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Vision 

 

To be a center of excellence in Computer Science and Engineering education and 

training to meet the challenging needs of the industry and society. 

 

Mission 

 To impart quality education through well-designed curriculum in tune with the 

growing software needs of the industry. 

 To serve our students by inculcating in them problem solving, leadership, 

teamwork skills and the value of commitment to quality, ethical behavior & 

respect for others. 

 To foster industry-academia relationship for mutual benefit and growth 

   Program Educational Objectives  

 PEO1:   Identify, analyze, formulate and solve Computer Science and 

Engineering problems both independently and in a team environment by using the 

appropriate modern tools. 

PEO2: Manage software projects with significant technical, legal, ethical, social, 

environmental and economic considerations 

PEO3: Demonstrate commitment and progress in lifelong learning, professional 

development, leadership and Communicate effectively with professional clients 

and the public. 
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HANDOUT  ON BIGDATA  

Class & Sem. :  IV B.Tech–II Semester Year : 2019-20 

Branch           : CSE Credits : 3 

================================================================ == 

1. Brief History and Scope of the Subject 

Hadoop is an open -source software framework   for distributed storage and large -scale 

processing of data -sets on clusters of commodity hardware. 

          In 2004 Google publishes Google File System (GFS) and MapReduce     

framework papers.2005 Doug Cutting and Nutch team implemented Google’s 

frameworks in Nutch 2006 Yahoo hires Doug Cutting to work on Hadoop with 

dedicated team 

2008 Hadoop became Apache Top Level Project. The core of Apache Hadoop consists of a 

storage part, known as Hadoop Distributed File System (HDFS), and a processing part 

called MapReduce. Hadoop splits files into large blocks and distributes them across no des 

in a cluster. To process data, Hadoop transfers packaged code for nodes to process in 

parallel based on the data that needs to be processed. 

The base Apache Hadoop framework is compo sed of the following modules: 

 Hadoop Common– contains libraries and utilities needed by other Hadoop 

modules; 

 Hadoop Distributed   File System (HDFS)– a distributed file -system that stores data 

o n  commodity machines, providing very high aggregate bandwidth across the 

cluster. 

 Hadoop YARN–a resource -management platform responsible  for managing 

computing resources in clusters and using them for scheduling of users' applications; 

 Hadoop MapReduce – an implementation of the MapReduce programming model for 

large scale data processing. 
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The term Hadoop has come to refer not just to the base modules above, but also to the 

ecosystem, or collection of additional software packages that can be installed on top of or 

alongside Hadoop, such as Apache Pig, Apache Hive, 

Apache HBase, Apache Phoenix, Apache Spark, Apache Zookeeper, Cloudera Impala, 

Apache Flume, Apache Sqoop, Apache Oozie, Apache Storm. The Hadoop framework 

itself is mostly written in the Java programming language, with some native code in 

C and command line utilities written as shell scripts. 

Big data is the term for a collection of data sets so large and complex that it becomes 

difficult to store and process using on-hand database management tools or traditional 

data processing applications. 

Technologies Supported by Big Data 

 Column-oriented databases, Schema-less databases, or NoSQL databases, MapReduce, 

this is a programming paradigm.  Hadoop open source platform for handling Big Data. 

 Hive is a "SQL-like" bridge that allows conventional BI applications to run queries 

against a Hadoop cluster. PIG is another bridge that tries to bring Hadoop closer to the 

realities of developers and business users, similar to Hive.  Unlike Hive, however, 

PIG consists of a "Perl-like" language that allows for query execution over data stored 

on a Hadoop cluster, instead of a "SQL -like" language. 

Storage Technologies 

 Big Data in the cloud 

 Big Data and cloud computing go hand-in-hand. Cloud computing enable s 

companies of all sizes to get more value from their data than ever before, by enabling 

blazing -fast analytics at a fraction of previous costs. This, in turn drives companies to 

acquire and store even more data, creating more need for processing power and driving 

a virtuous circle. 

Pre-Requisites 

Students should have Basic knowledge of JAVA, Python, Linux and SQL 
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2. Course Objectives: 

 To   familiarize the fundamental   concepts   of   cloud for laying a strong foundation 

of Apache Hadoop (Big data framework). 

 To gain knowledge of HDF file system, MapReduce frameworks and relevant 

tools. 

3. Course Outcomes: 

Student will be able to 

CO1: Describe the fundamentals of Big cloud and data architectures 

 

CO2: Use HDFS file structure and MapReduce frameworks to solve complex problems 

CO3: Know how to analyze data using Unix tools and Hadoop 

 

CO4: Understand how to develop environment for analyzing Bigdata 

 

CO5: Understand how to use mapper and reducer functions 

 

CO6: Access the database in a Hadoop environment using Hive 

4. Program Outcomes 

Graduates of the Computer Science and Engineering Program will have ability to 

Engineering graduate will be able to 

1. Engineering knowledge:  Apply the knowledge of mathematics, science, engineering 

fundamentals, and engg. specialization to the solution of complex engineering 

problems. 

2. Problem analysis: Identify, formulate, research literature, and analyze engineering 

problems to arrive at substantiated conclusions using first principles of 

mathematics, natural, and engineering sciences. 

 

3. Design/ development of solutions: Design solutions for complex engineering 

problems and design system components, processes to meet the specifications with 

consideration for the public health and safety, and the cultural, societal, and 

environmental considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge 

including design of experiments, analysis and interpretation of data, and synthesis of 

the information to provide valid conclusions.
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5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations. 

6. The engineer and society: Apply reasoning informed by the contextual knowledge 

to assess societal, health, safety, legal, and cultural issues and the consequent 

responsibilities relevant to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional 

engineering solutions in societal and environmental contexts, and demonstrate the 

knowledge of, and need for sustainable development 

8. Ethics: Apply ethical principles and commit to professional ethics and 

responsibilities and norms of the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a member 

or leader in teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively with the engineering community

 and with society at large. Be able to comprehend and write effective reports     

documentation. Make effective presentations, and give and receive clear 

instructions. 

11. Project management and finance: Demonstrate knowledge and 

understanding of engineering and management principles and apply these to one’s 

own work, as a member and leader in a team. Manage projects in multidisciplinary 

environments. 

12. Life-long learning: Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest context of 

technological change. 
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6. Mapping of Course Outcomes with Program Outcomes: 

 1 2 3 4 5 6 7 8 9 10 11 12 

CO1 3  2          

CO2 2 2 3 3         

CO3   1 2 2        

CO4   3 2 3        

CO5 2 2 3 2 2        

CO6 1  2 2 3        

               3- High Level Mapping              2- Medium Level Mapping 1-Low Level Mapping 

7. Prescribed Text Books 

1. Tom   White, Hadoop, “The Definitive Guide”, 3rd. Edition, O’Reilly 

Publications, 2012. 

2. DrikdeRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch, 

“Understanding Big Data Analytics for Enterprise Class Hadoop and Streaming 

Data”,1st Edition, TMH,2012. 

8. Reference Text Books 

1. Frank J.Ohlhorst,“Big Data Analystics:Turning Big Data Into Big Money”,2Nd 

Edition, TMH, 2012. 

9. URLs and Other E -Learning Resources 

a. Hadoop: http:/ / hadoop.apache.org/ 

b. https://drive.google.com/drive/folders/1CSiyqbRvT65XZ309CJiVxJBrrZHfgcqC  

Digital Learning Materials 

http://www.dataversity.net/category/data-topics/big-data 

 

 

 

 

 

https://drive.google.com/drive/folders/1CSiyqbRvT65XZ309CJiVxJBrrZHfgcqC
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10    Lecture Schedule / Lesson Plan 

 

 

Topics Theory 

What is Bigdata, Why Bigdata is Important 2 

Meet Hadoop – Data 2 

Data Storage and Analysis 1 

Comparison with other systems 1 

Grid Computing 1 

A brief history of Hadoop 1 

Apache Hadoop and the Hadoop Eco System 1 

 9 

UNIT –II: MapReduce  

Analyzing data with UNIX tools 1 

Analyzing data with Hadoop 1 

Java MapReduce classes (new API) 2 

Data flow 2 

Combiner functions 2 

Running a distributed MapReduce Job 1 

 9 

HDFS concepts 1 

Command line interface to HDFS 1 

Hadoop File systems 1 

Interfaces, Java Interface to Hadoop 1 

Anatomy of a file read 2 

Anatomy of a file write 2 

Replica placement and Coherency Model 1 

Parallel copying with distcp 1 

Keeping an HDFS cluster balanced 1 

 9 

Setting up the development environment 1 

Managing the configuration 2 

Writing a unit test with MRUnit 2 

Running a job in local job runner 2 
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Running on a cluster 1 

Launching a job 1 

The MapReduce WebUI  1 

 8 

Classic MapReduce 2 

Job submission, Job Initialization 2 

Task Assignment, Task execution 1 

Process and status updates 1 

Job Completion 1 

Shuffle and sort on Map and reducer side 1 

Configuration tuning 1 

MapReduce types 1 

Input formats 1 

Output formats 1 

 10 

Hive 1 

The Hive Shell, Hive services 1 

Hive clients 1 

The meta store 1 

Comparison with traditional databases 1 

Hive QL 2 

Tables 1 

Querying data 1 

User defined functions 1 

 10 

Total No.of Periods: 62 
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1.1 What is Big Data 

to Big Data 

Definition:  

 Big Data is often described as extremely large data sets that have grown beyond 

the ability to manage and analyze them with traditional data processing tools. 

The data set has grown so large that it is difficult to manage and even harder to 

garner value out of it. 

 The primary difficulties are the acquisition, storage, searching, sharing, analytics, 

and visualization of data. Not only the size of the data set but also difficult to 

process the data 

The data come from everywhere:   Sensors used to gather climate information, posts 

to social media sites, digital pictures and videos posted online, transaction records of 

online purchases, and cell phone GPS signals etc. All of these data have intrinsic value 

that can be extracted using analytics, algorithms, and other technique 

Characteristics of Big Data 

Three characteristics define Big Data: volume, variety, and velocity 

 

 

Fig1: Big Data Characteristics
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Volume: The amount of data 

The size of available data has been growing at an increasing rate.  The volume of data is 

growing. Experts predict that the volume of data in the world will grow to 35 Zetta 

bytes in 2020. 

 Twitter alone generates more than 7 terabytes (TB) of data every day. Facebook 10TB 

 That same phenomenon affects every business – their data is growing at the same 

exponential rate too. 

 This applies to companies and to individuals. A text file is a few kilo bytes, a sound 

file is a few meg bytes while a full-length movie is a few giga bytes. More sources of 

data are added on continuous basis. 

 For companies, in the old days, all data was generated internally by employees. 

Currently, the data is generated by employees, partners and customers. 

 For a group of companies, the data is also generated by machines. For example, 

Hundreds millions of smart phones send a variety of information to the 

network infrastructure. 

 We store everything: Environmental data, financial data, medical data, surveillance 

data. Petabyte datasets are common these days and Exabyte is not far away. 

 

Velocity: How fast it is generated 

 Data is increasingly accelerating the velocity at which it is created and at which it is 

integrated We have moved from batch to a real-time business. 

 Initially, companies analyzed   data using a batch process. One takes a      chunk of data, 

submits a job to the server and waits for delivery of the result. That scheme works 

when the incoming data rate is slower than the batch -processing rate and when the 

result is useful despite the delay. 

 With the new sources of data such as social and mobile applications, the batch process breaks 

down. The data is now streaming into the server in real time, in a continuous fashion and the 

result is only useful if the delay is very short. 
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Variety: Represents all kinds of data 

Data can   be classified under several categories: structured data, semi structured data 

and unstructured data. 

Structured data are normally found in traditional databases (SQL or others) where 

d a t a  a r e  organized into   tables based on defined business rules. Structured 

data usually prove to be the easiest type of data to work with, simply because the data are 

defined and indexed, making access and filtering easier. 

Unstructured data, are not organized into tables and cannot be natively used by 

applications or interpreted by a database. A good example of unstructured data would 

be a collection of binary image files. 

Semi structured data fall between unstructured and structured data. Semi 

structured data do not have a formal structure like a database with tables and 

relationships. However, unlike unstructured data, semi structured data have tags or other 

markers to separate the elements and provide a hierarchy of records and fields, which 

define the data. 

 Big data extend beyond structured data to include unstructured data off all 

varieties: text, audio, video, click streams, log files and more. 

 The growth in data sources has fueled the growth in data types. In fact, 80% of the 

world’s data is unstructured and only 20% structured data Yet most traditional 

methods apply analytics only to structured information. 

1.2 Why Big Data is Important 

 Big Data solutions are ideal for analyzing not only raw structured data, but semi 

structured and unstructured data from a wide variety of sources. 

 Big Data solutions are ideal when all, or most, of the data needs to be analyzed 

versus a sample of the data; or a sampling of data isn’t nearly as effective as a 

larger set of data from which to derive analysis. 

 Big Data solutions are ideal for iterative and exploratory analysis when business 

measures on data are not predetermined.
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 Big Data is well suited for solving information challenges that don’t natively fit 

within            a traditional relational database approach for handling the problem at 

hand. 

 Big Data has already proved its importance and value in several areas. Organizations 

such as the National Oceanic and Atmospheric Administration (NOAA), the National 

Aeronautics and Space Administration (NASA), several pharmaceutical companies, 

and numerous energy companies have amassed huge amounts of data and now leverage 

Big Data technologies on a daily basis to extract value from them. 

NOAA uses Big Data approaches to aid in climate, ecosystem, weather, and 

commercial research, 

 NASA uses Big Data for aeronautical and another research. 

 Pharmaceutical companies and energy companies have leveraged Big Data for more 

tangible results. such as drug testing and geophysical analysis. 

 The New York Times has used Big Data tools for text analysis and Web mining 

 Walt Disney Company uses them to correlate and understand customer behavior in 

all of its stores, theme parks. 

 Companies such as Facebook, Amazon, and Google rely on Big Data analytics a 

part of their primary marketing schemes as well as a means of servicing their 

customers better. 

 This accomplished by storing each customer’s searches and purchases and other 

piece of information av aimable, and then applying algorithms to that information 

to compare one customer’s information with all other customers information. 

 Big Data plays another role in today’s businesses: Large organizations increasingly 

face the need to maintain massive amounts of structured and unstructured data —

from transaction information in data warehouses to employee tweets, from supplier 

records to regulatory filings —to comply with government regulations. 
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1.3 Meet Hadoop - data 

Data: 

Every day zeta bytes or peta bytes of data is generated by People and machines. 

 

Fig2: sizes of data 

If the amount of data is more than hundreds of terabytes then such a data is called as 

big data. 

Data generated by People:  

1.Through individual interactions - 

- Phone calls- emails- documents 

2.Through social media 

-twitter-Facebook-what sup etc. 

3. Data generated by Machines: 

-RFID readers-Sensor networks   -Vehicle GPS traces-Machine logs 

1.4 Data Storage and Analysis 

Problem: 

 Struggling with storage and analysis of the data. 

 Even though the storage capacities of hard drives have increased massively over the 

years, access speeds (the rate at which data can be read from drives) 

 Take long time to read all data on a single drive —and writing is even slower. 

 The obvious way to reduce the time is to read from multiple disks at once.  Ex: if we had 

100 drives, each holding one hundredth of the data. Working in parallel, we could read 

the data in under two minutes. 

 Even though read and write data in parallel to or from multiple disks ,  there  are 

some more problems. 
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First Problem: Hardware failure 

As soon as you start using many pieces of hardware, the chance that one will fail is 

fairly high. A common way of avoiding data loss is through  

replication: redundant copies of the data are kept by the system so that in the event of 

failure, there is another copy available. This is how RAID (redundant array of 

inexpensive disks) works. 

Second problem: most analysis tasks need to be able to combine the data in some way; 

i.e. data read from one disk may need to be combined with the data from any of the other 99 

disks. 

Solution for above problems: 

     Building distributed systems —for data storage, data  analysis, and       coordination. 

  Hadoop provides: a reliable shared storage and analysis system. The storage is provided by 

HDFS     and analysis by MapReduce. 

  1.HDFS - Hadoop Distributed File System. 

               It avoids data loss is through replication. Minimum of three replicas for the data. 

 2.MapReduce - Programming model. It abstracts the problem from disk reads and writes,    

transforming it into a computation over sets of keys and values 

1.5 Comparison with other systems 

 The approach taken by MapReduce may seem like a brute -force approach on the entire 

dataset —or at least a good portion of it —is processed for each query. 

 MapReduce is a batch query processor, and the ability to run an adhoc query against 

the whole dataset and get the results in a reasonable time is transformative. 

 It changes the way you think about data, and unlocks data that was previously 

archived on tape or disk. 

 Why   can’t   we use databases with lots of   disks to do large-scale batch analysis? Why 

is MapReduce needed? MapReduce can be seen as a complement to an RDBMS. The 

differences between the two systems are shown in Table 



16 Big Data 

IV-II SEMESTER 2019-20 

 

CSE 

 

 

 

 

Fig3: Comparison between RDBMS & MapReduce 

 MapReduce is a good fit for problems that need to analyze the whole dataset, in a batch 

fashion, particularly for adhoc analysis. RDBMS is good for point queries or updates, 

where the dataset has been indexed to deliver low -latency retrieval and update times 

of a relatively small amount of data. 

 MapReduce suits applications where the data is written once, and read many times. 

Relational database is good for datasets that are continually updated. 

   Another difference is the amount of structure in the datasets that they operate on 

RDBMS operate on   Structured  data is  data that is  organized  into entities that have a 

defined format, such  as  XML  documents  or  database  tables  that conform  to  a  

particular  predefined  schema.  Map  Reduce  operate  on  Semi - structured  and  

Unstructured  data. In  Se mi -structured data there may be a schema, it is often 

ignored, so it may be used only as a guide to the structure of the data 

  Ex:  Spreadsheet, in which the structure is the grid of cells, although the cells 

themselves may hold any form of data. Unstructured data does not have any particular 

internal structure 

Ex:  plain text or image data. MapReduce works well on unstructured or semi - 

structured data, since it is designed to interpret the data at processing time. 

   Relational data is normalized to retain its integrity(assurance of accuracy) and             

remove redundancy. 
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Normalization poses problems for MapReduce, since it makes reading a record a nonlocal 

operation, and one of the central assumptions that MapReduce makes is t h at it is possible to 

perform (high -speed) streaming reads and writes. 

 Ex: Web server log is a good example of a set of records that is not normalized.  

The client hostnames are specified in  full each  time,   even though the same client may 

appear many  times and  this is  one reason  that  logfiles of  all  kinds are particularly well 

-suited to analysis with MapReduce. 

 MapReduce is a linearly scalable programming  model.  The  programmer  writes 

two functions  —a  map function and a reduce 

function —each of which defines a mapping from one set of key -value pairs to 

another. 

 These functions are unmind to the size of the data or the cluster that they are 

operating on, so they can be used unchanged for  a small dataset and for a massive 

one. 

 if you double the size of the input data,  a job will run twice as slow. But if  you also 

double the size of the cluster, a job will run as fast as the original one. This is not 

generally true of SQL queries. 

 

1.6 Grid Computing 

Grid computing 

 The H PC and Grid computing doing large scale data processing using APIs as 

Message Passing Interface (MPI)The approach of HPC is to distribute the work 

across a cluster of machines Which access shared files system Hosted by a Storage 

Area Network (SAN) Works well for compute intensive jobs 

 It faces problem when nodes need to access larger data volumes i.e. hundreds of 

giga bytes. Reason   is  the  network  bandwidth  is  the  bottleneck and computer 

nodes become idle. (At this point Hadoop starts shines) 

 MapReduce tries to collocate the data with the compute node, so data access is fast 

since it  is local.  This feature, known as data locality, is at the heart of MapReduce 

and is the reason n for its good performance.  

 Network   bandwidth is more precious resource in the data center     

environment (easy to saturate network links by copying data around) 

 Hadoop models its network topology by consuming bandwidth as less as possible. 

It does not prevent high –CPU analysis in Hadoop. 
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1) MPI gives great control to the programmer, but requires that explicitly handle the 

mechanics of the 

-- data flow 

-- exposed via low -level C routines 

-- constructs, such as sockets 

-- the higher -level algorithm for the analysis. 

MapReduce operates only at the higher level: the programmer thinks in terms of 

functions of key and value pairs, and the data flow is implicit. 

2) Coordinating the processes in a large -scale distributed computation is a challenge. 

The hardest aspect is gracefully handling partial failure—you don’t know if a remote 

process has failed or not. 

MapReduce spares the programmer from having to think about failure, since the 

implementation detects failed map or reduce tasks and reschedules replacements on m 

machines that are healthy. 

MapReduce   is able to do   this since it is  a shared -nothing architecture, meaning that 

tasks have no dependence on one other. 

(This is a slight oversimplification, since the output from mappers is fed to the reducers, 

but this is under the control of  the MapReduce system;  it  needs to take more care 

rerunning a failed reducer than  rerunning a  failed  map,  it  has to make sure it  can  

retrieve the  

necessary map outputs, and if not, regenerate them by running the relevant maps again.) 

   So from the programmer’s point of view, the order in which the tasks run doesn’t 

matter. 

By contrast, MPI programs have to explicitly manage their own check pointing and 

recovery, which gives more control to the programmer, but makes them more difficult to 

write. 

 MapReduce is a restrictive programming model, and in a sense, it is: limited to 

key and value types that are related in specified ways, and mappers and reducers 

run with very limited coordination between one another. 

 MapReduce was invented by engineers at Google  It was inspired by  older ideas 

from the functional programming, distributed computing, and database 

communities. 
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 Many applications in many industries use MR . It is pleasantly surprising to see the 

range of algorithms that can be expressed in MapReduce, from image analysis, to 

graph -based problems, to machine learning algorithms. 

 It can’t solve every problem, but it is a general data-processing tool. 

Volunteer Computing 

 Volunteer computing is one in which volunteers donate CPU time from their 

idle computers to analyze data. 

 Volunteer computing projects work by breaking the problem they are trying 

to solve in to chunks called work unit. 

 Work units are sent to computers around the world to be analyzed. 

Ex: SETI (the Search for Extra -Terrestrial Intelligence) runs a project 

SETI@home in which volunteers donate CPU time from their idle computers to 

analyze radio telescope data for signs of intelligent life outside earth. In SETI@home 

work unit is about 0.35 MB of radio telescope data, and takes hours or days to 

analyze on a typical home computer. 

 

When the analysis is completed, the results are sent back to the server, and the client 

gets another work unit. 

 As a precaution to combat cheating, each work unit is sent to three different 

machines and needs at least two results to agree to be accepted. 

 SETI@home may be superficially similar to MapReduce (breaking a problem into 

independent pieces to be worked on in parallel). 

 The difference is SETI@home problem is very CPU -intensive, which makes it 

suitable for running on hundreds of thousands of computers across the world. 

 The time to transfer the work unit is very small by the time to run the 

computation on it. Volunteers are donating CPU cycles, not bandwidth. 

 MapReduce is designed to run jobs that last minutes or hours on trusted, 

dedicated hardware running in a single data center with very high aggregate 

bandwidth interconnects. 

 By contrast, SETI@home perform computation on untrusted machines on the 

Internet with highly variable connection speeds and no data locality. 
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1.7 A brief history of Hadoop 

Apache Hadoop is an open -source software framework for storage and large -scale 

processing of data -sets on clusters of commodity hardware. 

    it gives companies the capability to gather, store and analyze huge sets of data. 

Some of the characteristics:  

 Open source 

 Distributed processing 

 Distributed storage 

 Scalable 

 Reliable 

 Fault -tolerant 

 Economical 

 Flexible 

Originally built as a Infrastructure for the “Nutch” project. Based on Google’s map reduce 

and  Google File System. Created by Doug Cutting  in 2005 at Yahoo Named after his son’s 

toy yellow elephant Written in Java. 

 

 

 

Fig 4: History of Hadoop
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2002 – Nutch an open source web search engine started. This architecture wouldn’t scale to the 

billions of pages on the Web. 

2003 – Google published a paper that describes the architecture of Google’s distributed 

filesystem, called GFS, which was being used in production at Google, would solve their 

storage needs for the very large files generated as a part of the web crawl and indexing 

process. 

2004–writing an open source implementation, the Nutch Distributed Filesystem (NDFS). 

In the same year Google published the paper that introduced MapReduce to the world. 

Early 2005 - the Nutch developers had a working MapReduce implementation in Nutch, 

and by the middle of that year all the major Nutch algorithms had been ported to run using 

MapReduce and NDFS. 

2006 - Nutch to form an independent sub project of Lucene called Hadoop. At around the 

same time, Doug Cutting joined Yahoo!, which provided a dedicated team and the resources 

to turn Hadoop into a system that ran at web scale. 

