
1 Big Data

IV-II SEMESTER 2019-20

CSE

GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru– 521 356.

Department of Computer Science and Engineering

HANDOUT

on

BIG DATA

2 Big Data

IV-II SEMESTER 2019-20

CSE

Vision

To be a center of excellence in Computer Science and Engineering education and

training to meet the challenging needs of the industry and society.

Mission

 To impart quality education through well-designed curriculum in tune with the

growing software needs of the industry.

 To serve our students by inculcating in them problem solving, leadership,

teamwork skills and the value of commitment to quality, ethical behavior &

respect for others.

 To foster industry-academia relationship for mutual benefit and growth

 Program Educational Objectives

 PEO1: Identify, analyze, formulate and solve Computer Science and

Engineering problems both independently and in a team environment by using the

appropriate modern tools.

PEO2: Manage software projects with significant technical, legal, ethical, social,

environmental and economic considerations

PEO3: Demonstrate commitment and progress in lifelong learning, professional

development, leadership and Communicate effectively with professional clients

and the public.

3 Big Data

IV-II SEMESTER 2019-20

CSE

HANDOUT ON BIGDATA

Class & Sem. : IV B.Tech–II Semester Year : 2019-20

Branch : CSE Credits : 3

== ==

1. Brief History and Scope of the Subject

Hadoop is an open -source software framework for distributed storage and large -scale

processing of data -sets on clusters of commodity hardware.

 In 2004 Google publishes Google File System (GFS) and MapReduce

framework papers.2005 Doug Cutting and Nutch team implemented Google’s

frameworks in Nutch 2006 Yahoo hires Doug Cutting to work on Hadoop with

dedicated team

2008 Hadoop became Apache Top Level Project. The core of Apache Hadoop consists of a

storage part, known as Hadoop Distributed File System (HDFS), and a processing part

called MapReduce. Hadoop splits files into large blocks and distributes them across no des

in a cluster. To process data, Hadoop transfers packaged code for nodes to process in

parallel based on the data that needs to be processed.

The base Apache Hadoop framework is compo sed of the following modules:

 Hadoop Common– contains libraries and utilities needed by other Hadoop

modules;

 Hadoop Distributed File System (HDFS)– a distributed file -system that stores data

o n commodity machines, providing very high aggregate bandwidth across the

cluster.

 Hadoop YARN–a resource -management platform responsible for managing

computing resources in clusters and using them for scheduling of users' applications;

 Hadoop MapReduce – an implementation of the MapReduce programming model for

large scale data processing.

4 Big Data

IV-II SEMESTER 2019-20

CSE

The term Hadoop has come to refer not just to the base modules above, but also to the

ecosystem, or collection of additional software packages that can be installed on top of or

alongside Hadoop, such as Apache Pig, Apache Hive,

Apache HBase, Apache Phoenix, Apache Spark, Apache Zookeeper, Cloudera Impala,

Apache Flume, Apache Sqoop, Apache Oozie, Apache Storm. The Hadoop framework

itself is mostly written in the Java programming language, with some native code in

C and command line utilities written as shell scripts.

Big data is the term for a collection of data sets so large and complex that it becomes

difficult to store and process using on-hand database management tools or traditional

data processing applications.

Technologies Supported by Big Data

 Column-oriented databases, Schema-less databases, or NoSQL databases, MapReduce,

this is a programming paradigm. Hadoop open source platform for handling Big Data.

 Hive is a "SQL-like" bridge that allows conventional BI applications to run queries

against a Hadoop cluster. PIG is another bridge that tries to bring Hadoop closer to the

realities of developers and business users, similar to Hive. Unlike Hive, however,

PIG consists of a "Perl-like" language that allows for query execution over data stored

on a Hadoop cluster, instead of a "SQL -like" language.

Storage Technologies

 Big Data in the cloud

 Big Data and cloud computing go hand-in-hand. Cloud computing enable s

companies of all sizes to get more value from their data than ever before, by enabling

blazing -fast analytics at a fraction of previous costs. This, in turn drives companies to

acquire and store even more data, creating more need for processing power and driving

a virtuous circle.

Pre-Requisites

Students should have Basic knowledge of JAVA, Python, Linux and SQL

5 Big Data

IV-II SEMESTER 2019-20

CSE

2. Course Objectives:

 To familiarize the fundamental concepts of cloud for laying a strong foundation

of Apache Hadoop (Big data framework).

 To gain knowledge of HDF file system, MapReduce frameworks and relevant

tools.

3. Course Outcomes:

Student will be able to

CO1: Describe the fundamentals of Big cloud and data architectures

CO2: Use HDFS file structure and MapReduce frameworks to solve complex problems

CO3: Know how to analyze data using Unix tools and Hadoop

CO4: Understand how to develop environment for analyzing Bigdata

CO5: Understand how to use mapper and reducer functions

CO6: Access the database in a Hadoop environment using Hive

4. Program Outcomes

Graduates of the Computer Science and Engineering Program will have ability to

Engineering graduate will be able to

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and engg. specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, research literature, and analyze engineering

problems to arrive at substantiated conclusions using first principles of

mathematics, natural, and engineering sciences.

3. Design/ development of solutions: Design solutions for complex engineering

problems and design system components, processes to meet the specifications with

consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge

including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

6 Big Data

IV-II SEMESTER 2019-20

CSE

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge

to assess societal, health, safety, legal, and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development

8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member

or leader in teams, and in multidisciplinary settings.

10. Communication: Communicate effectively with the engineering community

 and with society at large. Be able to comprehend and write effective reports

documentation. Make effective presentations, and give and receive clear

instructions.

11. Project management and finance: Demonstrate knowledge and

understanding of engineering and management principles and apply these to one’s

own work, as a member and leader in a team. Manage projects in multidisciplinary

environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of

technological change.

7 Big Data

IV-II SEMESTER 2019-20

CSE

6. Mapping of Course Outcomes with Program Outcomes:

 1 2 3 4 5 6 7 8 9 10 11 12

CO1 3 2

CO2 2 2 3 3

CO3 1 2 2

CO4 3 2 3

CO5 2 2 3 2 2

CO6 1 2 2 3

 3- High Level Mapping 2- Medium Level Mapping 1-Low Level Mapping

7. Prescribed Text Books

1. Tom White, Hadoop, “The Definitive Guide”, 3rd. Edition, O’Reilly

Publications, 2012.

2. DrikdeRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch,

“Understanding Big Data Analytics for Enterprise Class Hadoop and Streaming

Data”,1st Edition, TMH,2012.

8. Reference Text Books

1. Frank J.Ohlhorst,“Big Data Analystics:Turning Big Data Into Big Money”,2Nd

Edition, TMH, 2012.

9. URLs and Other E -Learning Resources

a. Hadoop: http:/ / hadoop.apache.org/

b. https://drive.google.com/drive/folders/1CSiyqbRvT65XZ309CJiVxJBrrZHfgcqC

Digital Learning Materials

http://www.dataversity.net/category/data-topics/big-data

https://drive.google.com/drive/folders/1CSiyqbRvT65XZ309CJiVxJBrrZHfgcqC

8 Big Data

IV-II SEMESTER 2019-20

CSE

10 Lecture Schedule / Lesson Plan

Topics Theory

What is Bigdata, Why Bigdata is Important 2

Meet Hadoop – Data 2

Data Storage and Analysis 1

Comparison with other systems 1

Grid Computing 1

A brief history of Hadoop 1

Apache Hadoop and the Hadoop Eco System 1

 9

UNIT –II: MapReduce

Analyzing data with UNIX tools 1

Analyzing data with Hadoop 1

Java MapReduce classes (new API) 2

Data flow 2

Combiner functions 2

Running a distributed MapReduce Job 1

 9

HDFS concepts 1

Command line interface to HDFS 1

Hadoop File systems 1

Interfaces, Java Interface to Hadoop 1

Anatomy of a file read 2

Anatomy of a file write 2

Replica placement and Coherency Model 1

Parallel copying with distcp 1

Keeping an HDFS cluster balanced 1

 9

Setting up the development environment 1

Managing the configuration 2

Writing a unit test with MRUnit 2

Running a job in local job runner 2

9 Big Data

IV-II SEMESTER 2019-20

CSE

Running on a cluster 1

Launching a job 1

The MapReduce WebUI 1

 8

Classic MapReduce 2

Job submission, Job Initialization 2

Task Assignment, Task execution 1

Process and status updates 1

Job Completion 1

Shuffle and sort on Map and reducer side 1

Configuration tuning 1

MapReduce types 1

Input formats 1

Output formats 1

 10

Hive 1

The Hive Shell, Hive services 1

Hive clients 1

The meta store 1

Comparison with traditional databases 1

Hive QL 2

Tables 1

Querying data 1

User defined functions 1

 10

Total No.of Periods: 62

10 Big Data

IV-II SEMESTER 2019-20

CSE

1.1 What is Big Data

to Big Data

Definition:

 Big Data is often described as extremely large data sets that have grown beyond

the ability to manage and analyze them with traditional data processing tools.

The data set has grown so large that it is difficult to manage and even harder to

garner value out of it.

 The primary difficulties are the acquisition, storage, searching, sharing, analytics,

and visualization of data. Not only the size of the data set but also difficult to

process the data

The data come from everywhere: Sensors used to gather climate information, posts

to social media sites, digital pictures and videos posted online, transaction records of

online purchases, and cell phone GPS signals etc. All of these data have intrinsic value

that can be extracted using analytics, algorithms, and other technique

Characteristics of Big Data

Three characteristics define Big Data: volume, variety, and velocity

Fig1: Big Data Characteristics

11 Big Data

IV-II SEMESTER 2019-20

CSE

Volume: The amount of data

The size of available data has been growing at an increasing rate. The volume of data is

growing. Experts predict that the volume of data in the world will grow to 35 Zetta

bytes in 2020.

 Twitter alone generates more than 7 terabytes (TB) of data every day. Facebook 10TB

 That same phenomenon affects every business – their data is growing at the same

exponential rate too.

 This applies to companies and to individuals. A text file is a few kilo bytes, a sound

file is a few meg bytes while a full-length movie is a few giga bytes. More sources of

data are added on continuous basis.

 For companies, in the old days, all data was generated internally by employees.

Currently, the data is generated by employees, partners and customers.

 For a group of companies, the data is also generated by machines. For example,

Hundreds millions of smart phones send a variety of information to the

network infrastructure.

 We store everything: Environmental data, financial data, medical data, surveillance

data. Petabyte datasets are common these days and Exabyte is not far away.

Velocity: How fast it is generated

 Data is increasingly accelerating the velocity at which it is created and at which it is

integrated We have moved from batch to a real-time business.

 Initially, companies analyzed data using a batch process. One takes a chunk of data,

submits a job to the server and waits for delivery of the result. That scheme works

when the incoming data rate is slower than the batch -processing rate and when the

result is useful despite the delay.

 With the new sources of data such as social and mobile applications, the batch process breaks

down. The data is now streaming into the server in real time, in a continuous fashion and the

result is only useful if the delay is very short.

12 Big Data

IV-II SEMESTER 2019-20

CSE

Variety: Represents all kinds of data

Data can be classified under several categories: structured data, semi structured data

and unstructured data.

Structured data are normally found in traditional databases (SQL or others) where

d a t a a r e organized into tables based on defined business rules. Structured

data usually prove to be the easiest type of data to work with, simply because the data are

defined and indexed, making access and filtering easier.

Unstructured data, are not organized into tables and cannot be natively used by

applications or interpreted by a database. A good example of unstructured data would

be a collection of binary image files.

Semi structured data fall between unstructured and structured data. Semi

structured data do not have a formal structure like a database with tables and

relationships. However, unlike unstructured data, semi structured data have tags or other

markers to separate the elements and provide a hierarchy of records and fields, which

define the data.

 Big data extend beyond structured data to include unstructured data off all

varieties: text, audio, video, click streams, log files and more.

 The growth in data sources has fueled the growth in data types. In fact, 80% of the

world’s data is unstructured and only 20% structured data Yet most traditional

methods apply analytics only to structured information.

1.2 Why Big Data is Important

 Big Data solutions are ideal for analyzing not only raw structured data, but semi

structured and unstructured data from a wide variety of sources.

 Big Data solutions are ideal when all, or most, of the data needs to be analyzed

versus a sample of the data; or a sampling of data isn’t nearly as effective as a

larger set of data from which to derive analysis.

 Big Data solutions are ideal for iterative and exploratory analysis when business

measures on data are not predetermined.

13 Big Data

IV-II SEMESTER 2019-20

CSE

 Big Data is well suited for solving information challenges that don’t natively fit

within a traditional relational database approach for handling the problem at

hand.

 Big Data has already proved its importance and value in several areas. Organizations

such as the National Oceanic and Atmospheric Administration (NOAA), the National

Aeronautics and Space Administration (NASA), several pharmaceutical companies,

and numerous energy companies have amassed huge amounts of data and now leverage

Big Data technologies on a daily basis to extract value from them.

NOAA uses Big Data approaches to aid in climate, ecosystem, weather, and

commercial research,

 NASA uses Big Data for aeronautical and another research.

 Pharmaceutical companies and energy companies have leveraged Big Data for more

tangible results. such as drug testing and geophysical analysis.

 The New York Times has used Big Data tools for text analysis and Web mining

 Walt Disney Company uses them to correlate and understand customer behavior in

all of its stores, theme parks.

 Companies such as Facebook, Amazon, and Google rely on Big Data analytics a

part of their primary marketing schemes as well as a means of servicing their

customers better.

 This accomplished by storing each customer’s searches and purchases and other

piece of information av aimable, and then applying algorithms to that information

to compare one customer’s information with all other customers information.

 Big Data plays another role in today’s businesses: Large organizations increasingly

face the need to maintain massive amounts of structured and unstructured data —

from transaction information in data warehouses to employee tweets, from supplier

records to regulatory filings —to comply with government regulations.

14 Big Data

IV-II SEMESTER 2019-20

CSE

1.3 Meet Hadoop - data

Data:

Every day zeta bytes or peta bytes of data is generated by People and machines.

Fig2: sizes of data

If the amount of data is more than hundreds of terabytes then such a data is called as

big data.

Data generated by People:

1.Through individual interactions -

- Phone calls- emails- documents

2.Through social media

-twitter-Facebook-what sup etc.

3. Data generated by Machines:

-RFID readers-Sensor networks -Vehicle GPS traces-Machine logs

1.4 Data Storage and Analysis

Problem:

 Struggling with storage and analysis of the data.

 Even though the storage capacities of hard drives have increased massively over the

years, access speeds (the rate at which data can be read from drives)

 Take long time to read all data on a single drive —and writing is even slower.

 The obvious way to reduce the time is to read from multiple disks at once. Ex: if we had

100 drives, each holding one hundredth of the data. Working in parallel, we could read

the data in under two minutes.

 Even though read and write data in parallel to or from multiple disks , there are

some more problems.

15 Big Data

IV-II SEMESTER 2019-20

CSE

First Problem: Hardware failure

As soon as you start using many pieces of hardware, the chance that one will fail is

fairly high. A common way of avoiding data loss is through

replication: redundant copies of the data are kept by the system so that in the event of

failure, there is another copy available. This is how RAID (redundant array of

inexpensive disks) works.

Second problem: most analysis tasks need to be able to combine the data in some way;

i.e. data read from one disk may need to be combined with the data from any of the other 99

disks.

Solution for above problems:

 Building distributed systems —for data storage, data analysis, and coordination.

 Hadoop provides: a reliable shared storage and analysis system. The storage is provided by

HDFS and analysis by MapReduce.

 1.HDFS - Hadoop Distributed File System.

 It avoids data loss is through replication. Minimum of three replicas for the data.

 2.MapReduce - Programming model. It abstracts the problem from disk reads and writes,

transforming it into a computation over sets of keys and values

1.5 Comparison with other systems

 The approach taken by MapReduce may seem like a brute -force approach on the entire

dataset —or at least a good portion of it —is processed for each query.

 MapReduce is a batch query processor, and the ability to run an adhoc query against

the whole dataset and get the results in a reasonable time is transformative.

 It changes the way you think about data, and unlocks data that was previously

archived on tape or disk.

 Why can’t we use databases with lots of disks to do large-scale batch analysis? Why

is MapReduce needed? MapReduce can be seen as a complement to an RDBMS. The

differences between the two systems are shown in Table

16 Big Data

IV-II SEMESTER 2019-20

CSE

Fig3: Comparison between RDBMS & MapReduce

 MapReduce is a good fit for problems that need to analyze the whole dataset, in a batch

fashion, particularly for adhoc analysis. RDBMS is good for point queries or updates,

where the dataset has been indexed to deliver low -latency retrieval and update times

of a relatively small amount of data.

 MapReduce suits applications where the data is written once, and read many times.

Relational database is good for datasets that are continually updated.

 Another difference is the amount of structure in the datasets that they operate on

RDBMS operate on Structured data is data that is organized into entities that have a

defined format, such as XML documents or database tables that conform to a

particular predefined schema. Map Reduce operate on Semi - structured and

Unstructured data. In Se mi -structured data there may be a schema, it is often

ignored, so it may be used only as a guide to the structure of the data

 Ex: Spreadsheet, in which the structure is the grid of cells, although the cells

themselves may hold any form of data. Unstructured data does not have any particular

internal structure

Ex: plain text or image data. MapReduce works well on unstructured or semi -

structured data, since it is designed to interpret the data at processing time.

 Relational data is normalized to retain its integrity(assurance of accuracy) and

remove redundancy.

17 Big Data

IV-II SEMESTER 2019-20

CSE

Normalization poses problems for MapReduce, since it makes reading a record a nonlocal

operation, and one of the central assumptions that MapReduce makes is t h at it is possible to

perform (high -speed) streaming reads and writes.

 Ex: Web server log is a good example of a set of records that is not normalized.

The client hostnames are specified in full each time, even though the same client may

appear many times and this is one reason that logfiles of all kinds are particularly well

-suited to analysis with MapReduce.

 MapReduce is a linearly scalable programming model. The programmer writes

two functions —a map function and a reduce

function —each of which defines a mapping from one set of key -value pairs to

another.

 These functions are unmind to the size of the data or the cluster that they are

operating on, so they can be used unchanged for a small dataset and for a massive

one.

 if you double the size of the input data, a job will run twice as slow. But if you also

double the size of the cluster, a job will run as fast as the original one. This is not

generally true of SQL queries.

1.6 Grid Computing

Grid computing

 The H PC and Grid computing doing large scale data processing using APIs as

Message Passing Interface (MPI)The approach of HPC is to distribute the work

across a cluster of machines Which access shared files system Hosted by a Storage

Area Network (SAN) Works well for compute intensive jobs

 It faces problem when nodes need to access larger data volumes i.e. hundreds of

giga bytes. Reason is the network bandwidth is the bottleneck and computer

nodes become idle. (At this point Hadoop starts shines)

 MapReduce tries to collocate the data with the compute node, so data access is fast

since it is local. This feature, known as data locality, is at the heart of MapReduce

and is the reason n for its good performance.

 Network bandwidth is more precious resource in the data center

environment (easy to saturate network links by copying data around)

 Hadoop models its network topology by consuming bandwidth as less as possible.

It does not prevent high –CPU analysis in Hadoop.

18 Big Data

IV-II SEMESTER 2019-20

CSE

1) MPI gives great control to the programmer, but requires that explicitly handle the

mechanics of the

-- data flow

-- exposed via low -level C routines

-- constructs, such as sockets

-- the higher -level algorithm for the analysis.

MapReduce operates only at the higher level: the programmer thinks in terms of

functions of key and value pairs, and the data flow is implicit.

2) Coordinating the processes in a large -scale distributed computation is a challenge.

The hardest aspect is gracefully handling partial failure—you don’t know if a remote

process has failed or not.

MapReduce spares the programmer from having to think about failure, since the

implementation detects failed map or reduce tasks and reschedules replacements on m

machines that are healthy.

MapReduce is able to do this since it is a shared -nothing architecture, meaning that

tasks have no dependence on one other.

(This is a slight oversimplification, since the output from mappers is fed to the reducers,

but this is under the control of the MapReduce system; it needs to take more care

rerunning a failed reducer than rerunning a failed map, it has to make sure it can

retrieve the

necessary map outputs, and if not, regenerate them by running the relevant maps again.)

 So from the programmer’s point of view, the order in which the tasks run doesn’t

matter.

By contrast, MPI programs have to explicitly manage their own check pointing and

recovery, which gives more control to the programmer, but makes them more difficult to

write.

 MapReduce is a restrictive programming model, and in a sense, it is: limited to

key and value types that are related in specified ways, and mappers and reducers

run with very limited coordination between one another.

 MapReduce was invented by engineers at Google It was inspired by older ideas

from the functional programming, distributed computing, and database

communities.

19 Big Data

IV-II SEMESTER 2019-20

CSE

 Many applications in many industries use MR . It is pleasantly surprising to see the

range of algorithms that can be expressed in MapReduce, from image analysis, to

graph -based problems, to machine learning algorithms.

 It can’t solve every problem, but it is a general data-processing tool.

Volunteer Computing

 Volunteer computing is one in which volunteers donate CPU time from their

idle computers to analyze data.

 Volunteer computing projects work by breaking the problem they are trying

to solve in to chunks called work unit.

 Work units are sent to computers around the world to be analyzed.

Ex: SETI (the Search for Extra -Terrestrial Intelligence) runs a project

SETI@home in which volunteers donate CPU time from their idle computers to

analyze radio telescope data for signs of intelligent life outside earth. In SETI@home

work unit is about 0.35 MB of radio telescope data, and takes hours or days to

analyze on a typical home computer.

When the analysis is completed, the results are sent back to the server, and the client

gets another work unit.

 As a precaution to combat cheating, each work unit is sent to three different

machines and needs at least two results to agree to be accepted.

 SETI@home may be superficially similar to MapReduce (breaking a problem into

independent pieces to be worked on in parallel).

 The difference is SETI@home problem is very CPU -intensive, which makes it

suitable for running on hundreds of thousands of computers across the world.

 The time to transfer the work unit is very small by the time to run the

computation on it. Volunteers are donating CPU cycles, not bandwidth.

 MapReduce is designed to run jobs that last minutes or hours on trusted,

dedicated hardware running in a single data center with very high aggregate

bandwidth interconnects.

