts
– serial equivalence ensured by committing objects in order of timestamps

Distributed transactions
– the first coordinator accessed by a transaction issues a globally unique

timestamp
– as before the timestamp is passed with each object access
– the servers are jointly responsible for ensuring serial equivalence

that is if T access an object before U, then T is before U at all objects
– coordinators agree on timestamp ordering

a timestamp consists of a pair <local timestamp, server-id>.
the agreed ordering of pairs of timestamps is based on a comparison

in
which the server-id part is less significant – they should relate to time

Distributed Systems 28

The same ordering can be achieved at all servers even if their clocks are not
synchronized

– for efficiency it is better if local clocks are roughly synchronized
– then the ordering of transactions corresponds roughly to the real time order in

which they were started
Timestamp

ordering
– conflicts are resolved as each operation is performed
– if this leads to an abort, the coordinator will be informed

it will abort the transaction at the participants
– any transaction that reaches the client request to commit should always be

able to do so
participant will normally vote yes
unless it has crashed and recovered during the

transaction Optimistic concurrency control

Commitment deadlock in optimistic concurrency control
servers of distributed transactions do parallel validation

– therefore rule 3 must be validated as well as rule 2
the write set of Tv is checked for overlaps with write sets of
earlier transactions

– this prevents commitment deadlock

Distributed Systems 29

– it also avoids delaying the 2PC protocol

another problem - independent servers may schedule transactions in different orders
– e.g. T before U at X and U before T at Y
– this must be prevented - some hints as to how on page 531

Topic 05: Distributed deadlocks
Single server transactions can experience

deadlocks
– prevent or detect and resolve
– use of timeouts is clumsy, detection is preferable.

it uses wait-for
graphs.

Distributed transactions lead to distributed
deadlocks

– in theory can construct global wait-for graph from local ones
– a cycle in a global wait-for graph that is not in local ones is a

distributed deadlock
sub topic 5.1: Interleavings of transactions U, V and W

Figure: Interleavings of transactions U, V and W

Sub topic 5.2 Distributed deadlock
Deadlock detection - local wait-for graphs

Local wait-for graphs can be built, e.g.
– server Y: U ® V added when U requests b.withdraw(30)
– server Z: V ® W added when V requests c.withdraw(20)
– server X: W ® U added when W requests a.withdraw(20)

Distributed Systems 30

to find a global cycle, communication between the servers is
needed centralized deadlock detection

– one server takes on role of global deadlock detector
– the other servers send it their local graphs from time to time
– it detects deadlocks, makes decisions about which transactions to abort and

informs the other servers
– usual problems of a centralized service - poor availability, lack of fault

tolerance and no ability to scale

Figure; Distributed deadlock

Subtopic 5.3: Local and global wait-for graphs
Phantom

deadlocks
– a ‘deadlock’ that is detected, but is not really one
– happens when there appears to be a cycle, but one of the transactions has

released a lock, due to time lags in distributing graphs
– in the figure suppose U releases the object at X then waits for V at Y

and the global detector gets Y’s graph before X’s (T ® U ® V ® T)

Distributed Systems 31

Figure: Local and global wait-for graphs
Edge chasing - a distributed approach to deadlock detection

a global graph is not constructed, but each server knows about some of
the edges

– servers try to find cycles by sending probes which follow the edges of the
graph through the distributed system

– when should a server send a probe (go back to Fig 13.13)
– edges were added in order U ® V at Y; V ® W at Z and W ® U

at X
when W ® U at X was added, U was waiting,

but
when V ® W at Z, W was not waiting

– send a probe when an edge T1 ® T2 when T2 is waiting
– each coordinator records whether its transactions are active or waiting

the local lock manager tells coordinators if transactions start/stop
waiting

when a transaction is aborted to break a deadlock, the coordinator tells
the participants, locks are removed and edges taken from wait-for
graphs

Edge-chasing algorithms
Three

steps
– Initiation:

When a server notes that T starts waiting for U, where U is waiting at
another server, it initiates detection by sending a probe containing the
edge < T ® U > to the server where U is blocked.
If U is sharing a lock, probes are sent to all the holders of the lock.

– Detection:
Detection consists of receiving probes and deciding whether deadlock
has occurred and whether to forward the probes.

Distributed Systems 32

• e.g. when server receives probe < T ® U > it checks if

U is waiting, e.g. U ® V, if so it forwards < T ® U ® V > to
server where V waits

• when a server adds a new edge, it checks whether a cycle is there
– Resolution:

When a cycle is detected, a transaction in the cycle is aborted to
break the deadlock.