2008-Yahoo! Announced that its productionsearch index was being generated by a 10,000 

-core Hadoop cluster. January 2008, Hadoop was made its own top -level project at Apache. 

April 2008 - Hadoop broke a world record to become the fastest system to sort a terabyte of data. 

Running on a 910 -node cluster, Hadoop sorted one terabyte in 209 seconds (just under 3½ 

minutes), beating the previous year’s winner of 297 seconds. 

November 2008 - Google reported that its MapReduce implementation sorted one terabyte in 68 

seconds. 

May 2009 - A team at Yahoo! used Hadoop to sort one terabyte in 62 seconds. Hadoop’s is a 

general -purpose storage and analysis platform for big data.  

Hadoop used by many companies Last.fm, Facebook and New York Times etc., Hadoop 

distributions from the large, established enterprise vendors EMC, IBM, Microsoft, and Oracle. 

Specialist Hadoop companies are Cloudera, Hortonworks and MapReduce 

 

Apache Hadoop and the Hadoop Eco System 

The term ecosystem is also used for a family of related projects that fall under the umbrella 

of infrastructure for distributed computing and largescale data processing. 

All of the core projects are hosted by the Apache Software Foundation, which provides 

support for a community of open source software projects, including the original HTTP 

Server from which it gets its name. 
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Hadoop ecosystem grows, more projects are appearing, not necessarily hosted at Apache, 

which provide complementary services to Hadoop, or build on the core to add higher -

level abstractions. 

The Hadoop projects 

1.Common 

A set  of  components and interfaces for distributed filesystems and general I/ O 

(serialization, Java RPC, persistent data structures). 

Avro A serialization system for efficient, cross -language RPC, and persistent data storage. 

2.MapReduce 

A distributed data processing model and execution environment that runs on large clusters 

of commodity machines 

3.HDFS 

A distributed filesystem that runs on large clusters of commodity machines. 

4.Pig 

A   data  flow   language and  execution environment for exploring very large 

datasets. Pig runs on HDFS and MapReduce clusters. 

  5.Hive 

A distributed data warehouse. Hive manages data stored in HDFS and provides a query 

language based on SQL (and which is translated by the runtime engine to MapReduce 

jobs) for querying the data. 

6.HBase 

A distributed, column -oriented database. HBase uses HDFS for its underlying storage, 

and supports both batch -style computations using MapReduce and point queries (random 

reads). 

7.ZooKeeper 

A distributed, highly available coordination service. ZooKeeper provides 

primitives such as distributed locks that can be used for building distributed applications. 

8.Sqoop 

A tool for efficiently moving data between relational databases and HDFS. Hadoop 

Releases 
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UNIT -I 

Assignment -Cum -Tutori al Questions 

SECTION -A 

Objective Questions 

 

1. The amount of data generated by machines will be greater than generated by people 

through [ ] 

i) Machine  logs, RFID readers iii) Sensor networks 

ii) Vehicle GPS traces iv) Retails transactions 

A) i and ii B)  ii and iii C) iii and iv D) All 

2. Which of the following is distributed data warehouse [ ] 

A) Hive B) Pig C) HBasse D) ZooKepper 

3. HDFS is [ ] 

A) Hardware Distributed File System C) Adobe Distributed File System 

B) Hardware Distributed Filter System D) Adobe Distributed Filter System 

4. Map Reduce Provides  Model [ ] 

A) Storage B) Application C) Programming D) None . 

5. Hadoop provides a reliable shared storage and analysis system                  [True/ False] 

6. Map Reduce is a  _ [ ] 

A) Batch query Processing C) Multilevel query Processing 

B) Sequential query Processing D) Interactive query Processing 

7. The difference between Map Reduce and RDBMS is_____________________. 

8. Map Reduce Works well on [ ] 

A) Unstructured data C) Structured Data 

B) Semi -Structured data D) Both A & B 
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9. Big Data is well suited for solving information challenges that don’t natively fit with 

in a traditional relational database approach for handling the 

problem at hand. [True / False] 

10. What does commodity Hardware in Hadoop Would mean [ ] 

A) Very cheap Hardware C) Industry Standard Hardware 

B) Discard Hardware D) Low Specifications Industry Grade Hardware 

11. The Type of data Hadoop can deal with is [ ] 

 

A) Structured B) Semi -Structured C) Unstructured D) None 

12. What is are true about HDFS [ ] 

A) HDFS filesystem can be mounted on a local client’s Filesystem using NFS. 

B) HDFS filesystem can never be mounted on a local client’s Filesystem. 

C) You can edit an existing record in HDFS file which is already mounted using 

NFS. 

D) You cannot append to a HDFS file which is mounted using NFS. 

13. Data locality feature in Hadoop means__________________ [ ] 

A) Collect Data Within the computed node 

B) Collect data in data node 

C) Collect data from main memory 

D) None 

14. BI(Business Intelligence) is a broad Category of Analytics__________________ Tools 

that help companies make sense of their structured and unstructured data for the 

purpose of making better business decisions. [ ] 

A) Data Mining B) Dash Boards C) Reporting D) All 

15. Which of the following are not Big Data Problems? [ ] 

A) Parsing 5MB XML file every 5 Minutes 

B) Processing IPL Tweet Sentiments 

C) Processing online bank transactions 
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D) Both A & C 
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16. Which of the following are examples of Real Time Big Data Processing? 

A) Complex Event Processing (CEP) platforms. 

B) Stock market data analysis. 

C) Bank Fraud Transactions Detection D) Both A & C. 

17. What does “Velocity” in Big Data meant [  ] 

A)Speed of input data generation 

B) Speed of individual machine processors   C)Speed 

only storing data 

D)Speed of storing and processing data 

 

18. The term Big Data first originated from [ ] 

A) Stock Markets Domain C) Genomics and Astronomy Domain 

B) Banking and finance Domain D) Social Media Domain 

19. Which of the following Batch Processing instances is NOT an Example of  Big Data 

Batch Processing [ ] 

A) Processing 10 GB sales data every 6 hours 

B) Processing flights Sensor Data. 

C) Web Crawling App. 

D) Trending topic analysis of tweets for last 15 minutes. 

20. Which of the following are the core components of Hadoop? [ ] 

A) HDFS B) Map Reduce C) HBase D) Both A & B 

    21.Match the Following. 

I)Volume  [      ]      a) different data formats 

II)Velocity  [      ]      b)rate at which data grows 

III)Variety [   ]     c)uncertainty of available data 

IV)Veracity  [     ]     d)amount of data 
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22.Match the Following. 

I) Semi structured Data   [     ]      a) images 

II) Structured Data    [     ]       b) Bigdatacse@gmail.com 

III) Unstructured Data    [     ]       c) Log Files 

  

SECTION -B 

SUBJ ECTIVE QUESTIONS 

1. Discuss the importance of Big Data? 

2. Examine the characteristics of Big Data? 

3. List the companies who use the Hadoop tool to solve the Real world problems? 

4. Distinguish Structured data, Semi-Structured and Unstructured data.  

5. Explain the Brief history of Hadoop. 

6. Illustrate volunteer computing Grid computing with map Reduce programming. 

7. Discuss  Hadoop Eco System, the projects supported by Hadoop. 

8. Elaborate the importance of Hadoop and discuss the its Framework.  

9. Justify how Bigdata analytics helps to increase the business revenue with example?  

10. Compare and contrast Hadoop with Traditional RDBMS? 

11. Describe the main components of a Hadoop. 

12. Identify the problems involved in data storage and analysis of Bigdata? 
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BIG DATA 
UNIT-2 

Objective: 

To familiarize with the Map Reduce of Big data 

Syllabus: 

 Analyzing data with UNIX tools, Analyzing data with hadoop, Java Map 

Reduce classes (new API), Data flow, Combiner functions, Running a 

distributed Map Reduce Job 

Learning Outcomes: 

At the end of the unit, students will be able to: 

1. Analyzing Map Reduce with Unix ,hadoop,java tools 

2. Explain the data flow. 
3. Develop the Map Reduce using the java. 
4.  Develop the Map Reduce in distributed Environment. 

Learning Material 

2.1 Analyzing the data with UNIX tools 
 Without using Hadoop, as this information will provide a performance 

baseline, as well as a useful means to check our results. 

 The classic tool for processing line-oriented data is awk, is a small script 

to calculate the maximum temperature for each year. 

#!/usr/bin/env bash 

for year in all/* 

do 

echo -ne `basename $year .gz`"\t" 

gunzip -c $year | \ 

awk '{ temp = substr($0, 88, 5) + 0; 

q = substr($0, 93, 1); 

if (temp !=9999 && q ~ /[01459]/ && temp > max) max = temp } 



Big Data 2 

 

IV Year – II Semester 2018-19 CSE 

END { print max }' 

Done 

 The script loops through the compressed year files, first printing the 

year, and then processing each file using awk. 

 The awk script extracts two fields from the data: the air temperature and 

the quality code.  

 The air temperature value is turned into an integer by adding 0.  

 Next, a test is applied to see if the temperature is valid (the value 9999 

signifies a missing value in the NCDC dataset) and if the quality code 

indicates that the reading is not suspect or erroneous. 

 If the reading is OK, the value is compared with the maximum value seen 

so far, which is updated if a new maximum is found.  

 The END block is executed after all the lines in the file have been 

processed, and it prints the maximum value. 

Run the program 

% ./max_temperature.sh 
1901 317 

1902 244 

1903 289 

1904 256 

1905 283 

... 

 The temperature values in the source file are scaled by a factor of 10, so 

this works out as a maximum temperature of 31.7°C for 1901  

 The complete run for the century took 42 minutes in one run on a single 

EC2 High-CPU Extra Large Instance. 

 To speed up the processing, we need to run parts of the program in 

parallel 

 There are a few problems with this,  
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 First, dividing the work into equal-size pieces isn’t always easy, the 

file size for different years varies widely, so some processes will finish much 

earlier than others. The whole run is dominated by the longest file.  

A better approach, although one that requires more work, is to split the 

input into fixed-size chunks and assign each chunk to a process. 

 Second, combining the results from independent processes may need 

further processing, the result for each year is independent of other years 

and may be combined by concatenating all the results, and sorting by year.  

If using the fixed-size chunk approach, the combination is more delicate. 

For this example, data for a particular year will typically be split into several 

chunks, each processed independently.  

 Third, you are still limited by the processing capacity of a single 
machine. If the best time you can achieve is 20 minutes with the number of 

processors you have, then that’s it. You can’t make it go faster.  

Also, some datasets grow beyond the capacity of a single machine. When we 

start using multiple machines, a whole host of other factors come into play, 

mainly falling in the category of coordination and reliability. 

2.2 Analyzing the data with Hadoop 
To take advantage of the parallel processing that Hadoop provides, we need to 

express our query as a MapReduce job. After some local, small-scale testing, 

we will be able to run it on a cluster of machines. 

Map and Reduce 
MapReduce works by breaking the processing into two phases:  

1. the map phase   

2. The reduce phase. 

 Each phase has key-value pairs as input and output, 

 The input to our map phase is the raw NCDC data, a text input format 

that gives us each line in the dataset as a text value 

 The key is the offset of the beginning of the line from the beginning of the 

file 
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 Map function: pull out the year and the air temperature, the map 

function is just a data preparation phase, setting up the data in such a 

way that the reducer function can do its work on it. 

 Reduce function finding the maximum temperature for each year. 

Input data 
Sample lines of input data 

0067011990999991950051507004...9999999N9+00001+99999999999... 

0043011990999991950051512004...9999999N9+00221+99999999999... 

0043011990999991950051518004...9999999N9-00111+99999999999... 

0043012650999991949032412004...0500001N9+01111+99999999999... 

0043012650999991949032418004...0500001N9+00781+99999999999... 

 These lines are presented to the map function as the key-value pairs: 
(0, 0067011990999991950051507004...9999999N9+00001+99999999999...) 

(106, 0043011990999991950051512004...9999999N9+00221+99999999999...) 

(212, 0043011990999991950051518004...9999999N9-00111+99999999999...) 

(318, 0043012650999991949032412004...0500001N9+01111+99999999999...) 

(424, 0043012650999991949032418004...0500001N9+00781+99999999999...) 

 The keys are the line offsets within the file, which we ignore in our map 

function. 

 The map function merely extracts the year and the air temperature 

(indicated in bold text), and emits them as its output (the temperature 

values have been interpreted as integers): 

(1950, 0) 

(1950, 22) 

(1950, −11) 

(1949, 111) 

(1949, 78) 

 The output from the map function is processed by the MapReduce 

framework before being sent to the reduce function. 

 This processing sorts and groups the key-value pairs by key. So, 

continuing the example, our reduce function sees the following input: 
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(1949, [111, 78]) 

(1950, [0, 22, −11]) 

 Each year appears with a list of all its air temperature readings. All the 

reduce function has to do now is iterate through the list and pick up the 

maximum reading: 

(1949, 111) 

(1950, 22) 

This is the final output: the maximum global temperature recorded in each 

year. 

The whole data flow is illustrated in Figure 

 
Figure: MapReduce logical data flow 

 Java MapReduce the next step is to express it in code. We need three 

things: a map function, a reduce function, and some code to run the job.  

 The map function is represented by the Mapper class, which declares an 

abstract map() method. 

Mapper for maximum temperature example 
import java.io.IOException; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.LongWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Mapper; 

public class MaxTemperatureMapper 

extends Mapper<LongWritable, Text, Text, IntWritable> { 

private static final int MISSING = 9999; 

@Override 
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public void map(LongWritable key, Text value, Context context) 

throws IOException, InterruptedException { 

String line = value.toString(); 

String year = line.substring(15, 19); 

int airTemperature; 

if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs 

airTemperature = Integer.parseInt(line.substring(88, 92)); 

} else { 

airTemperature = Integer.parseInt(line.substring(87, 92)); 

} 

String quality = line.substring(92, 93); 

if (airTemperature != MISSING && quality.matches("[01459]")) { 

context.write(new Text(year), new IntWritable(airTemperature)); 

} 

} 

} 

Reducer for maximum temperature example 
import java.io.IOException; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Reducer; 

public class MaxTemperatureReducer 

extends Reducer<Text, IntWritable, Text, IntWritable> { 

@Override 

public void reduce(Text key, Iterable<IntWritable> values, 

Context context) 

throws IOException, InterruptedException { 

int maxValue = Integer.MIN_VALUE; 

for (IntWritable value : values) { 

maxValue = Math.max(maxValue, value.get()); 
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} 

context.write(key, new IntWritable(maxValue)); 

} 

} 

 The third piece of code runs the MapReduce job  

Application to find the maximum temperature in the weather dataset 

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

public class MaxTemperature { 

public static void main(String[] args) throws Exception { 

if (args.length != 2) { 

System.err.println("Usage: MaxTemperature <input path> <output path>"); 

System.exit(-1); 

} 

Job job = new Job(); 

job.setJarByClass(MaxTemperature.class); 

job.setJobName("Max temperature"); 

FileInputFormat.addInputPath(job, new Path(args[0])); 

FileOutputFormat.setOutputPath(job, new Path(args[1])); 

job.setMapperClass(MaxTemperatureMapper.class); 

job.setReducerClass(MaxTemperatureReducer.class); 

job.setOutputKeyClass(Text.class); 

job.setOutputValueClass(IntWritable.class); 

System.exit(job.waitForCompletion(true) ? 0 : 1); 

} 

} 
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A test run 
After writing a MapReduce job 

% export HADOOP_CLASSPATH=hadoop-examples.jar 
% hadoop MaxTemperature input/ncdc/sample.txt output 
11/09/15 21:35:14 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobT 

racker, sessionId= 

11/09/15 21:35:14 WARN util.NativeCodeLoader: Unable to load native-hadoop library fo 

r your platform... using builtin-java classes where applicable 

11/09/15 21:35:14 WARN mapreduce.JobSubmitter: Use GenericOptionsParser for parsing t 

he arguments. Applications should implement Tool for the same. 

11/09/15 21:35:14 INFO input.FileInputFormat: Total input paths to process : 1 

11/09/15 21:35:14 WARN snappy.LoadSnappy: Snappy native library not loaded 

11/09/15 21:35:14 INFO mapreduce.JobSubmitter: number of splits:1 

11/09/15 21:35:15 INFO mapreduce.Job: Running job: job_local_0001 

11/09/15 21:35:15 INFO mapred.LocalJobRunner: Waiting for map tasks 

11/09/15 21:35:15 INFO mapred.LocalJobRunner: Starting task: attempt_local_0001_m_000 

000_0 

11/09/15 21:35:15 INFO mapred.Task: Using ResourceCalculatorPlugin : null 

11/09/15 21:35:15 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584) 

11/09/15 21:35:15 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100 

11/09/15 21:35:15 INFO mapred.MapTask: soft limit at 83886080 

11/09/15 21:35:15 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600 

11/09/15 21:35:15 INFO mapred.MapTask: kvstart = 26214396; length = 6553600 

11/09/15 21:35:15 INFO mapred.LocalJobRunner: 

11/09/15 21:35:15 INFO mapred.MapTask: Starting flush of map output 

11/09/15 21:35:15 INFO mapred.MapTask: Spilling map output 

11/09/15 21:35:15 INFO mapred.MapTask: bufstart = 0; bufend = 45; bufvoid = 104857600 

11/09/15 21:35:15 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 

2621438 

0(104857520); length = 17/6553600 

11/09/15 21:35:15 INFO mapred.MapTask: Finished spill 0 

11/09/15 21:35:15 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And i 

s in the process of commiting 

11/09/15 21:35:15 INFO mapred.LocalJobRunner: map 

11/09/15 21:35:15 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done. 
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11/09/15 21:35:15 INFO mapred.LocalJobRunner: Finishing task: attempt_local_0001_m_00 

0000_0 

11/09/15 21:35:15 INFO mapred.LocalJobRunner: Map task executor complete. 

11/09/15 21:35:15 INFO mapred.Task: Using ResourceCalculatorPlugin : null 

11/09/15 21:35:15 INFO mapred.Merger: Merging 1 sorted segments 

11/09/15 21:35:15 INFO mapred.Merger: Down to the last merge-pass, with 1 segments le 

ft of total size: 50 bytes 

11/09/15 21:35:15 INFO mapred.LocalJobRunner: 

11/09/15 21:35:15 WARN conf.Configuration: mapred.skip.on is deprecated. Instead, use 

mapreduce.job.skiprecords 

11/09/15 21:35:15 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And i 

s in the process of commiting 

11/09/15 21:35:15 INFO mapred.LocalJobRunner: 

11/09/15 21:35:15 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to 

commit now 

11/09/15 21:35:15 INFO output.FileOutputCommitter: Saved output of task 'attempt_loca 

l_0001_r_000000_0' to file:/Users/tom/workspace/hadoop-book/output 

11/09/15 21:35:15 INFO mapred.LocalJobRunner: reduce > reduce 

11/09/15 21:35:15 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done. 

11/09/15 21:35:16 INFO mapreduce.Job: map 100% reduce 100% 

11/09/15 21:35:16 INFO mapreduce.Job: Job job_local_0001 completed successfully 

11/09/15 21:35:16 INFO mapreduce.Job: Counters: 24 

File System Counters 

FILE: Number of bytes read=255967 

FILE: Number of bytes written=397273 

FILE: Number of read operations=0 

FILE: Number of large read operations=0 

FILE: Number of write operations=0 

Map-Reduce Framework 

Map input records=5 

Map output records=5 

Map output bytes=45 

Map output materialized bytes=61 
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Input split bytes=124 

Combine input records=0 

Combine output records=0 

Reduce input groups=2 

Reduce shuffle bytes=0 

Reduce input records=5 

Reduce output records=2 

Spilled Records=10 

Shuffled Maps =0 

Failed Shuffles=0 

Merged Map outputs=0 

GC time elapsed (ms)=10 

Total committed heap usage (bytes)=379723776 

File Input Format Counters 

Bytes Read=529 

File Output Format Counters 

Bytes Written=29 

2.3 Java MapReduce classes (new API) 
The Java MapReduce API used first released in Hadoop 0.20.0. This new API, 

sometimes referred to as “Context Objects,” was designed to make the API 

easier to evolve in the future.  

It is type-incompatible with the old, the new API is not complete in the 1.x 

(formerly 0.20) release series, so the old API is recommended for these releases, 

despite having been marked as deprecated in the early 0.20 releases. 

The differences between the two APIs: 

 The new API favors abstract classes over interfaces, since these are 

easier to evolve. 

For example, you can add a method (with a default implementation) to 

an abstract. 
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For example, the Mapper and Reducer interfaces in the old API are 

abstract classes in the new API. 

 The new API is in the org.apache.hadoop.mapreduce package (and 

subpackages). The old API can still be found in 

org.apache.hadoop.mapred. 

 The new API makes extensive use of context objects that allow the user 

code to communicate with the MapReduce system. The new Context, for 

example, essentially unifies the role of the JobConf, the OutputCollector, 

and the Reporter from the old API. 

 In both APIs, key-value record pairs are pushed to the mapper and 

reducer, but in addition, the new API allows both mappers and reducers 

to control the execution flow by overriding the run() method. For 

example, records can be processed in batches, or the execution can be 

terminated before all the records have been processed. In the old API 

this is possible for mappers by writing a MapRunnable, but no 

equivalent exists for reducers. 

 Configuration has been unified. The old API has a special JobConf object 

for job configuration, which is an extension of Hadoop’s vanilla 

Configuration object (used for configuring daemons; see “The 

Configuration API” on page 146). In the new API, this distinction is 

dropped, so job configuration is done through a Configuration. 

 Job control is performed through the Job class in the new API, rather 

than the old JobClient, which no longer exists in the new API. 

 Output files are named slightly differently: in the old API both map and 

reduce outputs are named part-nnnnn, while in the new API map 

outputs are named partm- nnnnn, and reduce outputs are named part-r-

nnnnn (where nnnnn is an integer designating the part number, starting 

from zero). 

 User-overridable methods in the new API are declared to throw 

java.lang.InterruptedException. What this means is that you can write 
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your code to be responsive to interupts so that the framework can 

gracefully cancel long-running operations if it needs to3. 

 In the new API the reduce() method passes values as a java.lang.Iterable, 

rather than a java.lang.Iterator (as the old API does). This change makes 

it easier to iterate over the values using Java’s for-each loop construct:for 

(VALUEIN value : values) { ... } 

2.4 Data Flow 
 A MapReduce job is a unit of work that the client wants to be performed: 

it consists of the input data, the MapReduce program, and configuration 

information.  

 Hadoop runs the job by dividing it into tasks, of which there are two 

types: map tasks and reduce tasks. 

 There are two types of nodes that control the job execution process: a 

jobtracker and a number of tasktrackers.  

 The jobtracker coordinates all the jobs run on the system by scheduling 

tasks to run on tasktrackers.  

 Tasktrackers run tasks and send progress reports to the jobtracker, 

which keeps a record of the overall progress of each job. If a task fails, 

the jobtracker can reschedule it on a different tasktracker. 

 Hadoop divides the input to a MapReduce job into fixed-size pieces called 

inputsplits, or just splits.  

 Hadoop creates one map task for each split, which runs the userdefined 

map function for each record in the split. 

 Having many splits means the time taken to process each split is small 

compared to the time to process the whole input. So if we are processing 

the splits in parallel, the processing is better load-balanced if the splits 

are small. 

 If splits are too small, then the overhead of managing the splits and of 

map task creation begins to dominate the total job execution time.  
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 For most jobs, a good split size tends to be the size of an HDFS block, 64 

MB by default, although this can be changed for the cluster (for all newly 

created files), or specified when each file is created. 

2.5 Combiner Functions 
 Many MapReduce jobs are limited by the bandwidth available on the 

cluster, so it pays to minimize the data transferred between map and 

reduce tasks.  

 Hadoop allows the user to specify a combiner function to be run on the 

map output—the combiner function’s output forms the input to the 

reduce function.  

 Since the combiner function is an optimization, Hadoop does not provide 

a guarantee of how many times it will call it for a particular map output 

record. 

 Calling the combiner function zero, one, or many times should produce 

the same output from the reducer. 

 The maximum temperature example, readings for the year 1950 were 

processed by two maps (because they were in different splits). Imagine 

the first map produced the output: 

(1950, 0) 

(1950, 20) 

(1950, 10) 

And the second produced: 

(1950, 25) 

(1950, 15) 

 The reduce function would be called with a list of all the values: 

(1950, [0, 20, 10, 25, 15]) 

with output: 

(1950, 25) 
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 Use a combiner function that, just like the reduce function, finds the 

maximum temperature for each map output. The reduce would then be 

called with: 

(1950, [20, 25]) 

and the reduce would produce the same output as before. More succinctly, we 

may express the function calls on the temperature values in this case as 

follows:  

max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25 

 Not all functions possess this property.4 For example, if we were 

calculating mean temperatures, then we couldn’t use the mean as our 

combiner function, since: 

mean(0, 20, 10, 25, 15) = 14 

but: mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15 

 The combiner function doesn’t replace the reduce function.  