 By contrast, SETI@home perform computation on untrusted machines on the

Internet with highly variable connection speeds and no data locality.

20 Big Data

IV-II SEMESTER 2019-20

CSE

1.7 A brief history of Hadoop

Apache Hadoop is an open -source software framework for storage and large -scale

processing of data -sets on clusters of commodity hardware.

 it gives companies the capability to gather, store and analyze huge sets of data.

Some of the characteristics:

 Open source

 Distributed processing

 Distributed storage

 Scalable

 Reliable

 Fault -tolerant

 Economical

 Flexible

Originally built as a Infrastructure for the “Nutch” project. Based on Google’s map reduce

and Google File System. Created by Doug Cutting in 2005 at Yahoo Named after his son’s

toy yellow elephant Written in Java.

Fig 4: History of Hadoop

21 Big Data

IV-II SEMESTER 2019-20

CSE

2002 – Nutch an open source web search engine started. This architecture wouldn’t scale to the

billions of pages on the Web.

2003 – Google published a paper that describes the architecture of Google’s distributed

filesystem, called GFS, which was being used in production at Google, would solve their

storage needs for the very large files generated as a part of the web crawl and indexing

process.

2004–writing an open source implementation, the Nutch Distributed Filesystem (NDFS).

In the same year Google published the paper that introduced MapReduce to the world.

Early 2005 - the Nutch developers had a working MapReduce implementation in Nutch,

and by the middle of that year all the major Nutch algorithms had been ported to run using

MapReduce and NDFS.

2006 - Nutch to form an independent sub project of Lucene called Hadoop. At around the

same time, Doug Cutting joined Yahoo!, which provided a dedicated team and the resources

to turn Hadoop into a system that ran at web scale.

2008-Yahoo! Announced that its productionsearch index was being generated by a 10,000

-core Hadoop cluster. January 2008, Hadoop was made its own top -level project at Apache.

April 2008 - Hadoop broke a world record to become the fastest system to sort a terabyte of data.

Running on a 910 -node cluster, Hadoop sorted one terabyte in 209 seconds (just under 3½

minutes), beating the previous year’s winner of 297 seconds.

November 2008 - Google reported that its MapReduce implementation sorted one terabyte in 68

seconds.

May 2009 - A team at Yahoo! used Hadoop to sort one terabyte in 62 seconds. Hadoop’s is a

general -purpose storage and analysis platform for big data.

Hadoop used by many companies Last.fm, Facebook and New York Times etc., Hadoop

distributions from the large, established enterprise vendors EMC, IBM, Microsoft, and Oracle.

Specialist Hadoop companies are Cloudera, Hortonworks and MapReduce

Apache Hadoop and the Hadoop Eco System

The term ecosystem is also used for a family of related projects that fall under the umbrella

of infrastructure for distributed computing and largescale data processing.

All of the core projects are hosted by the Apache Software Foundation, which provides

support for a community of open source software projects, including the original HTTP

Server from which it gets its name.

22 Big Data

IV-II SEMESTER 2019-20

CSE

Hadoop ecosystem grows, more projects are appearing, not necessarily hosted at Apache,

which provide complementary services to Hadoop, or build on the core to add higher -

level abstractions.

The Hadoop projects

1.Common

A set of components and interfaces for distributed filesystems and general I/ O

(serialization, Java RPC, persistent data structures).

Avro A serialization system for efficient, cross -language RPC, and persistent data storage.

2.MapReduce

A distributed data processing model and execution environment that runs on large clusters

of commodity machines

3.HDFS

A distributed filesystem that runs on large clusters of commodity machines.

4.Pig

A data flow language and execution environment for exploring very large

datasets. Pig runs on HDFS and MapReduce clusters.

 5.Hive

A distributed data warehouse. Hive manages data stored in HDFS and provides a query

language based on SQL (and which is translated by the runtime engine to MapReduce

jobs) for querying the data.

6.HBase

A distributed, column -oriented database. HBase uses HDFS for its underlying storage,

and supports both batch -style computations using MapReduce and point queries (random

reads).

7.ZooKeeper

A distributed, highly available coordination service. ZooKeeper provides

primitives such as distributed locks that can be used for building distributed applications.

8.Sqoop

A tool for efficiently moving data between relational databases and HDFS. Hadoop

Releases

23 Big Data

IV-II SEMESTER 2019-20

CSE

24 Big Data

IV-II SEMESTER 2019-20

CSE

UNIT -I

Assignment -Cum -Tutori al Questions

SECTION -A

Objective Questions

1. The amount of data generated by machines will be greater than generated by people

through []

i) Machine logs, RFID readers iii) Sensor networks

ii) Vehicle GPS traces iv) Retails transactions

A) i and ii B) ii and iii C) iii and iv D) All

2. Which of the following is distributed data warehouse []

A) Hive B) Pig C) HBasse D) ZooKepper

3. HDFS is []

A) Hardware Distributed File System C) Adobe Distributed File System

B) Hardware Distributed Filter System D) Adobe Distributed Filter System

4. Map Reduce Provides Model []

A) Storage B) Application C) Programming D) None .

5. Hadoop provides a reliable shared storage and analysis system [True/ False]

6. Map Reduce is a _ []

A) Batch query Processing C) Multilevel query Processing

B) Sequential query Processing D) Interactive query Processing

7. The difference between Map Reduce and RDBMS is_____________________.

8. Map Reduce Works well on []

A) Unstructured data C) Structured Data

B) Semi -Structured data D) Both A & B

25 Big Data

IV-II SEMESTER 2019-20

CSE

9. Big Data is well suited for solving information challenges that don’t natively fit with

in a traditional relational database approach for handling the

problem at hand. [True / False]

10. What does commodity Hardware in Hadoop Would mean []

A) Very cheap Hardware C) Industry Standard Hardware

B) Discard Hardware D) Low Specifications Industry Grade Hardware

11. The Type of data Hadoop can deal with is []

A) Structured B) Semi -Structured C) Unstructured D) None

12. What is are true about HDFS []

A) HDFS filesystem can be mounted on a local client’s Filesystem using NFS.

B) HDFS filesystem can never be mounted on a local client’s Filesystem.

C) You can edit an existing record in HDFS file which is already mounted using

NFS.

D) You cannot append to a HDFS file which is mounted using NFS.

13. Data locality feature in Hadoop means__________________ []

A) Collect Data Within the computed node

B) Collect data in data node

C) Collect data from main memory

D) None

14. BI(Business Intelligence) is a broad Category of Analytics__________________ Tools

that help companies make sense of their structured and unstructured data for the

purpose of making better business decisions. []

A) Data Mining B) Dash Boards C) Reporting D) All

15. Which of the following are not Big Data Problems? []

A) Parsing 5MB XML file every 5 Minutes

B) Processing IPL Tweet Sentiments

C) Processing online bank transactions

26 Big Data

IV-II SEMESTER 2019-20

CSE

D) Both A & C

27 Big Data

IV-II SEMESTER 2019-20

CSE

16. Which of the following are examples of Real Time Big Data Processing?

A) Complex Event Processing (CEP) platforms.

B) Stock market data analysis.

C) Bank Fraud Transactions Detection D) Both A & C.

17. What does “Velocity” in Big Data meant []

A)Speed of input data generation

B) Speed of individual machine processors C)Speed

only storing data

D)Speed of storing and processing data

18. The term Big Data first originated from []

A) Stock Markets Domain C) Genomics and Astronomy Domain

B) Banking and finance Domain D) Social Media Domain

19. Which of the following Batch Processing instances is NOT an Example of Big Data

Batch Processing []

A) Processing 10 GB sales data every 6 hours

B) Processing flights Sensor Data.

C) Web Crawling App.

D) Trending topic analysis of tweets for last 15 minutes.

20. Which of the following are the core components of Hadoop? []

A) HDFS B) Map Reduce C) HBase D) Both A & B

 21.Match the Following.

I)Volume [] a) different data formats

II)Velocity [] b)rate at which data grows

III)Variety [] c)uncertainty of available data

IV)Veracity [] d)amount of data

28 Big Data

IV-II SEMESTER 2019-20

CSE

22.Match the Following.

I) Semi structured Data [] a) images

II) Structured Data [] b) Bigdatacse@gmail.com

III) Unstructured Data [] c) Log Files

SECTION -B

SUBJ ECTIVE QUESTIONS

1. Discuss the importance of Big Data?

2. Examine the characteristics of Big Data?

3. List the companies who use the Hadoop tool to solve the Real world problems?

4. Distinguish Structured data, Semi-Structured and Unstructured data.

5. Explain the Brief history of Hadoop.

6. Illustrate volunteer computing Grid computing with map Reduce programming.

7. Discuss Hadoop Eco System, the projects supported by Hadoop.

8. Elaborate the importance of Hadoop and discuss the its Framework.

9. Justify how Bigdata analytics helps to increase the business revenue with example?

10. Compare and contrast Hadoop with Traditional RDBMS?

11. Describe the main components of a Hadoop.

12. Identify the problems involved in data storage and analysis of Bigdata?

Big Data 1

IV Year – II Semester 2018-19 CSE

BIG DATA
UNIT-2

Objective:

To familiarize with the Map Reduce of Big data

Syllabus:

 Analyzing data with UNIX tools, Analyzing data with hadoop, Java Map

Reduce classes (new API), Data flow, Combiner functions, Running a

distributed Map Reduce Job

Learning Outcomes:

At the end of the unit, students will be able to:

1. Analyzing Map Reduce with Unix ,hadoop,java tools

2. Explain the data flow.
3. Develop the Map Reduce using the java.
4. Develop the Map Reduce in distributed Environment.

Learning Material

2.1 Analyzing the data with UNIX tools
 Without using Hadoop, as this information will provide a performance

baseline, as well as a useful means to check our results.

 The classic tool for processing line-oriented data is awk, is a small script

to calculate the maximum temperature for each year.

#!/usr/bin/env bash

for year in all/*

do

echo -ne `basename $year .gz`"\t"

gunzip -c $year | \

awk '{ temp = substr($0, 88, 5) + 0;

q = substr($0, 93, 1);

if (temp !=9999 && q ~ /[01459]/ && temp > max) max = temp }

Big Data 2

IV Year – II Semester 2018-19 CSE

END { print max }'

Done

 The script loops through the compressed year files, first printing the

year, and then processing each file using awk.

 The awk script extracts two fields from the data: the air temperature and

the quality code.

 The air temperature value is turned into an integer by adding 0.

 Next, a test is applied to see if the temperature is valid (the value 9999

signifies a missing value in the NCDC dataset) and if the quality code

indicates that the reading is not suspect or erroneous.

 If the reading is OK, the value is compared with the maximum value seen

so far, which is updated if a new maximum is found.

 The END block is executed after all the lines in the file have been

processed, and it prints the maximum value.

Run the program

% ./max_temperature.sh
1901 317

1902 244

1903 289

1904 256

1905 283

...

 The temperature values in the source file are scaled by a factor of 10, so

this works out as a maximum temperature of 31.7°C for 1901

 The complete run for the century took 42 minutes in one run on a single

EC2 High-CPU Extra Large Instance.

 To speed up the processing, we need to run parts of the program in

parallel

 There are a few problems with this,

Big Data 3

IV Year – II Semester 2018-19 CSE

 First, dividing the work into equal-size pieces isn’t always easy, the

file size for different years varies widely, so some processes will finish much

earlier than others. The whole run is dominated by the longest file.

A better approach, although one that requires more work, is to split the

input into fixed-size chunks and assign each chunk to a process.

 Second, combining the results from independent processes may need

further processing, the result for each year is independent of other years

and may be combined by concatenating all the results, and sorting by year.

If using the fixed-size chunk approach, the combination is more delicate.

For this example, data for a particular year will typically be split into several

chunks, each processed independently.

 Third, you are still limited by the processing capacity of a single
machine. If the best time you can achieve is 20 minutes with the number of

processors you have, then that’s it. You can’t make it go faster.

Also, some datasets grow beyond the capacity of a single machine. When we

start using multiple machines, a whole host of other factors come into play,

mainly falling in the category of coordination and reliability.

2.2 Analyzing the data with Hadoop
To take advantage of the parallel processing that Hadoop provides, we need to

express our query as a MapReduce job. After some local, small-scale testing,

we will be able to run it on a cluster of machines.

Map and Reduce
MapReduce works by breaking the processing into two phases:

1. the map phase

2. The reduce phase.

 Each phase has key-value pairs as input and output,

 The input to our map phase is the raw NCDC data, a text input format

that gives us each line in the dataset as a text value

 The key is the offset of the beginning of the line from the beginning of the

file

Big Data 4

IV Year – II Semester 2018-19 CSE

 Map function: pull out the year and the air temperature, the map

function is just a data preparation phase, setting up the data in such a

way that the reducer function can do its work on it.

 Reduce function finding the maximum temperature for each year.

Input data
Sample lines of input data

0067011990999991950051507004...9999999N9+00001+99999999999...

0043011990999991950051512004...9999999N9+00221+99999999999...

0043011990999991950051518004...9999999N9-00111+99999999999...

0043012650999991949032412004...0500001N9+01111+99999999999...

0043012650999991949032418004...0500001N9+00781+99999999999...

 These lines are presented to the map function as the key-value pairs:
(0, 0067011990999991950051507004...9999999N9+00001+99999999999...)

(106, 0043011990999991950051512004...9999999N9+00221+99999999999...)

(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)

(318, 0043012650999991949032412004...0500001N9+01111+99999999999...)

(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)

 The keys are the line offsets within the file, which we ignore in our map

function.

 The map function merely extracts the year and the air temperature

(indicated in bold text), and emits them as its output (the temperature

values have been interpreted as integers):

(1950, 0)

(1950, 22)

(1950, −11)

(1949, 111)

(1949, 78)

 The output from the map function is processed by the MapReduce

framework before being sent to the reduce function.

 This processing sorts and groups the key-value pairs by key. So,

continuing the example, our reduce function sees the following input:

Big Data 5

IV Year – II Semester 2018-19 CSE

(1949, [111, 78])

(1950, [0, 22, −11])

 Each year appears with a list of all its air temperature readings. All the

reduce function has to do now is iterate through the list and pick up the

maximum reading:

(1949, 111)

(1950, 22)

This is the final output: the maximum global temperature recorded in each

year.

The whole data flow is illustrated in Figure

Figure: MapReduce logical data flow

 Java MapReduce the next step is to express it in code. We need three

things: a map function, a reduce function, and some code to run the job.

 The map function is represented by the Mapper class, which declares an

abstract map() method.

Mapper for maximum temperature example
import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper

extends Mapper<LongWritable, Text, Text, IntWritable> {

private static final int MISSING = 9999;

@Override

Big Data 6

IV Year – II Semester 2018-19 CSE

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature;

if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs

airTemperature = Integer.parseInt(line.substring(88, 92));

} else {

airTemperature = Integer.parseInt(line.substring(87, 92));

}

String quality = line.substring(92, 93);

if (airTemperature != MISSING && quality.matches("[01459]")) {

context.write(new Text(year), new IntWritable(airTemperature));

}

}

}

Reducer for maximum temperature example
import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer

extends Reducer<Text, IntWritable, Text, IntWritable> {

@Override

public void reduce(Text key, Iterable<IntWritable> values,

Context context)

throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;

for (IntWritable value : values) {

maxValue = Math.max(maxValue, value.get());

Big Data 7

IV Year – II Semester 2018-19 CSE

}

context.write(key, new IntWritable(maxValue));

}

}

 The third piece of code runs the MapReduce job

Application to find the maximum temperature in the weather dataset

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperature {

public static void main(String[] args) throws Exception {

if (args.length != 2) {

System.err.println("Usage: MaxTemperature <input path> <output path>");

System.exit(-1);

}

Job job = new Job();

job.setJarByClass(MaxTemperature.class);

job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);

job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

Big Data 8

IV Year – II Semester 2018-19 CSE

A test run
After writing a MapReduce job

% export HADOOP_CLASSPATH=hadoop-examples.jar
% hadoop MaxTemperature input/ncdc/sample.txt output
11/09/15 21:35:14 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobT

racker, sessionId=

11/09/15 21:35:14 WARN util.NativeCodeLoader: Unable to load native-hadoop library fo

r your platform... using builtin-java classes where applicable

11/09/15 21:35:14 WARN mapreduce.JobSubmitter: Use GenericOptionsParser for parsing t

he arguments. Applications should implement Tool for the same.

11/09/15 21:35:14 INFO input.FileInputFormat: Total input paths to process : 1

11/09/15 21:35:14 WARN snappy.LoadSnappy: Snappy native library not loaded

11/09/15 21:35:14 INFO mapreduce.JobSubmitter: number of splits:1

11/09/15 21:35:15 INFO mapreduce.Job: Running job: job_local_0001

11/09/15 21:35:15 INFO mapred.LocalJobRunner: Waiting for map tasks

11/09/15 21:35:15 INFO mapred.LocalJobRunner: Starting task: attempt_local_0001_m_000

000_0

11/09/15 21:35:15 INFO mapred.Task: Using ResourceCalculatorPlugin : null

11/09/15 21:35:15 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)

11/09/15 21:35:15 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100

11/09/15 21:35:15 INFO mapred.MapTask: soft limit at 83886080

11/09/15 21:35:15 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600

11/09/15 21:35:15 INFO mapred.MapTask: kvstart = 26214396; length = 6553600

11/09/15 21:35:15 INFO mapred.LocalJobRunner:

11/09/15 21:35:15 INFO mapred.MapTask: Starting flush of map output

11/09/15 21:35:15 INFO mapred.MapTask: Spilling map output

11/09/15 21:35:15 INFO mapred.MapTask: bufstart = 0; bufend = 45; bufvoid = 104857600

11/09/15 21:35:15 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend =

2621438

0(104857520); length = 17/6553600

11/09/15 21:35:15 INFO mapred.MapTask: Finished spill 0

11/09/15 21:35:15 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And i

s in the process of commiting

11/09/15 21:35:15 INFO mapred.LocalJobRunner: map

11/09/15 21:35:15 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.

Big Data 9

IV Year – II Semester 2018-19 CSE

11/09/15 21:35:15 INFO mapred.LocalJobRunner: Finishing task: attempt_local_0001_m_00

0000_0

11/09/15 21:35:15 INFO mapred.LocalJobRunner: Map task executor complete.

11/09/15 21:35:15 INFO mapred.Task: Using ResourceCalculatorPlugin : null

11/09/15 21:35:15 INFO mapred.Merger: Merging 1 sorted segments

11/09/15 21:35:15 INFO mapred.Merger: Down to the last merge-pass, with 1 segments le

ft of total size: 50 bytes

11/09/15 21:35:15 INFO mapred.LocalJobRunner:

11/09/15 21:35:15 WARN conf.Configuration: mapred.skip.on is deprecated. Instead, use

mapreduce.job.skiprecords

11/09/15 21:35:15 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And i

s in the process of commiting

11/09/15 21:35:15 INFO mapred.LocalJobRunner:

11/09/15 21:35:15 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to

commit now

11/09/15 21:35:15 INFO output.FileOutputCommitter: Saved output of task 'attempt_loca

l_0001_r_000000_0' to file:/Users/tom/workspace/hadoop-book/output

11/09/15 21:35:15 INFO mapred.LocalJobRunner: reduce > reduce

11/09/15 21:35:15 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.

11/09/15 21:35:16 INFO mapreduce.Job: map 100% reduce 100%

11/09/15 21:35:16 INFO mapreduce.Job: Job job_local_0001 completed successfully

11/09/15 21:35:16 INFO mapreduce.Job: Counters: 24

File System Counters

FILE: Number of bytes read=255967

FILE: Number of bytes written=397273

FILE: Number of read operations=0

FILE: Number of large read operations=0

FILE: Number of write operations=0

Map-Reduce Framework

Map input records=5

Map output records=5

Map output bytes=45

Map output materialized bytes=61

Big Data 10

IV Year – II Semester 2018-19 CSE

Input split bytes=124

Combine input records=0

Combine output records=0

Reduce input groups=2

Reduce shuffle bytes=0

Reduce input records=5

Reduce output records=2

Spilled Records=10

Shuffled Maps =0

Failed Shuffles=0

Merged Map outputs=0

GC time elapsed (ms)=10

Total committed heap usage (bytes)=379723776

File Input Format Counters

Bytes Read=529

File Output Format Counters

Bytes Written=29

2.3 Java MapReduce classes (new API)
The Java MapReduce API used first released in Hadoop 0.20.0. This new API,

sometimes referred to as “Context Objects,” was designed to make the API

easier to evolve in the future.

It is type-incompatible with the old, the new API is not complete in the 1.x

(formerly 0.20) release series, so the old API is recommended for these releases,

despite having been marked as deprecated in the early 0.20 releases.

The differences between the two APIs:

 The new API favors abstract classes over interfaces, since these are

easier to evolve.

For example, you can add a method (with a default implementation) to

an abstract.

Big Data 11

IV Year – II Semester 2018-19 CSE

For example, the Mapper and Reducer interfaces in the old API are

abstract classes in the new API.

 The new API is in the org.apache.hadoop.mapreduce package (and

subpackages). The old API can still be found in

org.apache.hadoop.mapred.

 The new API makes extensive use of context objects that allow the user

code to communicate with the MapReduce system. The new Context, for

example, essentially unifies the role of the JobConf, the OutputCollector,

and the Reporter from the old API.

 In both APIs, key-value record pairs are pushed to the mapper and

reducer, but in addition, the new API allows both mappers and reducers

to control the execution flow by overriding the run() method. For

example, records can be processed in batches, or the execution can be

terminated before all the records have been processed. In the old API

this is possible for mappers by writing a MapRunnable, but no

equivalent exists for reducers.

 Configuration has been unified. The old API has a special JobConf object

for job configuration, which is an extension of Hadoop’s vanilla

Configuration object (used for configuring daemons; see “The

Configuration API” on page 146). In the new API, this distinction is

dropped, so job configuration is done through a Configuration.

 Job control is performed through the Job class in the new API, rather

than the old JobClient, which no longer exists in the new API.

 Output files are named slightly differently: in the old API both map and

reduce outputs are named part-nnnnn, while in the new API map

outputs are named partm- nnnnn, and reduce outputs are named part-r-

nnnnn (where nnnnn is an integer designating the part number, starting

from zero).