Probes transmitted to detect deadlock

Edge chasing conclusion
probe to detect a cycle with N transactions will require 2(N-1) messages.

– Studies of databases show that the average deadlock involves 2 transactions.
the above algorithm detects deadlock provided that

– waiting transactions do not abort
– no process crashes, no lost messages
– to be realistic it would need to allow for the above failures

refinements of the algorithm
– to avoid more than one transaction causing detection to start and then more

than one being aborted
– not time to study these now

Distributed Systems 33

Figure: Two probes initiated

Figure: Probes travel downhill

Topic 06: Transaction recovery
Atomicity property of transactions

– durability and failure atomicity
– durability requires that objects are saved in permanent storage and will be

available indefinitely
– failure atomicity requires that effects of transactions are atomic even when

the server crashes
Recovery is concerned with

– ensuring that a server’s objects are durable and
– that the service provides failure atomicity.
– for simplicity we assume that when a server is running, all of its objects are in

volatile memory
– and all of its committed objects are in a recovery file in permanent storage
– recovery consists of restoring the server with the latest committed versions

of all of its objects from its recovery file

Distributed Systems 34

Recovery manager

The task of the Recovery Manager (RM) is:
– to save objects in permanent storage (in a recovery file) for

committed transactions;
– to restore the server’s objects after a crash;
– to reorganize the recovery file to improve the performance of recovery;
– to reclaim storage space (in the recovery file).

media failures
– i.e. disk failures affecting the recovery file
– need another copy of the recovery file on an independent disk. e.g.

implemented as stable storage or using mirrored disks
Recovery - intentions lists

Each server records an intentions list for each of its currently active transactions
– an intentions list contains a list of the object references and the values of all

the objects that are altered by a transaction
– when a transaction commits, the intentions list is used to identify the

objects affected
the committed version of each object is replaced by the tentative
one the new value is written to the server’s recovery file

– in 2PC, when a participant says it is ready to commit, its RM must record its

intentions list and its objects in the recovery file
it will be able to commit later on even if it crashes

when a client has been told a transaction has committed, the recovery
files of all participating servers must show that the transaction is
committed,

• even if they crash between prepare to commit and commit
Types of entry in a recovery file

Distributed Systems 35

Logging - a technique for the recovery file
the recovery file represents a log of the history of all the transactions at

a server
– it includes objects, intentions lists and transaction status
– in the order that transactions prepared, committed and aborted
– a recent snapshot + a history of transactions after the snapshot
– during normal operation the RM is called whenever a transaction

prepares, commits or aborts
prepare - RM appends to recovery file all the objects in the
intentions list followed by status (prepared) and the intentions list
commit/abort - RM appends to recovery file the corresponding status

assume append operation is atomic, if server fails only the last
write will be incomplete
to make efficient use of disk, buffer writes. Note: sequential writes
are more efficient than those to random locations
committed status is forced to the log - in case server crashes

Log for banking service

Logging mechanism (there would really be other objects in log file)
– initial balances of A, B and C $100, $200, $300
– T sets A and B to $80 and $220. U sets B and C to $242 and $278
– entries to left of line represent a snapshot (checkpoint) of values of A, B and
C

before T started. T has committed, but U is
prepared.

– the RM gives each object a unique identifier (A, B, C in diagram)
– each status entry contains a pointer to the previous status entry, then the

checkpoint can follow transactions backwards through the file

Distributed Systems 36

Recovery of objects - with logging

When a server is replaced after a crash
– it first sets default initial values for its objects
– and then hands over to its recovery manager.

The RM restores the server’s objects to include
– all the effects of all the committed transactions in the correct order and
– none of the effects of incomplete or aborted transactions
– it ‘reads the recovery file backwards’ (by following the pointers).

restores values of objects with values from committed transactions
continuing until all of the objects have been restored

– if it started at the beginning, there would generally be more work to do
– to recover the effects of a transaction use the intentions list to find the value

of the objects
e.g. look at previous slide (assuming the server crashed before

T
committed)

– the recovery procedure must be idempotent
Logging - reorganising the recovery file

RM is responsible for reorganizing its recovery file
– so as to make the process of recovery faster and
– to reduce its use of space

checkpointing
– the process of writing the following to a new recovery file

the current committed values of a server’s objects,

transaction status entries and intentions lists of transactions that have
not yet been fully resolved
including information related to the two-phase commit protocol
(see later)