 The reduce function is still needed to process records with the same key 

from different maps. 

 it can help cut down the amount of data shuffled between the maps and 

the reduces,and for this reason alone it is always worth considering 

whether you can use a combiner function in your MapReduce job. 

Specifying a combiner function 
In the Java MapReduce program, the combiner function is defined using the 

Reducer class, and for this application, it is the same implementation as the 

reducer function in MaxTemperatureReducer.  

The only change we need to make is to set the combiner class on the Job  

Application to find the maximum temperature, using a combiner function for 

efficiency 

public class MaxTemperatureWithCombiner { 

public static void main(String[] args) throws Exception { 

if (args.length != 2) { 

System.err.println("Usage: MaxTemperatureWithCombiner <input path> " + 
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"<output path>"); 

System.exit(-1); 

} 

Job job = new Job(); 

job.setJarByClass(MaxTemperatureWithCombiner.class); 

job.setJobName("Max temperature"); 

FileInputFormat.addInputPath(job, new Path(args[0])); 

FileOutputFormat.setOutputPath(job, new Path(args[1])); 

job.setMapperClass(MaxTemperatureMapper.class); 

job.setCombinerClass(MaxTemperatureReducer.class); 
job.setReducerClass(MaxTemperatureReducer.class); 

job.setOutputKeyClass(Text.class); 

job.setOutputValueClass(IntWritable.class); 

System.exit(job.waitForCompletion(true) ? 0 : 1); 

} } 

2.6 Running a Distributed MapReduce Job 
The same program will run, without alteration, on a full dataset.  

This is the point of MapReduce: it scales to the size of your data and the size of 

your hardware. Here’s one data point: on a 10-node EC2 cluster running High-

CPU Extra Large Instances, the program took six minutes to run. 

Practical aspects of developing a MapReduce application in Hadoop. 
Writing a program in MapReduce has a certain flow to it. You start by writing 

your map and reduce functions, ideally with unit tests to make sure they do 

what you expect. 

Then you write a driver program to run a job, which can run from your IDE 

using a small subset of the data to check that it is working.  

If it fails, then you can use your IDE’s debugger to find the source of the 

problem. With this information, you can expand your unit tests to cover this 

case and improve your mapper or reducer as appropriate to handle such input 

correctly. 
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UNIT-II 
Assignment-Cum-Tutorial Questions 

SECTION-A 

Objective Questions 

1. Mapper implementations are passed the JobConf for the job via the 

_______method.         [ ] 

A) JobConfigure.Configure  C)JobConfigurable.configureable 

B) JobConfigurable.Configure D) None 

2. Input to the _____ is the sorted output of the mappers.  [ ] 

A) Reducer B) Mapper   C)Shuffle  D) All 

3. The output of the ___ is not sorted in the Map Reduce frame work for Hadoop 

A) Mapper B) CasCader C) Scalding  D) None [ ] 

4. Which of the following phase occur simultaneously?   [ ] 

A) Shuffle and Sort    C) Shuffle and Map 

B) Reduce and Sort   D) All 

5. ____ is a programming model designed for processing large volumes of the 

data in parallel by dividing the work into a set of independent tasks. 

A) Hive  B) Map Reduce C) Pig  D) Lucene  [ ] 

6. The daemons associated with the Map Reduce phase are____________ and 

task_trackers.         [ ] 

A) Job-Tracker  B) Map-Tracker C) Reduce-Tracker D) All 

7. The Job Tracker pushes work out to available_____________ nodes in the 

cluster , striving to keep the work as close to the data as possible.[ ] 

A) Data Nodes  B) Task Tracker C) Action Nodes  D) All 

8. Input Format class calls the_____ function and computes splits for each file 

and then sends them to the job tracker.     [ ] 

A) Puts  B) Gets  C) GetSplits  D) All 

9. On a Task Tracker the map Task pass the split to the create RecordReader() 

method on InputFormat to obtain a_____ for that split.  [ ]  
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A) InputReader  B) RecordReader C) OutputReader D) None 

10. The default InputFormat is ____ which treats each value of input a new 

value and the associated key is byte offset.    [ ] 

A) TextFormat B) TextInputFormat C) InputFormat D) All 

11. ____Controls the partitioning of thekeys of the intermediate map_outputs. 

A) Collector B) Partitioner C) InputFormat D) None [ ] 

12. Output of the mapper is first written on the local disk for sorting and 

_______Process. 

13. Point out the correct statement      [ ] 

A) Data locality means movement of algorithm to the data instead of data 

algorithm. 

B) When the processing is done on the data algorithm is moved across the 

Action Nodes rather than data to the algorithm. 

C) Moving Computation is expensive than Moving Data. 

D) None. 

14. Point out the wrong statement      [ ] 

A) The map function in Hadoop MapReduce have the following general form 

map(K1,V1)->list(K2,V2) 

B) The reduce function in Hadoop MapReduce have the following general 

form:reduce(K2,list(V2))->list(K3,V3) 

C) MapReduce has a complex model of data processing: inputs and outputs 

for the map and reduce functions are key-value pairs. 

D) None. 

15. The right number of reduces seems to be    [ ] 

A) 0.90  B) 0.80  C) 0.36 D)0.95 

16. Mapper and Reducer implementations can use the ________ to report 

progress or just indicate that they are alive.    [ ] 

A) Partitioner B) OutputCollector C) Reporter  D) All 

17. _______ is a generalization of the facility provided by the MapReduce frame 

work to collect data output by the Mapper or the Reducer. [ ] 
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A) Partitioner B) OutputCollector C) Reporter  D) All 

18. _____ is the primary interface for a user to describe a MapReduce job to the 

Hadoop frame work for execution .     [ ] 

A) Map Parmeters B) JobConf  C) MemoryConf D) None 

19. The Hadoop MapReduce Frame work spawns one map task for each ____ 

generated by the InputFormat for the job.    [ ] 

A) OutputSplit  B) InputSplit C) inputSplitStream D) All 

20. The right level of parallelism for maps seems to be around _____________ 

maps per-node.        [ ] 

A) 1-10  B) 10-10  C) 100-15  D) 150-200 

SECTION-B 

SUBJECTIVE QUESTIONS 

 

1. Write about analyzing data with unix tools? 

2. Explain about analyzing data with Hadoop? 

3. Outline about the Java Map Reduce? 

4. Explain MapReduce Logical Data Flow? 

5. Discuss about Job Tracker? 

6. Write about Task Tracker? 

7. What is a combiner function? Explain 

8. Discuss about running a Distributed Map Reduce Job? 

9. List out the problems in analyzing data with unix tools? 

10. Illustrate the Map Reduce Works. 

11. Explain how the data can be analyzed by using Hadoop 

12. Write a program for Map Reduce using JAVA. 

13. Draw the Map Reduce Data Flow with a Single Reduce Task. 

14. Draw the Map Reduce Data Flow with a Multiple Reduce Tasks. 

15. Draw the Map Reduce Data Flow with a No Reduce Tasks. 

16. Design a Application to find the maximum temperature using a combiner 

function for efficiency. 
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17. Write the steps to Map function for maximum temperature in Ruby. 

18. Write the steps to Reduce function for maximum temperature in Ruby. 

19. Write the steps to Map function for maximum temperature in Python. 

20. Write the steps to Reduce function for maximum temperature in Python. 
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UNIT-III 
 

Hadoop Distributed File System 
 

Objective:To familiarize with the fundamental concepts of Hadoop  Distributed 

File system. 
 

Syllabus: 
 

Hadoop Distributed File System 
 

HDFS concepts, Command line interface to HDFS, Hadoop File systems, 

Interfaces, Java Interface to 
 

Hadoop, Anatomy of a file read, Anatomy of a file write, Replica placement and 

Coherency Model, 
 

Parallel copying with distcp, Keeping an HDFS cluster balanced. 
 

Learning Outcomes: 
 
     At the end of the unit, students will be able to: 
 

1. Understand the fundamental concepts of HDFS 
 

2. Describe Hadoop interfaces, read, write and replica placement of Hadoop. 
 

Learning Material 
 

Introduction 
 

• Distributed Filesystem: Filesystems that manage the storage across a 

network of machines are called distributed filesystems. 
 

• Challenge : making the filesystem tolerate node failure without suffering 

data loss. 
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• Hadoop comes with a distributed filesystem called HDFS, which stands 

for Hadoop Distributed Filesystem 
 

The Design of HDFS 
 

HDFS is a filesystem designed for storing very large files with 

streaming data access patterns, running on clusters of commodity 
hardware. 
 

Very large files 
 

“Very large” in this context means files that are hundreds of megabytes, 

gigabytes, or terabytes in size. 

 

There are Hadoop clusters running today that store petabytes of data. 

 

Streaming data access 
 

• HDFS is built around the idea that the most efficient data processing 

pattern is a write-once, read-many-times pattern. 

 

• A dataset is typically generated or copied from source, then various 

analyses are performed on that dataset over time. 

 

• Each analysis will involve a large proportion, the time to read the whole 

dataset is more important than the latency in reading the first record. 
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Commodity hardware 
 

• Hadoop doesn’t require eJxpensive, highly reliable hardware to run on. 

It’s designed to run on clusters of commodity hardware (commonly 

available hardware available from multiple vendors). 

 

• The chance of node failure across the cluster is high. 

 

• HDFS is designed to carry on working without a noticeable interruption 

to the user in the face of such failure. 

 

HDFS does not work well for some areas 
 

Low-latency data access 
 

Applications that require low-latency access to data, in the tens of 

milliseconds range, will not work well with HDFS because HDFS is optimized 

for delivering a high throughput of data 

 

Lots of small files 
 

The namenode holds filesystem metadata in memory, the limit to the 

number of files in a filesystem is governed by the amount of memory on the 

namenode each file, directory, and block takes about 150 bytes. 

 

Ex: if you had one million files, each taking one block, you would need at least 

300 MB of memory. 
 

file modifications 
Files in HDFS may be written to by a single writer. Writes are always made at 

the end of the file. There is no support for multiple writers, or for modifications 

at arbitrary offsets in the file. 
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3.1 HDFS Concepts 
 

-Blocks 
 

- Namenodes and 

DataNodes -HDFS 

fedaration 

- HDFS High-Availability. 
 

Blocks 
 

• A disk has a block size, which is the minimum amount of data that 

it can read or write. 

 

• Disk blocks are 512 bytes. FileSystem block size is 64MB. HDFS 

blocks are large compared to disk blocks, and the reason is to 

minimize the cost of seeks. 

 

• Files in HDFS are broken into block-sized chunks, which are 

stored as independent units. 

 

• Map tasks in Map Reduce normally operate on one block at a time. 
 

Distributed file system having block abstraction 
 

Benefits are : 

 

1) A file can be larger than any single disk in the network. 
 

It doesn’t requires the blocks from a file to be stored on the same disk, so 

they can take advantage of any of the disks in the cluster. 

 

It would be possible, to store a single file on an HDFS cluster whose 

blocks filled all the disks in the cluster. 
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2) Making the unit of abstraction a block rather than a file simplifies the 

storage subsystem, storage management(easy to calculate how many can 

be stored in a single disk), and eliminate metadata (permissions need not 

store in block) 

 

3) Blocks with replication providing fault tolerance and availability. Each 

block is replicated to a small number of physically separate 

machines(three). 

 

4) If the block is not available, copy of the block is read from another 

location. 

 

5) If the block is corrupted due to machine failure can be replicated to other 

live machines. 

 

6) Command to list the bolcks is $hadoop fsck / -files –blocks. 
 

Namenodes and DataNodes 
 

• An HDFS cluster has two types of nodes operating in a master-worker 

pattern: 
 

1) Namenode (the master) 
2)   A number of datanodes (workers). 

 

Namenode tasks 
 

• Manages the filesystem namespace. 

 

• Maintains the filesystem tree and the metadata for all the files and 

directories in the tree. 
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• This information is stored persistently on the local disk in the form of two 

files: the namespace image and the edit log. 

 

• The namenode also knows the datanodes on which all the blocks for a 

given file are located, however, it does not store block locations 

persistently, since this information is reconstructed from datanodes 

when the system starts. 

 

• A client accesses the filesystem on behalf of the user by communicating 

with the namenode and datanodes. 

 

• The user code does not need to know about the namenode and datanode 

to function. 

 

Datanode tasks 
 

• Datanodes are the workhorses of the filesystem. 

 

• DNs store and retrieve blocks when they are told to (by clients or the 

namenode) 

 

• Periodically report to the namenode with lists of blocks that they are 

storing. 

 

Handling of Namenode failure 
 

• Without the namenode, the filesystem cannot be used. If the machine 

running the namenode is failed, all the files on the filesystem would be 

lost. 

• It is important to make the namenode resilient to failure, Hadoop 

provides two mechanisms for this. 
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1. Back up the files that make up the persistent state of the filesystem 

metadata. Hadoop can be configured that the namenode writes its 

persistent state to multiple filesystems i.e write to local disk as well as a 

remote NFS. These writes are synchronous and atomic. 

 

2. Run a secondary namenode, it doesnot act as a namenode. Main role is 

to periodically merge the namespace image with the edit log to prevent 

the edit log from becoming too large 

 
� The secondary namenode runs on a separate physical machine, because 

it requires plenty of CPU and as much memory as the namenode to 

perform the merge. 

 

� It keeps a copy of the merged namespace image, which can be used in 

the event of the namenode failing. 

 

� The state of the secondary namenode lags that of the primary, In the 

event of total failure of the primary, data loss is almost certain. 

 

� It copy the namenode’s metadata files that are on NFS to the secondary 

and run it as the new primary. 

 

HDFS Federation 
 

• The namenode keeps a reference to every file and block in the filesystem 

in memory, on very large clusters with many files, memory becomes the 

limiting factor for scaling. 

 

• HDFS Federation, introduced in the 0.23 release series, allows a cluster 

to scale by adding namenodes, each of which manages a portion of the 

filesystem namespace. 
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Ex : one namenode might manage all the files rooted under /user, 

and a second namenode might handle files under /share 

 

• Each namenode manages a namespace volume, which is made up of 

the metadata for the namespace, and a block pool containing all the 

blocks for the files in the namespace. 
 

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
hdfs/Federation.html 
 

• Namespace volumes are independent of each other, namenodes do not 

communicate with one another, and the failure of one namenode does 

not affect the availability of the namespaces managed by other 

namenodes. 
 

HDFS High-Availability 
 

� The combination of replicating namenode metadata on multiple 

filesystems, and using the secondary nJamenode to create checkpoints 

protects against data loss, but does not provide high-availability of the 

filesystem. 

 

� The namenode is still a single point of failure (SPOF), since if it did fail, all 

clients—including MapReduce jobs—would be unable to read, write, or 

list files, because the namenode is the sole repository of the metadata 

and the file-to-block mapping. 

 
� To recover from a failed 

namenode the filesystem 

metadata replicas, 

namenode. 

 

administrator starts a new primary 

namenode with one of and configures 

datanodes and clients to use this new 



Big Data 9 

 

IV Year – II Semester 2018-19  CSE    

 

 
� The new namenode is not able to serve requests until it has 

 

i) loaded its namespace image into memory, 

ii) replayed its edit log, and 

iii) received enough block reports from the datanodes to leave 

safe mode. 

 
� On large clusters with many files and blocks, the time it takes for a 

namenode to start from cold can be 30 minutes or more. 

 

The long recovery time is a problem for routine maintenance too. 
 

� The 0.23 release series of Hadoop remedies this situation by adding 

support for HDFS high-availability (HA). 

 

� In this implementation there is a pair of namenodes in an active stand by 

configuration. In the event of the failure of the active namenode, the 

standby takes over its duties to continue servicing client requests 

without a significant interruption. 
 

� A few architectural changes are needed to allow this to happen: 

 

• The namenodes must use highly-available shared storage to share 

the edit log 

 

• Datanodes must send block reports to both namenodes since 

the block mappings are stored in a namenode’s memory, and 

not on disk. 
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• Clients must be configured to handle namenode failover, which 

uses a mechanism that is transparent to users. 

 
� If the active namenode fails, then the standby can take over very quickly 

(in a few tens of seconds) . 

 

� it has the latest state available in memory: both the latest edit log 

entries, and an up-to-date block mapping. 
 

3.2 The Command-Line Interface 
 

• There are many other interfaces to HDFS, but the command line is one of 

the simplest and the most familiar. 

 

• There are two properties that we set in the pseudo-distributed 

configuration 

 

1. The first is fs.default.name, set to hdfs://localhost/, which is used to 

set a default filesystem for HadoopThe HDFS daemons will use this 

property to determine the host and port for the HDFS namenode. 

 

We’ll be running it on localhost, on the default HDFS port, 8020. 

 

 

2. Set the second property, dfs.replication, to 1 so that HDFS doesn’t 

blocks by the default factor of three.  

replicat 

Basic Filesystem Operations 
 

Filesystem operations such as reading files, creating directories, moving files, 

deleting data, and listing directories. 

Type hadoop fs -help to get detailed help on every command. 



Big Data 11 

 

IV Year – II Semester 2018-19  CSE    

 

 

 

 

 

 

 

1. copying a file from the local filesystem to HDFS: 

Ex: %  

hadoop fs -copyFromLocal input/docs/quangle.txt user/tom/quangle.txt 
2 create a directory then see how it is displayed in the listing: 

% hadoop fs -mkdir books 
% hadoop fs -ls . 
Found 2 items 

drwxr-xr-x - tom supergroup 0 2009-04-02 22:41 /user/tom/books 

-rw-r--r-- 1 tom supergroup 118 2009-04-02 22:29 

/user/tom/quangle.txt 

3.3 Hadoop Filesystems 
1. Hadoop has an abstract notion of filesystem, of which HDFS is just one 

implementation. 

2. The Java abstract class org.apache.hadoop.fs.FileSystem represents a 

filesystem in Hadoop, and there are several concrete implementations 
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Hadoop provides many interfaces to its filesystems, and it generally uses the 

URI(uniform resource identifier) scheme to pick the correct filesystem instance 

to communicate with. 

3.4 Interfaces 
 

• Hadoop is written in Java, and all Hadoop filesystem interactions are 

mediated through the Java API. 

 

• The filesystem shell, for example, is a Java application that uses the Java 

FileSystem class to provide filesystem operations. 

 

The other filesystem interfaces are FTP clients for FTP, S3 tools for S3, etc.), 

but many of them will work with any Hadoop filesystem. 

HTTP 
There are two ways of accessing HDFS over HTTP: 

 

1. directly, where the HDFS daemons serve HTTP requests to clients; 

 

2. via a proxy (or proxies), which accesses HDFS on the client’s behalf 

using the usual DistributedFileSystem API 
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C 
 

• Hadoop provides a C library called libhdfs that mirrors the Java 

FileSystem interface 

 

• It works using the Java Native Interface (JNI) to call a Java filesystem 

client. 

 

• The C API is very similar to the Java one, but it typically lags the Java 

one, so newer features may not be supported. 

 

• Documentation for the C API in the libhdfs/docs/api directory of the 

Hadoop distribution. 

 

• Hadoop comes with prebuilt libhdfs binaries for 32-bit Linux, but for 

other platforms, build them using the instructions at 

http://wiki.apache.org/hadoop/LibHDFS. 

 

FUSE 
 

• Filesystem in Userspace (FUSE) allows filesystems that are 

implemented in user space to be integrated as a Unix filesystem. 

 

• Hadoop’s Fuse-DFS contrib module allows any Hadoop filesystem (but 

typically HDFS) to be mounted as a standard filesystem. 

 

• Use Unix utilities (such as ls and cat) to interact with the filesystem, as 

well as POSIX libraries to access the filesystem from any programming 

language. 

 

• Fuse-DFS is implemented in C using libhdfs as the interface to HDFS. 
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• Documentation for compiling and running Fuse-DFS is located in the 

src/contrib/fuse-dfs directory of the Hadoop distribution 

3.5 The Java Interface TO Hadoop 
Hadoop’s FileSystem class: the API for interacting with one of Hadoop’s 

filesystems. 

• Write the code against the FileSystem abstract class, to 

retain portability across filesystems. 

Reading Data from a Hadoop URL 
To read a file from a Hadoop filesystem is by using a java.net.URL object to 

open a stream to read the data from. 

 

https://kannandreams.wordpress.com/2013/11/14/what-is-uri-and-

difference-between-uriurl-and-urn/ 

 

InputStream in = null; 
try { 
in = new URL("hdfs://host/path").openStream(); 

 

// process in } 
finally { 
IOUtils.closeStre
am(in); 

 
} 
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• To make Java recognize Hadoop’s hdfs URL scheme by calling the 

setURLStreamHandlerFactory method on URL with an instance of 

FsUrlStreamHandlerFactory. 

 

• This method can only be called once per JVM, so it is typically executed in a 

static block. 

 

Ex: Displaying files from a Hadoop filesystem on standard output using a 

URLStreamHandler 

 

public class URLCat { 
static { 

 

URL.setURLStreamHandlerFactory(new 
FsUrlStreamHandlerFactory()); } 

 

public static void main(String[] args) throws Exception { 
InputStream in = null; 
try { 

 

in = new URL(args[0]).openStream(); 
IOUtils.copyBytes(in, System.out, 4096, false); 

 

} finally { 
IOUtils.closeStre
am(in); 
}}} 

• IOUtils class that comes with Hadoop for closing the stream in the finally 

clause, 

 



Big Data 16 

 

IV Year – II Semester 2018-19  CSE    

• copying bytes between the input stream and the output stream (System.out 

in this case). 

 

• The last two arguments to the copyBytes method are the buffer size used for 

copying and whether to close the streams when the copy is complete. 

 

Syntax : 

 

copyBytes(InputStream in, OutputStream out, int buffSize, boolean close) 

 
Copies from one stream to another. 

 
• close the input stream ourselves, and System.out doesn’t need to be closed. 

sample run: 
% hadoop URLCat 
hdfs://localhost/user/tom/quangle.txt 
On the top of the Crumpetty Tree 

 
The Quangle Wangle sat, 

 
But his face you could 

not see, On account of 

his Beaver Hat. 

Reading Data Using the FileSystem API 
• Sometimes it is impossible to set a URLStreamHandlerFactory for the 

application. In this case, use the FileSystem API to open an input stream for 

a file. 

 

• A file in a Hadoop filesystem is represented by a Hadoop Path object (and 

not a java.io.File object, since its semantics are too closely tied to the local 

filesystem). 
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Ex: Path as a Hadoop filesystem URI is, 

 

hdfs://localhost/user/tom/quangle.txt. 
 

• FileSystem is a general filesystem API, so the first step is to retrieve an 
instance for the filesystem we want to use—HDFS in this case. 

 

• There are several static factory methods for getting a FileSystem instance: 

 

public static FileSystem get(Configuration conf) throws IOException 
public static FileSystem get(URI uri, Configuration conf) throws 
IOException 

 

• A Configuration object encapsulates a client or server’s configuration, which 

is set using configuration files read from the classpath conf/core-site.xml. 
 

• The first method returns the default filesystem (as specified in the file 

conf/core-site.xml, or the default local filesystem if not specified there) 

 

• The second uses the given URI’s scheme and authority to determine the 

filesystem to use, falling back to the default filesystem if no scheme is 

specified in the given URI. 

 

• In some cases, to retrieve a local filesystem instance, use the 

convenience method, getLocal(): public static LocalFileSystem 
getLocal(Configuration conf) throws IOException 

 

• With a FileSystem instance invoke an open() method to get the input stream 

for a file: 

 

public FSDataInputStream open(Path f) throws IOException 



Big Data 18 

 

IV Year – II Semester 2018-19  CSE    

public abstract FSDataInputStream open(Path f, int bufferSize) 
throws IOException 

 

The first method uses a default buffer size of 4 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSDataInputStream 
 

• The open() method on FileSystem actually returns a FSDataInputStream 

rather than a standard java.io class. 

 

• This class is a specialization of java.io.DataInputStream with support for 

random access, so you can read from any part of the stream: 

 

package org.apache.hadoop.fs; 
 

public class FSDataInputStream extends 
DataInputStream implements Seekable, 
PositionedReadable { 
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// implementation elided 
} 

 
• The Seekable interface permits seeking to a position in the file and a query 

method for the current offset from the start of the file (getPos()): 

 

public interface Seekable { 
void seek(long pos) throws IOException; 
long getPos() throws IOException; 
} 

 

• Calling seek() with a position that is greater than the length of the file will 

result in an IOException 

 

A simple extension of previous example that writes a file to standard out twice: 

after writing it once, it seeks to the start of the file and streams through it once 

again. 