 User-overridable methods in the new API are declared to throw

java.lang.InterruptedException. What this means is that you can write

Big Data 12

IV Year – II Semester 2018-19 CSE

your code to be responsive to interupts so that the framework can

gracefully cancel long-running operations if it needs to3.

 In the new API the reduce() method passes values as a java.lang.Iterable,

rather than a java.lang.Iterator (as the old API does). This change makes

it easier to iterate over the values using Java’s for-each loop construct:for

(VALUEIN value : values) { ... }

2.4 Data Flow
 A MapReduce job is a unit of work that the client wants to be performed:

it consists of the input data, the MapReduce program, and configuration

information.

 Hadoop runs the job by dividing it into tasks, of which there are two

types: map tasks and reduce tasks.

 There are two types of nodes that control the job execution process: a

jobtracker and a number of tasktrackers.

 The jobtracker coordinates all the jobs run on the system by scheduling

tasks to run on tasktrackers.

 Tasktrackers run tasks and send progress reports to the jobtracker,

which keeps a record of the overall progress of each job. If a task fails,

the jobtracker can reschedule it on a different tasktracker.

 Hadoop divides the input to a MapReduce job into fixed-size pieces called

inputsplits, or just splits.

 Hadoop creates one map task for each split, which runs the userdefined

map function for each record in the split.

 Having many splits means the time taken to process each split is small

compared to the time to process the whole input. So if we are processing

the splits in parallel, the processing is better load-balanced if the splits

are small.

 If splits are too small, then the overhead of managing the splits and of

map task creation begins to dominate the total job execution time.

Big Data 13

IV Year – II Semester 2018-19 CSE

 For most jobs, a good split size tends to be the size of an HDFS block, 64

MB by default, although this can be changed for the cluster (for all newly

created files), or specified when each file is created.

2.5 Combiner Functions
 Many MapReduce jobs are limited by the bandwidth available on the

cluster, so it pays to minimize the data transferred between map and

reduce tasks.

 Hadoop allows the user to specify a combiner function to be run on the

map output—the combiner function’s output forms the input to the

reduce function.

 Since the combiner function is an optimization, Hadoop does not provide

a guarantee of how many times it will call it for a particular map output

record.

 Calling the combiner function zero, one, or many times should produce

the same output from the reducer.

 The maximum temperature example, readings for the year 1950 were

processed by two maps (because they were in different splits). Imagine

the first map produced the output:

(1950, 0)

(1950, 20)

(1950, 10)

And the second produced:

(1950, 25)

(1950, 15)

 The reduce function would be called with a list of all the values:

(1950, [0, 20, 10, 25, 15])

with output:

(1950, 25)

Big Data 14

IV Year – II Semester 2018-19 CSE

 Use a combiner function that, just like the reduce function, finds the

maximum temperature for each map output. The reduce would then be

called with:

(1950, [20, 25])

and the reduce would produce the same output as before. More succinctly, we

may express the function calls on the temperature values in this case as

follows:

max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25

 Not all functions possess this property.4 For example, if we were

calculating mean temperatures, then we couldn’t use the mean as our

combiner function, since:

mean(0, 20, 10, 25, 15) = 14

but: mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15

 The combiner function doesn’t replace the reduce function.

 The reduce function is still needed to process records with the same key

from different maps.

 it can help cut down the amount of data shuffled between the maps and

the reduces,and for this reason alone it is always worth considering

whether you can use a combiner function in your MapReduce job.

Specifying a combiner function
In the Java MapReduce program, the combiner function is defined using the

Reducer class, and for this application, it is the same implementation as the

reducer function in MaxTemperatureReducer.

The only change we need to make is to set the combiner class on the Job

Application to find the maximum temperature, using a combiner function for

efficiency

public class MaxTemperatureWithCombiner {

public static void main(String[] args) throws Exception {

if (args.length != 2) {

System.err.println("Usage: MaxTemperatureWithCombiner <input path> " +

Big Data 15

IV Year – II Semester 2018-19 CSE

"<output path>");

System.exit(-1);

}

Job job = new Job();

job.setJarByClass(MaxTemperatureWithCombiner.class);

job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);

job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);

} }

2.6 Running a Distributed MapReduce Job
The same program will run, without alteration, on a full dataset.

This is the point of MapReduce: it scales to the size of your data and the size of

your hardware. Here’s one data point: on a 10-node EC2 cluster running High-

CPU Extra Large Instances, the program took six minutes to run.

Practical aspects of developing a MapReduce application in Hadoop.
Writing a program in MapReduce has a certain flow to it. You start by writing

your map and reduce functions, ideally with unit tests to make sure they do

what you expect.

Then you write a driver program to run a job, which can run from your IDE

using a small subset of the data to check that it is working.

If it fails, then you can use your IDE’s debugger to find the source of the

problem. With this information, you can expand your unit tests to cover this

case and improve your mapper or reducer as appropriate to handle such input

correctly.

Big Data 16

IV Year – II Semester 2018-19 CSE

UNIT-II
Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1. Mapper implementations are passed the JobConf for the job via the

_______method. []

A) JobConfigure.Configure C)JobConfigurable.configureable

B) JobConfigurable.Configure D) None

2. Input to the _____ is the sorted output of the mappers. []

A) Reducer B) Mapper C)Shuffle D) All

3. The output of the ___ is not sorted in the Map Reduce frame work for Hadoop

A) Mapper B) CasCader C) Scalding D) None []

4. Which of the following phase occur simultaneously? []

A) Shuffle and Sort C) Shuffle and Map

B) Reduce and Sort D) All

5. ____ is a programming model designed for processing large volumes of the

data in parallel by dividing the work into a set of independent tasks.

A) Hive B) Map Reduce C) Pig D) Lucene []

6. The daemons associated with the Map Reduce phase are____________ and

task_trackers. []

A) Job-Tracker B) Map-Tracker C) Reduce-Tracker D) All

7. The Job Tracker pushes work out to available_____________ nodes in the

cluster , striving to keep the work as close to the data as possible.[]

A) Data Nodes B) Task Tracker C) Action Nodes D) All

8. Input Format class calls the_____ function and computes splits for each file

and then sends them to the job tracker. []

A) Puts B) Gets C) GetSplits D) All

9. On a Task Tracker the map Task pass the split to the create RecordReader()

method on InputFormat to obtain a_____ for that split. []

Big Data 17

IV Year – II Semester 2018-19 CSE

A) InputReader B) RecordReader C) OutputReader D) None

10. The default InputFormat is ____ which treats each value of input a new

value and the associated key is byte offset. []

A) TextFormat B) TextInputFormat C) InputFormat D) All

11. ____Controls the partitioning of thekeys of the intermediate map_outputs.

A) Collector B) Partitioner C) InputFormat D) None []

12. Output of the mapper is first written on the local disk for sorting and

_______Process.

13. Point out the correct statement []

A) Data locality means movement of algorithm to the data instead of data

algorithm.

B) When the processing is done on the data algorithm is moved across the

Action Nodes rather than data to the algorithm.

C) Moving Computation is expensive than Moving Data.

D) None.

14. Point out the wrong statement []

A) The map function in Hadoop MapReduce have the following general form

map(K1,V1)->list(K2,V2)

B) The reduce function in Hadoop MapReduce have the following general

form:reduce(K2,list(V2))->list(K3,V3)

C) MapReduce has a complex model of data processing: inputs and outputs

for the map and reduce functions are key-value pairs.

D) None.

15. The right number of reduces seems to be []

A) 0.90 B) 0.80 C) 0.36 D)0.95

16. Mapper and Reducer implementations can use the ________ to report

progress or just indicate that they are alive. []

A) Partitioner B) OutputCollector C) Reporter D) All

17. _______ is a generalization of the facility provided by the MapReduce frame

work to collect data output by the Mapper or the Reducer. []

Big Data 18

IV Year – II Semester 2018-19 CSE

A) Partitioner B) OutputCollector C) Reporter D) All

18. _____ is the primary interface for a user to describe a MapReduce job to the

Hadoop frame work for execution . []

A) Map Parmeters B) JobConf C) MemoryConf D) None

19. The Hadoop MapReduce Frame work spawns one map task for each ____

generated by the InputFormat for the job. []

A) OutputSplit B) InputSplit C) inputSplitStream D) All

20. The right level of parallelism for maps seems to be around _____________

maps per-node. []

A) 1-10 B) 10-10 C) 100-15 D) 150-200

SECTION-B

SUBJECTIVE QUESTIONS

1. Write about analyzing data with unix tools?

2. Explain about analyzing data with Hadoop?

3. Outline about the Java Map Reduce?

4. Explain MapReduce Logical Data Flow?

5. Discuss about Job Tracker?

6. Write about Task Tracker?

7. What is a combiner function? Explain

8. Discuss about running a Distributed Map Reduce Job?

9. List out the problems in analyzing data with unix tools?

10. Illustrate the Map Reduce Works.

11. Explain how the data can be analyzed by using Hadoop

12. Write a program for Map Reduce using JAVA.

13. Draw the Map Reduce Data Flow with a Single Reduce Task.

14. Draw the Map Reduce Data Flow with a Multiple Reduce Tasks.

15. Draw the Map Reduce Data Flow with a No Reduce Tasks.

16. Design a Application to find the maximum temperature using a combiner

function for efficiency.

Big Data 19

IV Year – II Semester 2018-19 CSE

17. Write the steps to Map function for maximum temperature in Ruby.

18. Write the steps to Reduce function for maximum temperature in Ruby.

19. Write the steps to Map function for maximum temperature in Python.

20. Write the steps to Reduce function for maximum temperature in Python.

Big Data 1

IV Year – II Semester 2018-19 CSE

UNIT-III

Hadoop Distributed File System

Objective:To familiarize with the fundamental concepts of Hadoop Distributed

File system.

Syllabus:

Hadoop Distributed File System

HDFS concepts, Command line interface to HDFS, Hadoop File systems,

Interfaces, Java Interface to

Hadoop, Anatomy of a file read, Anatomy of a file write, Replica placement and

Coherency Model,

Parallel copying with distcp, Keeping an HDFS cluster balanced.

Learning Outcomes:

 At the end of the unit, students will be able to:

1. Understand the fundamental concepts of HDFS

2. Describe Hadoop interfaces, read, write and replica placement of Hadoop.

Learning Material

Introduction

• Distributed Filesystem: Filesystems that manage the storage across a

network of machines are called distributed filesystems.

• Challenge : making the filesystem tolerate node failure without suffering

data loss.

Big Data 2

IV Year – II Semester 2018-19 CSE

• Hadoop comes with a distributed filesystem called HDFS, which stands

for Hadoop Distributed Filesystem

The Design of HDFS

HDFS is a filesystem designed for storing very large files with

streaming data access patterns, running on clusters of commodity
hardware.

Very large files

“Very large” in this context means files that are hundreds of megabytes,

gigabytes, or terabytes in size.

There are Hadoop clusters running today that store petabytes of data.

Streaming data access

• HDFS is built around the idea that the most efficient data processing

pattern is a write-once, read-many-times pattern.

• A dataset is typically generated or copied from source, then various

analyses are performed on that dataset over time.

• Each analysis will involve a large proportion, the time to read the whole

dataset is more important than the latency in reading the first record.

Big Data 3

IV Year – II Semester 2018-19 CSE

Commodity hardware

• Hadoop doesn’t require eJxpensive, highly reliable hardware to run on.

It’s designed to run on clusters of commodity hardware (commonly

available hardware available from multiple vendors).

• The chance of node failure across the cluster is high.

• HDFS is designed to carry on working without a noticeable interruption

to the user in the face of such failure.

HDFS does not work well for some areas

Low-latency data access

Applications that require low-latency access to data, in the tens of

milliseconds range, will not work well with HDFS because HDFS is optimized

for delivering a high throughput of data

Lots of small files

The namenode holds filesystem metadata in memory, the limit to the

number of files in a filesystem is governed by the amount of memory on the

namenode each file, directory, and block takes about 150 bytes.

Ex: if you had one million files, each taking one block, you would need at least

300 MB of memory.

file modifications
Files in HDFS may be written to by a single writer. Writes are always made at

the end of the file. There is no support for multiple writers, or for modifications

at arbitrary offsets in the file.

Big Data 4

IV Year – II Semester 2018-19 CSE

3.1 HDFS Concepts

-Blocks

- Namenodes and

DataNodes -HDFS

fedaration

- HDFS High-Availability.

Blocks

• A disk has a block size, which is the minimum amount of data that

it can read or write.

• Disk blocks are 512 bytes. FileSystem block size is 64MB. HDFS

blocks are large compared to disk blocks, and the reason is to

minimize the cost of seeks.

• Files in HDFS are broken into block-sized chunks, which are

stored as independent units.

• Map tasks in Map Reduce normally operate on one block at a time.

Distributed file system having block abstraction

Benefits are :

1) A file can be larger than any single disk in the network.

It doesn’t requires the blocks from a file to be stored on the same disk, so

they can take advantage of any of the disks in the cluster.

It would be possible, to store a single file on an HDFS cluster whose

blocks filled all the disks in the cluster.

Big Data 5

IV Year – II Semester 2018-19 CSE

2) Making the unit of abstraction a block rather than a file simplifies the

storage subsystem, storage management(easy to calculate how many can

be stored in a single disk), and eliminate metadata (permissions need not

store in block)

3) Blocks with replication providing fault tolerance and availability. Each

block is replicated to a small number of physically separate

machines(three).

4) If the block is not available, copy of the block is read from another

location.

5) If the block is corrupted due to machine failure can be replicated to other

live machines.

6) Command to list the bolcks is $hadoop fsck / -files –blocks.

Namenodes and DataNodes

• An HDFS cluster has two types of nodes operating in a master-worker

pattern:

1) Namenode (the master)
2) A number of datanodes (workers).

Namenode tasks

• Manages the filesystem namespace.

• Maintains the filesystem tree and the metadata for all the files and

directories in the tree.

Big Data 6

IV Year – II Semester 2018-19 CSE

• This information is stored persistently on the local disk in the form of two

files: the namespace image and the edit log.

• The namenode also knows the datanodes on which all the blocks for a

given file are located, however, it does not store block locations

persistently, since this information is reconstructed from datanodes

when the system starts.

• A client accesses the filesystem on behalf of the user by communicating

with the namenode and datanodes.

• The user code does not need to know about the namenode and datanode

to function.

Datanode tasks

• Datanodes are the workhorses of the filesystem.

• DNs store and retrieve blocks when they are told to (by clients or the

namenode)

• Periodically report to the namenode with lists of blocks that they are

storing.

Handling of Namenode failure

• Without the namenode, the filesystem cannot be used. If the machine

running the namenode is failed, all the files on the filesystem would be

lost.

• It is important to make the namenode resilient to failure, Hadoop

provides two mechanisms for this.

Big Data 7

IV Year – II Semester 2018-19 CSE

1. Back up the files that make up the persistent state of the filesystem

metadata. Hadoop can be configured that the namenode writes its

persistent state to multiple filesystems i.e write to local disk as well as a

remote NFS. These writes are synchronous and atomic.

2. Run a secondary namenode, it doesnot act as a namenode. Main role is

to periodically merge the namespace image with the edit log to prevent

the edit log from becoming too large

� The secondary namenode runs on a separate physical machine, because

it requires plenty of CPU and as much memory as the namenode to

perform the merge.

� It keeps a copy of the merged namespace image, which can be used in

the event of the namenode failing.

� The state of the secondary namenode lags that of the primary, In the

event of total failure of the primary, data loss is almost certain.

� It copy the namenode’s metadata files that are on NFS to the secondary

and run it as the new primary.

HDFS Federation

• The namenode keeps a reference to every file and block in the filesystem

in memory, on very large clusters with many files, memory becomes the

limiting factor for scaling.

• HDFS Federation, introduced in the 0.23 release series, allows a cluster

to scale by adding namenodes, each of which manages a portion of the

filesystem namespace.

Big Data 8

IV Year – II Semester 2018-19 CSE

Ex : one namenode might manage all the files rooted under /user,

and a second namenode might handle files under /share

• Each namenode manages a namespace volume, which is made up of

the metadata for the namespace, and a block pool containing all the

blocks for the files in the namespace.

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
hdfs/Federation.html

• Namespace volumes are independent of each other, namenodes do not

communicate with one another, and the failure of one namenode does

not affect the availability of the namespaces managed by other

namenodes.

HDFS High-Availability

� The combination of replicating namenode metadata on multiple

filesystems, and using the secondary nJamenode to create checkpoints

protects against data loss, but does not provide high-availability of the

filesystem.

� The namenode is still a single point of failure (SPOF), since if it did fail, all

clients—including MapReduce jobs—would be unable to read, write, or

list files, because the namenode is the sole repository of the metadata

and the file-to-block mapping.

� To recover from a failed

namenode the filesystem

metadata replicas,

namenode.

administrator starts a new primary

namenode with one of and configures

datanodes and clients to use this new

Big Data 9

IV Year – II Semester 2018-19 CSE

� The new namenode is not able to serve requests until it has

i) loaded its namespace image into memory,

ii) replayed its edit log, and

iii) received enough block reports from the datanodes to leave

safe mode.

� On large clusters with many files and blocks, the time it takes for a

namenode to start from cold can be 30 minutes or more.

The long recovery time is a problem for routine maintenance too.

� The 0.23 release series of Hadoop remedies this situation by adding

support for HDFS high-availability (HA).

� In this implementation there is a pair of namenodes in an active stand by

configuration. In the event of the failure of the active namenode, the

standby takes over its duties to continue servicing client requests

without a significant interruption.

� A few architectural changes are needed to allow this to happen:

• The namenodes must use highly-available shared storage to share

the edit log

• Datanodes must send block reports to both namenodes since

the block mappings are stored in a namenode’s memory, and

not on disk.

Big Data 10

IV Year – II Semester 2018-19 CSE

• Clients must be configured to handle namenode failover, which

uses a mechanism that is transparent to users.

� If the active namenode fails, then the standby can take over very quickly

(in a few tens of seconds) .

� it has the latest state available in memory: both the latest edit log

entries, and an up-to-date block mapping.

3.2 The Command-Line Interface

• There are many other interfaces to HDFS, but the command line is one of

the simplest and the most familiar.

• There are two properties that we set in the pseudo-distributed

configuration

1. The first is fs.default.name, set to hdfs://localhost/, which is used to

set a default filesystem for HadoopThe HDFS daemons will use this

property to determine the host and port for the HDFS namenode.

We’ll be running it on localhost, on the default HDFS port, 8020.

2. Set the second property, dfs.replication, to 1 so that HDFS doesn’t

blocks by the default factor of three.

replicat

Basic Filesystem Operations

Filesystem operations such as reading files, creating directories, moving files,

deleting data, and listing directories.

Type hadoop fs -help to get detailed help on every command.

Big Data 11

IV Year – II Semester 2018-19 CSE

1. copying a file from the local filesystem to HDFS:

Ex: %

hadoop fs -copyFromLocal input/docs/quangle.txt user/tom/quangle.txt
2 create a directory then see how it is displayed in the listing:

% hadoop fs -mkdir books
% hadoop fs -ls .
Found 2 items

drwxr-xr-x - tom supergroup 0 2009-04-02 22:41 /user/tom/books

-rw-r--r-- 1 tom supergroup 118 2009-04-02 22:29

/user/tom/quangle.txt

3.3 Hadoop Filesystems
1. Hadoop has an abstract notion of filesystem, of which HDFS is just one

implementation.

2. The Java abstract class org.apache.hadoop.fs.FileSystem represents a

filesystem in Hadoop, and there are several concrete implementations

Big Data 12

IV Year – II Semester 2018-19 CSE

Hadoop provides many interfaces to its filesystems, and it generally uses the

URI(uniform resource identifier) scheme to pick the correct filesystem instance

to communicate with.

3.4 Interfaces

• Hadoop is written in Java, and all Hadoop filesystem interactions are

mediated through the Java API.

• The filesystem shell, for example, is a Java application that uses the Java

FileSystem class to provide filesystem operations.

The other filesystem interfaces are FTP clients for FTP, S3 tools for S3, etc.),

but many of them will work with any Hadoop filesystem.

HTTP
There are two ways of accessing HDFS over HTTP:

1. directly, where the HDFS daemons serve HTTP requests to clients;

2. via a proxy (or proxies), which accesses HDFS on the client’s behalf

using the usual DistributedFileSystem API

Big Data 13

IV Year – II Semester 2018-19 CSE

C

• Hadoop provides a C library called libhdfs that mirrors the Java

FileSystem interface

• It works using the Java Native Interface (JNI) to call a Java filesystem

client.

• The C API is very similar to the Java one, but it typically lags the Java

one, so newer features may not be supported.

• Documentation for the C API in the libhdfs/docs/api directory of the

Hadoop distribution.

• Hadoop comes with prebuilt libhdfs binaries for 32-bit Linux, but for

other platforms, build them using the instructions at

http://wiki.apache.org/hadoop/LibHDFS.

FUSE

• Filesystem in Userspace (FUSE) allows filesystems that are

implemented in user space to be integrated as a Unix filesystem.

• Hadoop’s Fuse-DFS contrib module allows any Hadoop filesystem (but

typically HDFS) to be mounted as a standard filesystem.

• Use Unix utilities (such as ls and cat) to interact with the filesystem, as

well as POSIX libraries to access the filesystem from any programming

language.

• Fuse-DFS is implemented in C using libhdfs as the interface to HDFS.

Big Data 14

IV Year – II Semester 2018-19 CSE

• Documentation for compiling and running Fuse-DFS is located in the

src/contrib/fuse-dfs directory of the Hadoop distribution

3.5 The Java Interface TO Hadoop
Hadoop’s FileSystem class: the API for interacting with one of Hadoop’s

filesystems.

• Write the code against the FileSystem abstract class, to

retain portability across filesystems.

Reading Data from a Hadoop URL
To read a file from a Hadoop filesystem is by using a java.net.URL object to

open a stream to read the data from.

https://kannandreams.wordpress.com/2013/11/14/what-is-uri-and-

difference-between-uriurl-and-urn/

InputStream in = null;
try {
in = new URL("hdfs://host/path").openStream();

// process in }
finally {
IOUtils.closeStre
am(in);

}

Big Data 15

IV Year – II Semester 2018-19 CSE

• To make Java recognize Hadoop’s hdfs URL scheme by calling the

setURLStreamHandlerFactory method on URL with an instance of

FsUrlStreamHandlerFactory.