– checkpointing makes recovery faster and saves disk space
done after recovery and from time to time

can use old recovery file until new one is ready, add a ‘mark’ to old
file do as above and then copy items after the mark to new recovery
file replace old recovery file by new recovery file

Figure: Shadow versions

Distributed Systems 37

Recovery of the two-phase commit protocol
The above recovery scheme is extended to deal with transactions doing the
2PC protocol when a server fails

it uses new transaction status values done, uncertain
the coordinator uses committed when result is Yes;

done when 2PC complete (if a transaction is done its information may
be removed when reorganising the recovery file)
the participant uses uncertain when it has voted Yes; committed when
told the result (uncertain entries must not be removed from recovery
file)

It also requires two additional types of entry:

Description of contents of entry

Type
of entry

Coordinator Transaction identifier, list of

participants added by RM when
coordinator prepared

Participant Transaction identifier, coordinator
added by RM when participant votes
yes

Log with entries relating to two-phase commit protocol

Distributed Systems 38

Start at end, for U find it is committed and a participant , We have T committed and
coordinator, But if the server has crashed before the last entry we have U uncertain and
participant, or if the server crashed earlier we have U prepared and participant
.

Recovery of the two-phase commit protocol

Nested transactions:

Summary of transaction recovery
Transaction-based applications have strong requirements for the long life
and integrity of the information stored.
Transactions are made durable by performing checkpoints and logging in a
recovery file, which is used for recovery when a server is replaced after a crash.

Distributed Systems 39

Users of a transaction service would experience some delay during recovery.
It is assumed that the servers of distributed transactions exhibit crash failures and
run in an asynchronous system,

– but they can reach consensus about the outcome of transactions because
crashed servers are replaced with new processes that can acquire all the
relevant information from permanent storage or from other servers

Topic 07: Fault-tolerant services
provision of a service that is correct even if f

processes fail
– by replicating data and functionality at RMs
– assume communication reliable and no partitions
– RMs are assumed to behave according to specification or to crash
– intuitively, a service is correct if it responds despite failures and clients can’t
tell

the difference between replicated data and a single copy
– but care is needed to ensure that a set of replicas produce the same result as a

single one would.

Example of a naive replication system

Figure: Native Replication
System

Linearizability the strictest criterion for a replication
system

Consider a replicated service with two clients, that perform read and update operations. A
client waits for one operation to complete before doing another. Client operations o10, o11,
o12 and o20, o21, o22 at a single server are interleaved in some order e.g. o20, o21, o10,
o22 , o11, o12 (client 1 does o10 etc)

Distributed Systems 40

The correctness criteria for replicated objects are defined by referring to a
virtual interleaving which would be correct

a replicated object service is linearizable if for any execution there is some interleaving of
clients’
operations such that:

– the interleaved sequence of operations meets the specification of a
(single)

correct copy of the objects
– the order of operations in the interleaving is consistent with the real time at

which they occurred
– For any set of client operations there is a virtual interleaving (which would be

correct for a set of single objects).
– Each client sees a view of the objects that is consistent with this, that is, the results of

clients operations make sense within the interleaving.

the bank example did not make sense: if the second update is
observed,the first update should be observed too.

– linearizability is not intended to be used with transactional replication systems
– The real-time requirement means clients should receive up-to-date

information
but may not be practical due to difficulties of synchronizing
clocks a weaker criterion is sequential consistency

Sequential consistency

it is not linearizable because client2’s getBalance is after client 1’s setBalance
in real time.

The passive (primary-backup) model for fault tolerance

Distributed Systems 41

There is at any time a single primary RM and one or more secondary (backup,
slave) RMs
FEs communicate with the primary which executes the operation and sends
copies of the updated data to the result to backups
if the primary fails, one of the backups is promoted to act as the primary

The FE has to find the primary, e.g. after it crashes and another takes over

Passive (primary-backup) replication. Five phases.
The five phases in performing a client request are as follows:
1. Request:

– a FE issues the request, containing a unique identifier, to the primary RM
2. Coordination:

– the primary performs each request atomically, in the order in which it receives
it relative to other requests

– it checks the unique id; if it has already done the request it re-sends the
response.

3. Execution:
– The primary executes the request and stores the response.

4. Agreement:
– If the request is an update the primary sends the updated state, the response and

the unique identifier to all the backups. The backups send an
acknowledgement.