 

Ex: Displaying files from a Hadoop filesystem on standard output twice, 
by using seek 
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• FSDataInputStream also implements the PositionedReadable interface for 

reading parts of a file at a given offset: 

 

public interface PositionedReadable { 
public int read(long position, byte[] buffer, int offset, int length) 
throws IOException; 
public void readFully(long position, byte[] buffer, int offset, int 
length) 
throws IOException; 

 

public void readFully(long position, byte[] buffer) 
throws IOException; } 

 

• The read() method reads up to length bytes from the given position in the file 

into the buffer at the given offset in the buffer. 

 

• The return value is the number of bytes actually read 

 

• The readFully() methods will read length bytes into the buffer unless the end 

of the file is reached, in which case an EOFException is thrown. 

 

Writing Data 
 

• The FileSystem class has a number of methods for creating a file. The 

simplest is the method that takes a Path object for the file to be created and 

returns an output stream to write to: 

 

public FSDataOutputStream create(Path f) throws IOException 
 

• There are overloaded versions of this method that allow you to specify 

whether to forcibly overwrite existing files, the replication factor of the file, 
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the buffer size to use when writing the file, the block size for the file, and file 

permissions. 

 

• create() methods create any parent directories of the file to be written that 

don’t already exist. 

 

• exists() method check for the existence of the parent directory. 

 

• Progressable() is an overloaded method for passing a callback interface, 

application can be notified of the progress of the data being written to the 

Datanodes: 

 

package org.apache.hadoop.util; 
public interface Progressable { 
public void progress(); 

 

} 
 

• append() method is an alternative to creating a new file. It allows a single 

writer to modify an already written file by opening it. 

 

public FSDataOutputStream append(Path f) throws IOException 
 

Below Example shows how to copy a local file to a Hadoop filesystem. We 

illustrate progress by printing a period every time the progress() method is 

called by Hadoop, which is after each 64 K packet of data is written to the 

datanode pipeline. 
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public class FileCopyWithProgress { 
 

public static void main(String[] args) throws Exception { 
String localSrc = args[0]; 
String dst = args[1]; 

 

InputStream in = new BufferedInputStream(new 
FileInputStream(localSrc)); Configuration conf = new 
Configuration(); 

 

FileSystem fs = FileSystem.get(URI.create(dst), conf); 
OutputStream out = fs.create(new Path(dst), new Progressable() { 
public void progress() { 
System.out.print("."); 
} 
}); 
IOUtils.copyBytes(in, out, 4096, true); }} 

 

% hadoop FileCopyWithProgress input/docs/1400-8.txt 
hdfs://localhost/user/tom/1400-8.txt 

............... 

 

FSDataOutputStream 
 

The create() method on FileSystem returns an FSDataOutputStream, has a 

method for querying the current position in the file: 

 

package org.apache.hadoop.fs; 
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public class FSDataOutputStream extends DataOutputStream 
implements Syncable { public long getPos() throws 
IOException { 

 

// implementation elided 
} 
// implementation elided 
} 

 

FSDataInputStream, FSDataOutputStream permit seeking by using getPos() 

method, but HDFS does not support for writing to anywhere other than the end 

of the file, so there is no value in being able to seek while writing. 

 

Directories 
 

FileSystem provides a method to create a directory: 

 

public boolean mkdirs(Path f) throws IOException 
 

• This method creates all of the necessary parent directories if they don’t 

already exist,just like the java.io.File’s mkdirs() method. 

 

• It returns true if the directory (and all parent directories) was (were) 

successfully created. 

 

• No need to explicitly create a directory, since writing a file, by calling 

create(), will automatically create any parent directories. 
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Querying the Filesystem 
 

File metadata: FileStatus 
 

• An important feature of any filesystem is the ability to navigate its directory 

structure and retrieve information about the files and directories that it 

stores. 

 

• FileStatus class encapsulates filesystem metadata for files and directories, 

including file length, block size, replication, modification time, ownership, 

and permission information. 

 

getFileStatus(): 
 

This method is used for getting a FileStatus object for a single file or 

directory. 

 

Demonstrating file status information 
 

public class ShowFileStatusTest { 
private MiniDFSCluster cluster; // use an in-process HDFS cluster 
for testing private 
FileSystem fs; 
@Before 
public void setUp() throws IOException { 
Configuration conf = new Configuration(); 
if (System.getProperty("test.build.data") == null) { 
System.setProperty("test.build.data", "/tmp"); 
} 
cluster = new MiniDFSCluster(conf, 1, true, null); 

 

fs = cluster.getFileSystem(); 
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OutputStream out = fs.create(new Path("/dir/file")); 
out.write("content".getBytes("UTF-8")); 
out.close(); 
} 
@After 
public void tearDown() throws IOException { 
if (fs != null) { fs.close(); } 
if (cluster != null) { cluster.shutdown(); } 
} 
@Test(expected = FileNotFoundException.class) 

 

public void throwsFileNotFoundForNonExistentFile() 
throws IOException { fs.getFileStatus(new Path("no-
such-file")); } 

 

@Test 
public void fileStatusForFile() throws IOException { 

 

Path file = new Path("/dir/file"); 
FileStatus stat = fs.getFileStatus(file); 
assertThat(stat.getPath().toUri().getPath(), 
is("/dir/file")); assertThat(stat.isDir(), 
is(false)); assertThat(stat.getLen(), is(7L)); 
assertThat(stat.getModificationTime(), 
is(lessThanOrEqualTo(System.currentTim
eMillis()))); 



Big Data 26 

 

IV Year – II Semester 2018-19  CSE    

assertThat(stat.getReplication(), is((short) 
1)); assertThat(stat.getBlockSize(), is(64 * 
1024 * 1024L)); 
assertThat(stat.getOwner(), is("tom")); 
assertThat(stat.getGroup(), 
is("supergroup")); 
assertThat(stat.getPermission().toString()
, is("rw-r--r--")); } 

 

@Test 
 

public void fileStatusForDirectory() 
throws IOException { Path dir = new 
Path("/dir"); 

 

FileStatus stat = fs.getFileStatus(dir); 
assertThat(stat.getPath().toUri().getPath(), 
is("/dir")); assertThat(stat.isDir(), is(true)); 
assertThat(stat.getLen(), is(0L)); 
assertThat(stat.getModificationTime(), 
is(lessThanOrEqualTo(System.currentTim
eMillis()))); 
assertThat(stat.getReplication(), is((short) 
0)); assertThat(stat.getBlockSize(), is(0L)); 
assertThat(stat.getOwner(), is("tom")); 
assertThat(stat.getGroup(), 
is("supergroup")); 
assertThat(stat.getPermission().toString(), 
is("rwxr-xr-x")); } 

 

} 
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If no file or directory exists, a FileNotFoundException is thrown, to check the 

existence of a file or directory, then use exists() method. 

 

public boolean exists(Path f) throws IOException 
 

Listing files 
 

FileSystem’s listStatus() methods used for finding information on a single file or 

directory. 

 

public FileStatus[] listStatus(Path f) throws IOException 
 

public FileStatus[] listStatus(Path f, PathFilter 
filter) throws IOException public FileStatus[] 
listStatus(Path[] files) throws IOException 

 

public FileStatus[] listStatus(Path[] files, PathFilter filter) throws 
IOException 

 

If the argument is a file, it returns an array of FileStatus objects of length 1. 

 

If the argument is a directory, it returns zero or more FileStatus objects 

representing the files and directories contained in the directory. 

 

PathFilter used to restrict the files and directories to match. This is useful for 

building up lists of input files to process from distinct parts of the filesystem 

tree. i.e which allows programmatic control over matching. 

 

Showing the file statuses for a collection of paths in a Hadoop filesystem 
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public class ListStatus { 
 

public static void main(String[] args) throws Exception { 
 
String uri = args[0]; 

 

Configuration conf = new 
Configuration(); FileSystem fs = 
FileSystem.get(URI.create(uri), conf); 
Path[] paths = new Path[args.length]; 
for (int i = 0; i < paths.length; i++) { 

 

paths[i] = new Path(args[i]); 
} 
FileStatus[] status = fs.listStatus(paths); 
Path[] listedPaths = FileUtil.stat2Paths(status); 
for (Path p : listedPaths) { 
System.out.println(p); 
}}} 

 

This program is used to find the union of directory listings for a collection of 

paths: 

 

% hadoop ListStatus hdfs://localhost/ 
hdfs://localhost/user/tom 
hdfs://localhost/user 
hdfs://localhost/user/tom/books 

hdfs://localhost/user/tom/quangle.txt 
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File patterns 
 

• To process sets of files in a single operation.Ex:MapReduce job for log 

processing might analyze a month’s worth of files contained in a number of 

directories. 

 

• use wildcard characters to match multiple files with a single expression, 

rather than to enumerate each file and directory to specify the input. This 

operation is known as globbing. 

 

• Hadoop provides two FileSystem method for processing globs: 

 

public FileStatus[] globStatus(Path pathPattern) throws IOException 
public FileStatus[] globStatus(Path pathPattern, PathFilter filter) 
throws IOException 

 

• The globStatus() method returns an array of FileStatus objects whose paths 

matchthe supplied pattern, sorted by path. 

 

• An optional PathFilter can be specified to restrict the matches further. 

 

Hadoop supports the same set of glob characters as Unix bash 
Glob characters and their meanings 
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Ex: logfiles are stored in a directory structure organized hierarchically by date 

here the last day of 2007 would go in a directory named /2007/12/31. 

 

Suppose that the full file listing is: 

 

/2007/12/30 

/2007/12/31 

/2008/01/01 

/2008/01/02 

 

Glob Expansion for the above files 

 

/* /2007 /2008 

/*/* /2007/12 /2008/01 

/*/12/* /2007/12/30 /2007/12/31 

 

/200? /2007 /2008 

/200[78] /2007 /2008 

/200[7-8] /2007 /2008 

/200[^01234569] /2007 /2008 

/*/*/{31,01} /2007/12/31 /2008/01/01 

/*/*/3{0,1} /2007/12/30 /2007/12/31 

/*/{12/31,01/01} /2007/12/31 /2008/01/01 

Deleting Data 
delete() method on FileSystem used to permanently remove files or directories: 

public boolean delete(Path f, boolean recursive) throws IOException 
• If f is a file or an empty directory, then the value of recursive is ignored 

 

• if recursive is true a nonempty directory is deleted, along with its contents. 

otherwise an IOException is thrown 
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Data Flow 
 

3.6 Anatomy of a File Read 
 

When reading a file how data flows between the client interacting with 

HDFS, the namenode and the datanodes, consider Figure which shows the 

main sequence of events 

 

 

 

 

 

 

 

 
 

A client reading data from HDFS 
 

Step 1 : The client opens the file to be read by calling open() on the FileSystem 

object, which for HDFS is an instance of DistributedFileSystem . 

 

Step 2 : DistributedFileSystem calls the namenode, using RPC, to determine 

the locations of the blocks for the first few blocks in the file 

 
� For each block, the namenode returns the addresses of the datanodes 

that have a copy of that block. 

 

� The datanodes are sorted according to their proximity to the client. 

 

� If the client is itself a datanode then it will read from the datanode, if it 

hosts a copy of the block. 
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� The DistributedFileSystem returns an FSDataInputStream (an input 

stream that supports file seeks) to the client for it to read data from. 

 

� FSDataInputStream in turn wraps a DFSInputStream, which manages 

the datanode and namenode I/O. 

 

Step 3 : The client then calls read() on the stream. 

 
� DFSInputStream, which has stored the datanode addresses for the 

first few blocks in the file, then connects to the first (closest) datanode 

for the first block in the file. 

 

Step 4 : Data is streamed from the datanode back to the client, which calls 

read() repeatedly on the stream. 

 

Step 5 : When the end of the block is reached, DFSInputStream will close the 

connection to the datanode, then find the best datanode for the next block. 

 
� This is transparent to the client, which from its point of view is just 

reading a continuous stream. 

 

 

� Blocks are read in order with the DFSInputStream opening 

new connections to datanodes as the client reads through 

the stream. 

 

� It will also call the namenode to retrieve the datanode locations 

for the next batch of blocks as needed. 

 

Step 6 : When the client has finished reading, it calls close() on the 

FSDataInputStream. 
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� During reading, if the DFSInputStream encounters an error while 

communicating with a datanode, then it will try the next closest 

one for that block . 

 

� The DFSInputStream also verifies checksums for the data 

transferred to it from the datanode. 

 

� If a corrupted block is found, it is reported to the namenode before 

the DFSInput Stream attempts to read a replica of the block from 

another datanode. 

 

� Important aspect of this design is that the client contacts 

datanodes directly to retrieve data and is guided by the namenode 

to the best datanode for each block. 

 

� This design allows HDFS to scale to a large number of concurrent 

clients, since the data traffic is spread across all the datanodes in 

the cluster. 

 

� The namenode has to service block location requests (which it 

stores in memory, making them very efficient) and does not, for 

example, serve data, which would quickly become a bottleneck as 

the number of clients grew. 

 

Network Topology and Hadoop 
 

What does it mean for two nodes in a local network to be “close” to each other? 

 

In the context of high-volume data processing, the limiting factor is the rate at 

which we can transfer data between nodes—bandwidth is a scarce commodity. 

 

The idea is to use the bandwidth between two nodes as a measure of distance. 
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Rather than measuring bandwidth between nodes, which can be difficult to do 

in practice Hadoop takes a simple approach in which the network is 

represented as a tree and the distance between two nodes is the sum of their 

distances to their closest common ancestor bandwidth available for each of the 

following scenarios becomes progressively less: 

• Processes on the same node 

• Different nodes on the same rack 

• Nodes on different racks in the same data center 

• Nodes in different data centers7 

For example, imagine a node n1 on rack r1 in data center d1. This can be 

represented as /d1/r1/n1. 

Using this notation, here are the distances for the four scenarios: 

 

• distance(/d1/r1/n1, /d1/r1/n1) = 0 (processes on the same node) 

• distance(/d1/r1/n1, /d1/r1/n2) = 2 (different nodes on the same rack) 

• distance(/d1/r1/n1, /d1/r2/n3) = 4 (nodes on different racks in the 

same data center) 

• distance(/d1/r1/n1, /d2/r3/n4) = 6 (nodes in different data centers) 

 

 

 

 

 

 

 

 

 

 

Network distance in Hadoop 
 

3.7 Anatomy of a File Write 
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How files are written to HDFS. To understand the data flow since it clarifies 

HDFS’s coherency model, creating a new file, writing data to it. 

 

Step 1 : The client creates the file by calling create() on DistributedFileSystem. 

 

Step 2 : DistributedFileSystem makes an RPC call to the namenode 

to create a new file in the filesystem’s namespace, with no blocks 

associated with it. 

 
� The namenode performs various checks to make sure the file 

doesn’t already exist, and that the client has the right permissions 

to create the file. 

 

� If these checks pass, the namenode makes a record of the new file; 

 

� otherwise, file creation fails and the client is thrown an 

IOException. 

 

� The DistributedFileSystem returns an FSDataOutputStream for 

the client to start writing data to. Just as in the read case, 

FSDataOutputStream wraps a DFSOutput Stream, which handles 

communication with the datanodes and namenode. 

 

Step 3 : Client writes data DFSOutputStream splits it into packets, which it 

writes to an internal queue, called the data queue. 

 
� The data queue is consumed by the Data Streamer, whose 

responsibility it is to ask the namenode to allocate new blocks by 

picking a list of suitable datanodes to store the replicas. 
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� The list of datanodes forms a pipeline—we’ll assume the 

replication level is three, so there are three nodes in the 

pipeline. 

 

� The DataStreamer streams the packets to the first datanode 

in the pipeline, which stores the packet and forwards it to the 

second datanode in the pipeline. 

 

Step 4 : The second datanode stores the packet and forwards it to the third 

(and last) datanode in the pipeline. 

 
� DFSOutputStream also maintains an internal queue of packets 

that are waiting to be acknowledged by datanodes, called the 

ack queue. 

 

Step 5 : A packet is removed from the ack queue only when it has been 

acknowledged by all the datanodes in the pipeline . 

 

client writing data to HDFS 
 

If a datanode fails while data is being written to it, then the following 

actions are taken, which are transparent to the client writing the data. 

 
� First the pipeline is closed, and any packets in the ack queue are 

added to the front of the data queue so that datanodes that are 

downstream from the failed node will not miss any packets. 

 

� The current block on the good datanodes is given a new identity, 

which is communicated to the namenode, so that the partial block 

on the failed datanode will be deleted if the failed datanode 

recovers later on. 
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� The failed datanode is removed from the pipeline and the 

remainder of the block’s data is written to the two good datanodes 

in the pipeline. 

 

� The namenode notices that the block is under-replicated, and it 

arranges for a further replica to be created on another node. 

Subsequent blocks are then treated as normal. 

 

Step 6 : When the client has finished writing data, it calls close() on the 

stream. 

 

3.8 Replica Placement 
 

This strategy tells how does the namenode choose which datanodes to store 

replicas on? By taking into consider read bandwidth and write bandwidth. 

 

• placing all replicas on a single node incurs the lowest write 

bandwidth penalty the replication pipeline runs on a single node, 

but this offers no real redundancy. (if the node fails, the data for 

that block is lost). Also, the read bandwidth is high for off-rack 

reads. 

 

• placing replicas in different data centers may maximize 

redundancy, but at the cost of bandwidth. 

 

• There are a variety of placement strategies. 
 

Hadoop’s default strategy : 
 

• place the first replica on the same node as the client (node is 

chosen at random, although the system tries not to pick nodes that 

are too full or too busy). 
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• The second replica is placed on a different rack from the first 

(off-rack), chosen at random. 

 

• The third replica is placed on the same rack as the second, 

but on a different node chosen at random. 

 

• Further replicas are placed on random nodes on the cluster, 

although the system tries to avoid placing too many replicas on 

the same rack. 

 

Once the replica locations have been chosen, a pipeline is built, taking network 

topology into account 

 

 

 

 

 

 

 

 

3.9 Coherency Model 
 

� Coherency model for a filesystem describes the data visibility of reads 

and writes for a file. 

 

� After creating a file, it is visible in the filesystem namespace, as expected: 

 

Path p = new Path("p"); 
fs.create(p); 

 

assertThat(fs.exists(p), is(true)); 
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� Any content written to the file is not guaranteed to be visible, even if 

the stream is flushed. So the file appears to have a length of zero: 

 

Path p = new Path("p"); 
OutputStream out = fs.create(p); 
out.write("content".getBytes("UTF-8")); 
out.flush(); 
assertThat(fs.getFileStatus(p).getLen(), is(0L)); 
 

� Once more than a block’s worth of data has been written, the first block 

will be visible to new readers. 

 

� This is true of subsequent blocks, too: it is always the current block 

being written that is not visible to other readers. 

 

� HDFS provides a method for forcing all buffers to be synchronized to the 

datanodes via the sync() method on FSDataOutputStream. 

 

� After a successful return from sync(), HDFS guarantees that the data 

written up to that point in the file is persisted and visible to all new 

readers: 

 

Path p = new Path("p"); 
 

FSDataOutputStream out = fs.create(p); 
out.write("content".getBytes("UTF-8")); 
out.flush(); 
out.sync(); 
assertThat(fs.getFileStatus(p).getLen(),is(((long) 
"content".length()))); 
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Ex: Using the standard Java API to write a local file, we are guaranteed to see 

the content after flushing the stream and synchronizing: 

 

FileOutputStream out = new 
FileOutputStream(localFile); 
out.write("content".getBytes("UTF-8")); 

 

out.flush(); // flush to operating system 
out.getFD().sync(); // sync to disk 
assertThat(localFile.length(), is(((long) 
"content".length()))); 

 

Closing a file in HDFS performs an implicit sync(), too: 

 

Path p = new Path("p"); 
OutputStream out = fs.create(p); 
out.write("content".getBytes("UTF-8")); 
out.close(); 

assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length()))); 
 

Consequences for application design 
 

This coherency model has implications for the way you design applications. 
 

With no calls to sync(), you should be prepared to lose up to a block of data in 

the event of client or system failure, this is unacceptable for many applications. 
 

So call sync() at suitable points, such as after writing a certain number of 

records or number of bytes. 
 

This is overhead, so there is a trade-off between data robustness and 

throughput. 

 

Acceptable trade-off is application-dependent, and suitable values can be 

selected after measuring your application’s performance with different sync() 

frequencies. 
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3.10 Parallel Copying with distcp 
 

� The distcp copying large amounts of data to and from Hadoop filesystems 

in parallel. 

 

� The canonical use case for distcp is for transferring data 

between two HDFS clusters. % hadoop distcp 
hdfs://namenode1/foo hdfs://namenode2/bar 

 

� This will copy the /foo directory (and its contents) from the first cluster 

to the /bar directory on the second cluster 

 

� If /bar doesn’t exist, it will be created first . 

 

� By default, distcp will skip files that already exist in the destination, but 

they can be overwritten by supplying the -overwrite option. You can 

also update only files that have changed using the - update option. 

 

% hadoop distcp -update hdfs://namenode1/foo 
hdfs://namenode2/bar/foo 

 
� The options to control the behavior of distcp, are preserve file 

attributes, ignore failures, and limit the number of files or total data 

copied. 

 

� distcp is implemented as a MapReduce job where the work of copying is 

done by the maps that run in parallel across the cluster. There are no 

reducers. 
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� Each file is copied by a single map, and distcp tries to give each map 

approximately the same amount of data, by bucketing files into roughly 

equal allocations. 

 

No. of Maps 
 

� The number of maps is decided as follows. 

 

� Each map copies at least 256 MB (unless the total size of the input is 

less, in which case one map handles it all). 

 

Ex: 1 GB of files will be given four map tasks. 
 

� When the data size is very large, it becomes necessary to limit the 

number of maps in order to limit bandwidth and cluster utilization. 

 

� By default, the maximum number of maps is 20 per (tasktracker) cluster 

node 

 

� -m argument to distcp used to specify 

number of maps. Ex : -m 1000 would 

allocate 1,000 maps. 

 

� Use distcp between two HDFS clusters that are running different 

versions, the copy will fail if you use the hdfs protocol, since the RPC 

systems are incompatible. 

 

� Use the read-only HTTP-based HFTP filesystem to read from the source. 

The job must run on the destination cluster so that the HDFS RPC 

versions are compatible. 
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Ex: using HFTP: 
 

% hadoop distcp hftp://namenode1:50070/foo hdfs://namenode2/bar 
 

� Need to specify the namenode’s web port in the source URI. This is 

determined by the dfs.http.address property, which defaults to 50070. 

 

� Using the newer webhdfs protocol (which replaces hftp) it is possible to 

use HTTP for both the source and destination clusters without hitting 

any wire incompatibility problems. 

 

% hadoop distcp webhdfs://namenode1:50070/foo 
webhdfs://namenode2:50070/bar 

 
� Another variant is to use an HDFS HTTP proxy as the distcp source or 

destination, which has the advantage of being able to set firewall and 

bandwidth controls. 

 

3.11 Keeping an HDFS Cluster Balanced 
 

� When copying data into HDFS, it is important to consider cluster 

balance. 

 

� HDFS works best when the file blocks are evenly spread across the 

cluster, so you want to ensure that distcp doesn’t disrupt this. 

 

� Ex: 1,000 GB data specifying -m1 a single map do the copy not using the 

cluster resources efficiently— the first replica of each block would reside 

on the node running the map (until the disk filled up). 
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� The second and third replicas would be spread across the cluster, but 

this one node would be unbalanced. 

 

 

� By having more maps than nodes in the cluster, this problem is 

avoided— it’s best to start by running distcp with the default of 20 maps 

per node. If it is not possible use use the balancer tool for load 

distribution across the cluster . 
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UNIT-III 
Assignment-Cum-Tutorial Questions 

SECTION-A 
Objective Questions 
 

1. HDFS is designed for______________     [ ] 

A) Storing very large files   C) Commodity Hardware 

B) Streaming data access   D) All 

2. The default HDFS port is ______________. 

3. Distcp command used for copy large blocks of data across the cluster  

         [True/False] 

4. HDFS is ______________Architecture. 

5. Data node is ___________daemon.      [ ] 

A) Storage  B) Computing C) Server D) None  

6. _________________ model for a file system describe the data visibility of reads 

and writes for a file.        [ ] 

A) Map Reduce  B) Coherency C) HDFS D) Pig 

7. Use____tool for load distribution across the cluster.   [ ] 

A. Loader  B) Distributer C) Balancer D) None 

8. On a fully configured cluster, “running Hadoop” means running___ daemons 

on the different servers in the network.     [ ] 

A) NameNode, DataNode   C) JobTracker,TaskTracker 

B) Secondary NameNode   D) All 

9. What mode that a Hadoop can run?     [ ] 

A) Standalone     C) Fully Distributed Mode 

B) Pseudo-Distributed mode  D) All 

10. For reading/Writing data to/from HDFS.Clients first connect to[ ] 

A) Name Node     C) Secondary Name Node 

B) Data Node     D) none 

11. The main goal of HDFS high availability is____________.  [ ] 

A) Faster creation of the replicas of primary namenode. 