• This method can only be called once per JVM, so it is typically executed in a

static block.

Ex: Displaying files from a Hadoop filesystem on standard output using a

URLStreamHandler

public class URLCat {
static {

URL.setURLStreamHandlerFactory(new
FsUrlStreamHandlerFactory()); }

public static void main(String[] args) throws Exception {
InputStream in = null;
try {

in = new URL(args[0]).openStream();
IOUtils.copyBytes(in, System.out, 4096, false);

} finally {
IOUtils.closeStre
am(in);
}}}

• IOUtils class that comes with Hadoop for closing the stream in the finally

clause,

Big Data 16

IV Year – II Semester 2018-19 CSE

• copying bytes between the input stream and the output stream (System.out

in this case).

• The last two arguments to the copyBytes method are the buffer size used for

copying and whether to close the streams when the copy is complete.

Syntax :

copyBytes(InputStream in, OutputStream out, int buffSize, boolean close)

Copies from one stream to another.

• close the input stream ourselves, and System.out doesn’t need to be closed.

sample run:
% hadoop URLCat
hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could

not see, On account of

his Beaver Hat.

Reading Data Using the FileSystem API
• Sometimes it is impossible to set a URLStreamHandlerFactory for the

application. In this case, use the FileSystem API to open an input stream for

a file.

• A file in a Hadoop filesystem is represented by a Hadoop Path object (and

not a java.io.File object, since its semantics are too closely tied to the local

filesystem).

Big Data 17

IV Year – II Semester 2018-19 CSE

Ex: Path as a Hadoop filesystem URI is,

hdfs://localhost/user/tom/quangle.txt.

• FileSystem is a general filesystem API, so the first step is to retrieve an
instance for the filesystem we want to use—HDFS in this case.

• There are several static factory methods for getting a FileSystem instance:

public static FileSystem get(Configuration conf) throws IOException
public static FileSystem get(URI uri, Configuration conf) throws
IOException

• A Configuration object encapsulates a client or server’s configuration, which

is set using configuration files read from the classpath conf/core-site.xml.

• The first method returns the default filesystem (as specified in the file

conf/core-site.xml, or the default local filesystem if not specified there)

• The second uses the given URI’s scheme and authority to determine the

filesystem to use, falling back to the default filesystem if no scheme is

specified in the given URI.

• In some cases, to retrieve a local filesystem instance, use the

convenience method, getLocal(): public static LocalFileSystem
getLocal(Configuration conf) throws IOException

• With a FileSystem instance invoke an open() method to get the input stream

for a file:

public FSDataInputStream open(Path f) throws IOException

Big Data 18

IV Year – II Semester 2018-19 CSE

public abstract FSDataInputStream open(Path f, int bufferSize)
throws IOException

The first method uses a default buffer size of 4 K.

FSDataInputStream

• The open() method on FileSystem actually returns a FSDataInputStream

rather than a standard java.io class.

• This class is a specialization of java.io.DataInputStream with support for

random access, so you can read from any part of the stream:

package org.apache.hadoop.fs;

public class FSDataInputStream extends
DataInputStream implements Seekable,
PositionedReadable {

Big Data 19

IV Year – II Semester 2018-19 CSE

// implementation elided
}

• The Seekable interface permits seeking to a position in the file and a query

method for the current offset from the start of the file (getPos()):

public interface Seekable {
void seek(long pos) throws IOException;
long getPos() throws IOException;
}

• Calling seek() with a position that is greater than the length of the file will

result in an IOException

A simple extension of previous example that writes a file to standard out twice:

after writing it once, it seeks to the start of the file and streams through it once

again.

Ex: Displaying files from a Hadoop filesystem on standard output twice,
by using seek

Big Data 20

IV Year – II Semester 2018-19 CSE

• FSDataInputStream also implements the PositionedReadable interface for

reading parts of a file at a given offset:

public interface PositionedReadable {
public int read(long position, byte[] buffer, int offset, int length)
throws IOException;
public void readFully(long position, byte[] buffer, int offset, int
length)
throws IOException;

public void readFully(long position, byte[] buffer)
throws IOException; }

• The read() method reads up to length bytes from the given position in the file

into the buffer at the given offset in the buffer.

• The return value is the number of bytes actually read

• The readFully() methods will read length bytes into the buffer unless the end

of the file is reached, in which case an EOFException is thrown.

Writing Data

• The FileSystem class has a number of methods for creating a file. The

simplest is the method that takes a Path object for the file to be created and

returns an output stream to write to:

public FSDataOutputStream create(Path f) throws IOException

• There are overloaded versions of this method that allow you to specify

whether to forcibly overwrite existing files, the replication factor of the file,

Big Data 21

IV Year – II Semester 2018-19 CSE

the buffer size to use when writing the file, the block size for the file, and file

permissions.

• create() methods create any parent directories of the file to be written that

don’t already exist.

• exists() method check for the existence of the parent directory.

• Progressable() is an overloaded method for passing a callback interface,

application can be notified of the progress of the data being written to the

Datanodes:

package org.apache.hadoop.util;
public interface Progressable {
public void progress();

}

• append() method is an alternative to creating a new file. It allows a single

writer to modify an already written file by opening it.

public FSDataOutputStream append(Path f) throws IOException

Below Example shows how to copy a local file to a Hadoop filesystem. We

illustrate progress by printing a period every time the progress() method is

called by Hadoop, which is after each 64 K packet of data is written to the

datanode pipeline.

Big Data 22

IV Year – II Semester 2018-19 CSE

public class FileCopyWithProgress {

public static void main(String[] args) throws Exception {
String localSrc = args[0];
String dst = args[1];

InputStream in = new BufferedInputStream(new
FileInputStream(localSrc)); Configuration conf = new
Configuration();

FileSystem fs = FileSystem.get(URI.create(dst), conf);
OutputStream out = fs.create(new Path(dst), new Progressable() {
public void progress() {
System.out.print(".");
}
});
IOUtils.copyBytes(in, out, 4096, true); }}

% hadoop FileCopyWithProgress input/docs/1400-8.txt
hdfs://localhost/user/tom/1400-8.txt

...............

FSDataOutputStream

The create() method on FileSystem returns an FSDataOutputStream, has a

method for querying the current position in the file:

package org.apache.hadoop.fs;

Big Data 23

IV Year – II Semester 2018-19 CSE

public class FSDataOutputStream extends DataOutputStream
implements Syncable { public long getPos() throws
IOException {

// implementation elided
}
// implementation elided
}

FSDataInputStream, FSDataOutputStream permit seeking by using getPos()

method, but HDFS does not support for writing to anywhere other than the end

of the file, so there is no value in being able to seek while writing.

Directories

FileSystem provides a method to create a directory:

public boolean mkdirs(Path f) throws IOException

• This method creates all of the necessary parent directories if they don’t

already exist,just like the java.io.File’s mkdirs() method.

• It returns true if the directory (and all parent directories) was (were)

successfully created.

• No need to explicitly create a directory, since writing a file, by calling

create(), will automatically create any parent directories.

Big Data 24

IV Year – II Semester 2018-19 CSE

Querying the Filesystem

File metadata: FileStatus

• An important feature of any filesystem is the ability to navigate its directory

structure and retrieve information about the files and directories that it

stores.

• FileStatus class encapsulates filesystem metadata for files and directories,

including file length, block size, replication, modification time, ownership,

and permission information.

getFileStatus():

This method is used for getting a FileStatus object for a single file or

directory.

Demonstrating file status information

public class ShowFileStatusTest {
private MiniDFSCluster cluster; // use an in-process HDFS cluster
for testing private
FileSystem fs;
@Before
public void setUp() throws IOException {
Configuration conf = new Configuration();
if (System.getProperty("test.build.data") == null) {
System.setProperty("test.build.data", "/tmp");
}
cluster = new MiniDFSCluster(conf, 1, true, null);

fs = cluster.getFileSystem();

Big Data 25

IV Year – II Semester 2018-19 CSE

OutputStream out = fs.create(new Path("/dir/file"));
out.write("content".getBytes("UTF-8"));
out.close();
}
@After
public void tearDown() throws IOException {
if (fs != null) { fs.close(); }
if (cluster != null) { cluster.shutdown(); }
}
@Test(expected = FileNotFoundException.class)

public void throwsFileNotFoundForNonExistentFile()
throws IOException { fs.getFileStatus(new Path("no-
such-file")); }

@Test
public void fileStatusForFile() throws IOException {

Path file = new Path("/dir/file");
FileStatus stat = fs.getFileStatus(file);
assertThat(stat.getPath().toUri().getPath(),
is("/dir/file")); assertThat(stat.isDir(),
is(false)); assertThat(stat.getLen(), is(7L));
assertThat(stat.getModificationTime(),
is(lessThanOrEqualTo(System.currentTim
eMillis())));

Big Data 26

IV Year – II Semester 2018-19 CSE

assertThat(stat.getReplication(), is((short)
1)); assertThat(stat.getBlockSize(), is(64 *
1024 * 1024L));
assertThat(stat.getOwner(), is("tom"));
assertThat(stat.getGroup(),
is("supergroup"));
assertThat(stat.getPermission().toString()
, is("rw-r--r--")); }

@Test

public void fileStatusForDirectory()
throws IOException { Path dir = new
Path("/dir");

FileStatus stat = fs.getFileStatus(dir);
assertThat(stat.getPath().toUri().getPath(),
is("/dir")); assertThat(stat.isDir(), is(true));
assertThat(stat.getLen(), is(0L));
assertThat(stat.getModificationTime(),
is(lessThanOrEqualTo(System.currentTim
eMillis())));
assertThat(stat.getReplication(), is((short)
0)); assertThat(stat.getBlockSize(), is(0L));
assertThat(stat.getOwner(), is("tom"));
assertThat(stat.getGroup(),
is("supergroup"));
assertThat(stat.getPermission().toString(),
is("rwxr-xr-x")); }

}

Big Data 27

IV Year – II Semester 2018-19 CSE

If no file or directory exists, a FileNotFoundException is thrown, to check the

existence of a file or directory, then use exists() method.

public boolean exists(Path f) throws IOException

Listing files

FileSystem’s listStatus() methods used for finding information on a single file or

directory.

public FileStatus[] listStatus(Path f) throws IOException

public FileStatus[] listStatus(Path f, PathFilter
filter) throws IOException public FileStatus[]
listStatus(Path[] files) throws IOException

public FileStatus[] listStatus(Path[] files, PathFilter filter) throws
IOException

If the argument is a file, it returns an array of FileStatus objects of length 1.

If the argument is a directory, it returns zero or more FileStatus objects

representing the files and directories contained in the directory.

PathFilter used to restrict the files and directories to match. This is useful for

building up lists of input files to process from distinct parts of the filesystem

tree. i.e which allows programmatic control over matching.

Showing the file statuses for a collection of paths in a Hadoop filesystem

Big Data 28

IV Year – II Semester 2018-19 CSE

public class ListStatus {

public static void main(String[] args) throws Exception {

String uri = args[0];

Configuration conf = new
Configuration(); FileSystem fs =
FileSystem.get(URI.create(uri), conf);
Path[] paths = new Path[args.length];
for (int i = 0; i < paths.length; i++) {

paths[i] = new Path(args[i]);
}
FileStatus[] status = fs.listStatus(paths);
Path[] listedPaths = FileUtil.stat2Paths(status);
for (Path p : listedPaths) {
System.out.println(p);
}}}

This program is used to find the union of directory listings for a collection of

paths:

% hadoop ListStatus hdfs://localhost/
hdfs://localhost/user/tom
hdfs://localhost/user
hdfs://localhost/user/tom/books

hdfs://localhost/user/tom/quangle.txt

Big Data 29

IV Year – II Semester 2018-19 CSE

File patterns

• To process sets of files in a single operation.Ex:MapReduce job for log

processing might analyze a month’s worth of files contained in a number of

directories.

• use wildcard characters to match multiple files with a single expression,

rather than to enumerate each file and directory to specify the input. This

operation is known as globbing.

• Hadoop provides two FileSystem method for processing globs:

public FileStatus[] globStatus(Path pathPattern) throws IOException
public FileStatus[] globStatus(Path pathPattern, PathFilter filter)
throws IOException

• The globStatus() method returns an array of FileStatus objects whose paths

matchthe supplied pattern, sorted by path.

• An optional PathFilter can be specified to restrict the matches further.

Hadoop supports the same set of glob characters as Unix bash
Glob characters and their meanings

Big Data 30

IV Year – II Semester 2018-19 CSE

Ex: logfiles are stored in a directory structure organized hierarchically by date

here the last day of 2007 would go in a directory named /2007/12/31.

Suppose that the full file listing is:

/2007/12/30

/2007/12/31

/2008/01/01

/2008/01/02

Glob Expansion for the above files

/* /2007 /2008

/*/* /2007/12 /2008/01

/*/12/* /2007/12/30 /2007/12/31

/200? /2007 /2008

/200[78] /2007 /2008

/200[7-8] /2007 /2008

/200[^01234569] /2007 /2008

/*/*/{31,01} /2007/12/31 /2008/01/01

/*/*/3{0,1} /2007/12/30 /2007/12/31

/*/{12/31,01/01} /2007/12/31 /2008/01/01

Deleting Data
delete() method on FileSystem used to permanently remove files or directories:

public boolean delete(Path f, boolean recursive) throws IOException
• If f is a file or an empty directory, then the value of recursive is ignored

• if recursive is true a nonempty directory is deleted, along with its contents.

otherwise an IOException is thrown

Big Data 31

IV Year – II Semester 2018-19 CSE

Data Flow

3.6 Anatomy of a File Read

When reading a file how data flows between the client interacting with

HDFS, the namenode and the datanodes, consider Figure which shows the

main sequence of events

A client reading data from HDFS

Step 1 : The client opens the file to be read by calling open() on the FileSystem

object, which for HDFS is an instance of DistributedFileSystem .

Step 2 : DistributedFileSystem calls the namenode, using RPC, to determine

the locations of the blocks for the first few blocks in the file

� For each block, the namenode returns the addresses of the datanodes

that have a copy of that block.

� The datanodes are sorted according to their proximity to the client.

� If the client is itself a datanode then it will read from the datanode, if it

hosts a copy of the block.

Big Data 32

IV Year – II Semester 2018-19 CSE

� The DistributedFileSystem returns an FSDataInputStream (an input

stream that supports file seeks) to the client for it to read data from.

� FSDataInputStream in turn wraps a DFSInputStream, which manages

the datanode and namenode I/O.

Step 3 : The client then calls read() on the stream.

� DFSInputStream, which has stored the datanode addresses for the

first few blocks in the file, then connects to the first (closest) datanode

for the first block in the file.

Step 4 : Data is streamed from the datanode back to the client, which calls

read() repeatedly on the stream.

Step 5 : When the end of the block is reached, DFSInputStream will close the

connection to the datanode, then find the best datanode for the next block.

� This is transparent to the client, which from its point of view is just

reading a continuous stream.

� Blocks are read in order with the DFSInputStream opening

new connections to datanodes as the client reads through

the stream.

� It will also call the namenode to retrieve the datanode locations

for the next batch of blocks as needed.

Step 6 : When the client has finished reading, it calls close() on the

FSDataInputStream.

Big Data 33

IV Year – II Semester 2018-19 CSE

� During reading, if the DFSInputStream encounters an error while

communicating with a datanode, then it will try the next closest

one for that block .

� The DFSInputStream also verifies checksums for the data

transferred to it from the datanode.

� If a corrupted block is found, it is reported to the namenode before

the DFSInput Stream attempts to read a replica of the block from

another datanode.

� Important aspect of this design is that the client contacts

datanodes directly to retrieve data and is guided by the namenode

to the best datanode for each block.

� This design allows HDFS to scale to a large number of concurrent

clients, since the data traffic is spread across all the datanodes in

the cluster.

� The namenode has to service block location requests (which it

stores in memory, making them very efficient) and does not, for

example, serve data, which would quickly become a bottleneck as

the number of clients grew.

Network Topology and Hadoop

What does it mean for two nodes in a local network to be “close” to each other?

In the context of high-volume data processing, the limiting factor is the rate at

which we can transfer data between nodes—bandwidth is a scarce commodity.

The idea is to use the bandwidth between two nodes as a measure of distance.

Big Data 34

IV Year – II Semester 2018-19 CSE

Rather than measuring bandwidth between nodes, which can be difficult to do

in practice Hadoop takes a simple approach in which the network is

represented as a tree and the distance between two nodes is the sum of their

distances to their closest common ancestor bandwidth available for each of the

following scenarios becomes progressively less:

• Processes on the same node

• Different nodes on the same rack

• Nodes on different racks in the same data center

• Nodes in different data centers7

For example, imagine a node n1 on rack r1 in data center d1. This can be

represented as /d1/r1/n1.

Using this notation, here are the distances for the four scenarios:

• distance(/d1/r1/n1, /d1/r1/n1) = 0 (processes on the same node)

• distance(/d1/r1/n1, /d1/r1/n2) = 2 (different nodes on the same rack)

• distance(/d1/r1/n1, /d1/r2/n3) = 4 (nodes on different racks in the

same data center)

• distance(/d1/r1/n1, /d2/r3/n4) = 6 (nodes in different data centers)

Network distance in Hadoop

3.7 Anatomy of a File Write

Big Data 35

IV Year – II Semester 2018-19 CSE

How files are written to HDFS. To understand the data flow since it clarifies

HDFS’s coherency model, creating a new file, writing data to it.

Step 1 : The client creates the file by calling create() on DistributedFileSystem.

Step 2 : DistributedFileSystem makes an RPC call to the namenode

to create a new file in the filesystem’s namespace, with no blocks

associated with it.

� The namenode performs various checks to make sure the file

doesn’t already exist, and that the client has the right permissions

to create the file.

� If these checks pass, the namenode makes a record of the new file;

� otherwise, file creation fails and the client is thrown an

IOException.

� The DistributedFileSystem returns an FSDataOutputStream for

the client to start writing data to. Just as in the read case,

FSDataOutputStream wraps a DFSOutput Stream, which handles

communication with the datanodes and namenode.

Step 3 : Client writes data DFSOutputStream splits it into packets, which it

writes to an internal queue, called the data queue.

� The data queue is consumed by the Data Streamer, whose

responsibility it is to ask the namenode to allocate new blocks by

picking a list of suitable datanodes to store the replicas.

Big Data 36

IV Year – II Semester 2018-19 CSE

� The list of datanodes forms a pipeline—we’ll assume the

replication level is three, so there are three nodes in the

pipeline.

� The DataStreamer streams the packets to the first datanode

in the pipeline, which stores the packet and forwards it to the

second datanode in the pipeline.

Step 4 : The second datanode stores the packet and forwards it to the third

(and last) datanode in the pipeline.

� DFSOutputStream also maintains an internal queue of packets

that are waiting to be acknowledged by datanodes, called the

ack queue.

Step 5 : A packet is removed from the ack queue only when it has been

acknowledged by all the datanodes in the pipeline .

client writing data to HDFS

If a datanode fails while data is being written to it, then the following

actions are taken, which are transparent to the client writing the data.

� First the pipeline is closed, and any packets in the ack queue are

added to the front of the data queue so that datanodes that are

downstream from the failed node will not miss any packets.

� The current block on the good datanodes is given a new identity,

which is communicated to the namenode, so that the partial block

on the failed datanode will be deleted if the failed datanode

recovers later on.

Big Data 37

IV Year – II Semester 2018-19 CSE

� The failed datanode is removed from the pipeline and the

remainder of the block’s data is written to the two good datanodes

in the pipeline.

� The namenode notices that the block is under-replicated, and it

arranges for a further replica to be created on another node.

Subsequent blocks are then treated as normal.

Step 6 : When the client has finished writing data, it calls close() on the

stream.

3.8 Replica Placement

This strategy tells how does the namenode choose which datanodes to store

replicas on? By taking into consider read bandwidth and write bandwidth.

• placing all replicas on a single node incurs the lowest write

bandwidth penalty the replication pipeline runs on a single node,

but this offers no real redundancy. (if the node fails, the data for

that block is lost). Also, the read bandwidth is high for off-rack

reads.

• placing replicas in different data centers may maximize

redundancy, but at the cost of bandwidth.

• There are a variety of placement strategies.

Hadoop’s default strategy :

• place the first replica on the same node as the client (node is

chosen at random, although the system tries not to pick nodes that

are too full or too busy).

Big Data 38

IV Year – II Semester 2018-19 CSE

• The second replica is placed on a different rack from the first

(off-rack), chosen at random.

• The third replica is placed on the same rack as the second,

but on a different node chosen at random.

• Further replicas are placed on random nodes on the cluster,

although the system tries to avoid placing too many replicas on

the same rack.

Once the replica locations have been chosen, a pipeline is built, taking network

topology into account

3.9 Coherency Model

� Coherency model for a filesystem describes the data visibility of reads

and writes for a file.

� After creating a file, it is visible in the filesystem namespace, as expected:

Path p = new Path("p");
fs.create(p);

assertThat(fs.exists(p), is(true));

Big Data 39

IV Year – II Semester 2018-19 CSE

� Any content written to the file is not guaranteed to be visible, even if

the stream is flushed. So the file appears to have a length of zero:

Path p = new Path("p");
OutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.flush();
assertThat(fs.getFileStatus(p).getLen(), is(0L));

� Once more than a block’s worth of data has been written, the first block

will be visible to new readers.

� This is true of subsequent blocks, too: it is always the current block

being written that is not visible to other readers.

� HDFS provides a method for forcing all buffers to be synchronized to the

datanodes via the sync() method on FSDataOutputStream.

� After a successful return from sync(), HDFS guarantees that the data

written up to that point in the file is persisted and visible to all new

readers:

Path p = new Path("p");

FSDataOutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.flush();
out.sync();
assertThat(fs.getFileStatus(p).getLen(),is(((long)
"content".length())));

Big Data 40

IV Year – II Semester 2018-19 CSE

Ex: Using the standard Java API to write a local file, we are guaranteed to see

the content after flushing the stream and synchronizing:

FileOutputStream out = new
FileOutputStream(localFile);
out.write("content".getBytes("UTF-8"));

out.flush(); // flush to operating system
out.getFD().sync(); // sync to disk
assertThat(localFile.length(), is(((long)
"content".length())));

Closing a file in HDFS performs an implicit sync(), too:

Path p = new Path("p");
OutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.close();

assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));

Consequences for application design

This coherency model has implications for the way you design applications.