5. Response:
– The primary responds to the FE, which hands the response back to the client.

Discussion of passive replication
To survive f process crashes, f+1 RMs are required

– it cannot deal with byzantine failures because the client can't get replies
from the backup RMs

To design passive replication that is linearizable
– View synchronous communication has relatively large overheads
– Several rounds of messages per multicast
– After failure of primary, there is latency due to delivery of group view

Distributed Systems 42

variant in which clients can read from backups

– which reduces the work for the primary
– get sequential consistency but not linearizability Sun

NIS uses passive replication with weaker guarantees

– Weaker than sequential consistency, but adequate to the type of data stored
– achieves high availability and good performance
– Master receives updates and propagates them to slaves using 1-1

communication. Clients can uses either master or slave
– updates are not done via RMs - they are made on the files at the master.

Active replication for fault tolerance

Active replication - five phases in performing a client request
Request

– FE attaches a unique id and uses totally ordered reliable multicast to send
request to RMs.

FE can at worst, crash. It does not issue requests in parallel Coordination
– the multicast delivers requests to all the RMs in the same (total) order.

Execution
– every RM executes the request. They are state machines and receive requests in

the same order, so the effects are identical. The id is put in the response

Agreement
– no agreement is required because all RMs execute the same operations in the

same order, due to the properties of the totally ordered multicast.

Distributed Systems 43

Response

– FEs collect responses from RMs. FE may just use one or more responses. If it
is only trying to tolerate crash failures, it gives the client the first response.

Active replication – discussion

As RMs are state machines we have sequential consistency
– due to reliable totally ordered multicast, the RMs collectively do the same as a

single copy would do
– it works in a synchronous system
– in an asynchronous system reliable totally ordered multicast is impossible – but

failure detectors can be used to work around this problem. How to do that is
beyond the scope of this course.

this replication scheme is not linearizable
– because total order is not necessarily the same as real-time order

To deal with byzantine failures
– For up to f byzantine failures, use 2f+1 RMs
– FE collects f+1 identical responses

To improve performance,
– FEs send read-only requests to just one RM.

UNIT-VI
Assignment-Cum-Tutorial Questions

SECTION-A

 Objective Questions

1. In distributed systems, a logical clock is associated with []
A)each instruction B)each process
C)each register D)none of the above

2. If time stamps of two events are same, then the events are []
A)concurrent B)non-concurrent C)monotonic D)non-
monotonic

3. If a process is executing in its critical section
A)any other process can also execute in its critical section
B)no other process can execute in its critical section
C)one more process can execute in its critical section
D)none of the above

4. A process can enter into its critical section []
A)any time
B)when it receives a reply message from its parent process
C)when it receives a reply message from all other processes in the
system
D)none of the above

5. In case of failure, a new transaction coordinator can be elected by[]
A)bully algorithm B)ring algorithm
C)both(a)and(b) D)none of the above

6. According to the ring algorithm, links between processes are
A)bidirectional B)unidirectional
C)both(a)and(b) D)none of the above

7. A________ would involve two or more of the process becoming stock
indefinetly while attempting to enter or exit the critical section.

8. The simplest way to achieve__________ is to employ a server that grants
permission to enter the critical section.

9. Each logical object is implemented by a collection of physical copies
called_____.

10. The goal of the ring based election algorithm is to elect a
single process called the_______which is the process with the
largest identifier.
A.Replica B.Coordinator C.Checkpoint D. xecution

11. Which of the following facility or capacity are required to
provide support for mutual exclusion.
i)A process that halts in its non critical section must do so with
out interfering with other processes.
ii)Assumption should made about relative process speeds or number of
processors.
iii)A process remains in side its critical section for a finite time only
A) (i)&(ii) B) (ii)&(iii) C)(i) & (iii)

12. In the token passing approach of distributed systems, processes are
organized in a ring structure
a)logically b)physically
c)both(a)and(b) d)none of the above

SECTION-B
 SUBJECTIVE QUESTIONS

1. Illustrate bully algorithm and explain how it is different from other election
algorithms.

2. Describe in detail about distributed deadlocks.

3. identify features required for election algorithms.

4. Differentiate active replication and passive replication.

5. What is meant by concurrency control? How it is important in distributed
systems.

6. Summarize about coordination and agreement in group communication.

7. Explain about multicast communication in distributed systems?

8. Write the algorithm of distributed mutual exclusion.
9. Identify edge chasing in deadlock detection?
10. How does synchronization delay affect the throughput of a system?

How can it be avoided?