B) To reduce the cycle time required to bring back a new primary namenode 

after existing primary fails. 
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C) Prevent data loss due to  failure of primary namenode. 

D) Prevent the primary namenode form becoming single point of failure. 

12. A Negative aspect to the importance of the Name Node___. [ ] 

A)  Single point of failure   C) No failure 

B) Double point of failure   D) None. 

13. What is the way of accessing HDFS over HTTP   [ ] 

A) Direct  B) via proxy  C) Both A & B D) None 

14. If we use Cloudera distributation of hadoop which is the default directory fo  

HDFS          [ ] 

A) /home/cloud era   C) /cloudera 

B) /user/cloudera   D) None 

15. The information mapping data blocks with their corresponding files is 

stored in         [ ] 

A) Data Node    C) Job Tracker 

B) Name Node    D) Task Tracker 

16. What happen if number of reducer is 0 in Hadoop?   [ ] 

A) Map-only job take place    

B) ) Reduce-only job take place. 

C) Reducer output will be the final output  D) None 

17. The HDFS command to create the copy of a file from a local system is which 

of the following?        [ ] 

A) copyFromLocal   C) copyfromlocal 

B) CopyFromLocal   D) copylocal 

18. In order to read any file in HDFS, instance of    [ ] 

A) fileSystem  B) datastream C) outstream D) inputstream 

19. is method to copy byte from input stream to any other stream in Hadoop.  

A) Iutils   B) Utils C) IOUtils  D) All  [ ] 

20. The daemons associated with the Map Reduce phase are_______ and Task-

Trackers.         [ ] 

A) Job Tracker    C) Reduce Trackers 

B) Map Tracker   D) All 
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SECTION-B 
SUBJECTIVE QUESTIONS 

1. Distinguish distributed file system and HDFS? In what areas HDFS does not 

work well. 

2. Outline the architecture of HDFS. 

3. Write the benefits of Distributed File System having block abstraction. 

4. List some concrete File System implementations. 

5. What methods are required for querying the current position in the file? 

6. Write the methods for creating directory an display its status. 

7. What is the default replica placement strategy? Explain. 

8. Explain about parallel copying with distcp 

9. List out glob characters supported by Hadoop. 

10. How to handle failure of Name Node? Explain 

11. Defend how to achieve High-Availability in HDFS. 

12. Identify various Hadoop daemons and explain their roles in a Hadoop 

Cluster. 

13. Why interface is required for HDFS? Explain different types of interfaces to 

HDFS. 

14. Develop the code for reading data from a Hadoop URL. 

15. Develop the code for reading data using the File System API. 

16. Examine anatomy of file read with a neat diagram. 

17. Sketch and explain Anatomy of file write. 

18. How to keep balance of HDFS cluster? 
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Unit 4 

Developing a MapReduce application 
 

Objective: To familiarize with the Map Reduce development Environment  

Syllabus: Analyzing data with unix tools, Analyzing data with hadoop, Java 

MapReduce classes(new API), Data flow, Combiner functions, Running a 

distributed MapReduce Job  

Learning Outcomes:  
At the end of the unit, students will be able to:  

1. Develop Map reduce configuration files  

2. Explain the managing configuration .  

3. Develop the test cases for Map Reduce  

4. Develop the web Interface for Map Reduce.  
 

Learning Material 
4.1 Setting up the development environment  
The first step is to create a project so you can build mapreduce programs and 

run them in local (standalone) mode from the command line or within IDE.  

The Maven POM show the dependencies needed for building and testing 

mapreduce programs.  

Apache Maven is a build automation tool that can be used for java projects.  

4.2 Managing Configuration  
The entire apache Hadoop ecosystem is written in java, Maven is a great tool 

for managing projects that build on the top of the Hadoop APIs.  

1. The first step is to download the version of Hadoop that you plan to use and 

unpack it on your development machine  

2. IDE, create a new project and add all the JAR files from the top level of the 

unpacked distribution and from the lib directory to the classpath.  

3. Run on a local “pseudo distributed” cluster. 
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Hadoop configuration files containing the connection settings for each cluster 

you run and specify which one you are using.  

conf directory contains three configuration files: hadoop-local.xml, hadoop-

localhost.xml, and hadoop-cluster.xml  

The hadoop-local.xml file contains the default Hadoop configuration for the 

default filesystem and the jobtracker:  

<?xml version="1.0"?>  

<configuration>  

<property>  

<name>fs.default.name</name>  

<value>file:///</value>  

</property>  

<property>  

<name>mapred.job.tracker</name>  

<value>local</value> 

 </property>  

</configuration>  

The settings in hadoop-localhost.xml point to a namenode and a jobtracker both 

running on localhost:  

<?xml version="1.0"?>  

<configuration>  

<property>  

<name>fs.default.name</name>  

<value>hdfs://localhost/</value>  

</property>  

<property>  

<name>mapred.job.tracker</name>  

<value>localhost:8021</value>  

</property>  

</configuration>  
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Finally, hadoop-cluster.xml contains details of the cluster’s namenode and 

jobtracker addresses  

<?xml version="1.0"?> 

 <configuration>  

<property>  

<name>fs.default.name</name>  

<value>hdfs://namenode/</value>  

</property>  

<property>  

<name>mapred.job.tracker</name>   

<value>jobtracker:8021</value>  

</property>  

</configuration> 

You can add other configuration properties to these files as needed. For 

example, if you wanted to set your Hadoop username for a particular cluster, 

directory listing on the HDFS server running in pseudo distributed mode on 

local host:  

% hadoop fs -conf conf/hadoop-localhost.xml -ls .  
Found 2 items  

drwxr-xr-x - tom supergroup 0 2009-04-08 10:32 /user/tom/input 

drwxr-xr-x - tom supergroup 0 2009-04-08 13:09 /user/tom/output 

Installing apache Hadoop  
Prerequisites Hadoop is written in java, need to install version 6 or later. 

Hadoop runs on unix and on windows. Linux is the only supported production 

platform, but other flavors of unix(including Mac OS X) can be used to run 

hadoop for development. Windows is only supported as a development 

platform, and additionally requires Cygwin to run. 

Hadoop can be run in one of the three modes:  
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1. Standalone(or local) mode  
There are no daemons running and everything runs in a single JVM. 

Standalone mode is suitable for running mapreduce programs during 

development, since it is easy to test and debug them.  

2. Pseudo distributed mode  
The Hadoop daemons run on the local machine, thus simulating a cluster on a 

small scale.  

3. Fully distributed mode  
The Hadoop daemons run on a cluster of machines. 

GenericOptionsParser, Tool, and ToolRunner  
  Hadoop comes with a few helper classes for making it easier to run jobs 

from the command line.  

  GenericOptionsParser is a class that interprets common Hadoop 

command-line options and sets them on a Configuration object for your 

application.  

  You don’t usually use GenericOptionsParser directly, as it’s more 

convenient to implement the Tool interface and run your application with 

the ToolRunner, which uses GenericOptionsParser internally:  
 

public interface Tool extends Configurable  
{ 
int run(String [] args) throws Exception;  
} 
Example: Tool implementation for printing the properties in a Configuration 

public class ConfigurationPrinter extends Configured implements Tool {  

static {  

Configuration.addDefaultResource("hdfs-default.xml"); 

Configuration.addDefaultResource("hdfs-site.xml"); 

Configuration.addDefaultResource("mapred-default.xml"); 

Configuration.addDefaultResource("mapred-site.xml");  

}  
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@Override  

public int run(String[] args) throws Exception {  

Configuration conf = getConf();  

for (Entry<String, String> entry: conf) {  

System.out.printf("%s=%s\n", entry.getKey(), entry.getValue());  

}  

return 0;  

}  

public static void main(String[] args) throws Exception {  

int exitCode = ToolRunner.run(new ConfigurationPrinter(), args); 

System.exit(exitCode); 

 }  

} 

 
 Make ConfigurationPrinter a subclass of Configured, which is an 

implementation of the Configurable interface. All implementations of Tool 

need to implement Configurable  

  The run () method obtains the Configuration using Configurable’s 

getConf() method and then iterates over it, printing each property to 

standard output.  

  ConfigurationPrinter’s main() method does not invoke its own run() 

method directly.  

  Instead, we call ToolRunner’s static run() method, which takes care of 

creating a Configuration object for the Tool, before calling its run() 

method.  

  ToolRunner also uses a GenericOptionsParser to pick up any standard 

options specified on the command line and set them on the 

Configuration instance . 

GenericOptionParser also allows you to set individual properties. For example 

% hadoop ConfigurationPrinter -D color=yellow | grep color  
color=yellow  
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The -D option is used to set the configuration property with key color to the 

value yellow. 

4.3 Writing a unit test with MRUnit 

  The map and reduce functions in MapReduce are easy to test in 

isolation  

  For known inputs, they produce known outputs.  

  Since outputs are written to a Context (or an OutputCollector in the old 

API), rather than simply being returned from the method call, the 

Context needs to be replaced with a mock so that its outputs can be 

verified.  

  All of the tests described here can be run from within an IDE.  

  Below example shows how to test mapper  

 Here it passes a weather record as input to the mapper, then checks the 

output is the year and temperature reading  

 The input key is ignored by the mapper, so we can pass in anything, 

including null as we do here.  

 To create a mock Context, we call Mockito’s mock() method (a static 

import), passing the class of the type we want to mock.  

 Then we invoke the mapper’s map() method, which executes the code 

being tested.  

 Finally, we verify that the mock object was called with the correct method 

and arguments, using Mockito’s verify() method  

 Here we verify that Context’s write() method was called with a Text object 

representing the year (1950) and an IntWritable representing the 

temperature (−1.1°C).  
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3. Writing a Unit Test with MRUnit 
The map and reduce functions in MapReduce are easy to test in isolation, 

which is a consequence of their functional style. MRUnit is a testing library 

that makes it easy to pass known inputs to a mapper or a reducer and check 

that the outputs are as expected. MRUnit is used in conjunction with a 

standard test execution framework, such as JUnit, so you can run the tests for 

MapReduce jobs in your normal development environment. For 

example, all of the tests described here can be run from within an IDE by 

following the instructions in Setting Up the Development Environment. 

Mapper 
The test for the mapper is shown in Example 6-5. 

 

Example 6-5. Unit test for MaxTemperatureMapper 

import java.io.IOException; 

import org.apache.hadoop.io.*; 
import org.apache.hadoop.mrunit.mapreduce.MapDriver; 

import org.junit.*; 
public class MaxTemperatureMapperTest{ 
@Test 

public void processesValidRecord() throws IOException, InterruptedException 

{ 

Text value = new Text("0043011990999991950051518004+68750+023550FM-

12+0382" + 

// Year ^^^^ 

"99999V0203201N00261220001CN9999999N9-00111+99999999999"); 

// Temperature ^^^^^ 

new MapDriver<LongWritable, Text, Text, IntWritable>() 

.withMapper(new MaxTemperatureMapper()) 

.withInput(new LongWritable(0), value) 

.withOutput(new Text("1950"), new IntWritable(-11)) 

.runTest(); 
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} 

} 

 

The idea of the test is very simple: pass a weather record as input to the 

mapper, and check that the output is the year and temperature reading.  

Since we are testing the mapper, we use MRUnit’sMapDriver, which we 

configure with the mapper under test (MaxTemperatureMapper), the input key 

and value, and the expected output key (a Text object representing the year, 

1950) and expected output value (an IntWritable representing the temperature, 

-1.1°C), before finally calling the runTest() method to execute the test. If the 

expected output values are not emitted by the mapper, MRUnit will fail the 

test. Notice that the input key could be set to any value because our mapper 

ignores it. Proceeding in a test-driven fashion, we create a Mapper 

implementation that passes the test (see Example 6-6). Because we will be 

evolving the classes in this chapter, each is put in a 

different package indicating its version for ease of exposition. For example, 

v1.MaxTemperatureMapper is version 1 of MaxTemperatureMapper. In reality, 

of course, you would evolve classes without repackaging them. 

Example 6-6. First version of a Mapper that passes   

 

MaxTemperatureMapperTest 

public class MaxTemperatureMapper 
extends Mapper<LongWritable, Text, Text, IntWritable> { 

@Override 

public void map(LongWritable key, Text value, Context context) 

throws IOException, InterruptedException { 

String line = value.toString(); 

String year = line.substring(15, 19); 

intairTemperature = Integer.parseInt(line.substring(87, 92)); 

context.write(new Text(year), new IntWritable(airTemperature)); 
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} 

}  

This is a very simple implementation that pulls the year and temperature fields 

from theline and writes them to the Context. 

Reducer 
The reducer has to find the maximum value for a given key. Here’s a simple 

test for this feature, which uses a ReduceDriver: 

 

@Test 

public void returnsMaximumIntegerInValues() throws IOException, 

InterruptedException { 

new ReduceDriver<Text, IntWritable, Text, IntWritable>() 

.withReducer(new MaxTemperatureReducer()) 

.withInput(new Text("1950"), 

Arrays.asList(new IntWritable(10), new IntWritable(5))) 

.withOutput(new Text("1950"), new IntWritable(10)) 

.runTest(); 

} 

We construct a list of some IntWritable values and then verify  

hatMaxTemperatureReducer picks the largest. The code in Example 6-9 is for 

animplementation of MaxTemperatureReducer that passes the test. 

 

Example 6-9. Reducer for the maximum temperature example 

public class MaxTemperatureReducer 
extends Reducer<Text, IntWritable, Text, IntWritable> { 

@Override 

public void reduce(Text key, Iterable<IntWritable> values, Context context) 

throws IOException, InterruptedException { 

intmaxValue = Integer.MIN_VALUE; 

for (IntWritable value : values) { 
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maxValue = Math.max(maxValue, value.get()); 

} 

context.write(key, new IntWritable(maxValue)); 

} 

} 

Running Locally on Test Data 
 
Now that we have the mapper and reducer working on controlled inputs, the 

next step is to write a job driver and run it on some test data on a development 

machine. 

 

Running a Job in a Local Job Runner 
 
Using the Tool interface introduced earlier in the chapter, it’s easy to write a 

driver to run our MapReduce job for finding the maximum temperature by year 

(see MaxTemperatureDriver in Example 6-10). Example 6-10. Application to find 

the maximum temperature 

 

public class MaxTemperatureDriver extends Configured implements Tool { 

@Override 

public intrun(String[] args) throws Exception { 

if (args.length != 2) { 

System.err.printf("Usage: %s [generic options] <input><output>\n", 

getClass().getSimpleName()); 

ToolRunner.printGenericCommandUsage(System.err); 

return -1; 

} 

 Job job = new Job(getConf(), "Max temperature"); 

job.setJarByClass(getClass()); 

FileInputFormat.addInputPath(job, new Path(args[0])); 

FileOutputFormat.setOutputPath(job, new Path(args[1])); 
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job.setMapperClass(MaxTemperatureMapper.class); 

job.setCombinerClass(MaxTemperatureReducer.class); 

job.setReducerClass(MaxTemperatureReducer.class); 

job.setOutputKeyClass(Text.class); 

job.setOutputValueClass(IntWritable.class); 

return job.waitForCompletion(true) ? 0 : 1; 

}  

public static void main(String[] args) throws Exception { 

intexitCode = ToolRunner.run(new MaxTemperatureDriver(), args); 

System.exit(exitCode); 

} 

}  

 

MaxTemperatureDriver implements the Tool interface, so we get the benefit of 

being able to set the options that GenericOptionsParser supports. The run() 

method constructs a Job object based on the tool’s configuration, which it uses 

to launch a job. Among the possible job configuration parameters, we set the 

input and output file paths; the mapper, reducer, and combiner classes; and 

the output types (the input types are determined by the input format, which 

defaults to TextInputFormat and has LongWritable keys and Text values). It’s 

also a good idea to set a name for the job (Max temperature) so that you can 

pick it out in the job list during execution and after it has completed. By 

default, the name is the name of the JAR file, which normally is not 

particularly descriptive. Now we can run this application against some local 

files. Hadoop comes with a local job 

runner, a cut-down version of the MapReduce execution engine for running 

MapReduce jobs in a single JVM. It’s designed for testing and is very 

convenient for use in an IDE, since you can run it in a debugger to step 

through the code in your mapper and reducer. The local job runner is used if 

mapreduce.framework.name is set to local, which is the default.[49] 

From the command line, we can run the driver by typing: 
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% mvn compile 
% export HADOOP_CLASSPATH=target/classes/ 
% hadoop v2.MaxTemperatureDriver -confconf/hadoop-local.xml \ 
input/ncdc/micro output 
Equivalently, we could use the -fs and -jt options provided by 

GenericOptionsParser: 

% hadoop v2.MaxTemperatureDriver -fs file:/// -jt local input/ncdc/micro 
output 
 
This command executes MaxTemperatureDriver using input from the local 

input/ncdc/micro directory, producing output in the local output directory. Note 

that although we’ve set -fs so we use the local filesystem (file:///), the local job 

runner will actually work fine against any filesystem, including HDFS (and it 

can be handy to do this if you have a few files that are on HDFS). We can 

examine the output on the local filesystem: 

 

% cat output/part-r-00000 
1949 111 

1950 22 

Testing the Driver 
 
Apart from the flexible configuration options offered by making your application 

implement Tool, you also make it more testable because it allows you to inject 

an arbitrary Configuration. You can take advantage of this to write a test that 

uses a local job runner to run a job against known input data, which checks 

that the output is as expected. 

 
There are two approaches to doing this. The first is to use the local job runner 

and run the job against a test file on the local filesystem. The code in Example 



Big Data 13 

 

IV-II SEMESTER  2018-19  CSE

   

6-11 gives an idea of how to do this. 

 

Example 6-11. A test for MaxTemperatureDriver that uses a local, in-process job 

runner 

@Test 

public void test() throws Exception { 

Configuration conf = new Configuration(); 

conf.set("fs.defaultFS", "file:///"); 

conf.set("mapreduce.framework.name", "local"); 

conf.setInt("mapreduce.task.io.sort.mb", 1); 

Path input = new Path("input/ncdc/micro"); 

Path output = new Path("output"); 

FileSystemfs = FileSystem.getLocal(conf); 

fs.delete(output, true); // delete old output 

MaxTemperatureDriver driver = new MaxTemperatureDriver(); 

driver.setConf(conf); 

intexitCode = driver.run(new String[] { 

input.toString(), output.toString() }); 

assertThat(exitCode, is(0)); 

checkOutput(conf, output); 

} 

 

The test explicitly sets fs.defaultFS and mapreduce.framework.name so it uses 

the local filesystem and the local job runner. It then runs the  

MaxTemperatureDriver via its Tool interface against a small amount of known 

data. At the end of the test, the checkOutput() method is called to compare the 

actual output with the expected output, line by line.  

The secondway of testing the driver is to run it using a “mini-” cluster. Hadoop 

has a set of testing classes, called MiniDFSCluster, MiniMRCluster, and 

MiniYARNCluster, that provide a programmatic way of creating in-process 

clusters. Unlike the local job runner, these allow testing against the full HDFS, 



Big Data 14 

 

IV-II SEMESTER  2018-19  CSE

   

MapReduce, and YARN machinery. Bear in mind, too, that node managers in a 

mini-cluster launch separate JVMs to run tasks in,which can make debugging 

more difficult. 

 

Mapper 

The test for the mapper is shown 

 import static org.mockito.Mockito.*;  

import java.io.IOException;  

import org.apache.hadoop.io.*;  

import org.junit.*;  

public class MaxTemperatureMapperTest {  

@Test  

public void processesValidRecord() throws IOException, InterruptedException { 

MaxTemperatureMapper mapper = new MaxTemperatureMapper();  

Text value = new Text("0043011990999991950051518004+68750+023550FM-

12+0382" +  

// Year ^^^^  

"99999V0203201N00261220001CN9999999N9-00111+99999999999");  

// Temperature ^^^^^  

MaxTemperatureMapper.Context context = 

mock(MaxTemperatureMapper.Context.class);  

mapper.map(null, value, context); 

verify(context).write(new Text("1950"), new IntWritable(-11));  

}  

}  

We create a Mapper implementation that passes the test  

public class MaxTemperatureMapper  

extends Mapper<LongWritable, Text, Text, IntWritable> {  

@Override  

public void map(LongWritable key, Text value, Context context)  

throws IOException, InterruptedException {  
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String line = value.toString();  

String year = line.substring(15, 19);  

int airTemperature = Integer.parseInt(line.substring(87, 92));  

context.write(new Text(year), new IntWritable(airTemperature));  

} 

 }  

This is a very simple implementation, which pulls the year and temperature 

fields from the line and writes them to the Context. Then add a test for missing 

values, which in the raw data are represented by a temperature of +9999: 

@Test  

public void ignoresMissingTemperatureRecord() throws IOException, 

InterruptedException { MaxTemperatureMapper mapper = new 

MaxTemperatureMapper();  

Text value = new Text("0043011990999991950051518004+68750+023550FM-

12+0382" +  

// Year ^^^^ 

"99999V0203201N00261220001CN9999999N9+99991+99999999999");  

// Temperature ^^^^^  

MaxTemperatureMapper.Context context = 

mock(MaxTemperatureMapper.Context.class);  

mapper.map(null, value, context);  

verify(context, never()).write(any(Text.class), any(IntWritable.class)); 

 } The existing test fails with a NumberFormatException, as parseInt() cannot 

parse integers with a leading plus sign, so we fix up the implementation 

(version 2) to handle missing values: 

 @Override  

public void map(LongWritable key, Text value, Context context)  

throws IOException, InterruptedException {  

String line = value.toString();  

String year = line.substring(15, 19); 

String temp = line.substring(87, 92);  



Big Data 16 

 

IV-II SEMESTER  2018-19  CSE

   

if (!missing(temp)) {  
int airTemperature = Integer.parseInt(temp);  

context.write(new Text(year), new IntWritable(airTemperature));  

}  
}  

private boolean missing(String temp) { 
 return temp.equals("+9999");  
}  
With the test for the mapper passing, we move on to writing the reducer. 

Reducer  
The reducer has to find the maximum value for a given key. Here’s a simple 

test for this feature:  

@Test  

public void returnsMaximumIntegerInValues() throws IOException, 

InterruptedException { 

 MaxTemperatureReducer reducer = new MaxTemperatureReducer(); 

 Text key = new Text("1950");  

List<IntWritable> values = Arrays.asList( 

 new IntWritable(10), new IntWritable(5));  

MaxTemperatureReducer.Context context = 

mock(MaxTemperatureReducer.Context.class);  

reducer.reduce(key, values, context);  

verify(context).write(key, new IntWritable(10)); }  

construct a list of some IntWritable values and then verify that 

MaxTemperatureReducer picks the largest.  

Ex:Reducer for maximum temperature example 

 public class MaxTemperatureReducer  

extends Reducer<Text, IntWritable, Text, IntWritable> {  

@Override  

public void reduce(Text key, Iterable<IntWritable> values,  

Context context)  
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throws IOException, InterruptedException {  

int maxValue = Integer.MIN_VALUE;  

for (IntWritable value : values) {  

maxValue = Math.max(maxValue, value.get()); }  

context.write(key, new IntWritable(maxValue));  

}  

}  

Mapper and reducer working on controlled inputs, the next step is to write a 

job driver and run it on some test data on a development machine. 

4.4 Running a job in local job runner 
Write a driver to run our MapReduce job for finding the maximum temperature 

by year. 

Ex: Application to find the maximum temperature 

public class MaxTemperatureDriver extends Configured implements Tool { 

@Override 

public int run(String[] args) throws Exception { 

if (args.length != 2) { 

System.err.printf("Usage: %s [generic options] <input> <output>\n", 

getClass().getSimpleName()); 

ToolRunner.printGenericCommandUsage(System.err); 

return -1; 

} 

Job job = new Job(getConf(), "Max temperature");  

job.setJarByClass(getClass());  

FileInputFormat.addInputPath(job, new Path(args[0])); 

FileOutputFormat.setOutputPath(job, new Path(args[1])); 

job.setMapperClass(MaxTemperatureMapper.class); 

job.setCombinerClass(MaxTemperatureReducer.class); 

job.setReducerClass(MaxTemperatureReducer.class); 

job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); 

return job.waitForCompletion(true) ? 0 : 1; }  
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public static void main(String[] args) throws Exception {  

int exitCode = ToolRunner.run(new MaxTemperatureDriver(), args); 

System.exit(exitCode);  

}  

} 

 

 


  MaxTemperatureDriver implements the Tool interface, to set the options 

that GenericOptionsParser supports.  