With no calls to sync(), you should be prepared to lose up to a block of data in

the event of client or system failure, this is unacceptable for many applications.

So call sync() at suitable points, such as after writing a certain number of

records or number of bytes.

This is overhead, so there is a trade-off between data robustness and

throughput.

Acceptable trade-off is application-dependent, and suitable values can be

selected after measuring your application’s performance with different sync()

frequencies.

Big Data 41

IV Year – II Semester 2018-19 CSE

3.10 Parallel Copying with distcp

� The distcp copying large amounts of data to and from Hadoop filesystems

in parallel.

� The canonical use case for distcp is for transferring data

between two HDFS clusters. % hadoop distcp
hdfs://namenode1/foo hdfs://namenode2/bar

� This will copy the /foo directory (and its contents) from the first cluster

to the /bar directory on the second cluster

� If /bar doesn’t exist, it will be created first .

� By default, distcp will skip files that already exist in the destination, but

they can be overwritten by supplying the -overwrite option. You can

also update only files that have changed using the - update option.

% hadoop distcp -update hdfs://namenode1/foo
hdfs://namenode2/bar/foo

� The options to control the behavior of distcp, are preserve file

attributes, ignore failures, and limit the number of files or total data

copied.

� distcp is implemented as a MapReduce job where the work of copying is

done by the maps that run in parallel across the cluster. There are no

reducers.

Big Data 42

IV Year – II Semester 2018-19 CSE

� Each file is copied by a single map, and distcp tries to give each map

approximately the same amount of data, by bucketing files into roughly

equal allocations.

No. of Maps

� The number of maps is decided as follows.

� Each map copies at least 256 MB (unless the total size of the input is

less, in which case one map handles it all).

Ex: 1 GB of files will be given four map tasks.

� When the data size is very large, it becomes necessary to limit the

number of maps in order to limit bandwidth and cluster utilization.

� By default, the maximum number of maps is 20 per (tasktracker) cluster

node

� -m argument to distcp used to specify

number of maps. Ex : -m 1000 would

allocate 1,000 maps.

� Use distcp between two HDFS clusters that are running different

versions, the copy will fail if you use the hdfs protocol, since the RPC

systems are incompatible.

� Use the read-only HTTP-based HFTP filesystem to read from the source.

The job must run on the destination cluster so that the HDFS RPC

versions are compatible.

Big Data 43

IV Year – II Semester 2018-19 CSE

Ex: using HFTP:

% hadoop distcp hftp://namenode1:50070/foo hdfs://namenode2/bar

� Need to specify the namenode’s web port in the source URI. This is

determined by the dfs.http.address property, which defaults to 50070.

� Using the newer webhdfs protocol (which replaces hftp) it is possible to

use HTTP for both the source and destination clusters without hitting

any wire incompatibility problems.

% hadoop distcp webhdfs://namenode1:50070/foo
webhdfs://namenode2:50070/bar

� Another variant is to use an HDFS HTTP proxy as the distcp source or

destination, which has the advantage of being able to set firewall and

bandwidth controls.

3.11 Keeping an HDFS Cluster Balanced

� When copying data into HDFS, it is important to consider cluster

balance.

� HDFS works best when the file blocks are evenly spread across the

cluster, so you want to ensure that distcp doesn’t disrupt this.

� Ex: 1,000 GB data specifying -m1 a single map do the copy not using the

cluster resources efficiently— the first replica of each block would reside

on the node running the map (until the disk filled up).

Big Data 44

IV Year – II Semester 2018-19 CSE

� The second and third replicas would be spread across the cluster, but

this one node would be unbalanced.

� By having more maps than nodes in the cluster, this problem is

avoided— it’s best to start by running distcp with the default of 20 maps

per node. If it is not possible use use the balancer tool for load

distribution across the cluster .

Big Data 45

IV Year – II Semester 2018-19 CSE

UNIT-III
Assignment-Cum-Tutorial Questions

SECTION-A
Objective Questions

1. HDFS is designed for______________ []

A) Storing very large files C) Commodity Hardware

B) Streaming data access D) All

2. The default HDFS port is ______________.

3. Distcp command used for copy large blocks of data across the cluster

 [True/False]

4. HDFS is ______________Architecture.

5. Data node is ___________daemon. []

A) Storage B) Computing C) Server D) None

6. _________________ model for a file system describe the data visibility of reads

and writes for a file. []

A) Map Reduce B) Coherency C) HDFS D) Pig

7. Use____tool for load distribution across the cluster. []

A. Loader B) Distributer C) Balancer D) None

8. On a fully configured cluster, “running Hadoop” means running___ daemons

on the different servers in the network. []

A) NameNode, DataNode C) JobTracker,TaskTracker

B) Secondary NameNode D) All

9. What mode that a Hadoop can run? []

A) Standalone C) Fully Distributed Mode

B) Pseudo-Distributed mode D) All

10. For reading/Writing data to/from HDFS.Clients first connect to[]

A) Name Node C) Secondary Name Node

B) Data Node D) none

11. The main goal of HDFS high availability is____________. []

A) Faster creation of the replicas of primary namenode.

B) To reduce the cycle time required to bring back a new primary namenode

after existing primary fails.

Big Data 46

IV Year – II Semester 2018-19 CSE

C) Prevent data loss due to failure of primary namenode.

D) Prevent the primary namenode form becoming single point of failure.

12. A Negative aspect to the importance of the Name Node___. []

A) Single point of failure C) No failure

B) Double point of failure D) None.

13. What is the way of accessing HDFS over HTTP []

A) Direct B) via proxy C) Both A & B D) None

14. If we use Cloudera distributation of hadoop which is the default directory fo

HDFS []

A) /home/cloud era C) /cloudera

B) /user/cloudera D) None

15. The information mapping data blocks with their corresponding files is

stored in []

A) Data Node C) Job Tracker

B) Name Node D) Task Tracker

16. What happen if number of reducer is 0 in Hadoop? []

A) Map-only job take place

B)) Reduce-only job take place.

C) Reducer output will be the final output D) None

17. The HDFS command to create the copy of a file from a local system is which

of the following? []

A) copyFromLocal C) copyfromlocal

B) CopyFromLocal D) copylocal

18. In order to read any file in HDFS, instance of []

A) fileSystem B) datastream C) outstream D) inputstream

19. is method to copy byte from input stream to any other stream in Hadoop.

A) Iutils B) Utils C) IOUtils D) All []

20. The daemons associated with the Map Reduce phase are_______ and Task-

Trackers. []

A) Job Tracker C) Reduce Trackers

B) Map Tracker D) All

Big Data 47

IV Year – II Semester 2018-19 CSE

SECTION-B
SUBJECTIVE QUESTIONS

1. Distinguish distributed file system and HDFS? In what areas HDFS does not

work well.

2. Outline the architecture of HDFS.

3. Write the benefits of Distributed File System having block abstraction.

4. List some concrete File System implementations.

5. What methods are required for querying the current position in the file?

6. Write the methods for creating directory an display its status.

7. What is the default replica placement strategy? Explain.

8. Explain about parallel copying with distcp

9. List out glob characters supported by Hadoop.

10. How to handle failure of Name Node? Explain

11. Defend how to achieve High-Availability in HDFS.

12. Identify various Hadoop daemons and explain their roles in a Hadoop

Cluster.

13. Why interface is required for HDFS? Explain different types of interfaces to

HDFS.

14. Develop the code for reading data from a Hadoop URL.

15. Develop the code for reading data using the File System API.

16. Examine anatomy of file read with a neat diagram.

17. Sketch and explain Anatomy of file write.

18. How to keep balance of HDFS cluster?

Big Data 1

IV-II SEMESTER 2018-19 CSE

Unit 4

Developing a MapReduce application

Objective: To familiarize with the Map Reduce development Environment

Syllabus: Analyzing data with unix tools, Analyzing data with hadoop, Java

MapReduce classes(new API), Data flow, Combiner functions, Running a

distributed MapReduce Job

Learning Outcomes:
At the end of the unit, students will be able to:

1. Develop Map reduce configuration files

2. Explain the managing configuration .

3. Develop the test cases for Map Reduce

4. Develop the web Interface for Map Reduce.

Learning Material
4.1 Setting up the development environment
The first step is to create a project so you can build mapreduce programs and

run them in local (standalone) mode from the command line or within IDE.

The Maven POM show the dependencies needed for building and testing

mapreduce programs.

Apache Maven is a build automation tool that can be used for java projects.

4.2 Managing Configuration
The entire apache Hadoop ecosystem is written in java, Maven is a great tool

for managing projects that build on the top of the Hadoop APIs.

1. The first step is to download the version of Hadoop that you plan to use and

unpack it on your development machine

2. IDE, create a new project and add all the JAR files from the top level of the

unpacked distribution and from the lib directory to the classpath.

3. Run on a local “pseudo distributed” cluster.

Big Data 2

IV-II SEMESTER 2018-19 CSE

Hadoop configuration files containing the connection settings for each cluster

you run and specify which one you are using.

conf directory contains three configuration files: hadoop-local.xml, hadoop-

localhost.xml, and hadoop-cluster.xml

The hadoop-local.xml file contains the default Hadoop configuration for the

default filesystem and the jobtracker:

<?xml version="1.0"?>

<configuration>

<property>

<name>fs.default.name</name>

<value>file:///</value>

</property>

<property>

<name>mapred.job.tracker</name>

<value>local</value>

 </property>

</configuration>

The settings in hadoop-localhost.xml point to a namenode and a jobtracker both

running on localhost:

<?xml version="1.0"?>

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://localhost/</value>

</property>

<property>

<name>mapred.job.tracker</name>

<value>localhost:8021</value>

</property>

</configuration>

Big Data 3

IV-II SEMESTER 2018-19 CSE

Finally, hadoop-cluster.xml contains details of the cluster’s namenode and

jobtracker addresses

<?xml version="1.0"?>

 <configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://namenode/</value>

</property>

<property>

<name>mapred.job.tracker</name>

<value>jobtracker:8021</value>

</property>

</configuration>

You can add other configuration properties to these files as needed. For

example, if you wanted to set your Hadoop username for a particular cluster,

directory listing on the HDFS server running in pseudo distributed mode on

local host:

% hadoop fs -conf conf/hadoop-localhost.xml -ls .
Found 2 items

drwxr-xr-x - tom supergroup 0 2009-04-08 10:32 /user/tom/input

drwxr-xr-x - tom supergroup 0 2009-04-08 13:09 /user/tom/output

Installing apache Hadoop
Prerequisites Hadoop is written in java, need to install version 6 or later.

Hadoop runs on unix and on windows. Linux is the only supported production

platform, but other flavors of unix(including Mac OS X) can be used to run

hadoop for development. Windows is only supported as a development

platform, and additionally requires Cygwin to run.

Hadoop can be run in one of the three modes:

Big Data 4

IV-II SEMESTER 2018-19 CSE

1. Standalone(or local) mode
There are no daemons running and everything runs in a single JVM.

Standalone mode is suitable for running mapreduce programs during

development, since it is easy to test and debug them.

2. Pseudo distributed mode
The Hadoop daemons run on the local machine, thus simulating a cluster on a

small scale.

3. Fully distributed mode
The Hadoop daemons run on a cluster of machines.

GenericOptionsParser, Tool, and ToolRunner
 Hadoop comes with a few helper classes for making it easier to run jobs

from the command line.

 GenericOptionsParser is a class that interprets common Hadoop

command-line options and sets them on a Configuration object for your

application.

 You don’t usually use GenericOptionsParser directly, as it’s more

convenient to implement the Tool interface and run your application with

the ToolRunner, which uses GenericOptionsParser internally:

public interface Tool extends Configurable
{
int run(String [] args) throws Exception;
}
Example: Tool implementation for printing the properties in a Configuration

public class ConfigurationPrinter extends Configured implements Tool {

static {

Configuration.addDefaultResource("hdfs-default.xml");

Configuration.addDefaultResource("hdfs-site.xml");

Configuration.addDefaultResource("mapred-default.xml");

Configuration.addDefaultResource("mapred-site.xml");

}

Big Data 5

IV-II SEMESTER 2018-19 CSE

@Override

public int run(String[] args) throws Exception {

Configuration conf = getConf();

for (Entry<String, String> entry: conf) {

System.out.printf("%s=%s\n", entry.getKey(), entry.getValue());

}

return 0;

}

public static void main(String[] args) throws Exception {

int exitCode = ToolRunner.run(new ConfigurationPrinter(), args);

System.exit(exitCode);

 }

}

 Make ConfigurationPrinter a subclass of Configured, which is an

implementation of the Configurable interface. All implementations of Tool

need to implement Configurable

 The run () method obtains the Configuration using Configurable’s

getConf() method and then iterates over it, printing each property to

standard output.

 ConfigurationPrinter’s main() method does not invoke its own run()

method directly.

 Instead, we call ToolRunner’s static run() method, which takes care of

creating a Configuration object for the Tool, before calling its run()

method.

 ToolRunner also uses a GenericOptionsParser to pick up any standard

options specified on the command line and set them on the

Configuration instance .

GenericOptionParser also allows you to set individual properties. For example

% hadoop ConfigurationPrinter -D color=yellow | grep color
color=yellow

Big Data 6

IV-II SEMESTER 2018-19 CSE

The -D option is used to set the configuration property with key color to the

value yellow.

4.3 Writing a unit test with MRUnit

 The map and reduce functions in MapReduce are easy to test in

isolation

 For known inputs, they produce known outputs.

 Since outputs are written to a Context (or an OutputCollector in the old

API), rather than simply being returned from the method call, the

Context needs to be replaced with a mock so that its outputs can be

verified.

 All of the tests described here can be run from within an IDE.

 Below example shows how to test mapper

 Here it passes a weather record as input to the mapper, then checks the

output is the year and temperature reading

 The input key is ignored by the mapper, so we can pass in anything,

including null as we do here.

 To create a mock Context, we call Mockito’s mock() method (a static

import), passing the class of the type we want to mock.

 Then we invoke the mapper’s map() method, which executes the code

being tested.

 Finally, we verify that the mock object was called with the correct method

and arguments, using Mockito’s verify() method

 Here we verify that Context’s write() method was called with a Text object

representing the year (1950) and an IntWritable representing the

temperature (−1.1°C).

Big Data 7

IV-II SEMESTER 2018-19 CSE

3. Writing a Unit Test with MRUnit
The map and reduce functions in MapReduce are easy to test in isolation,

which is a consequence of their functional style. MRUnit is a testing library

that makes it easy to pass known inputs to a mapper or a reducer and check

that the outputs are as expected. MRUnit is used in conjunction with a

standard test execution framework, such as JUnit, so you can run the tests for

MapReduce jobs in your normal development environment. For

example, all of the tests described here can be run from within an IDE by

following the instructions in Setting Up the Development Environment.

Mapper
The test for the mapper is shown in Example 6-5.

Example 6-5. Unit test for MaxTemperatureMapper

import java.io.IOException;

import org.apache.hadoop.io.*;
import org.apache.hadoop.mrunit.mapreduce.MapDriver;

import org.junit.*;
public class MaxTemperatureMapperTest{
@Test

public void processesValidRecord() throws IOException, InterruptedException

{

Text value = new Text("0043011990999991950051518004+68750+023550FM-

12+0382" +

// Year ^^^^

"99999V0203201N00261220001CN9999999N9-00111+99999999999");

// Temperature ^^^^^

new MapDriver<LongWritable, Text, Text, IntWritable>()

.withMapper(new MaxTemperatureMapper())

.withInput(new LongWritable(0), value)

.withOutput(new Text("1950"), new IntWritable(-11))

.runTest();

Big Data 8

IV-II SEMESTER 2018-19 CSE

}

}

The idea of the test is very simple: pass a weather record as input to the

mapper, and check that the output is the year and temperature reading.

Since we are testing the mapper, we use MRUnit’sMapDriver, which we

configure with the mapper under test (MaxTemperatureMapper), the input key

and value, and the expected output key (a Text object representing the year,

1950) and expected output value (an IntWritable representing the temperature,

-1.1°C), before finally calling the runTest() method to execute the test. If the

expected output values are not emitted by the mapper, MRUnit will fail the

test. Notice that the input key could be set to any value because our mapper

ignores it. Proceeding in a test-driven fashion, we create a Mapper

implementation that passes the test (see Example 6-6). Because we will be

evolving the classes in this chapter, each is put in a

different package indicating its version for ease of exposition. For example,

v1.MaxTemperatureMapper is version 1 of MaxTemperatureMapper. In reality,

of course, you would evolve classes without repackaging them.

Example 6-6. First version of a Mapper that passes

MaxTemperatureMapperTest

public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

@Override

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

String line = value.toString();

String year = line.substring(15, 19);

intairTemperature = Integer.parseInt(line.substring(87, 92));

context.write(new Text(year), new IntWritable(airTemperature));

Big Data 9

IV-II SEMESTER 2018-19 CSE

}

}

This is a very simple implementation that pulls the year and temperature fields

from theline and writes them to the Context.

Reducer
The reducer has to find the maximum value for a given key. Here’s a simple

test for this feature, which uses a ReduceDriver:

@Test

public void returnsMaximumIntegerInValues() throws IOException,

InterruptedException {

new ReduceDriver<Text, IntWritable, Text, IntWritable>()

.withReducer(new MaxTemperatureReducer())

.withInput(new Text("1950"),

Arrays.asList(new IntWritable(10), new IntWritable(5)))

.withOutput(new Text("1950"), new IntWritable(10))

.runTest();

}

We construct a list of some IntWritable values and then verify

hatMaxTemperatureReducer picks the largest. The code in Example 6-9 is for

animplementation of MaxTemperatureReducer that passes the test.

Example 6-9. Reducer for the maximum temperature example

public class MaxTemperatureReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

@Override

public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {

intmaxValue = Integer.MIN_VALUE;

for (IntWritable value : values) {

Big Data 10

IV-II SEMESTER 2018-19 CSE

maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxValue));

}

}

Running Locally on Test Data

Now that we have the mapper and reducer working on controlled inputs, the

next step is to write a job driver and run it on some test data on a development

machine.

Running a Job in a Local Job Runner

Using the Tool interface introduced earlier in the chapter, it’s easy to write a

driver to run our MapReduce job for finding the maximum temperature by year

(see MaxTemperatureDriver in Example 6-10). Example 6-10. Application to find

the maximum temperature

public class MaxTemperatureDriver extends Configured implements Tool {

@Override

public intrun(String[] args) throws Exception {

if (args.length != 2) {

System.err.printf("Usage: %s [generic options] <input><output>\n",

getClass().getSimpleName());

ToolRunner.printGenericCommandUsage(System.err);

return -1;

}

 Job job = new Job(getConf(), "Max temperature");

job.setJarByClass(getClass());

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

Big Data 11

IV-II SEMESTER 2018-19 CSE

job.setMapperClass(MaxTemperatureMapper.class);

job.setCombinerClass(MaxTemperatureReducer.class);

job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

return job.waitForCompletion(true) ? 0 : 1;

}

public static void main(String[] args) throws Exception {

intexitCode = ToolRunner.run(new MaxTemperatureDriver(), args);

System.exit(exitCode);

}

}

MaxTemperatureDriver implements the Tool interface, so we get the benefit of

being able to set the options that GenericOptionsParser supports. The run()

method constructs a Job object based on the tool’s configuration, which it uses

to launch a job. Among the possible job configuration parameters, we set the

input and output file paths; the mapper, reducer, and combiner classes; and

the output types (the input types are determined by the input format, which

defaults to TextInputFormat and has LongWritable keys and Text values). It’s

also a good idea to set a name for the job (Max temperature) so that you can

pick it out in the job list during execution and after it has completed. By

default, the name is the name of the JAR file, which normally is not

particularly descriptive. Now we can run this application against some local

files. Hadoop comes with a local job

runner, a cut-down version of the MapReduce execution engine for running

MapReduce jobs in a single JVM. It’s designed for testing and is very

convenient for use in an IDE, since you can run it in a debugger to step

through the code in your mapper and reducer. The local job runner is used if

mapreduce.framework.name is set to local, which is the default.[49]

From the command line, we can run the driver by typing:

Big Data 12

IV-II SEMESTER 2018-19 CSE

% mvn compile
% export HADOOP_CLASSPATH=target/classes/
% hadoop v2.MaxTemperatureDriver -confconf/hadoop-local.xml \
input/ncdc/micro output
Equivalently, we could use the -fs and -jt options provided by

GenericOptionsParser:

% hadoop v2.MaxTemperatureDriver -fs file:/// -jt local input/ncdc/micro
output

This command executes MaxTemperatureDriver using input from the local

input/ncdc/micro directory, producing output in the local output directory. Note

that although we’ve set -fs so we use the local filesystem (file:///), the local job

runner will actually work fine against any filesystem, including HDFS (and it

can be handy to do this if you have a few files that are on HDFS). We can

examine the output on the local filesystem:

% cat output/part-r-00000
1949 111

1950 22

Testing the Driver

Apart from the flexible configuration options offered by making your application

implement Tool, you also make it more testable because it allows you to inject

an arbitrary Configuration. You can take advantage of this to write a test that

uses a local job runner to run a job against known input data, which checks

that the output is as expected.

There are two approaches to doing this. The first is to use the local job runner

and run the job against a test file on the local filesystem. The code in Example

Big Data 13

IV-II SEMESTER 2018-19 CSE

6-11 gives an idea of how to do this.

Example 6-11. A test for MaxTemperatureDriver that uses a local, in-process job

runner

@Test

public void test() throws Exception {

Configuration conf = new Configuration();

conf.set("fs.defaultFS", "file:///");

conf.set("mapreduce.framework.name", "local");

conf.setInt("mapreduce.task.io.sort.mb", 1);

Path input = new Path("input/ncdc/micro");

Path output = new Path("output");

FileSystemfs = FileSystem.getLocal(conf);

fs.delete(output, true); // delete old output

MaxTemperatureDriver driver = new MaxTemperatureDriver();

driver.setConf(conf);

intexitCode = driver.run(new String[] {

input.toString(), output.toString() });

assertThat(exitCode, is(0));

checkOutput(conf, output);

}

The test explicitly sets fs.defaultFS and mapreduce.framework.name so it uses

the local filesystem and the local job runner. It then runs the

MaxTemperatureDriver via its Tool interface against a small amount of known

data. At the end of the test, the checkOutput() method is called to compare the

actual output with the expected output, line by line.