  The run() method constructs Job object based on the tool’s 

configuration, which it uses to launch a job.  

  Run this application against some local files. Hadoop comes with a local 

job runner, running Map-Reduce jobs in a single JVM. It’s designed for 

testing and is very convenient for use in an IDE  

  The local job runner is only designed for simple testing of MapReduce 

programs it differs from the full MapReduce implementation.  

  The biggest difference is that it can’t run more than one reducer.  

The local job runner is enabled by a configuration setting. Normally, 

mapred.job.tracker is a host:port pair to specify the address of the jobtracker, 

but when it has the special value of local, the job is run in-process without 

accessing an external jobtracker. 

From the command line, we can run the driver by typing: 

% hadoop v2.MaxTemperatureDriver -conf conf/hadoop-local.xml \ 
input/ncdc/micro output 
Equivalently, we could use the -fs and -jt options provided by 

GenericOptionsParser: 

% hadoop v2.MaxTemperatureDriver -fs file:/// -jt local input/ncdc/micro 
output 
This command executes MaxTemperatureDriver using input from the local 

input/ncdc/micro directory, producing output in the local output directory. To 
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work local job runner against any filesystem set –fs so we use the local 

filesystem (file:///) 

 When we run the program, it fails and prints the following exception: 

java.lang.NumberFormatException: For input string: "+0000" 
 
 
 
Fixing the mapper 
This exception shows that the map method still can’t parse positive 

temperatures. Run the test in a local debuggerEarlier, we made it handle the 

special case of missing temperature, +9999, but not the general case of any 

positive temperature and parser class to encapsulate the parsing logic. 

Example : A class for parsing weather records in NCDC format 

 public class NcdcRecordParser {  

private static final int MISSING_TEMPERATURE = 9999;  

private String year; 

 private int airTemperature;  

private String quality;  

public void parse(String record) {  

year = record.substring(15, 19);  

String airTemperatureString;  

// Remove leading plus sign as parseInt doesn't like them  

if (record.charAt(87) == '+') { airTemperatureString = record.substring(88, 92); } 

else {  

airTemperatureString = record.substring(87, 92); Big Data 10 IV-II SEMESTER  

}  

airTemperature = Integer.parseInt(airTemperatureString);  

quality = record.substring(92, 93); }  

public void parse(Text record) {  

parse(record.toString()); }  

public boolean isValidTemperature() {  
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return airTemperature != MISSING_TEMPERATURE && 

quality.matches("[01459]"); }  

public String getYear() {  

return year; } public int getAirTemperature() {  

return airTemperature; 

}  

} 
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  parse() method, which parses the fields of interest from a line of input, 

checks whether a valid temperature was found using the 

isValidTemperature() query method, and if it was, retrieves the year and 

the temperature using the getter methods on the parser.  

  Check the quality status field as well as missing temperatures in 

isValidTemperature() to filter out poor temperature readings.  

  Another benefit of creating a parser class is that it makes it easy to write 

related mappers for similar jobs without duplicating code. It also gives us 

the opportunity to write unit tests directly against the parser, for more 

targeted testing.  

Example A Mapper that uses a utility class to parse records  
public class MaxTemperatureMapper  

extends Mapper<LongWritable, Text, Text, IntWritable> {  

private NcdcRecordParser parser = new NcdcRecordParser(); @Override 

public void map(LongWritable key, Text value, Context context)  

throws IOException, InterruptedException {  

parser.parse(value);  
if (parser.isValidTemperature()) {  
context.write(new Text(parser.getYear()),  
new IntWritable(parser.getAirTemperature()));  
} 

} 

 }  

With these changes, the test passes 

4.5 Running on a cluster Now that we are happy with the program running 

on a small test dataset, we are ready to try it on the full dataset on a Hadoop 

cluster.  
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Packaging 

  The local job runner uses a single JVM to run a job, so all the classes 

that the job needs are on its classpath.  

  In distributed environment job classes must be packaged into a job JAR 

file to send to the cluster.  

  Hadoop will find the job JAR automatically by searching for the JAR on 

the drivers classpath that contains the class set in the setJarByClass() 

method. To set explicit JAR file by it path use setJar() method.  

<jar destfile="hadoop-examples.jar" basedir="${classes.dir}"/> 

If you have a single job per JAR, then you can specify the main class to run in 

the JAR file’s manifest.  

If the main class is not in the manifest, then it must be specified on the 

command line (as you will see shortly).  

Also, any dependent JAR files should be packaged in a lib subdirectory in the 

JAR file. 

Launching a Job 

  To launch the job, we need to run the driver, specifying the cluster that 

we want to run the job on with the -conf option (we could equally have 

used the -fs and -jt options):  

% hadoop jar hadoop-examples.jar v3.MaxTemperatureDriver -conf 
conf/hadoop-cluster.xml \ 

input/ncdc/all max-temp 

The waitForCompletion() method on Job launches the job and polls for 

progress, writing a line summarizing the map and reduce’s progress whenever 

either changes. Here’s the output (some lines have been removed for clarity): 

09/04/11 08:15:52 INFO mapred.FileInputFormat: Total input paths to 

process : 101 

09/04/11 08:15:53 INFO mapred.JobClient: Running job: 

job_200904110811_0002 

09/04/11 08:15:54 INFO mapred.JobClient: map 0% reduce 0% 
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09/04/11 08:16:06 INFO mapred.JobClient: map 28% reduce 0% 

09/04/11 08:16:07 INFO mapred.JobClient: map 30% reduce 0% 

…. 

09/04/11 08:21:36 INFO mapred.JobClient: map 100% reduce 100% 

09/04/11 08:21:38 INFO mapred.JobClient: Job complete: 

job_200904110811_0002 09/04/11 08:21:38 INFO mapred.JobClient: 

Counters: 19 09/04/11 08:21:38 INFO mapred.JobClient: Job Counters 

09/04/11 08:21:38 INFO mapred.JobClient: Launched reduce tasks=32 

09/04/11 08:21:38 INFO mapred.JobClient: Rack-local map tasks=82 

09/04/11 08:21:38 INFO mapred.JobClient: Launched map tasks=127 

09/04/11 08:21:38 INFO mapred.JobClient: Data-local map tasks=45 

09/04/11 08:21:38 INFO mapred.JobClient: FileSystemCounters 09/04/11 

08:21:38 INFO mapred.JobClient: FILE_BYTES_READ=12667214 09/04/11 

08:21:38 INFO mapred.JobClient: HDFS_BYTES_READ=33485841275 

09/04/11 08:21:38 INFO mapred.JobClient: FILE_BYTES_WRITTEN=989397 

09/04/11 08:21:38 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=904 

09/04/11 08:21:38 INFO mapred.JobClient: Map-Reduce Framework 

09/04/11 08:21:38 INFO mapred.JobClient: Reduce input groups=100 

09/04/11 08:21:38 INFO mapred.JobClient: Combine output records=4489 

09/04/11 08:21:38 INFO mapred.JobClient: Map input records=1209901509 

09/04/11 08:21:38 INFO mapred.JobClient: Reduce shuffle bytes=19140 

09/04/11 08:21:38 INFO mapred.JobClient: Reduce output records=100 

09/04/11 08:21:38 INFO mapred.JobClient: Spilled Records=9481 09/04/11 

08:21:38 INFO mapred.JobClient: Map output bytes=10282306995 09/04/11 

08:21:38 INFO mapred.JobClient: Map input bytes=274600205558 09/04/11 

08:21:38 INFO mapred.JobClient: Combine input records=1142482941 

09/04/11 08:21:38 INFO mapred.JobClient: Map output records=1142478555 

09/04/11 08:21:38 INFO mapred.JobClient: Reduce input records=103 
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  The output includes more useful information.  

  Before the job starts, its ID is printed: this is needed whenever you want 

to refer to the job, in logfiles for example, or when interrogating it via the 

hadoop job command.  

  When the job is complete, its statistics (known as counters) are printed 

out. These are very useful for confirming that the job did what you 

expected. For example, for this job we can see that around 275 GB of 

input data was analyzed (“Map input bytes”), read from around 34 GB of 

compressed files on HDFS (“HDFS_BYTES_READ”).  

  The input was broken into 101 gzipped files of reasonable size, so there 

was no problem with not being able to split them.  

The MapReduce Web UI  
Hadoop comes with a web UI for viewing information about your jobs. It is 

useful for following a job’s progress while it is running, as well as finding job 

statistics and logs after the job has completed. You can find the UI at 

http://jobtracker-host:50030/. 

The jobtracker page 
 A screenshot of the home page is shown in Figure 5-1. The first section of the 

page gives details of the Hadoop installation, such as the version number and 

when it was compiled, and the current state of the jobtracker (in this case, 

running), and when it was started. 
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Next is the summary of the cluster, which has measures of cluster capacity 

and utilization. This show 


  The number of maps and reduces currently running on the cluster.  

  The total number of job submissions.  

  The number of tasktracker nodes currently available.  

  The cluster’s capacity in terms of the number of map and reduce slots 

available across the cluster.  

  The number of available slots per node, on average.  

  The number of tasktrackers that have been blacklisted by the job 

tracker.  
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Below the summary, there is a section about the job scheduler that is running 

(here the default). You can click through to see job queues. Further down, we 

see sections for running, (successfully) completed, and failed jobs. Each of 

these sections has a table of jobs, with a row per job that shows the job’s ID, 

owner, name (as set in the Job constructor or setJobName() method, both of 

which internally set the mapred.job.name property) and progress information. 

Finally, at the foot of the page, there are links to the jobtracker’s logs, and the 

jobtracker’s history: information on all the jobs that the jobtracker has run. 

The main view displays only 100 jobs (configurable via the 

mapred.jobtracker.completeuserjobs.maximum property), before consigning 

them to the history page. 
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UNIT-IV 
Assignment-Cum-Tutorial Questions 

SECTION-A 
Objective Questions 
1. Which of the following is the default partitioner for Map Reduce [ ] 

A) Merge Partitioner   C) Hash Partitioner 

B) Hashed Partitioner   D) None 

2. Which of the following partitions the key space/   [ ] 

A) Partitioner B) Compactor C) Collector  D) All 

3. ______ is a generalization of the facility provided by the Map Reduce frame 

work to collect data output by the Mapper or the Reducer.  [ ] 

A) OutputCompactor   C) InputCollector 

B) OutputCollector   D) All 

4. ______ is the primary interface for a user to describe a Map Reduce job to the 

Hadoop frame work for execution.      [ ] 

A) Jobconfig B) Jobconf C) Jobconfiguration D) All 

5. The ___________________ executes the Mapper / Reducer task as a child 

process in a separate JVM.       [ ] 

A) JobTracker B) TaskTracker C) TaskScheduler D) None 

6. Maximum virtual memory of the launched child-task is specified using 

A) Mapv  B) mapred  C) mapvim  D) All [ ] 

7. Which of the following parameter is the threshold for the accounting and 

serialization butters?        [ ] 

A) Io.sort.spill.percent  C) io.sort.mb 

B) Io.sort.record.percent  D) None 

8. ____________ is percentage of memory relative to the maximum heap size in 

which map output may be retained during the reduce.  [ ] 

A) Mapred.job.shuffle.merge.percent 

B) Mapred.job.reduce.input.buffer.percen 

C) Mapred.inmem.merge.threshold 

D) Io.sort.factor 
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9. _________ specifies the number of segments on disk to be merged at the same 

time.          [ ] 

A) Mapred.job.shuffle.merge.percent 

B) Mapred.job.reduce.input.buffer.percen 

C) Mapred.inmem.merge.threshold. 

D) Io.sort.factor. 

10. Map output larger that __ percent of the memory allocated to copying map 

outputs.          [ ] 

A) 10  B) 15  C) 25  D) 35 

11. Jobs can enable task JVM to be reused by specifying the job configuration. 

           [ ] 

A) Mapred.job.recycle.jvm.num.tasks 

B) Mapissue.job.reuse.jvm.num.tasks. 

C) Mapred.job.reuse.jvm.num.tasks. 

D) All 

12. During the execution of a streaming job, the names of the _________ 

parameters are transformed.      [ ] 

A) Vmap  B) mapvim  C) mapreduce D) mapred 

13. The standard output(stdout) and error (stderr) streams of the task are read 

by the Task Tracker and logged to 

A) ${HADOOP_LOG_DIR}/user 

B) ${HADOOP_LOG_DIR}/userlogs 

C) ${HADOOP_LOG_DIR}/logs 

D) None 

14. _____ is the primary interface by which user-job interacts with the Job 

Tracker.          [ ] 

A) Jobconf B) JobClient C) JobServer D) All 

15. The ________ can also be used to distribute both jars and native libraries for 

use in the map and/or reduce tasks.     [ ] 

A) DistributeLog   C) DistributedJars 

B) Distributed Cache   D) None 
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16. ___ is used to filter log files from the output directory listing. [ ] 

A) Outputlog B) OutputLogFilter  C) DistributedLog D) DisttibutedJar 

17. Which of the following class provides access to configuration parameters? 

           [ ] 

A) Config B) configuration C) outputConfig D) None 

18. ____________ gives site-specific configuration for a given hadoop installation. 

           [ ] 

A) Core-default.xml   C) coredefault.xml 

B) Core-site.xm;   D) None 

19. ___ method clears all keys from the configuration   [ ] 

A) Clear  B) addResource C) getClass D) None 

20. ____ is useful for iterating the properties when all deprecated properties for 

currently set properties need to be present.    [ ] 

A) addResource   C) addDefaultResource 

B) setDeprecatedProperties  D) None 

  

SECTION-B 
SUBJECTIVE QUESTIONS 
1. How is the configuration of the development environment managed in 

Hadoop? 

2. Write about the Managing configuration. 

3. What you mean by MRUnit? Explain detail. 

4. Explain the local job runner? 

5. Write about the running on a cluster? 

6. Explain about MapReduce WebUI? 

7. Write the simple configuration file using XML 

8. Explain about GenericOptionParser and Toolrunner options? 

9. Write a program for a unit test MaxTemeratureMapper? 

10. Write a test case for Reducer. 

11. Write a program for local job runner? 

12. Illustrate about packaging a job 
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13. Explain about launching a job? 

14. Design the resource manage page? 
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UNIT-V 
 

MapReduce Working 
Objective: 

To familiarize with the working of Map Reduce in Hadoop. 

Syllabus: 
MapReduce Working 
Classic MapReduce, Job submission, Job Initialization, Task Assignment, Task 

execution, Progress and status 
 

updates, Job completion, Shuffle and sort on Map and Reduce side, Configuration 

tuning, Map Reduce types, 
 

Input formats, Output formats. 
 

Learning Outcomes: 
 

At the end of the unit, students will be able to: 
 

1. Write more advanced Map Reduce programs. 
 

2. Describe data types supported by MapReduce and Input and Output 

formats. 
Learning Material 
Introduction 

• Run a MapReduce job with a single method call: submit() on a Job object 

which will submit the job and call waitForCompletion(), wait for it to 

finish. 

• The steps Hadoop takes to run a job. We saw in previous chapter that the 

way Hadoop executes a MapReduce program depends on a couple of 

configuration settings. 

• In releases of Hadoop up to and including the 0.20 release series, 

mapred.job.tracker determines the means of execution. 

 

1) If this configuration property is set to local, the default, then the local job 

runner is used. This runner runs the whole job in a single JVM. 
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2) It’s designed for testing and for running MapReduce programs on small 

datasets. 

3) If mapred.job.tracker is set to a colon-separated host and port pair, then 

the property is interpreted as a jobtracker address, and the runner 

submits the job to the jobtracker at that address. 

5.1 Classic MapReduce (MapReduce 1) 
 

A job run in classic MapReduce is illustrated in Figure . 
 
At the highest level, there are four independent entities: 
 

1. The client, which submits the MapReduce job. 
 

2. The jobtracker, which coordinates the job run. The jobtracker is a Java 

application whose main class is JobTracker. 

 

3. The tasktrackers, which run the tasks that the job has been split 

into. Tasktrackers are Java applications whose main class is 

TaskTracker. 

 

4. The distributed filesystem (normally HDFS), which is used for sharing 

job files between the other entities. 

 

 

 

 

 

 

 

 

 
 

Fig : How Hadoop runs a MapReduce job using the classic framework 
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There are six detailed levels in workflows. They are: 

 

1. Job Submission 

 

2. Job Initialization 

 

3. Task Assignment 

 

4. Task Execution 

 

5. Task Progress and status updates 

 

6. Task Completion 

5.2 Job Submission 
The submit() method on Job creates an internal JobSummitter instance and 

calls submitJobInternal() on it (step 1 in Figure). 

 

After submitted the job, waitForCompletion() polls the job’s progress once a 

second and reports the progress to the console. 

 

When the job is complete, if it was successful, the job counters are 

displayed. Otherwise, the error that caused the job to fail is logged to the 

console. 

 

The job submission process implemented by JobSummitter does the 

following: 

 
▪ Asks the jobtracker for a new job ID (by calling getNewJobId() on obTracker) 

(step 2). 
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▪ Checks the output specification of the job. For example, if the output 

directory has not been specified or it already exists, the job is not submitted 

and an error is thrown to the MapReduce program. 

 

▪ Computes the input splits for the job. If the splits cannot be computed, 

because the input paths don’t exist, for example, then the job is not 

submitted and an error is thrown to the MapReduce program. 

 

▪ Copies the resources needed to run the job, including the job JAR file, the 

configuration file, and the computed input splits, to the jobtracker’s 

filesystem in a directory named after the job ID. 

 

▪ The job JAR is copied with a high replication factor (controlled by the 

mapred.submit.replication property, which defaults to 10) so that there are 

lots of copies across the cluster for the tasktrackers to access when they 

run tasks for the job (step 3). 

 

▪ Tells the jobtracker that the job is ready for execution (by calling 

submitJob() on JobTracker) (step 4). 

 

5.3 Job Initialization 
 

• When the JobTracker receives a call to its submitJob() method, it puts it 

into an internal queue from where the job scheduler will pick it up and 

initialize it 

 

Initialization involves 
 

Bookkeeping information to keep track of the tasks’ status and progress 

(step 5). 

 

creating an object to represent the job being run, which encapsulates its 

tasks, and 
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1. To create the list of tasks to run, the job scheduler first retrieves the input 

splits computed by the client from the shared filesystem (step 6). 

 

2. It then creates one map task for each split. 

 

3. The number of reduce tasks to create is determined by the 

mapred.reduce.tasks property in the Job, which is set by the 

setNumReduceTasks() method, and the scheduler simply creates this 

number of reduce tasks to be run. 

 

4. Tasks are given IDs at this point. In addition to the map and reduce tasks, 

two further tasks are created: a job setup task and a job cleanup task. 

 

5. These are run by tasktrackers and are used to run code to setup the job 

before any map tasks run, and to clean up after all the reduce tasks are 

complete. 

 

6. The OutputCommitter that is configured for the job determines the code to 

be run, andby default this is a FileOutputCommitter. 

 

7. For the job setup task it will create the final output directory for the job and 

the temporary working space for the task output, and for the job cleanup 

task it will delete the temporary working space for the task output. 

5.4 Task Assignment 
• Tasktrackers run a simple loop that periodically sends heartbeat method 

calls to the jobtracker. 

 

• Heartbeats tell the jobtracker that a tasktracker is alive, but they also 

double as a channel for messages. 

 

• As a part of the heartbeat, a tasktracker will indicate whether it is ready to 

run a new task, and if it is, the jobtracker will allocate it a task, which it 

communicates to the tasktracker using the heartbeat return value (step 7). 
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• Before it can choose a task for the tasktracker, the jobtracker must choose a 

job to select the task from. There are various scheduling algorithms but the 

default one simply maintains a priority list of jobs. 

 

• Having chosen a job, the jobtracker now chooses a task for the job. 

Tasktrackers have a fixed number of slots for map tasks and for reduce 

tasks: 

 

Ex: a tasktracker may be able to run two map tasks and two reduce tasks 

simultaneously. (The precise number depends on the number of cores and 

the amount of memory on the tasktracker) 

 

• The default scheduler fills empty map task slots before reduce task slots, so 

if the tasktracker has at least on empty map task slot, the jobtracker will 

select a map task; otherwise, it will select a reduce task. 

 

• To choose a reduce task, the jobtracker simply takes the next in its list of 

yet-to-be-run reduce tasks, since there are no data locality considerations. 

 

• For a map task, however, it takes account of the tasktracker’s network 

location and picks a task whose input split is as close as possible to the 

tasktracker. 

 

• In the optimal case, the task is data-local, that is, running on the same node 

that the split resides on. 

 

• Alternatively, the task may be rack-local: on the same rack, but not the same 

node, as the split. Some tasks are neither data-local nor rack-local and 

retrieve their data from a different rack from the one they are running on. 

 

• You can tell the proportion of each type of task by looking at a job’s 

counters. 
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5.5 Task Execution 
 

• Now that the tasktracker has been assigned a task, the next step is for it to 

run the task. 

 

• First, it localizes the job JAR by copying it from the shared filesystem to the 

tasktracker’s filesystem. 

 

It also copies any files needed from the distributed cache by the application 

to the local disk. 

 

• Second, it creates a local working directory for the task, and un-jars the 

contents of the JAR into this directory. 

 

• Third, it creates an instance of TaskRunner to run the task. TaskRunner 

launches a new Java Virtual Machine (step 9) to run each task in (step 10), 

so that any bugs in the user-defined map and reduce functions don’t affect 

the tasktracker (by causing it to crash or hang, for example). 

 

• It is, however, possible to reuse the JVM between tasks. 

 

• The child process communicates with its parent through the umbilical 

interface. This way it informs the parent of the task’s progress every few 

seconds until the task is complete. 

 

• Each task can perform setup and cleanup actions, which are run in the same 

JVM as the task itself, and are determined by the OutputCommitter for the 

job 

 

• The cleanup action is used to commit the task, which in the case of file-based 

jobs means that its output is written to the final location for that task. 

 

• The commit protocol ensures that when speculative execution is enabled, only 

one of the duplicate tasks is committed and the other is aborted. 
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Fig : The relationship of the Streaming and Pipes executable to the tasktracker 

and its child 

• Both Streaming and Pipes run special map and reduce tasks for the purpose 

of launching the user-supplied executable and communicating with it (Fig). 

 

• In the case of Streaming, the Streaming task communicates with the process 

(which may be written in any language) using standard input and output 

streams. 

 

• The Pipes task, on the other hand, listens on a socket and passes the C++ 

process a port number in its environment, so that on startup, the C++ 

process can establish a persistent socket connection back to the parent Java 

Pipes task. 

 

• In both cases, during execution of the task, the Java process passes input 

key-value pairs to the external process, which runs it through the user-

defined map or reduce function and passes the output key-value pairs back 

to the Java process. 

 

• From the tasktracker’s point of view, it is as if the tasktracker child process 

ran the map or reduce code itself. 
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5.6 Progress and Status Updates 
 

• MapReduce jobs are long-running batch jobs, taking anything from minutes 

to hours to run. 

 

• Progress reporting is important for the user to get feedback on how the job 

is progressing. 

 

• The following operations constitute progress: 

 

• Reading an input record ( in a mapper and reducer) 

 

• Writing and output record ( in a mapper and reducer) 

 

• Setting the status description on a reporter ( by using Reporter’s 

setStatus() method) 

 

• Incrementing a counter (using Reporter’s incrCounter() method) 

 

• Calling Reporter’s Progress() method 

 

• A job and each of its tasks have a status, which includes 

 

• State of the job or task (e.g., running, successfully completed, failed) 

 

• The progress of maps and reduces 

 

• The values of the job’s counters and 

 

• A status message or description (which may be set by user code). 

 

• These statuses change over the course of the job, they get communicated 

back to the client regarding progress by displaying 
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• The proportion of the task completed. 

 

• For map tasks, the proportion of the input that has been processed. 

 

• For reduce tasks, the proportion of the reduce input processed. 

 

 It does this by dividing the total progress into three parts, 

corresponding to the three phases of the shuffle. 

 

 Display counters that count various events as the task runs 

such as number of map output records written. 

 

• If a task reports progress, it sets a flag to indicate that the status change 

should be sent to the tasktracker. 

 

• The flag is checked in a separate thread every three seconds, and if set it 

notifies the tasktracker of the current task status. 