The secondway of testing the driver is to run it using a “mini-” cluster. Hadoop

has a set of testing classes, called MiniDFSCluster, MiniMRCluster, and

MiniYARNCluster, that provide a programmatic way of creating in-process

clusters. Unlike the local job runner, these allow testing against the full HDFS,

Big Data 14

IV-II SEMESTER 2018-19 CSE

MapReduce, and YARN machinery. Bear in mind, too, that node managers in a

mini-cluster launch separate JVMs to run tasks in,which can make debugging

more difficult.

Mapper

The test for the mapper is shown

 import static org.mockito.Mockito.*;

import java.io.IOException;

import org.apache.hadoop.io.*;

import org.junit.*;

public class MaxTemperatureMapperTest {

@Test

public void processesValidRecord() throws IOException, InterruptedException {

MaxTemperatureMapper mapper = new MaxTemperatureMapper();

Text value = new Text("0043011990999991950051518004+68750+023550FM-

12+0382" +

// Year ^^^^

"99999V0203201N00261220001CN9999999N9-00111+99999999999");

// Temperature ^^^^^

MaxTemperatureMapper.Context context =

mock(MaxTemperatureMapper.Context.class);

mapper.map(null, value, context);

verify(context).write(new Text("1950"), new IntWritable(-11));

}

}

We create a Mapper implementation that passes the test

public class MaxTemperatureMapper

extends Mapper<LongWritable, Text, Text, IntWritable> {

@Override

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

Big Data 15

IV-II SEMESTER 2018-19 CSE

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature = Integer.parseInt(line.substring(87, 92));

context.write(new Text(year), new IntWritable(airTemperature));

}

 }

This is a very simple implementation, which pulls the year and temperature

fields from the line and writes them to the Context. Then add a test for missing

values, which in the raw data are represented by a temperature of +9999:

@Test

public void ignoresMissingTemperatureRecord() throws IOException,

InterruptedException { MaxTemperatureMapper mapper = new

MaxTemperatureMapper();

Text value = new Text("0043011990999991950051518004+68750+023550FM-

12+0382" +

// Year ^^^^

"99999V0203201N00261220001CN9999999N9+99991+99999999999");

// Temperature ^^^^^

MaxTemperatureMapper.Context context =

mock(MaxTemperatureMapper.Context.class);

mapper.map(null, value, context);

verify(context, never()).write(any(Text.class), any(IntWritable.class));

 } The existing test fails with a NumberFormatException, as parseInt() cannot

parse integers with a leading plus sign, so we fix up the implementation

(version 2) to handle missing values:

 @Override

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

String line = value.toString();

String year = line.substring(15, 19);

String temp = line.substring(87, 92);

Big Data 16

IV-II SEMESTER 2018-19 CSE

if (!missing(temp)) {
int airTemperature = Integer.parseInt(temp);

context.write(new Text(year), new IntWritable(airTemperature));

}
}

private boolean missing(String temp) {
 return temp.equals("+9999");
}
With the test for the mapper passing, we move on to writing the reducer.

Reducer
The reducer has to find the maximum value for a given key. Here’s a simple

test for this feature:

@Test

public void returnsMaximumIntegerInValues() throws IOException,

InterruptedException {

 MaxTemperatureReducer reducer = new MaxTemperatureReducer();

 Text key = new Text("1950");

List<IntWritable> values = Arrays.asList(

 new IntWritable(10), new IntWritable(5));

MaxTemperatureReducer.Context context =

mock(MaxTemperatureReducer.Context.class);

reducer.reduce(key, values, context);

verify(context).write(key, new IntWritable(10)); }

construct a list of some IntWritable values and then verify that

MaxTemperatureReducer picks the largest.

Ex:Reducer for maximum temperature example

 public class MaxTemperatureReducer

extends Reducer<Text, IntWritable, Text, IntWritable> {

@Override

public void reduce(Text key, Iterable<IntWritable> values,

Context context)

Big Data 17

IV-II SEMESTER 2018-19 CSE

throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;

for (IntWritable value : values) {

maxValue = Math.max(maxValue, value.get()); }

context.write(key, new IntWritable(maxValue));

}

}

Mapper and reducer working on controlled inputs, the next step is to write a

job driver and run it on some test data on a development machine.

4.4 Running a job in local job runner
Write a driver to run our MapReduce job for finding the maximum temperature

by year.

Ex: Application to find the maximum temperature

public class MaxTemperatureDriver extends Configured implements Tool {

@Override

public int run(String[] args) throws Exception {

if (args.length != 2) {

System.err.printf("Usage: %s [generic options] <input> <output>\n",

getClass().getSimpleName());

ToolRunner.printGenericCommandUsage(System.err);

return -1;

}

Job job = new Job(getConf(), "Max temperature");

job.setJarByClass(getClass());

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);

job.setCombinerClass(MaxTemperatureReducer.class);

job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class);

return job.waitForCompletion(true) ? 0 : 1; }

Big Data 18

IV-II SEMESTER 2018-19 CSE

public static void main(String[] args) throws Exception {

int exitCode = ToolRunner.run(new MaxTemperatureDriver(), args);

System.exit(exitCode);

}

}

 MaxTemperatureDriver implements the Tool interface, to set the options

that GenericOptionsParser supports.

 The run() method constructs Job object based on the tool’s

configuration, which it uses to launch a job.

 Run this application against some local files. Hadoop comes with a local

job runner, running Map-Reduce jobs in a single JVM. It’s designed for

testing and is very convenient for use in an IDE

 The local job runner is only designed for simple testing of MapReduce

programs it differs from the full MapReduce implementation.

 The biggest difference is that it can’t run more than one reducer.

The local job runner is enabled by a configuration setting. Normally,

mapred.job.tracker is a host:port pair to specify the address of the jobtracker,

but when it has the special value of local, the job is run in-process without

accessing an external jobtracker.

From the command line, we can run the driver by typing:

% hadoop v2.MaxTemperatureDriver -conf conf/hadoop-local.xml \
input/ncdc/micro output
Equivalently, we could use the -fs and -jt options provided by

GenericOptionsParser:

% hadoop v2.MaxTemperatureDriver -fs file:/// -jt local input/ncdc/micro
output
This command executes MaxTemperatureDriver using input from the local

input/ncdc/micro directory, producing output in the local output directory. To

Big Data 19

IV-II SEMESTER 2018-19 CSE

work local job runner against any filesystem set –fs so we use the local

filesystem (file:///)

 When we run the program, it fails and prints the following exception:

java.lang.NumberFormatException: For input string: "+0000"

Fixing the mapper
This exception shows that the map method still can’t parse positive

temperatures. Run the test in a local debuggerEarlier, we made it handle the

special case of missing temperature, +9999, but not the general case of any

positive temperature and parser class to encapsulate the parsing logic.

Example : A class for parsing weather records in NCDC format

 public class NcdcRecordParser {

private static final int MISSING_TEMPERATURE = 9999;

private String year;

 private int airTemperature;

private String quality;

public void parse(String record) {

year = record.substring(15, 19);

String airTemperatureString;

// Remove leading plus sign as parseInt doesn't like them

if (record.charAt(87) == '+') { airTemperatureString = record.substring(88, 92); }

else {

airTemperatureString = record.substring(87, 92); Big Data 10 IV-II SEMESTER

}

airTemperature = Integer.parseInt(airTemperatureString);

quality = record.substring(92, 93); }

public void parse(Text record) {

parse(record.toString()); }

public boolean isValidTemperature() {

Big Data 20

IV-II SEMESTER 2018-19 CSE

return airTemperature != MISSING_TEMPERATURE &&

quality.matches("[01459]"); }

public String getYear() {

return year; } public int getAirTemperature() {

return airTemperature;

}

}

Big Data 21

IV-II SEMESTER 2018-19 CSE

 parse() method, which parses the fields of interest from a line of input,

checks whether a valid temperature was found using the

isValidTemperature() query method, and if it was, retrieves the year and

the temperature using the getter methods on the parser.

 Check the quality status field as well as missing temperatures in

isValidTemperature() to filter out poor temperature readings.

 Another benefit of creating a parser class is that it makes it easy to write

related mappers for similar jobs without duplicating code. It also gives us

the opportunity to write unit tests directly against the parser, for more

targeted testing.

Example A Mapper that uses a utility class to parse records
public class MaxTemperatureMapper

extends Mapper<LongWritable, Text, Text, IntWritable> {

private NcdcRecordParser parser = new NcdcRecordParser(); @Override

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

parser.parse(value);
if (parser.isValidTemperature()) {
context.write(new Text(parser.getYear()),
new IntWritable(parser.getAirTemperature()));
}

}

 }

With these changes, the test passes

4.5 Running on a cluster Now that we are happy with the program running

on a small test dataset, we are ready to try it on the full dataset on a Hadoop

cluster.

Big Data 22

IV-II SEMESTER 2018-19 CSE

Packaging

 The local job runner uses a single JVM to run a job, so all the classes

that the job needs are on its classpath.

 In distributed environment job classes must be packaged into a job JAR

file to send to the cluster.

 Hadoop will find the job JAR automatically by searching for the JAR on

the drivers classpath that contains the class set in the setJarByClass()

method. To set explicit JAR file by it path use setJar() method.

<jar destfile="hadoop-examples.jar" basedir="${classes.dir}"/>

If you have a single job per JAR, then you can specify the main class to run in

the JAR file’s manifest.

If the main class is not in the manifest, then it must be specified on the

command line (as you will see shortly).

Also, any dependent JAR files should be packaged in a lib subdirectory in the

JAR file.

Launching a Job

 To launch the job, we need to run the driver, specifying the cluster that

we want to run the job on with the -conf option (we could equally have

used the -fs and -jt options):

% hadoop jar hadoop-examples.jar v3.MaxTemperatureDriver -conf
conf/hadoop-cluster.xml \

input/ncdc/all max-temp

The waitForCompletion() method on Job launches the job and polls for

progress, writing a line summarizing the map and reduce’s progress whenever

either changes. Here’s the output (some lines have been removed for clarity):

09/04/11 08:15:52 INFO mapred.FileInputFormat: Total input paths to

process : 101

09/04/11 08:15:53 INFO mapred.JobClient: Running job:

job_200904110811_0002

09/04/11 08:15:54 INFO mapred.JobClient: map 0% reduce 0%

Big Data 23

IV-II SEMESTER 2018-19 CSE

09/04/11 08:16:06 INFO mapred.JobClient: map 28% reduce 0%

09/04/11 08:16:07 INFO mapred.JobClient: map 30% reduce 0%

….

09/04/11 08:21:36 INFO mapred.JobClient: map 100% reduce 100%

09/04/11 08:21:38 INFO mapred.JobClient: Job complete:

job_200904110811_0002 09/04/11 08:21:38 INFO mapred.JobClient:

Counters: 19 09/04/11 08:21:38 INFO mapred.JobClient: Job Counters

09/04/11 08:21:38 INFO mapred.JobClient: Launched reduce tasks=32

09/04/11 08:21:38 INFO mapred.JobClient: Rack-local map tasks=82

09/04/11 08:21:38 INFO mapred.JobClient: Launched map tasks=127

09/04/11 08:21:38 INFO mapred.JobClient: Data-local map tasks=45

09/04/11 08:21:38 INFO mapred.JobClient: FileSystemCounters 09/04/11

08:21:38 INFO mapred.JobClient: FILE_BYTES_READ=12667214 09/04/11

08:21:38 INFO mapred.JobClient: HDFS_BYTES_READ=33485841275

09/04/11 08:21:38 INFO mapred.JobClient: FILE_BYTES_WRITTEN=989397

09/04/11 08:21:38 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=904

09/04/11 08:21:38 INFO mapred.JobClient: Map-Reduce Framework

09/04/11 08:21:38 INFO mapred.JobClient: Reduce input groups=100

09/04/11 08:21:38 INFO mapred.JobClient: Combine output records=4489

09/04/11 08:21:38 INFO mapred.JobClient: Map input records=1209901509

09/04/11 08:21:38 INFO mapred.JobClient: Reduce shuffle bytes=19140

09/04/11 08:21:38 INFO mapred.JobClient: Reduce output records=100

09/04/11 08:21:38 INFO mapred.JobClient: Spilled Records=9481 09/04/11

08:21:38 INFO mapred.JobClient: Map output bytes=10282306995 09/04/11

08:21:38 INFO mapred.JobClient: Map input bytes=274600205558 09/04/11

08:21:38 INFO mapred.JobClient: Combine input records=1142482941

09/04/11 08:21:38 INFO mapred.JobClient: Map output records=1142478555

09/04/11 08:21:38 INFO mapred.JobClient: Reduce input records=103

Big Data 24

IV-II SEMESTER 2018-19 CSE

 The output includes more useful information.

 Before the job starts, its ID is printed: this is needed whenever you want

to refer to the job, in logfiles for example, or when interrogating it via the

hadoop job command.

 When the job is complete, its statistics (known as counters) are printed

out. These are very useful for confirming that the job did what you

expected. For example, for this job we can see that around 275 GB of

input data was analyzed (“Map input bytes”), read from around 34 GB of

compressed files on HDFS (“HDFS_BYTES_READ”).

 The input was broken into 101 gzipped files of reasonable size, so there

was no problem with not being able to split them.

The MapReduce Web UI
Hadoop comes with a web UI for viewing information about your jobs. It is

useful for following a job’s progress while it is running, as well as finding job

statistics and logs after the job has completed. You can find the UI at

http://jobtracker-host:50030/.

The jobtracker page
 A screenshot of the home page is shown in Figure 5-1. The first section of the

page gives details of the Hadoop installation, such as the version number and

when it was compiled, and the current state of the jobtracker (in this case,

running), and when it was started.

Big Data 25

IV-II SEMESTER 2018-19 CSE

Next is the summary of the cluster, which has measures of cluster capacity

and utilization. This show

 The number of maps and reduces currently running on the cluster.

 The total number of job submissions.

 The number of tasktracker nodes currently available.

 The cluster’s capacity in terms of the number of map and reduce slots

available across the cluster.

 The number of available slots per node, on average.

 The number of tasktrackers that have been blacklisted by the job

tracker.

Big Data 26

IV-II SEMESTER 2018-19 CSE

Below the summary, there is a section about the job scheduler that is running

(here the default). You can click through to see job queues. Further down, we

see sections for running, (successfully) completed, and failed jobs. Each of

these sections has a table of jobs, with a row per job that shows the job’s ID,

owner, name (as set in the Job constructor or setJobName() method, both of

which internally set the mapred.job.name property) and progress information.

Finally, at the foot of the page, there are links to the jobtracker’s logs, and the

jobtracker’s history: information on all the jobs that the jobtracker has run.

The main view displays only 100 jobs (configurable via the

mapred.jobtracker.completeuserjobs.maximum property), before consigning

them to the history page.

Big Data 27

IV-II SEMESTER 2018-19 CSE

Big Data 28

IV-II SEMESTER 2018-19 CSE

UNIT-IV
Assignment-Cum-Tutorial Questions

SECTION-A
Objective Questions
1. Which of the following is the default partitioner for Map Reduce []

A) Merge Partitioner C) Hash Partitioner

B) Hashed Partitioner D) None

2. Which of the following partitions the key space/ []

A) Partitioner B) Compactor C) Collector D) All

3. ______ is a generalization of the facility provided by the Map Reduce frame

work to collect data output by the Mapper or the Reducer. []

A) OutputCompactor C) InputCollector

B) OutputCollector D) All

4. ______ is the primary interface for a user to describe a Map Reduce job to the

Hadoop frame work for execution. []

A) Jobconfig B) Jobconf C) Jobconfiguration D) All

5. The ___________________ executes the Mapper / Reducer task as a child

process in a separate JVM. []

A) JobTracker B) TaskTracker C) TaskScheduler D) None

6. Maximum virtual memory of the launched child-task is specified using

A) Mapv B) mapred C) mapvim D) All []

7. Which of the following parameter is the threshold for the accounting and

serialization butters? []

A) Io.sort.spill.percent C) io.sort.mb

B) Io.sort.record.percent D) None

8. ____________ is percentage of memory relative to the maximum heap size in

which map output may be retained during the reduce. []

A) Mapred.job.shuffle.merge.percent

B) Mapred.job.reduce.input.buffer.percen

C) Mapred.inmem.merge.threshold

D) Io.sort.factor

Big Data 29

IV-II SEMESTER 2018-19 CSE

9. _________ specifies the number of segments on disk to be merged at the same

time. []

A) Mapred.job.shuffle.merge.percent

B) Mapred.job.reduce.input.buffer.percen

C) Mapred.inmem.merge.threshold.

D) Io.sort.factor.

10. Map output larger that __ percent of the memory allocated to copying map

outputs. []

A) 10 B) 15 C) 25 D) 35

11. Jobs can enable task JVM to be reused by specifying the job configuration.

 []

A) Mapred.job.recycle.jvm.num.tasks

B) Mapissue.job.reuse.jvm.num.tasks.

C) Mapred.job.reuse.jvm.num.tasks.

D) All

12. During the execution of a streaming job, the names of the _________

parameters are transformed. []

A) Vmap B) mapvim C) mapreduce D) mapred

13. The standard output(stdout) and error (stderr) streams of the task are read

by the Task Tracker and logged to

A) ${HADOOP_LOG_DIR}/user

B) ${HADOOP_LOG_DIR}/userlogs

C) ${HADOOP_LOG_DIR}/logs

D) None

14. _____ is the primary interface by which user-job interacts with the Job

Tracker. []

A) Jobconf B) JobClient C) JobServer D) All

15. The ________ can also be used to distribute both jars and native libraries for

use in the map and/or reduce tasks. []

A) DistributeLog C) DistributedJars

B) Distributed Cache D) None

Big Data 30

IV-II SEMESTER 2018-19 CSE

16. ___ is used to filter log files from the output directory listing. []

A) Outputlog B) OutputLogFilter C) DistributedLog D) DisttibutedJar

17. Which of the following class provides access to configuration parameters?

 []

A) Config B) configuration C) outputConfig D) None

18. ____________ gives site-specific configuration for a given hadoop installation.

 []

A) Core-default.xml C) coredefault.xml

B) Core-site.xm; D) None

19. ___ method clears all keys from the configuration []

A) Clear B) addResource C) getClass D) None

20. ____ is useful for iterating the properties when all deprecated properties for

currently set properties need to be present. []

A) addResource C) addDefaultResource

B) setDeprecatedProperties D) None

SECTION-B
SUBJECTIVE QUESTIONS
1. How is the configuration of the development environment managed in

Hadoop?

2. Write about the Managing configuration.

3. What you mean by MRUnit? Explain detail.

4. Explain the local job runner?

5. Write about the running on a cluster?

6. Explain about MapReduce WebUI?

7. Write the simple configuration file using XML

8. Explain about GenericOptionParser and Toolrunner options?

9. Write a program for a unit test MaxTemeratureMapper?

10. Write a test case for Reducer.

11. Write a program for local job runner?

12. Illustrate about packaging a job

Big Data 31

IV-II SEMESTER 2018-19 CSE

13. Explain about launching a job?

14. Design the resource manage page?

Big Data 1

IV-II SEMESTER 2018-19 CSE

UNIT-V

MapReduce Working
Objective:

To familiarize with the working of Map Reduce in Hadoop.

Syllabus:
MapReduce Working
Classic MapReduce, Job submission, Job Initialization, Task Assignment, Task

execution, Progress and status

updates, Job completion, Shuffle and sort on Map and Reduce side, Configuration

tuning, Map Reduce types,

Input formats, Output formats.

Learning Outcomes:

At the end of the unit, students will be able to:

1. Write more advanced Map Reduce programs.

2. Describe data types supported by MapReduce and Input and Output

formats.
Learning Material
Introduction

• Run a MapReduce job with a single method call: submit() on a Job object

which will submit the job and call waitForCompletion(), wait for it to

finish.

• The steps Hadoop takes to run a job. We saw in previous chapter that the

way Hadoop executes a MapReduce program depends on a couple of

configuration settings.

• In releases of Hadoop up to and including the 0.20 release series,

mapred.job.tracker determines the means of execution.

1) If this configuration property is set to local, the default, then the local job

runner is used. This runner runs the whole job in a single JVM.

Big Data 2

IV-II SEMESTER 2018-19 CSE

2) It’s designed for testing and for running MapReduce programs on small

datasets.

3) If mapred.job.tracker is set to a colon-separated host and port pair, then

the property is interpreted as a jobtracker address, and the runner

submits the job to the jobtracker at that address.

5.1 Classic MapReduce (MapReduce 1)

A job run in classic MapReduce is illustrated in Figure .

At the highest level, there are four independent entities:

1. The client, which submits the MapReduce job.

2. The jobtracker, which coordinates the job run. The jobtracker is a Java

application whose main class is JobTracker.

3. The tasktrackers, which run the tasks that the job has been split

into. Tasktrackers are Java applications whose main class is

TaskTracker.

4. The distributed filesystem (normally HDFS), which is used for sharing

job files between the other entities.

Fig : How Hadoop runs a MapReduce job using the classic framework

Big Data 3

IV-II SEMESTER 2018-19 CSE

There are six detailed levels in workflows. They are:

1. Job Submission

2. Job Initialization

3. Task Assignment

4. Task Execution

5. Task Progress and status updates

6. Task Completion

5.2 Job Submission
The submit() method on Job creates an internal JobSummitter instance and

calls submitJobInternal() on it (step 1 in Figure).

After submitted the job, waitForCompletion() polls the job’s progress once a

second and reports the progress to the console.

When the job is complete, if it was successful, the job counters are

displayed. Otherwise, the error that caused the job to fail is logged to the

console.

The job submission process implemented by JobSummitter does the

following:

▪ Asks the jobtracker for a new job ID (by calling getNewJobId() on obTracker)

(step 2).

Big Data 4

IV-II SEMESTER 2018-19 CSE

▪ Checks the output specification of the job. For example, if the output

directory has not been specified or it already exists, the job is not submitted

and an error is thrown to the MapReduce program.

▪ Computes the input splits for the job. If the splits cannot be computed,

because the input paths don’t exist, for example, then the job is not

submitted and an error is thrown to the MapReduce program.