 

• Meanwhile, the tasktracker is sending heartbeats to the jobtracker every five 

seconds (this is a minimum, as the heartbeat interval is actually dependent 

on the size of the cluster: for larger clusters,the interval is longer) 

 

• The status of all the tasks being run by the tasktracker is sent in the call. 

 

• Counters are sent less frequently than every five seconds, because they can 

be relatively high-bandwidth. 

 

• The jobtracker combines these updates to produce a global view of the 

status of all the jobs being run and their constituent tasks. 

 

• Finally, the Job receives the latest status by polling the jobtracker every 

second. 
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• Clients can also use Job’s getStatus() method to obtain a JobStatus 

instance, which contains all of the status information for the job. 

 

5.7 Job Completion 
 

• When the jobtracker receives a notification that the last task for a job is 

complete it changes the status for the job to “successful.” 

 

• Then, when the Job polls for status, it learns that the job has completed 

successfully, it prints a message to tell the user and then returns from the 

waitForCompletion() method. 

 

• The jobtracker also sends an HTTP job notification. 

 

• Last, the jobtracker cleans up its working state for the job and instructs 

tasktrackers to do the same (so intermediate output is deleted, for example). 

 

5.8 Shuffle and Sort 
 

• MapReduce makes the guarantee that the input to every reducer is sorted 

by key. 

 

• The process by which the system performs the sort—and transfers the map 

outputs to the reducers as inputs—is known as the shuffle. 

 

• The shuffle is an area of the codebase where refinements and improvements 

are continually being made. 

 

Shuffle sort on Map Side 
 

• When the map function starts producing output, it is not simply written to 

disk. The process is more involved, and takes advantage of buffering writes 

in memory and doing some presorting for efficiency reasons. 
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Shuffle and sort in MapReduce 
 

• The buffer is 100 MB by default, change the size by using io.sort.mb 

property. 

 

• When the contents of the buffer reaches a certain threshold size a 

background thread will start to spill the contents to disk. 

 

• Map outputs will continue to be written to the buffer while the spill takes 

place, but if the buffer fills up during this time, the map will block until the 

spill is complete. 

 

• Spills are written in round-robin fashion to the directories specified by the 

mapred.local.dir property. 

 

• Before it writes to disk, the thread first divides the data into partitions 

corresponding to the reducers to send. 

 

• Within each partition, the background thread performs an in-memory sort 

by key, and if there is a combiner function, it is run on the output of the 

sort. 

 

• Running the combiner function makes more compact map output, so less 

data to write to local disk and to transfer to the reducer. 

 

• Each time the memory buffer reaches the spill threshold, a new spill file is 

created 

 

• Before the task is finished, the spill files are merged into a single partitioned 

and sorted output file. 

 

• The configuration property io.sort.factor controls the maximum number of 

streams to merge at once; the default is 10. 
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• If there are at least three spill files then the combiner is run again before the 

output file is written. 

 

• Compress the map output as it is written to disk, makes it faster to write to 

disk, saves disk space, and reduces the amount of data to transfer to the 

reducer. 

 

• By default, the output is not compressed, but it is easy to enable by setting 

mapred.compress.map.output to true. 

 

• The output file’s partitions are made available to the reducers over HTTP. 

 

• The maximum number of worker threads used to serve the file partitions is 

controlled by the tasktracker.http.threads property. The default of 40 may 

need increasing for large clusters running large jobs. 

Shuffle and sort on Reduce Side 
The map output file is sitting on the local disk of the machine that ran the map 

task. The reduce task needs the map output for its particular partition from 

several map tasks across the cluster. 

 

There are three phases for reducer 1) copy phase 2) sort phase 3) reduce phase. 

1) Copy phase: 
 

• The map tasks may finish at different times, so the reduce task starts 

copying their outputs as soon as each completes. 

 

• The reduce task has a small number of copier threads so that it can fetch 

map outputs in parallel. 

 

• The default is five threads, but this number can be changed by setting 

the mapred.reduce.parallel.copies property. 
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• The map outputs are copied to reduce task JVM’s memory otherwise, 

they are copied to disk. 

 

When the in-memory buffer reaches a threshold size or reaches a 

threshold number of map outputs it is merged and spilled to disk. 

 

• Any map outputs that were compressed have to be decompressed in 

memory in order to perform a merge on them. 

 

• When all the map outputs have been copied, the reduce task moves into 

the sort phase. 

2) Sort phase: 
• In this phase merge the map outputs, maintaining their sort 

ordering. 

 

• This is done in rounds. For example, if there were 50 map outputs, 

and the merge factor was 10, then there would be 5 rounds. Each 

round would merge 10 files into one, so at the end there would be five 

intermediate files. 

 

• These five files into a single sorted file, the merge saves a trip to disk 

by directly feeding the reduce function. This final merge can come 

from a mixture of in-memory and on-disk segments. 

3) Reduce phase: 
• During the reduce phase, the reduce function is invoked for each key 

in the sorted output. 

 

• The output of this phase is written directly to the output filesystem, 

typically HDFS. 

 

• In the case of HDFS, since the tasktracker node is also running a 

datanode, the first block replica will be written to the local disk. 
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5.9 Configuration Tuning 
• Configuration tuning is to tune the shuffle to improve MapReduce 

performance. 

 

• The general principle is to give the shuffle as much memory as possible. 

 

• There is a trade-off, in that you need to make sure that your map and 

reduce functions get enough memory to operate. 

 

• Write map and reduce functions to use as little memory as possible, 

should not use an unbounded amount of memory. 

 

• The amount of memory given to the JVMs in which the map and reduce 

tasks run is set by the mapred.child.java.opts property. 

 

• To make this as large as possible for the amount of memory on your task 

nodes. 

On the map side 
• The best performance can be obtained by avoiding multiple spills to disk; 

one is optimal. 

 

• If you can estimate the size of your map outputs, then you can set the 

io.sort.* properties appropriately to minimize the number of spills. 

 

• There is a MapReduce counter that counts the total number of records 

that were spilled to disk over the course of a job, which can be useful for 

tuning. 
 

• The counter includes both map and reduces side spills. 

On the reduce side 
• The best performance is obtained when the intermediate data can reside 

entirely in memory. 
 

• By default, this does not happen, since for the general case all the memory 

is reserved for the reduce function. 
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• If your reduce function has mapred.inmem.merge.threshold to 0 and a 

performance boost. 

light memory requirements, then setting mapred.job.reduce.input.buffer.percent 

to 1.0 may bring 

 

• Hadoop uses a buffer size of 4 KB by default, which is low, so you should 

increase this across the cluster. 

5.10 MapReduce Types 
The map and reduce functions in Hadoop MapReduce have the following 

general form: 
 

map: (K1, V1) → list(K2, V2) 
 

reduce: (K2, list(V2)) → list(K3, V3) 
 

• The map input key and value types (K1 and V1) are different from the map 

output types (K2 and V2). 

 

• The reduce input must have the same types as the map output, although 

the reduce output types may be different again (K3 and V3). 

The Java API mirrors this general form: 
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { 

 

public class Context extends MapContext<KEYIN, VALUEIN, 
KEYOUT, VALUEOUT> { // ... 

 

} 
 

protected void map(KEYIN key, VALUEIN value, Context 
context) throws IOException, InterruptedException { 

 

// ... 
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} 
 

} 
 
public class Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { 

 

public class Context extends ReducerContext<KEYIN, 
VALUEIN, KEYOUT, VALUEOUT> { // ... 

 

} 
 

protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context 
context) throws 

 

IOException, InterruptedException { 
 

// ... 
} 
} 

 

• The context objects are used for emitting key-value pairs, so they are 

parameterized by the output types, so that the signature of the write() 

method is: 

 

public void write(KEYOUT key, VALUEOUT value) throws IOException, 
InterruptedException 

• Mapper and Reducer are separate classes the type parameters have different 

scopes, and the actual type argument of KEYIN (say) in the Mapper may be 

different to the type of the type parameter of the same name (KEYIN) in the 

Reducer. 

Ex: in the maximum temparature example from earlier chapters, KEYIN is 

replaced by LongWritable for the Mapper, and by Text for the Reducer. 
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• The map output types and the reduce input types must match 

If combiner function is used, then it is the same form as the reduce function 

(and is an implementation of Reducer), except its output types are the 

intermediate key and value types (K2 and V2), so they can feed the reduce 

function: 

 

map: (K1, V1) → list(K2, V2) 
 

combine: (K2, list(V2)) → list(K2, V2) 
 

reduce: (K2, list(V2)) → list(K3, V3) 
• combine and reduce functions are the same, in which case, K3 is the same 

as K2, and V3 is the same as V2. 

 

• The partition function operates on the intermediate key and value types (K2 

and V2), and returns the partition index. 

 

• The partition is determined by the key (the value is ignored): 

 

partition: (K2, V2) → integer 
 

In Java: 
 

public abstract class Partitioner<KEY, VALUE> { 
public abstract int getPartition(KEY key, VALUE value, int 
numPartitions); 

 

} 

5.11 Input Formats 
Hadoop can process many different types of data formats, from flat text files 

to databases. 
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1) Input Splits and Records: 
• An input split is a chunk of the input that is processed by a single map. 

Each map processes a single split. 

 

• Each split is divided into records, and the map processes each record—a 

key-value pair—in turn. 

 

public abstract class InputSplit { 
 

public abstract long getLength() throws IOException, 
InterruptedException; public abstract String[] 
getLocations() throws IOException, InterruptedException; 
} 

FileInputFormat: 
• FileInputFormat is the base class for all implementations of InputFormat 

that use files as their data source. 

 

• It provides two things: a place to define which files are included as the input 

to a job, and an implementation for generating splits for the input files. 

FileInputFormat input paths: 
• The input to a job is specified as a collection of paths, which offers great 

flexibility in constraining the input to a job. 

 

• FileInputFormat offers four static convenience methods for setting a Job’s 

input paths: 

 

 

public static void addInputPath(Job job, Path path) 
 

public static void addInputPaths(Job job, String 
commaSeparatedPaths) 

 

public static void setInputPaths(Job job, Path... inputPaths) 



Big Data 20 

 

IV-II SEMESTER 2018-19 CSE   

 

public static void setInputPaths(Job job, String 
commaSeparatedPaths) 

• The addInputPath() and addInputPaths() methods add a path or paths to the 

list of inputs. 

 

• The setInputPaths() methods set the entire list of paths in one go 

 

• To exclude certain files from the input, you can set a filter using the 

setInputPathFilter() method 

public static void setInputPathFilter(Job job, Class<? extends 
PathFilter> filter) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: InputFormat class hierarchy 
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Paths and filters can be set through configuration properties 

 

Table: Input path and filter properties 
 

 

 

 

 

 

FileInputFormat input splits: 
 

• FileInputFormat splits only large files. Here “large” means larger than an 

HDFS block. The split size is normally the size of an HDFS block. 

 

Table: Properties for controlling split size 
 

 

 

 

 

 

Preventing splitting: 

• There are a couple of ways to ensure that an existing file is not split. 

First way is to increase the minimum split size to be larger than the largest 

file in your system. Second way is to subclass the concrete subclass of 

FileInputFormat that you want to use, to override the isSplitable() method to 

return false. 
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File information in the mapper: 
• A mapper processing a file input split can find information about the split 

by calling the getInputSplit() method on the Mapper’s Context object. 

 

Table: File split properties 
 

 

 

 

 

 

 

Processing a whole file as a record: 
• A related requirement that sometimes crops up is for mappers to have 

access to the full contents of a file. The listing for WholeFileInputFormat 

shows a way of doing this. 

 

Ex : An InputFormat for reading a whole file as a record 

 

public class WholeFileInputFormat extends 
FileInputFormat<NullWritable, BytesWritable> { @Override 
protected boolean isSplitable(JobContext 
context, Path file) { return false; 
} 
 } 

• WholeFileRecordReader is responsible for taking a FileSplit and converting it 

into a single record, with a null key and a value containing the bytes of the 

file. 

2) Text Input 
• Hadoop can process unstructured text. It provide different InputFormat to 

process text. 
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TextInputFormat: 
• TextInputFormat is the default InputFormat. Each record is a line of input. 

 

• The key, a LongWritable, is the byte offset within the file of the beginning of 

the line. 

 

• The value is the contents of the line, excluding any line terminators 

(newline, carriage return), and is packaged as a Text object. 

 

• A file containing the following text: 

On the top of the Crumpetty Tree 
The Quangle Wangle sat, 
But his face you could not see, 
On account of his Beaver Hat. 

is divided into one split of four records. The records are interpreted as the 

following key-value pairs: 

(0, On the top of the Crumpetty Tree) 
(33, The Quangle Wangle sat,) 
(57, But his face you could not see,) 
(89, On account of his Beaver Hat.) 
Fig: Logical records and HDFS blocks for TextInputFormat 
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KeyValueTextInputFormat: 
• TextInputFormat’s keys, being simply the offset within the file, are not 

normally very useful. 

 

• It is common for each line in a file to be a key-value pair, separated by a 

delimiter such as a tab character by default. 

 

• Specify the separator via the 

mapreduce.input.keyvaluelinerecordreader.key.value.separator property. 

 

• Consider the following input file, where → represents a (horizontal) tab 

character: 

 

line1→On the top of the Crumpetty Tree 
 

line2→The Quangle Wangle sat, 
 

line3→But his face you could not see, 
 

line4→On account of his Beaver Hat. 
 

• Like in the TextInputFormat case, the input is in a single split comprising 

four records, although this time the keys are the Text sequences before the 

tab in each line: 

(line1, On the top of the 
Crumpetty Tree) (line2, The 
Quangle Wangle sat,) 
(line3, But his face you 
could not see,) (line4, On 
account of his Beaver Hat.) 
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NLineInputFormat: 
• N refers to the number of lines of input that each mapper receives. 

 

• With N set to one, each mapper receives exactly one line of input. 

mapreduce.input.lineinputformat.linespermap property controls the value of 

N. 

 

Ex: N is two, then each split contains two lines. One mapper will receive the 

first two key-value pairs: 

 

(0, On the top of the 
Crumpetty Tree) (33, The 
Quangle Wangle sat,) 

 

And another mapper will receive the second two key-value pairs: 

 

(57, But his face you 
could not see,) (89, On 
account of his Beaver 
Hat.) 

3) Binary Input: 
• Hadoop MapReduce is not just restricted to processing textual data—it has 

support for binary formats, too. 

 

• SequenceFileInputFormat: Hadoop’s sequence file format stores sequences 

of binary key-value pairs. 

 

• SequenceFileAsTextInputFormat:    SequenceFileAsTextInputFormat    is    

a    variant    of 
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SequenceFileInputFormat that converts the sequence file’s keys and values 

to Text objects. 

 

• SequenceFileAsBinaryInputFormat:   SequenceFileAsBinaryInputFormat   

is   a   variant   of 

 

SequenceFileInputFormat that retrieves the sequence file’s keys and values 

as opaque binary objects. 

4) Multiple Inputs: 
• Although the input to a MapReduce job may consist of multiple input files, 

all of the input is interpreted by a single InputFormat and a single Mapper. 

 

• The MultipleInputs class has an overloaded version of addInputPath() that 

doesn’t take a mapper: public static void addInputPath(Job job, Path 
path, Class<? extends InputFormat> inputFormatClass) 

5.12 Output Formats 
• Hadoop has output data formats that correspond to the input formats 

 

Figure: OutputFormat class hierarchy 
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1) Text Output: 
• The default output format, TextOutputFormat, writes records as lines of 

text. 

 

• Its keys and values may be of any type, since TextOutputFormat turns 

them to strings by calling toString() on them. 

 

• Each key-value pair is separated by a tab character, that may be changed 

using the mapreduce.output.textoutputformat.separator property. 

2) Binary Output 
• SequenceFileOutputFormat: As the name indicates, 

SequenceFileOutputFormat writes sequence files for its output. 

Compression is controlled via the static methods on 

SequenceFileOutputFormat. 

 

• SequenceFileAsBinaryOutputFormat: 
SequenceFileAsBinaryOutputFormat is the counterpart to 
SequenceFileAsBinaryInput Format, and it writes keys and values in raw 

binary format into a SequenceFile container. 

 

• MapFileOutputFormat: MapFileOutputFormat writes MapFiles as output. 

The keys in a MapFile must be added in order, so you need to ensure that 

your reducers emit keys in sorted order. 

 

3) Multiple Outputs: 
 

• FileOutputFormat and its subclasses generate a set of files in the output 

directory. 
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• There is one file per reducer, and files are named by the partition number: 

part-r-00000, partr-00001, etc. 

 

• MapReduce comes with the MultipleOutputs class to do this. 

 

Zero reducers: There are no partitions, as the application needs to run only 

map tasks. 

 

One reducer: It can be convenient to run small jobs to combine the output 

of previous jobs into a single file when the amount of data is small enough 

to be processed. 

 

MultipleOutputs: 
 

• MultipleOutputs allows you to write data to files whose names are derived 

from the output keys and values. 

 

• This allows each reducer (or mapper in a map-only job) to create more than 

a single file. 

 

• File names are of the form name-m-nnnnn for map outputs and name-r-
nnnnn for reduce outputs 

 

• name is an arbitrary name that is set by the program, and nnnnn is an 

integer designating the part number, starting from zero. 

 

• The part number ensures that outputs written from different partitions 

Lazy Output: 
• FileOutputFormat subclasses will create output (part-r-nnnnn) files, even if 

they are empty. 
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• Some applications prefer that empty files not be created, which is where 

LazyOutputFormat helps. 

 

• It is a wrapper output format that ensures that the output file is Output 

Formats created only when the first record is emitted for a given partition. 

 

Database Output: 
 

• The output formats for writing to relational databases and to HBase. 
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UNIT-V 
Assignment-Cum-Tutorial Questions 

SECTION-A 
Objective Questions 
1. Number of mappers is decided by the_____________.   [ ] 

A) Mapper specified by the programmer  C) Input Splits 

B) Available Mapper slots    D) Input Format. 

2. Map Reduce job can be written in_________.    [ ] 

A) Java   C) Pyton 

B) Ruby   D) Any Language which can read from input stream 

3. YARN also called as_________________.     [ ] 

A)MapReduce1 B) MapReduce2 C) MapReduce3 D) None 

4. Expansion of YARN___ Yet Another Resource Navigator   [T/F] 

5. Classic MapReduce frame work also called as______   [ ] 

A)MapReduce1 B) MapReduce2 C) MapReduce3 D) None 

6. Input to every reducer is sorted by________    [ ] 

A) Value   B) key C) Both key-value pair D) key or value 

7. The process of that performs sort and transfers the map outputs to the 

reducers as input is ____________.      [ ] 

A) sort  B) copy  C) shuffle  D) transfer 

8. The default buffer size________.      [ ] 

A) 100MB B)64MB  C)512MB  D)128MB 

9. Processing a whole file as a record by using isSplitable method that return 

false.          [T/F]  

10. Number of copier threads can be changed by setting_____property. 

11.The amount of memory given to the JVM in which the map and reduce tasks 

run is set by the ___________ property.     [ ] 

A) mapred.child.java.opts  C) mapred.child.java.mem 

B) mapred.child.java.jvm  D) None 

12. Spills are written in ___________ fashion.    [ ] 

A) Sequence  B) Round-Robin C) FCFS D) None 
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13. The default input format is      [ ] 

A) binary input format   B) file input format 

C) Text input format    D) None 

14. ____ is the base class for all implementations of inputFormat tha use files as 

their data source.        [ ] 

A) BinaryInputFormat    C) TextInputFormat 

B) FileInputFormat    D) None 

15. Which static convenience method used for setting a job’s input paths. 

A) addInputPaths()  C) setInputPaths()    [ ] 

B) addInputPath()  D) All 

16. Default key value separator in keyValueTextInputFormat is___ [ ] 

A) Tab B) White Space C) New line Character D) None 

17. InNLineInputFormat N Refers to the     [ ] 

A) number of lined of output that each mapper returns. 

B) number of lined of input that each mapper returns. 

C) number of lined of output that each Reducer returns. 

D) number of lined of input that each Reducer returns. 

18. MultipleInputs class has an overload version of____________ that doesn’t take a 

mapper.          [ ] 

A) setInputPath() B) getStart()  C) addInputPath()  D) None 

19. Default output format___________     [ ] 

A) BinaryoutputFormat  C) TextInputFormat 

B) BinaryOutputFormat  D) LazyoutputFormat 

20. ______ format is used for writing relational databases and HBase[ ] 

A) DatabaseInput   C) HBaseInput 

B) DatabaseOuput   D) HBaseOutput 
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SECTION-B 
SUBJECTIVE QUESTIONS 
1. Define shuffle and sort? Why it is required? 

2. Write the general form of map and reduce functions and also writ the JAVA API 

mirrors this general form. 

3. Explain Map side Tuning properties in configuration tuning. 

4. What constitutes progress in MapReduce? Explain 

5. Illustrate reduce side tasks in shuffle and sort 

6. What is input split? How to represent input splits? Which methods are used to 

get location and length of input splits. 

7. Explain how to control split size with example. 

8. Elaborate classic frame work to run a Mapreduce job in Hadoop 

9. Draw and explain inputformat class hierarch 

10. Differentiate TextInputFormat and KeyValueTextInputFormat 

11. List the Reduce-side tuning properties in configuration tuning. 

12. How status updates are propagated through the MapReduce 1 system 

13. Draw and explain outputformat class hierarchy 

14. List the Binary output formats supported by hadoop. 

15. Examine the relationship of streaming and pipes executable to the tasktracker 

and its child. 

 

 



BigData 1 

 

IV.B.Tech-II-Semester 2018-19      CSE 

HIVE 
 

HIVE 
 

Hive is a data warehouse infrastructure tool to process structured data in 

Hadoop. It resides on top of Hadoop to summarize big data, and makes 

querying and analyzing easy. 

 

Initially hive was developed by Jeff Hammerbacher at facebook, later the 

apache software foundation took it up and developed it further as an open 

source under the apache hive. 

 

Hive is not 
 A relational database 

 

 A design for online transaction processing(OLTP) 

 

 A language for real time queries and row level updates 

 

Features of hive 
 It stores schema in a database and processed data into HDFS 

 

 It is designed for OLAP 

 

 It provides SQL type language for querying called HiveQL or HQL 

 

 It is familiar, fast, scalable, and extensible 
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5.1 Hive Shell 
 

The shell is the primary way that we will interact with Hive, by issuing 

commands in HiveQL. HiveQL is Hive’s query language, a dialect of SQL. It is 

heavily influenced by MySQL, so if you are familiar with MySQL you should feel 

at home using Hive. 

  

When starting Hive for the first time, we can check that it is working by 

listing its tables: there should be none. The command must be terminated with 

a semicolon to tell Hive to execute it: Ex: hive> SHOW TABLES; 
OK 

Time taken: 10.425 seconds 

Features of shell 
It is possible to run the hive shell in non-interactive mode. The –f option runs 

the commands in the specified file, ex: script.q, 

 

% hive -f script.q 

 

For short scripts, you can use the -e option to specify the commands inline, in 

which case the final semicolon is not required: 

% hive -e 'SELECT * FROM dummy' 
 

Hive history file=/tmp/tom/hive_job_log_tom_201005042112_1906486281.txt 

 

OK 

 

X 

 

Time taken: 4.734 seconds 
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In both interactive and non-interactive mode, Hive will print information to 

standard error—such as the time taken to run a query, to surpress these 

messages using the –s option it shows only the result of the query. 

% hive -S -e 'SELECT * FROM dummy' 
 

X 

 

Other useful Hive shell features include the ability to run commands on the 

host operating system by using a! Prefix to the command and the ability to 

access Hadoop filesystems using the dfs command 

5.2 Hive Services 
The Hive shell is only one of several services that you can run using the hive 

command. 

You can specify the service to run using the --service option. Type hive –service 

help to get a list of available service names; the most useful are described 

below. 

1. cli 

The command line interface to Hive (the shell). This is the default service. 

2. hiveserver 

Runs Hive as a server exposing a Thrift service, enabling access from a range of 

clients written in different languages. Applications using the Thrift, JDBC, and 

ODBC connectors need to run a Hive server to communicate with Hive. Set the 

HIVE_PORT environment variable to specify the port the server will listen on 

(defaults to 10,000). 

3. hwi 

The Hive Web Interface. 

4. Jar 

The Hive equivalent to hadoop jar, a convenient way to run Java 

applications that includes both Hadoop and Hive classes on the 

classpath. 
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5. metastore 

Using this service, it is possible to run the metastore as a standalone (remote) 

process. 

 

5.3 Hive Clients 
 

Hive as a server (hive --service hiveserver), then there are a number of 

different mechanisms for connecting to it from applications. 