▪ Copies the resources needed to run the job, including the job JAR file, the

configuration file, and the computed input splits, to the jobtracker’s

filesystem in a directory named after the job ID.

▪ The job JAR is copied with a high replication factor (controlled by the

mapred.submit.replication property, which defaults to 10) so that there are

lots of copies across the cluster for the tasktrackers to access when they

run tasks for the job (step 3).

▪ Tells the jobtracker that the job is ready for execution (by calling

submitJob() on JobTracker) (step 4).

5.3 Job Initialization

• When the JobTracker receives a call to its submitJob() method, it puts it

into an internal queue from where the job scheduler will pick it up and

initialize it

Initialization involves

Bookkeeping information to keep track of the tasks’ status and progress

(step 5).

creating an object to represent the job being run, which encapsulates its

tasks, and

Big Data 5

IV-II SEMESTER 2018-19 CSE

1. To create the list of tasks to run, the job scheduler first retrieves the input

splits computed by the client from the shared filesystem (step 6).

2. It then creates one map task for each split.

3. The number of reduce tasks to create is determined by the

mapred.reduce.tasks property in the Job, which is set by the

setNumReduceTasks() method, and the scheduler simply creates this

number of reduce tasks to be run.

4. Tasks are given IDs at this point. In addition to the map and reduce tasks,

two further tasks are created: a job setup task and a job cleanup task.

5. These are run by tasktrackers and are used to run code to setup the job

before any map tasks run, and to clean up after all the reduce tasks are

complete.

6. The OutputCommitter that is configured for the job determines the code to

be run, andby default this is a FileOutputCommitter.

7. For the job setup task it will create the final output directory for the job and

the temporary working space for the task output, and for the job cleanup

task it will delete the temporary working space for the task output.

5.4 Task Assignment
• Tasktrackers run a simple loop that periodically sends heartbeat method

calls to the jobtracker.

• Heartbeats tell the jobtracker that a tasktracker is alive, but they also

double as a channel for messages.

• As a part of the heartbeat, a tasktracker will indicate whether it is ready to

run a new task, and if it is, the jobtracker will allocate it a task, which it

communicates to the tasktracker using the heartbeat return value (step 7).

Big Data 6

IV-II SEMESTER 2018-19 CSE

• Before it can choose a task for the tasktracker, the jobtracker must choose a

job to select the task from. There are various scheduling algorithms but the

default one simply maintains a priority list of jobs.

• Having chosen a job, the jobtracker now chooses a task for the job.

Tasktrackers have a fixed number of slots for map tasks and for reduce

tasks:

Ex: a tasktracker may be able to run two map tasks and two reduce tasks

simultaneously. (The precise number depends on the number of cores and

the amount of memory on the tasktracker)

• The default scheduler fills empty map task slots before reduce task slots, so

if the tasktracker has at least on empty map task slot, the jobtracker will

select a map task; otherwise, it will select a reduce task.

• To choose a reduce task, the jobtracker simply takes the next in its list of

yet-to-be-run reduce tasks, since there are no data locality considerations.

• For a map task, however, it takes account of the tasktracker’s network

location and picks a task whose input split is as close as possible to the

tasktracker.

• In the optimal case, the task is data-local, that is, running on the same node

that the split resides on.

• Alternatively, the task may be rack-local: on the same rack, but not the same

node, as the split. Some tasks are neither data-local nor rack-local and

retrieve their data from a different rack from the one they are running on.

• You can tell the proportion of each type of task by looking at a job’s

counters.

Big Data 7

IV-II SEMESTER 2018-19 CSE

5.5 Task Execution

• Now that the tasktracker has been assigned a task, the next step is for it to

run the task.

• First, it localizes the job JAR by copying it from the shared filesystem to the

tasktracker’s filesystem.

It also copies any files needed from the distributed cache by the application

to the local disk.

• Second, it creates a local working directory for the task, and un-jars the

contents of the JAR into this directory.

• Third, it creates an instance of TaskRunner to run the task. TaskRunner

launches a new Java Virtual Machine (step 9) to run each task in (step 10),

so that any bugs in the user-defined map and reduce functions don’t affect

the tasktracker (by causing it to crash or hang, for example).

• It is, however, possible to reuse the JVM between tasks.

• The child process communicates with its parent through the umbilical

interface. This way it informs the parent of the task’s progress every few

seconds until the task is complete.

• Each task can perform setup and cleanup actions, which are run in the same

JVM as the task itself, and are determined by the OutputCommitter for the

job

• The cleanup action is used to commit the task, which in the case of file-based

jobs means that its output is written to the final location for that task.

• The commit protocol ensures that when speculative execution is enabled, only

one of the duplicate tasks is committed and the other is aborted.

Big Data 8

IV-II SEMESTER 2018-19 CSE

Fig : The relationship of the Streaming and Pipes executable to the tasktracker

and its child

• Both Streaming and Pipes run special map and reduce tasks for the purpose

of launching the user-supplied executable and communicating with it (Fig).

• In the case of Streaming, the Streaming task communicates with the process

(which may be written in any language) using standard input and output

streams.

• The Pipes task, on the other hand, listens on a socket and passes the C++

process a port number in its environment, so that on startup, the C++

process can establish a persistent socket connection back to the parent Java

Pipes task.

• In both cases, during execution of the task, the Java process passes input

key-value pairs to the external process, which runs it through the user-

defined map or reduce function and passes the output key-value pairs back

to the Java process.

• From the tasktracker’s point of view, it is as if the tasktracker child process

ran the map or reduce code itself.

Big Data 9

IV-II SEMESTER 2018-19 CSE

5.6 Progress and Status Updates

• MapReduce jobs are long-running batch jobs, taking anything from minutes

to hours to run.

• Progress reporting is important for the user to get feedback on how the job

is progressing.

• The following operations constitute progress:

• Reading an input record (in a mapper and reducer)

• Writing and output record (in a mapper and reducer)

• Setting the status description on a reporter (by using Reporter’s

setStatus() method)

• Incrementing a counter (using Reporter’s incrCounter() method)

• Calling Reporter’s Progress() method

• A job and each of its tasks have a status, which includes

• State of the job or task (e.g., running, successfully completed, failed)

• The progress of maps and reduces

• The values of the job’s counters and

• A status message or description (which may be set by user code).

• These statuses change over the course of the job, they get communicated

back to the client regarding progress by displaying

Big Data 10

IV-II SEMESTER 2018-19 CSE

• The proportion of the task completed.

• For map tasks, the proportion of the input that has been processed.

• For reduce tasks, the proportion of the reduce input processed.

 It does this by dividing the total progress into three parts,

corresponding to the three phases of the shuffle.

 Display counters that count various events as the task runs

such as number of map output records written.

• If a task reports progress, it sets a flag to indicate that the status change

should be sent to the tasktracker.

• The flag is checked in a separate thread every three seconds, and if set it

notifies the tasktracker of the current task status.

• Meanwhile, the tasktracker is sending heartbeats to the jobtracker every five

seconds (this is a minimum, as the heartbeat interval is actually dependent

on the size of the cluster: for larger clusters,the interval is longer)

• The status of all the tasks being run by the tasktracker is sent in the call.

• Counters are sent less frequently than every five seconds, because they can

be relatively high-bandwidth.

• The jobtracker combines these updates to produce a global view of the

status of all the jobs being run and their constituent tasks.

• Finally, the Job receives the latest status by polling the jobtracker every

second.

Big Data 11

IV-II SEMESTER 2018-19 CSE

• Clients can also use Job’s getStatus() method to obtain a JobStatus

instance, which contains all of the status information for the job.

5.7 Job Completion

• When the jobtracker receives a notification that the last task for a job is

complete it changes the status for the job to “successful.”

• Then, when the Job polls for status, it learns that the job has completed

successfully, it prints a message to tell the user and then returns from the

waitForCompletion() method.

• The jobtracker also sends an HTTP job notification.

• Last, the jobtracker cleans up its working state for the job and instructs

tasktrackers to do the same (so intermediate output is deleted, for example).

5.8 Shuffle and Sort

• MapReduce makes the guarantee that the input to every reducer is sorted

by key.

• The process by which the system performs the sort—and transfers the map

outputs to the reducers as inputs—is known as the shuffle.

• The shuffle is an area of the codebase where refinements and improvements

are continually being made.

Shuffle sort on Map Side

• When the map function starts producing output, it is not simply written to

disk. The process is more involved, and takes advantage of buffering writes

in memory and doing some presorting for efficiency reasons.

Big Data 12

IV-II SEMESTER 2018-19 CSE

Shuffle and sort in MapReduce

• The buffer is 100 MB by default, change the size by using io.sort.mb

property.

• When the contents of the buffer reaches a certain threshold size a

background thread will start to spill the contents to disk.

• Map outputs will continue to be written to the buffer while the spill takes

place, but if the buffer fills up during this time, the map will block until the

spill is complete.

• Spills are written in round-robin fashion to the directories specified by the

mapred.local.dir property.

• Before it writes to disk, the thread first divides the data into partitions

corresponding to the reducers to send.

• Within each partition, the background thread performs an in-memory sort

by key, and if there is a combiner function, it is run on the output of the

sort.

• Running the combiner function makes more compact map output, so less

data to write to local disk and to transfer to the reducer.

• Each time the memory buffer reaches the spill threshold, a new spill file is

created

• Before the task is finished, the spill files are merged into a single partitioned

and sorted output file.

• The configuration property io.sort.factor controls the maximum number of

streams to merge at once; the default is 10.

Big Data 13

IV-II SEMESTER 2018-19 CSE

• If there are at least three spill files then the combiner is run again before the

output file is written.

• Compress the map output as it is written to disk, makes it faster to write to

disk, saves disk space, and reduces the amount of data to transfer to the

reducer.

• By default, the output is not compressed, but it is easy to enable by setting

mapred.compress.map.output to true.

• The output file’s partitions are made available to the reducers over HTTP.

• The maximum number of worker threads used to serve the file partitions is

controlled by the tasktracker.http.threads property. The default of 40 may

need increasing for large clusters running large jobs.

Shuffle and sort on Reduce Side
The map output file is sitting on the local disk of the machine that ran the map

task. The reduce task needs the map output for its particular partition from

several map tasks across the cluster.

There are three phases for reducer 1) copy phase 2) sort phase 3) reduce phase.

1) Copy phase:

• The map tasks may finish at different times, so the reduce task starts

copying their outputs as soon as each completes.

• The reduce task has a small number of copier threads so that it can fetch

map outputs in parallel.

• The default is five threads, but this number can be changed by setting

the mapred.reduce.parallel.copies property.

Big Data 14

IV-II SEMESTER 2018-19 CSE

• The map outputs are copied to reduce task JVM’s memory otherwise,

they are copied to disk.

When the in-memory buffer reaches a threshold size or reaches a

threshold number of map outputs it is merged and spilled to disk.

• Any map outputs that were compressed have to be decompressed in

memory in order to perform a merge on them.

• When all the map outputs have been copied, the reduce task moves into

the sort phase.

2) Sort phase:
• In this phase merge the map outputs, maintaining their sort

ordering.

• This is done in rounds. For example, if there were 50 map outputs,

and the merge factor was 10, then there would be 5 rounds. Each

round would merge 10 files into one, so at the end there would be five

intermediate files.

• These five files into a single sorted file, the merge saves a trip to disk

by directly feeding the reduce function. This final merge can come

from a mixture of in-memory and on-disk segments.

3) Reduce phase:
• During the reduce phase, the reduce function is invoked for each key

in the sorted output.

• The output of this phase is written directly to the output filesystem,

typically HDFS.

• In the case of HDFS, since the tasktracker node is also running a

datanode, the first block replica will be written to the local disk.

Big Data 15

IV-II SEMESTER 2018-19 CSE

5.9 Configuration Tuning
• Configuration tuning is to tune the shuffle to improve MapReduce

performance.

• The general principle is to give the shuffle as much memory as possible.

• There is a trade-off, in that you need to make sure that your map and

reduce functions get enough memory to operate.

• Write map and reduce functions to use as little memory as possible,

should not use an unbounded amount of memory.

• The amount of memory given to the JVMs in which the map and reduce

tasks run is set by the mapred.child.java.opts property.

• To make this as large as possible for the amount of memory on your task

nodes.

On the map side
• The best performance can be obtained by avoiding multiple spills to disk;

one is optimal.

• If you can estimate the size of your map outputs, then you can set the

io.sort.* properties appropriately to minimize the number of spills.

• There is a MapReduce counter that counts the total number of records

that were spilled to disk over the course of a job, which can be useful for

tuning.

• The counter includes both map and reduces side spills.

On the reduce side
• The best performance is obtained when the intermediate data can reside

entirely in memory.

• By default, this does not happen, since for the general case all the memory

is reserved for the reduce function.

Big Data 16

IV-II SEMESTER 2018-19 CSE

• If your reduce function has mapred.inmem.merge.threshold to 0 and a

performance boost.

light memory requirements, then setting mapred.job.reduce.input.buffer.percent

to 1.0 may bring

• Hadoop uses a buffer size of 4 KB by default, which is low, so you should

increase this across the cluster.

5.10 MapReduce Types
The map and reduce functions in Hadoop MapReduce have the following

general form:

map: (K1, V1) → list(K2, V2)

reduce: (K2, list(V2)) → list(K3, V3)

• The map input key and value types (K1 and V1) are different from the map

output types (K2 and V2).

• The reduce input must have the same types as the map output, although

the reduce output types may be different again (K3 and V3).

The Java API mirrors this general form:
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {

public class Context extends MapContext<KEYIN, VALUEIN,
KEYOUT, VALUEOUT> { // ...

}

protected void map(KEYIN key, VALUEIN value, Context
context) throws IOException, InterruptedException {

// ...

Big Data 17

IV-II SEMESTER 2018-19 CSE

}

}

public class Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {

public class Context extends ReducerContext<KEYIN,
VALUEIN, KEYOUT, VALUEOUT> { // ...

}

protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context
context) throws

IOException, InterruptedException {

// ...
}
}

• The context objects are used for emitting key-value pairs, so they are

parameterized by the output types, so that the signature of the write()

method is:

public void write(KEYOUT key, VALUEOUT value) throws IOException,
InterruptedException

• Mapper and Reducer are separate classes the type parameters have different

scopes, and the actual type argument of KEYIN (say) in the Mapper may be

different to the type of the type parameter of the same name (KEYIN) in the

Reducer.

Ex: in the maximum temparature example from earlier chapters, KEYIN is

replaced by LongWritable for the Mapper, and by Text for the Reducer.

Big Data 18

IV-II SEMESTER 2018-19 CSE

• The map output types and the reduce input types must match

If combiner function is used, then it is the same form as the reduce function

(and is an implementation of Reducer), except its output types are the

intermediate key and value types (K2 and V2), so they can feed the reduce

function:

map: (K1, V1) → list(K2, V2)

combine: (K2, list(V2)) → list(K2, V2)

reduce: (K2, list(V2)) → list(K3, V3)
• combine and reduce functions are the same, in which case, K3 is the same

as K2, and V3 is the same as V2.

• The partition function operates on the intermediate key and value types (K2

and V2), and returns the partition index.

• The partition is determined by the key (the value is ignored):

partition: (K2, V2) → integer

In Java:

public abstract class Partitioner<KEY, VALUE> {
public abstract int getPartition(KEY key, VALUE value, int
numPartitions);

}

5.11 Input Formats
Hadoop can process many different types of data formats, from flat text files

to databases.

Big Data 19

IV-II SEMESTER 2018-19 CSE

1) Input Splits and Records:
• An input split is a chunk of the input that is processed by a single map.

Each map processes a single split.

• Each split is divided into records, and the map processes each record—a

key-value pair—in turn.

public abstract class InputSplit {

public abstract long getLength() throws IOException,
InterruptedException; public abstract String[]
getLocations() throws IOException, InterruptedException;
}

FileInputFormat:
• FileInputFormat is the base class for all implementations of InputFormat

that use files as their data source.

• It provides two things: a place to define which files are included as the input

to a job, and an implementation for generating splits for the input files.

FileInputFormat input paths:
• The input to a job is specified as a collection of paths, which offers great

flexibility in constraining the input to a job.

• FileInputFormat offers four static convenience methods for setting a Job’s

input paths:

public static void addInputPath(Job job, Path path)

public static void addInputPaths(Job job, String
commaSeparatedPaths)

public static void setInputPaths(Job job, Path... inputPaths)

Big Data 20

IV-II SEMESTER 2018-19 CSE

public static void setInputPaths(Job job, String
commaSeparatedPaths)

• The addInputPath() and addInputPaths() methods add a path or paths to the

list of inputs.

• The setInputPaths() methods set the entire list of paths in one go

• To exclude certain files from the input, you can set a filter using the

setInputPathFilter() method

public static void setInputPathFilter(Job job, Class<? extends
PathFilter> filter)

Fig: InputFormat class hierarchy

Big Data 21

IV-II SEMESTER 2018-19 CSE

Paths and filters can be set through configuration properties

Table: Input path and filter properties

FileInputFormat input splits:

• FileInputFormat splits only large files. Here “large” means larger than an

HDFS block. The split size is normally the size of an HDFS block.

Table: Properties for controlling split size

Preventing splitting:

• There are a couple of ways to ensure that an existing file is not split.

First way is to increase the minimum split size to be larger than the largest

file in your system. Second way is to subclass the concrete subclass of

FileInputFormat that you want to use, to override the isSplitable() method to

return false.

Big Data 22

IV-II SEMESTER 2018-19 CSE

File information in the mapper:
• A mapper processing a file input split can find information about the split

by calling the getInputSplit() method on the Mapper’s Context object.

Table: File split properties

Processing a whole file as a record:
• A related requirement that sometimes crops up is for mappers to have

access to the full contents of a file. The listing for WholeFileInputFormat

shows a way of doing this.

Ex : An InputFormat for reading a whole file as a record

public class WholeFileInputFormat extends
FileInputFormat<NullWritable, BytesWritable> { @Override
protected boolean isSplitable(JobContext
context, Path file) { return false;
}
 }

• WholeFileRecordReader is responsible for taking a FileSplit and converting it

into a single record, with a null key and a value containing the bytes of the

file.

2) Text Input
• Hadoop can process unstructured text. It provide different InputFormat to

process text.

Big Data 23

IV-II SEMESTER 2018-19 CSE

TextInputFormat:
• TextInputFormat is the default InputFormat. Each record is a line of input.

• The key, a LongWritable, is the byte offset within the file of the beginning of

the line.

• The value is the contents of the line, excluding any line terminators

(newline, carriage return), and is packaged as a Text object.

• A file containing the following text:

On the top of the Crumpetty Tree
The Quangle Wangle sat,
But his face you could not see,
On account of his Beaver Hat.

is divided into one split of four records. The records are interpreted as the

following key-value pairs:

(0, On the top of the Crumpetty Tree)
(33, The Quangle Wangle sat,)
(57, But his face you could not see,)
(89, On account of his Beaver Hat.)
Fig: Logical records and HDFS blocks for TextInputFormat

Big Data 24

IV-II SEMESTER 2018-19 CSE

KeyValueTextInputFormat:
• TextInputFormat’s keys, being simply the offset within the file, are not

normally very useful.

• It is common for each line in a file to be a key-value pair, separated by a

delimiter such as a tab character by default.

• Specify the separator via the

mapreduce.input.keyvaluelinerecordreader.key.value.separator property.

• Consider the following input file, where → represents a (horizontal) tab

character:

line1→On the top of the Crumpetty Tree

line2→The Quangle Wangle sat,

line3→But his face you could not see,

line4→On account of his Beaver Hat.

• Like in the TextInputFormat case, the input is in a single split comprising

four records, although this time the keys are the Text sequences before the

tab in each line:

(line1, On the top of the
Crumpetty Tree) (line2, The
Quangle Wangle sat,)
(line3, But his face you
could not see,) (line4, On
account of his Beaver Hat.)

Big Data 25

IV-II SEMESTER 2018-19 CSE

NLineInputFormat:
• N refers to the number of lines of input that each mapper receives.

• With N set to one, each mapper receives exactly one line of input.

mapreduce.input.lineinputformat.linespermap property controls the value of

N.

Ex: N is two, then each split contains two lines. One mapper will receive the

first two key-value pairs:

(0, On the top of the
Crumpetty Tree) (33, The
Quangle Wangle sat,)

And another mapper will receive the second two key-value pairs:

(57, But his face you
could not see,) (89, On
account of his Beaver
Hat.)

3) Binary Input:
• Hadoop MapReduce is not just restricted to processing textual data—it has

support for binary formats, too.

• SequenceFileInputFormat: Hadoop’s sequence file format stores sequences

of binary key-value pairs.

• SequenceFileAsTextInputFormat: SequenceFileAsTextInputFormat is

a variant of

Big Data 26

IV-II SEMESTER 2018-19 CSE

SequenceFileInputFormat that converts the sequence file’s keys and values

to Text objects.

• SequenceFileAsBinaryInputFormat: SequenceFileAsBinaryInputFormat

is a variant of

SequenceFileInputFormat that retrieves the sequence file’s keys and values

as opaque binary objects.

4) Multiple Inputs:
• Although the input to a MapReduce job may consist of multiple input files,

all of the input is interpreted by a single InputFormat and a single Mapper.

• The MultipleInputs class has an overloaded version of addInputPath() that

doesn’t take a mapper: public static void addInputPath(Job job, Path
path, Class<? extends InputFormat> inputFormatClass)

5.12 Output Formats
• Hadoop has output data formats that correspond to the input formats

Figure: OutputFormat class hierarchy

Big Data 27

IV-II SEMESTER 2018-19 CSE

1) Text Output:
• The default output format, TextOutputFormat, writes records as lines of

text.

• Its keys and values may be of any type, since TextOutputFormat turns

them to strings by calling toString() on them.

• Each key-value pair is separated by a tab character, that may be changed

using the mapreduce.output.textoutputformat.separator property.

2) Binary Output
• SequenceFileOutputFormat: As the name indicates,

SequenceFileOutputFormat writes sequence files for its output.

Compression is controlled via the static methods on

SequenceFileOutputFormat.

• SequenceFileAsBinaryOutputFormat:
SequenceFileAsBinaryOutputFormat is the counterpart to
SequenceFileAsBinaryInput Format, and it writes keys and values in raw

binary format into a SequenceFile container.

• MapFileOutputFormat: MapFileOutputFormat writes MapFiles as output.