 

The relationship between Hive clients and Hive services is illustrated in 

Figure 

 

 

 

 

 

 

 

 

 

 

Fig: Hive architecture 

 Thrift Client 

 

The Hive Thrift Client makes it easy to run Hive commands from a wide range 

of programming languages. Thrift bindings for Hive are available for C++, Java, 

PHP, Python, and Ruby. 

 JDBC Driver 

Hive provides a Type 4 (pure Java) JDBC driver, defined in the class 

org.apache.hadoop.hive.jdbc.HiveDriver. When configured with a JDBC URI of 
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the form jdbc:hive://host:port/dbname, a Java application will connect to a 

Hive server running in a separate process at the given host and port 

 ODBC Driver 

The Hive ODBC Driver allows applications that support the ODBC protocol to 

connect to Hive. 

5.4 The metastore 
 The metastore is the central repository of Hive metadata. 

 

 The metastore is divided into two pieces: a service and the backing 

store for the data. There are 3 different metastore configurations 

 
1.  Embedded metastore 

 By default, the metastore service runs in the same JVM as the Hive 

service and contains an embedded Derby database instance backed by 

the local disk. This is called the embedded metastore configuration 

 

 a simple way to get started with Hive 

 

 only one embedded Derby database can access the database files on disk 

at any one time, which means you can only have one Hive session 

 

 if we open another session it attempts to open a connection to the 

metastore i.e., trying to start a second session gives the error 

 

Error: Failed to start database 'metastore_db' 
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Figure : Metastore configurations 

2.local metastore 
 To support multiple sessions (and therefore multiple users) is to 

use a standalone database. 
 This configuration is referred to as a local metastore, since the 

metastore service still runs in the same process as the Hive 

service, but connects to a database running in a separate process, 

either on the same machine or on a remote machine. 

3. Remote metastore 
o Where one or more metastore servers run in separate processes to 

the Hive service. 

 

o This brings better manageability and security, since the database 

tier can be completely firewalled off, and the clients no longer need 

the database credentials. 
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5.5 Comparison with traditional databases 

Schema on Read versus Schema on Write 
 In a traditional database, a table’s schema is enforced at data load 

time. 
 Hive does not verify the data when it is loaded but it is verified 

when the query is issued 

 Traditional db takes longer time to load data 

 Schema on read makes for a very fast 

initial load Query time performance: 

 Schema on write makes query time performance faster 

 

 Schema on read makes longer time for query execution 

Transactions: 
Hive doesnot support transactions. 
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Hive does not support updates(or deletes). 

Indexes: 
Release 0.7.0 introduced indexes, which can speed up queries 

Locking: 
Release 0.7.0 introduces table and partitional level locking in hive.  

 Locks are managed transparently by zookeeper. 

5.6 Hive QL 
HiveQL is Hive’s SQL dialect. 

It does not provide the full features of SQL-92 language constructs. 

The main difference between HiveQL and 

SQL are Table : A high-level comparison of 

SQL and HiveQL 
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Data Types 
 

• Hive supports both primitive and complex data types. 

 

• Primitives include 

 

1) numeric 

 

2) boolean 

 

3) string, 

 

4) timestamp 

 

• complex data types include 

 

1) arrays 

 

2) maps 

 

3) structures 
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Operators and Functions 
• Operators 

1) arithmetic 

2) relational 

3) logical 

• Categories of Functions 

1) mathematical 

2) statistical 

3) string 

4) date 

5) conditional 

6) aggregate 

7) Functions working with XML and JSON 

5.7 Tables 
A Hive table is logically made up of the data being stored and the associated 

metadata describing the layout of the data in the table. 

The data typically resides in HDFS, although it may reside in any Hadoop 

filesystem, including the local filesystem or S3. 

Hive stores the metadata in a relational database—and 

not in HDFS, Managed Tables and External Tables 
When you create a table in Hive, by default Hive will manage the data, which 

means that Hive moves the data into its warehouse directory. 
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For example: CREATE TABLE managed_table (dummy STRING); 

 

LOAD DATA INPATH '/user/tom/data.txt' INTO table managed_table; will move 

the file hdfs://user/tom/data.txt into Hive’s warehouse directory for the 

managed_table table, which is hdfs://user/hive/warehouse/managed_table 

 

If the table is later dropped, using: 

 

DROP TABLE managed_table; 

 

then the table, including its metadata and its data, is deleted. 

 

An external table behaves differently. You control the creation and deletion of 

the data. 

 

The location of the external data is specified at table creation time: 

 

CREATE EXTERNAL TABLE external_table (dummy STRING) 

 

LOCATION '/user/tom/external_table'; 

 

LOAD DATA INPATH '/user/tom/data.txt' INTO TABLE external_table; 

 

Partitions and Buckets 
 

Hive organizes tables into partitions, a way of dividing a table into coarse-

grained parts based on the value of a partition column, such as date. Tables or 

partitions may further be subdivided into buckets, to give extra structure to the 

data that may be used for more efficient queries. 

Partitions 
 Hive organizes tables in to partitions. 
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 A way of dividing a table in to related parts based on the value of a 

partition column ex: date, city, dept 

 

 Faster to do queries on slices of the data 

 

 Tables or partitions are sub-divided into buckets , to provide extra 

structure to the data that may be used for more efficient querying 

 

 Bucketing works based on the value of hash function of some 

column of a table. Ex: 

 

A table named Tab1 contains employee data such as id, name, dept, and 

yoj , need to retrieve the details of all employees who joined in 2012. 

 

• A query searches the whole table for the required information. 

 

• if you partition the employee data with the year and store it in a separate 

file, it reduces the query processing time. 

 

The following file contains employee data table. 

/tab1/employeedata/file1 id, name, dept, yoj 

 

1, gopal, TP,2012 

2, kiran,HR,2012 

3, kaleel,SC,2013 

4,Prasanth,SC,20
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The above data is partitioned into two files using year. 

 

/tab1/employeedata/2012/file2/tab1/employeedata/2013/file3 

1, gopal, TP, 2012 3, kaleel,SC, 2013 

 

2, kiran, HR, 2012 4, Prasanth, SC, 2013 

 

Adding a Partition :- 

We can add partitions to a table by altering the 

table hive> ALTER TABLE employee 

 

> ADD PARTITION (year=’2013’) 

 

> location '/2012/part2012'; 

 

Renaming a Partition 
 

hive> ALTER TABLE employee PARTITION (year=’1203’) 

 

> RENAME TO PARTITION (Yoj=’1203’); 

 

Show Partition 
 

hive> show partitions employee; 

 

Dropping a Partition 
 

hive> ALTER TABLE employee DROP [IF EXISTS] 

 

> PARTITION (year=’1203’); 

 

Buckets 
 It is a mechanism to query and examine random samples of data 
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 Break data into a set of buckets based on a hash function of a ―bucket 

column� 

 

 Capability to execute queries on a sub-set of random data 

 

 Doesn’t automatically enforce bucketing 

 

 User is required to specify the number of buckets by 

setting # of reducer Create and use table with Buckets 

 

hive>create table post-count(user String, 

count Int) >clustered by (user) into 5 

buckets; 
 

Use the clustered by clause to specify columns to bucket on and the 

number of buckets. 

Storage Formats 
 

 There are two dimensions that govern table storage in Hive: the row 

format and the file format. The row format dictates how rows, and the 

fields in a particular row, are stored 

 

 The file format dictates the container format for fields in a row. The 

simplest format is a plain text file, but there are row-oriented and 

column-oriented binary formats available,too. 

 

 The default storage format: Delimited text 

 

 When you create a table with no ROW FORMAT or STORED AS clauses, 

the default format is delimited text, with a row per line. 
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 The default row delimiter is not a tab character, but the Control-A 

character from the set of ASCII control codes 

 

 The choice of Control-A, sometimes written as ^A in documentation, 

came about since it is less likely to be a part of the field text than a tab 

character. 

 

The default collection item delimiter is a Control-B character, used to 

delimit items in an ARRAY or STRUCT, or key-value pairs in a MAP. The 

default map key delimiter is a Control-C character, used to delimit the key 

and value in a MAP. Rows in a table are delimited by a newline character. 
 Importing Data 

o INSERT OVERWRITE TABLE 
 a table with data from another Hive table using an INSERT 

statement i.e 

  Example 

 

hive> INSERT OVERWRITE TABLE 

target >SELECT col1, col2 
 

>FROM 

source; 

Another way 
 

Hive> FROM source 

 

>INSERT OVERWRITE TABLE target 

 

>SELECT col1, col2; 

 

• Multitable insert 
 it’s possible to have multiple INSERT clauses in the same query. 
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 multitable insert is more efficient than multiple INSERT statements, 

 

 the source table need only be scanned once to produce the multiple, 

disjoint outputs hive> FROM records2 

 

>INSERT OVERWRITE TABLE 

stations_by_year  

>SELECT year, COUNT(DISTINCT station) 

>GROUP BY year 
 

>INSERT OVERWRITE TABLE 

records_by_year  

>SELECT year, COUNT(1) 

>GROUP BY year 

>INSERT OVERWRITE TABLE 

good_records_by_year  

>SELECT year, COUNT(1) 

>WHERE temperature != 9999 

>AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR 

quality = 9)  

>GROUP BY year; 
 

 There is a single source table (records2), but three tables to hold the 

results from three different queries over the source. 

 

o CREATE TABLE...AS SELECT 
 To store the output of a Hive query in a new table. 

 

 The  new  table’s  column  definitions  are  derived  from the  columns  

retrieved  by the 
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SELECT 

clause 

Example 
 

CREATE TABLE target 

AS 

 

SELECT col1, col2 

 

FROM source; 

 
 Alter TableAlter the attributes of a table such as changing its table 

name, changing column names, adding columns, and deleting or 

replacing columns. 

Syntax 

 

ALTER TABLE name RENAME TO new_name 

 

ALTER TABLE name ADD COLUMNS (col_spec[, col_spec ...]) 

 

ALTER TABLE name DROP [COLUMN] column_name 

 

ALTER TABLE name CHANGE column_name new_name 

new_type ALTER TABLE name REPLACE COLUMNS 

(col_spec[, col_spec ...]) Examples 

 

hive> ALTER TABLE employee RENAME TO emp; 

hive>ALTER TABLE employee ADD COLUMNS (dept 

string); hive>ALTER TABLE employee DROP dept; 

 

hive> ALTER TABLE employee CHANGE name ename 

String; hive> ALTER TABLE employee CHANGE salary 

salary Double; 
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hive> ALTER TABLE employee REPLACE COLUMNS ( eid INT empid Int, 

ename STRING name String); 

 

hive> DROP TABLE IF EXISTS employee; 

 Select Statements 

 

SELECT statement is used to retrieve the data from a table. WHERE 

clause works similar to a condition. It filters the data using the condition 

and gives you a finite result. Syntax: 

 

SELECT [ALL | DISTINCT] select_expr, select_expr, ... 

 

FROM table_reference 

 

[WHERE where_condition] 

 

[GROUP BY col_list] 

 

[HAVING having_condition] 

 

[CLUSTER BY col_list | 

 

[DISTRIBUTE BY col_list] 

 

[SORT BY col_list]] 

 

[LIMIT number]; 
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Examples: 

 

hive> SELECT * FROM employee WHERE 

eid=1205; hive> SELECT * FROM employee 

WHERE 

salary>=40000; 

 

hive> SELECT Id, Name, Dept FROM employee ORDER 

BY DEPT; 

 hive> SELECT Dept,count(*) FROM employee GROUP BY 

DEPT; 

 hive> FROM records2 

 SELECT year, temperature 

 

 DISTRIBUTE BY year 

 SORT BY year ASC, temperature

 DESC;  

hive> SELECT * FROM employee LIMIT 4; 

5.8 querying data 
Sorting and Aggregating 
Sorting data in Hive can be achieved by use of a standard ORDER BY clause, 

but there is a catch. ORDER BY produces a result that is totally sorted, as 

expected, but to do so it sets the number of reducers to one, making it very 

inefficient for large datasets. 

In some cases, you want to control which reducer a particular row goes to, 

typically so you can perform some subsequent aggregation. This is what Hive’s 

DISTRIBUTE BY clause does. Here’s an example to sort the weather dataset by 

year and temperature 

SORT BY produces a sorted file per reducer. 

hive> FROM records2 
> SELECT year, temperature 

> DISTRIBUTE BY year 
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> SORT BY year ASC, temperature 
DESC; 1949 111 1949 78 1950 22 

1950 0 1950 -11 

MapReduce Scripts 
Using an approach like Hadoop Streaming, the TRANSFORM, MAP, and 

REDUCE clauses make it possible to invoke an external script or program from 

Hive. 

Example:  Python script to filter out poor quality weather records 

#!/usr/bin/env python 

import re 

 

import sys 

 

for line in sys.stdin: 

 

(year, temp, q) = line.strip().split() 

 

 

 

if (temp != "9999" and re.match("[01459]", q)): 

 

print "%s\t%s" % (year, temp) 

 

We can use the script as follows: 

 

hive> ADD FILE /path/to/is_good_quality.py; 
 

hive> FROM records2 
 

> SELECT TRANSFORM(year, temperature, quality) 
 

> USING 'is_good_quality.py' 
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> AS year, 
temperature; 1949 

111 1949 78 1950 0 

 

1950 22 

 

1950 -11 

Before running the query, we need to register the script with Hive. This is so 

Hive knows to ship the file to the Hadoop cluster 

 

The query itself streams the year, temperature, and quality fields as a tab-

separated line to the is_good_quality.py script, and parses the tab-separated 

output into year and temperature fields to form the output of the query. 

 

This example has no reducers. If we use a nested form for the query, we can 

specify a map and a reduce function. This time we use the MAP and REDUCE 

keywords, but SELECT TRANSFORM in both cases would have the same 

result. The source for the max_temperature_reduce.py script is shown in 

Example 

FROM 

(FROMrecos

2 

 

MAP year, temperature, 

quality USING 

'is_good_quality.py' 

 

AS year, temperature) 

map_output REDUCE year, 

temperature USING 

'max_temperature_reduce.py' 

AS year, temperature; 
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Views 
 A view is a sort of ―virtual table� that is defined by a SELECT statement. 

 

 Views can be used to present data to users in a different way to the way 

it is actually stored on disk. 

 

 Views may also be used to restrict users access to particular subsets of 

tables that they are authorized to see. 

 

 First create table and then insert data into it 

 

hive> create table posts(id int,name string,sal double) 

 

> row format delimited 

 

> fields terminated by ',' 

 stored as textfile; 

 

 Create View 

 

hive> create view posts_name as 

 

            > select name from posts; 

hive> create view first_id as 

 

          select * from posts whereid=1;      

hive> create view max_sal as 

 

                 select name ,max(sal) from posts; 

             

 Show views 

   



BigData 23 

 

IV.B.Tech-II-Semester 2018-19      CSE 

hive> show tables; 

 Altering views 

 

hive> alter view first_id rename to 1stid; 

 

 Drop a view 

hive> drop view 

1stid; 

Joins 
 

 JOIN is a clause that is used for combining specific fields from two tables 

by using values common to each one. 

 

 used to combine records from two or more tables in the database. 

 

 similar to SQL JOINS. 

 

 There are different types of joins given as follows: 

 

o JOIN 

 

o LEFT OUTER JOIN 

 

o RIGHT OUTER JOIN 

 

o FULL OUTER JOIN 

 

 Can join multiple tables 

 

 Default join Is Inner join 

 

 Rows are joined where the keys match 
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 Rows that do not have matches are not included in the result 

 

The simplest kind of join is the inner join, where each match in the input 

tables results in a row in the output table it is being joined to (things): hive>  

SELECT * FROM sales; 
 

joe  2 

Hank 4 

Ali  0 

Eve 3 

Hank 2 

hive> SELECT * FROM things; 
2 Tie  

4 Coat  

3 Hat  

 1 Scarf 

     hive> SELECT sales.*, things.* 
 

> FROM sales JOIN things ON (sales.id = things.id); 
 

Joe 2 2 Tie 

 

Hank 2 2 Tie 

 

Eve 3 3 Hat 

 

Hank 4 4 Coat 

 
 The table in the FROM clause (sales) is joined with the table in the JOIN 

clause (things), using the predicate in the ON clause 
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 Hive only supports equijoins, which means that only equality can be 

used in the join predicate, which here matches on the id column in both 

tables. 

 

 the row for Ali did not appear in the output, since the ID of the item she 

purchased was not present in the things table 

Left Outer Join 
 

Outer joins allow you to find non matches in the tables being joined. 

 

If we change 

 

the join type to LEFT OUTER JOIN, then the query will return a row for 

every row in the left table (sales), even if there is no corresponding row in 

the table it is being joined to (things): 

 

hive> SELECT * FROM sales; 
 

Joe 2 

Hank 4 

Ali 0 

Eve 3 

Hank 2 

 

hive> SELECT * FROM things; 
 

2 Tie 

 

4 Coat 

 

3 Hat 

1 Scarf 
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The row for Ali is now returned, and the columns from the things table are 

NULL, since there is no match. 

 

i.e Row from the first table are included whether they have a match or not. 

Columns from the unmatched(second) table are set to null. 

Right Outer Join 
 

 Opposite of Left Outer Join, Rows from the second table are included no 

matter what. Columns from the unmatched (first) table are set to null. 

 

 all items from the things table are included, even those that weren’t 

purchased by anyone 

(a scarf): 

hive> SELECT * FROM sales; 
 

Joe 2 

Hank 4 

Ali 0 

Eve 3 

Hank 2 

 

hive> SELECT * FROM things; 
 

2 Tie 

 

4 Coat 

 

3 Hat 

1 Scarf 

We can perform left outer join on the two tables as follows: 

hive> SELECT sales.*, things.* 
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> FROM sales RIGHT OUTER JOIN things ON (sales.id = 
things.id); NULL NULL 1 Scarf 

 

Joe 2 2 Tie 

Han

k 

 2 2 

Tie 

Eve 3 3 Hat 

Hak 4 4 

Coa

t 

Full Outer Join 
 

 Rows from both sides are includes. For unmatched rows the columns 

from the other table are set to null 

 

 In full outer join,  the output has a row for each row from both tables in 

the join: 

 

hive> SELECT * FROM sales; 
Joe 2 

Hank 4 

Ali 0 

Eve 3 

We can perform left outer join on the two tables as follows: 

hive> SELECT sales.*, things.* 
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Ali 

 

Joe 

 

HanEve 

 

       Hank 
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> FROM sales LEFT OUTER JOIN 
 

0 NULL NULL 

 

2 2 Tie 

 

2 2 Tie 

 

3 3 Hat 

 

4 4 Coat 

Subqueries 
 A subquery is a SELECT statement that is embedded in another SQL 

statement. 

 

 Hive has limited support for subqueries 

 

The query finds the mean maximum temperature for every year and weather 

station: 

 

SELECT station, year, AVG(max_temperature) 

 

FROM ( 

 

SELECT station, year, MAX(temperature) AS 

max_temperature FROM records2 

 

WHERE temperature != 9999 

 

AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 

9) 
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GROUP BY station, year 

 

) mt 

GROUP BY station, year; 

 
 The subquery is used to find the maximum temperature for each 

station/date combination, 

 

 the outer query uses the AVG aggregate function to find the average of 

the maximum temperature readings for each station/date combination. 

 

 The outer query accesses the results of the subquery like it does a table, 

which is why the subquery must be given an alias (mt). 

 

 The columns of the subquery have to be given unique names so that the 

outer query can refer to them. 

5.9 User-Defined functions 
 Write the query that can’t be expressed easily using built-in functions. 

 

 Write a User-Defined Function(UDF) . 

 

 Easy to plug in own processing code and invoke it from a Hive Query. 

 

 There are 3 types of UDF in Hive 

1) Regular UDFs 

Operates on a single row and produces a single row as its output. Ex: 

Mathematical and String functions 

 

2) UDAF (User-defined aggregate functions) 

 works on multiple input rows and creates a single output row. 

 

 Aggregate functions include such functions as COUNT and MAX. 
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3) UDTFs (user-defined table-generating functions) 

 operates on a single row and produces multiple rows—a table—as 

output 

5.9 User-Defined functions 
 Write the query that can’t be expressed easily using built-in functions. 

 

 Write a User-Defined Function(UDF) . 

 

 Easy to plug in own processing code and invoke it from a Hive Query. 

 

 There are 3 types of UDF in Hive 

2) Regular UDFs 

Operates on a single row and produces a single row as its output. Ex: 

Mathematical and String functions 

4) UDAF (User-defined aggregate functions) 
o works on multiple input rows and creates a single output row. 

 

o Aggregate functions include such functions as COUNT and MAX. 

 

5) UDTFs (user-defined table-generating functions) 

 operates on a single row and produces multiple rows—a table—as 

output 
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UNIT-VI 
Assignment-Cum-Tutorial Questions 

SECTION-A 
Objective Questions 
1. Which of the following command sets the value of a particular configuration 

variable          [ ] 

A) Set-v B) set <key>=<value> C) set  D) reset 

2. Which of the following operator executes a shell command from the Hive 

shell?          [ ] 

A) |  B) ! C^  D) + 

3. Which of the following will remove the resource(s) from the distributed 

cache?           [ ] 

A) Delete FILE[S] <filepath>* 

B) Delete JAR[S]<filepath>* 

C) Delete ARCHIVE[S]<filepath>* 

D) All 

4. ________ is a shell utility which can be used to run Hive queries in either 

interactive or batch mode.       [ ] 

A) $HIVE/bin/hive 

B) $HIVE_HOME/hive 

C) $HIVE_HOME/bin/hive 

D) All 

5. Which of the following is a command line option?   [ ] 

A) –d,-define <key=value> 

B) –e,-define<key=value> 

C) –f,-define<key=value> 

D) None 

6. Hive uses___________ for logging      [ ] 

A)logj4  B) log41  C) log4i  D) log4j 

7. Hive Server2 introduced in HIVE 0.11 has new CLI called  [ ] 

A) BeeLine B) SQLLine C)HIVELine  D) CLILine 

8. Hcatalog is installed with HIVE, starting with HIVE relase  [ ] 

A) 0.10.0  B) 0.9.0 C)0.11.0  D)0.1.20 
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9. _____ supports a new command shell Beeline that works with HIVE Server2. 

           [ ] 

A) HiveServer2  B) HiveServer3 C) HiveServer4 D) None 

10. In _______ mode HiveServer2 only accepts valid Thrift calls. [ ] 

A) Remote   B) HTTP C) Embedded D) Interactive 

11. Hive specific commands can be run from Beeline, When the Hive _____ 

driver is used.         [ ] 

A) ODBC  B) JDBC C) ODBC-JDBC D) ALL 

12. The ___ allow users to read or write Avro data s Hive Table [ ] 

A) AvroSerde B) HiveSerde C) SQLSerde D) None 

13. Starting in Hive_____ the Avro schema can be inferred from the hive table 

schema.          [ ] 

A) 0.14  B) 0.12  C) 0.13  D) 0.11 

14. Which of the following data type is supported by HIVE  [ ] 

A) map  B) record  C) string  D) enum 

15. which of the following data type is converted to Array prior to Hive 0.12.0 

           [ ] 

A) map  B) long  C) float  D) bytes 

16.Avro-backed tables can simply be created by using _________ in a DDL 

statement.         [ ] 

A) “STORED AS AVERO”  C. –STORED AS AVROHIVE 

B) –STORED AS HIVE  D. –STORED AS SERED 

17. Types that may be null must be defined as a ___________ of that type and 

NULL within AVRO.        [ ] 

A) Union  B) intersection C) Set  D) All 

18. use_____ and embed the schema in the create statement  [ ] 

A) schema.literal B) schema.lit C) row.literal D) All 

19. Serialization of string columns uses a____ to form unique column values. 

A) Footer  B) STRIPES  C) Dictionary D) Index 

20. Hive uses________ -Style escaping within the strings  [ ] 

A) C  B) JAVA  C) python D) Scala 
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SECTION-B 
 

SUBJECTIVE QUESTIONS 
1. What is hive? List the features of hive? 

2. List out hive Services 

3. What is metastore? What are different types of metastores? 

4. What are megastore configuration properties? 

5. Comapre the SQL and HIVEQL 

6. List out Hive Data Types? 

7. Explain about partitions and buckets? 

8. Outline about Querying Data? 

9. What are user-defined functions? 

10. Explain joins? 

11. Explain about HIVEQL in Hadoop System 

12. Illustrate the HIVE Shell? 

13. Describe about the tables in HIVE. 

14. Explain about HIVE architecture? 

15. Compare HIVE with traditional database? 

16. Elaborate on HIVE QL data manipulation and queries in details 

17. Discuss about the relationship between HIVE clients and HIVE Services 

with a neat diagram? 

18. Explain in detail about Map side and Reduce Side joins. 
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