The keys in a MapFile must be added in order, so you need to ensure that

your reducers emit keys in sorted order.

3) Multiple Outputs:

• FileOutputFormat and its subclasses generate a set of files in the output

directory.

Big Data 28

IV-II SEMESTER 2018-19 CSE

• There is one file per reducer, and files are named by the partition number:

part-r-00000, partr-00001, etc.

• MapReduce comes with the MultipleOutputs class to do this.

Zero reducers: There are no partitions, as the application needs to run only

map tasks.

One reducer: It can be convenient to run small jobs to combine the output

of previous jobs into a single file when the amount of data is small enough

to be processed.

MultipleOutputs:

• MultipleOutputs allows you to write data to files whose names are derived

from the output keys and values.

• This allows each reducer (or mapper in a map-only job) to create more than

a single file.

• File names are of the form name-m-nnnnn for map outputs and name-r-
nnnnn for reduce outputs

• name is an arbitrary name that is set by the program, and nnnnn is an

integer designating the part number, starting from zero.

• The part number ensures that outputs written from different partitions

Lazy Output:
• FileOutputFormat subclasses will create output (part-r-nnnnn) files, even if

they are empty.

Big Data 29

IV-II SEMESTER 2018-19 CSE

• Some applications prefer that empty files not be created, which is where

LazyOutputFormat helps.

• It is a wrapper output format that ensures that the output file is Output

Formats created only when the first record is emitted for a given partition.

Database Output:

• The output formats for writing to relational databases and to HBase.

Big Data 30

IV-II SEMESTER 2018-19 CSE

UNIT-V
Assignment-Cum-Tutorial Questions

SECTION-A
Objective Questions
1. Number of mappers is decided by the_____________. []

A) Mapper specified by the programmer C) Input Splits

B) Available Mapper slots D) Input Format.

2. Map Reduce job can be written in_________. []

A) Java C) Pyton

B) Ruby D) Any Language which can read from input stream

3. YARN also called as_________________. []

A)MapReduce1 B) MapReduce2 C) MapReduce3 D) None

4. Expansion of YARN___ Yet Another Resource Navigator [T/F]

5. Classic MapReduce frame work also called as______ []

A)MapReduce1 B) MapReduce2 C) MapReduce3 D) None

6. Input to every reducer is sorted by________ []

A) Value B) key C) Both key-value pair D) key or value

7. The process of that performs sort and transfers the map outputs to the

reducers as input is ____________. []

A) sort B) copy C) shuffle D) transfer

8. The default buffer size________. []

A) 100MB B)64MB C)512MB D)128MB

9. Processing a whole file as a record by using isSplitable method that return

false. [T/F]

10. Number of copier threads can be changed by setting_____property.

11.The amount of memory given to the JVM in which the map and reduce tasks

run is set by the ___________ property. []

A) mapred.child.java.opts C) mapred.child.java.mem

B) mapred.child.java.jvm D) None

12. Spills are written in ___________ fashion. []

A) Sequence B) Round-Robin C) FCFS D) None

Big Data 31

IV-II SEMESTER 2018-19 CSE

13. The default input format is []

A) binary input format B) file input format

C) Text input format D) None

14. ____ is the base class for all implementations of inputFormat tha use files as

their data source. []

A) BinaryInputFormat C) TextInputFormat

B) FileInputFormat D) None

15. Which static convenience method used for setting a job’s input paths.

A) addInputPaths() C) setInputPaths() []

B) addInputPath() D) All

16. Default key value separator in keyValueTextInputFormat is___ []

A) Tab B) White Space C) New line Character D) None

17. InNLineInputFormat N Refers to the []

A) number of lined of output that each mapper returns.

B) number of lined of input that each mapper returns.

C) number of lined of output that each Reducer returns.

D) number of lined of input that each Reducer returns.

18. MultipleInputs class has an overload version of____________ that doesn’t take a

mapper. []

A) setInputPath() B) getStart() C) addInputPath() D) None

19. Default output format___________ []

A) BinaryoutputFormat C) TextInputFormat

B) BinaryOutputFormat D) LazyoutputFormat

20. ______ format is used for writing relational databases and HBase[]

A) DatabaseInput C) HBaseInput

B) DatabaseOuput D) HBaseOutput

Big Data 32

IV-II SEMESTER 2018-19 CSE

SECTION-B
SUBJECTIVE QUESTIONS
1. Define shuffle and sort? Why it is required?

2. Write the general form of map and reduce functions and also writ the JAVA API

mirrors this general form.

3. Explain Map side Tuning properties in configuration tuning.

4. What constitutes progress in MapReduce? Explain

5. Illustrate reduce side tasks in shuffle and sort

6. What is input split? How to represent input splits? Which methods are used to

get location and length of input splits.

7. Explain how to control split size with example.

8. Elaborate classic frame work to run a Mapreduce job in Hadoop

9. Draw and explain inputformat class hierarch

10. Differentiate TextInputFormat and KeyValueTextInputFormat

11. List the Reduce-side tuning properties in configuration tuning.

12. How status updates are propagated through the MapReduce 1 system

13. Draw and explain outputformat class hierarchy

14. List the Binary output formats supported by hadoop.

15. Examine the relationship of streaming and pipes executable to the tasktracker

and its child.

BigData 1

IV.B.Tech-II-Semester 2018-19 CSE

HIVE

HIVE

Hive is a data warehouse infrastructure tool to process structured data in

Hadoop. It resides on top of Hadoop to summarize big data, and makes

querying and analyzing easy.

Initially hive was developed by Jeff Hammerbacher at facebook, later the

apache software foundation took it up and developed it further as an open

source under the apache hive.

Hive is not
 A relational database

 A design for online transaction processing(OLTP)

 A language for real time queries and row level updates

Features of hive
 It stores schema in a database and processed data into HDFS

 It is designed for OLAP

 It provides SQL type language for querying called HiveQL or HQL

 It is familiar, fast, scalable, and extensible

BigData 2

IV.B.Tech-II-Semester 2018-19 CSE

5.1 Hive Shell

The shell is the primary way that we will interact with Hive, by issuing

commands in HiveQL. HiveQL is Hive’s query language, a dialect of SQL. It is

heavily influenced by MySQL, so if you are familiar with MySQL you should feel

at home using Hive.

When starting Hive for the first time, we can check that it is working by

listing its tables: there should be none. The command must be terminated with

a semicolon to tell Hive to execute it: Ex: hive> SHOW TABLES;
OK

Time taken: 10.425 seconds

Features of shell
It is possible to run the hive shell in non-interactive mode. The –f option runs

the commands in the specified file, ex: script.q,

% hive -f script.q

For short scripts, you can use the -e option to specify the commands inline, in

which case the final semicolon is not required:

% hive -e 'SELECT * FROM dummy'

Hive history file=/tmp/tom/hive_job_log_tom_201005042112_1906486281.txt

OK

X

Time taken: 4.734 seconds

BigData 3

IV.B.Tech-II-Semester 2018-19 CSE

In both interactive and non-interactive mode, Hive will print information to

standard error—such as the time taken to run a query, to surpress these

messages using the –s option it shows only the result of the query.

% hive -S -e 'SELECT * FROM dummy'

X

Other useful Hive shell features include the ability to run commands on the

host operating system by using a! Prefix to the command and the ability to

access Hadoop filesystems using the dfs command

5.2 Hive Services
The Hive shell is only one of several services that you can run using the hive

command.

You can specify the service to run using the --service option. Type hive –service

help to get a list of available service names; the most useful are described

below.

1. cli

The command line interface to Hive (the shell). This is the default service.

2. hiveserver

Runs Hive as a server exposing a Thrift service, enabling access from a range of

clients written in different languages. Applications using the Thrift, JDBC, and

ODBC connectors need to run a Hive server to communicate with Hive. Set the

HIVE_PORT environment variable to specify the port the server will listen on

(defaults to 10,000).

3. hwi

The Hive Web Interface.

4. Jar

The Hive equivalent to hadoop jar, a convenient way to run Java

applications that includes both Hadoop and Hive classes on the

classpath.

BigData 4

IV.B.Tech-II-Semester 2018-19 CSE

5. metastore

Using this service, it is possible to run the metastore as a standalone (remote)

process.

5.3 Hive Clients

Hive as a server (hive --service hiveserver), then there are a number of

different mechanisms for connecting to it from applications.

The relationship between Hive clients and Hive services is illustrated in

Figure

Fig: Hive architecture

 Thrift Client

The Hive Thrift Client makes it easy to run Hive commands from a wide range

of programming languages. Thrift bindings for Hive are available for C++, Java,

PHP, Python, and Ruby.

 JDBC Driver

Hive provides a Type 4 (pure Java) JDBC driver, defined in the class

org.apache.hadoop.hive.jdbc.HiveDriver. When configured with a JDBC URI of

BigData 5

IV.B.Tech-II-Semester 2018-19 CSE

the form jdbc:hive://host:port/dbname, a Java application will connect to a

Hive server running in a separate process at the given host and port

 ODBC Driver

The Hive ODBC Driver allows applications that support the ODBC protocol to

connect to Hive.

5.4 The metastore
 The metastore is the central repository of Hive metadata.

 The metastore is divided into two pieces: a service and the backing

store for the data. There are 3 different metastore configurations

1. Embedded metastore

 By default, the metastore service runs in the same JVM as the Hive

service and contains an embedded Derby database instance backed by

the local disk. This is called the embedded metastore configuration

 a simple way to get started with Hive

 only one embedded Derby database can access the database files on disk

at any one time, which means you can only have one Hive session

 if we open another session it attempts to open a connection to the

metastore i.e., trying to start a second session gives the error

Error: Failed to start database 'metastore_db'

BigData 6

IV.B.Tech-II-Semester 2018-19 CSE

Figure : Metastore configurations

2.local metastore
 To support multiple sessions (and therefore multiple users) is to

use a standalone database.
 This configuration is referred to as a local metastore, since the

metastore service still runs in the same process as the Hive

service, but connects to a database running in a separate process,

either on the same machine or on a remote machine.

3. Remote metastore
o Where one or more metastore servers run in separate processes to

the Hive service.

o This brings better manageability and security, since the database

tier can be completely firewalled off, and the clients no longer need

the database credentials.

BigData 7

IV.B.Tech-II-Semester 2018-19 CSE

5.5 Comparison with traditional databases

Schema on Read versus Schema on Write
 In a traditional database, a table’s schema is enforced at data load

time.
 Hive does not verify the data when it is loaded but it is verified

when the query is issued

 Traditional db takes longer time to load data

 Schema on read makes for a very fast

initial load Query time performance:

 Schema on write makes query time performance faster

 Schema on read makes longer time for query execution

Transactions:
Hive doesnot support transactions.

BigData 8

IV.B.Tech-II-Semester 2018-19 CSE

Hive does not support updates(or deletes).

Indexes:
Release 0.7.0 introduced indexes, which can speed up queries

Locking:
Release 0.7.0 introduces table and partitional level locking in hive.

 Locks are managed transparently by zookeeper.

5.6 Hive QL
HiveQL is Hive’s SQL dialect.

It does not provide the full features of SQL-92 language constructs.

The main difference between HiveQL and

SQL are Table : A high-level comparison of

SQL and HiveQL

BigData 9

IV.B.Tech-II-Semester 2018-19 CSE

Data Types

• Hive supports both primitive and complex data types.

• Primitives include

1) numeric

2) boolean

3) string,

4) timestamp

• complex data types include

1) arrays

2) maps

3) structures

BigData 10

IV.B.Tech-II-Semester 2018-19 CSE

Operators and Functions
• Operators

1) arithmetic

2) relational

3) logical

• Categories of Functions

1) mathematical

2) statistical

3) string

4) date

5) conditional

6) aggregate

7) Functions working with XML and JSON

5.7 Tables
A Hive table is logically made up of the data being stored and the associated

metadata describing the layout of the data in the table.

The data typically resides in HDFS, although it may reside in any Hadoop

filesystem, including the local filesystem or S3.

Hive stores the metadata in a relational database—and

not in HDFS, Managed Tables and External Tables
When you create a table in Hive, by default Hive will manage the data, which

means that Hive moves the data into its warehouse directory.

BigData 11

IV.B.Tech-II-Semester 2018-19 CSE

For example: CREATE TABLE managed_table (dummy STRING);

LOAD DATA INPATH '/user/tom/data.txt' INTO table managed_table; will move

the file hdfs://user/tom/data.txt into Hive’s warehouse directory for the

managed_table table, which is hdfs://user/hive/warehouse/managed_table

If the table is later dropped, using:

DROP TABLE managed_table;

then the table, including its metadata and its data, is deleted.

An external table behaves differently. You control the creation and deletion of

the data.

The location of the external data is specified at table creation time:

CREATE EXTERNAL TABLE external_table (dummy STRING)

LOCATION '/user/tom/external_table';

LOAD DATA INPATH '/user/tom/data.txt' INTO TABLE external_table;

Partitions and Buckets

Hive organizes tables into partitions, a way of dividing a table into coarse-

grained parts based on the value of a partition column, such as date. Tables or

partitions may further be subdivided into buckets, to give extra structure to the

data that may be used for more efficient queries.

Partitions
 Hive organizes tables in to partitions.

BigData 12

IV.B.Tech-II-Semester 2018-19 CSE

 A way of dividing a table in to related parts based on the value of a

partition column ex: date, city, dept

 Faster to do queries on slices of the data

 Tables or partitions are sub-divided into buckets , to provide extra

structure to the data that may be used for more efficient querying

 Bucketing works based on the value of hash function of some

column of a table. Ex:

A table named Tab1 contains employee data such as id, name, dept, and

yoj , need to retrieve the details of all employees who joined in 2012.

• A query searches the whole table for the required information.

• if you partition the employee data with the year and store it in a separate

file, it reduces the query processing time.

The following file contains employee data table.

/tab1/employeedata/file1 id, name, dept, yoj

1, gopal, TP,2012

2, kiran,HR,2012

3, kaleel,SC,2013

4,Prasanth,SC,20

BigData 13

IV.B.Tech-II-Semester 2018-19 CSE

The above data is partitioned into two files using year.

/tab1/employeedata/2012/file2/tab1/employeedata/2013/file3

1, gopal, TP, 2012 3, kaleel,SC, 2013

2, kiran, HR, 2012 4, Prasanth, SC, 2013

Adding a Partition :-

We can add partitions to a table by altering the

table hive> ALTER TABLE employee

> ADD PARTITION (year=’2013’)

> location '/2012/part2012';

Renaming a Partition

hive> ALTER TABLE employee PARTITION (year=’1203’)

> RENAME TO PARTITION (Yoj=’1203’);

Show Partition

hive> show partitions employee;

Dropping a Partition

hive> ALTER TABLE employee DROP [IF EXISTS]

> PARTITION (year=’1203’);

Buckets
 It is a mechanism to query and examine random samples of data

BigData 14

IV.B.Tech-II-Semester 2018-19 CSE

 Break data into a set of buckets based on a hash function of a ―bucket

column�

 Capability to execute queries on a sub-set of random data

 Doesn’t automatically enforce bucketing

 User is required to specify the number of buckets by

setting # of reducer Create and use table with Buckets

hive>create table post-count(user String,

count Int) >clustered by (user) into 5

buckets;

Use the clustered by clause to specify columns to bucket on and the

number of buckets.

Storage Formats

 There are two dimensions that govern table storage in Hive: the row

format and the file format. The row format dictates how rows, and the

fields in a particular row, are stored

 The file format dictates the container format for fields in a row. The

simplest format is a plain text file, but there are row-oriented and

column-oriented binary formats available,too.

 The default storage format: Delimited text

 When you create a table with no ROW FORMAT or STORED AS clauses,

the default format is delimited text, with a row per line.

BigData 15

IV.B.Tech-II-Semester 2018-19 CSE

 The default row delimiter is not a tab character, but the Control-A

character from the set of ASCII control codes

 The choice of Control-A, sometimes written as ^A in documentation,

came about since it is less likely to be a part of the field text than a tab

character.

The default collection item delimiter is a Control-B character, used to

delimit items in an ARRAY or STRUCT, or key-value pairs in a MAP. The

default map key delimiter is a Control-C character, used to delimit the key

and value in a MAP. Rows in a table are delimited by a newline character.
 Importing Data

o INSERT OVERWRITE TABLE
 a table with data from another Hive table using an INSERT

statement i.e

 Example

hive> INSERT OVERWRITE TABLE

target >SELECT col1, col2

>FROM

source;

Another way

Hive> FROM source

>INSERT OVERWRITE TABLE target

>SELECT col1, col2;

• Multitable insert
 it’s possible to have multiple INSERT clauses in the same query.

BigData 16

IV.B.Tech-II-Semester 2018-19 CSE

 multitable insert is more efficient than multiple INSERT statements,

 the source table need only be scanned once to produce the multiple,

disjoint outputs hive> FROM records2

>INSERT OVERWRITE TABLE

stations_by_year

>SELECT year, COUNT(DISTINCT station)

>GROUP BY year

>INSERT OVERWRITE TABLE

records_by_year

>SELECT year, COUNT(1)

>GROUP BY year

>INSERT OVERWRITE TABLE

good_records_by_year

>SELECT year, COUNT(1)

>WHERE temperature != 9999

>AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR

quality = 9)

>GROUP BY year;

 There is a single source table (records2), but three tables to hold the

results from three different queries over the source.

o CREATE TABLE...AS SELECT
 To store the output of a Hive query in a new table.

 The new table’s column definitions are derived from the columns

retrieved by the

BigData 17

IV.B.Tech-II-Semester 2018-19 CSE

SELECT

clause

Example

CREATE TABLE target

AS

SELECT col1, col2

FROM source;

 Alter TableAlter the attributes of a table such as changing its table

name, changing column names, adding columns, and deleting or

replacing columns.

Syntax

ALTER TABLE name RENAME TO new_name

ALTER TABLE name ADD COLUMNS (col_spec[, col_spec ...])

ALTER TABLE name DROP [COLUMN] column_name

ALTER TABLE name CHANGE column_name new_name

new_type ALTER TABLE name REPLACE COLUMNS

(col_spec[, col_spec ...]) Examples

hive> ALTER TABLE employee RENAME TO emp;

hive>ALTER TABLE employee ADD COLUMNS (dept

string); hive>ALTER TABLE employee DROP dept;

hive> ALTER TABLE employee CHANGE name ename

String; hive> ALTER TABLE employee CHANGE salary

salary Double;

BigData 18

IV.B.Tech-II-Semester 2018-19 CSE

hive> ALTER TABLE employee REPLACE COLUMNS (eid INT empid Int,

ename STRING name String);

hive> DROP TABLE IF EXISTS employee;

 Select Statements

SELECT statement is used to retrieve the data from a table. WHERE

clause works similar to a condition. It filters the data using the condition

and gives you a finite result. Syntax:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[HAVING having_condition]

[CLUSTER BY col_list |

[DISTRIBUTE BY col_list]

[SORT BY col_list]]

[LIMIT number];

BigData 19

IV.B.Tech-II-Semester 2018-19 CSE

Examples:

hive> SELECT * FROM employee WHERE

eid=1205; hive> SELECT * FROM employee

WHERE

salary>=40000;

hive> SELECT Id, Name, Dept FROM employee ORDER

BY DEPT;

 hive> SELECT Dept,count(*) FROM employee GROUP BY

DEPT;

 hive> FROM records2

 SELECT year, temperature

 DISTRIBUTE BY year

 SORT BY year ASC, temperature

 DESC;

hive> SELECT * FROM employee LIMIT 4;

5.8 querying data
Sorting and Aggregating
Sorting data in Hive can be achieved by use of a standard ORDER BY clause,

but there is a catch. ORDER BY produces a result that is totally sorted, as

expected, but to do so it sets the number of reducers to one, making it very

inefficient for large datasets.

In some cases, you want to control which reducer a particular row goes to,

typically so you can perform some subsequent aggregation. This is what Hive’s

DISTRIBUTE BY clause does. Here’s an example to sort the weather dataset by

year and temperature

SORT BY produces a sorted file per reducer.

hive> FROM records2
> SELECT year, temperature

> DISTRIBUTE BY year

BigData 20

IV.B.Tech-II-Semester 2018-19 CSE

> SORT BY year ASC, temperature
DESC; 1949 111 1949 78 1950 22

1950 0 1950 -11

MapReduce Scripts
Using an approach like Hadoop Streaming, the TRANSFORM, MAP, and

REDUCE clauses make it possible to invoke an external script or program from

Hive.

Example: Python script to filter out poor quality weather records

#!/usr/bin/env python

import re

import sys

for line in sys.stdin:

(year, temp, q) = line.strip().split()

if (temp != "9999" and re.match("[01459]", q)):

print "%s\t%s" % (year, temp)

We can use the script as follows:

hive> ADD FILE /path/to/is_good_quality.py;

hive> FROM records2

> SELECT TRANSFORM(year, temperature, quality)

> USING 'is_good_quality.py'

BigData 21

IV.B.Tech-II-Semester 2018-19 CSE

> AS year,
temperature; 1949

111 1949 78 1950 0

1950 22

1950 -11

Before running the query, we need to register the script with Hive. This is so

Hive knows to ship the file to the Hadoop cluster

The query itself streams the year, temperature, and quality fields as a tab-

separated line to the is_good_quality.py script, and parses the tab-separated

output into year and temperature fields to form the output of the query.

This example has no reducers. If we use a nested form for the query, we can

specify a map and a reduce function. This time we use the MAP and REDUCE

keywords, but SELECT TRANSFORM in both cases would have the same

result. The source for the max_temperature_reduce.py script is shown in

Example

FROM

(FROMrecos

2

MAP year, temperature,

quality USING

'is_good_quality.py'

AS year, temperature)

map_output REDUCE year,

temperature USING

'max_temperature_reduce.py'

AS year, temperature;

BigData 22

IV.B.Tech-II-Semester 2018-19 CSE

Views
 A view is a sort of ―virtual table� that is defined by a SELECT statement.

 Views can be used to present data to users in a different way to the way

it is actually stored on disk.

 Views may also be used to restrict users access to particular subsets of

tables that they are authorized to see.

 First create table and then insert data into it

hive> create table posts(id int,name string,sal double)

> row format delimited

> fields terminated by ','

 stored as textfile;

 Create View

hive> create view posts_name as

 > select name from posts;

hive> create view first_id as

 select * from posts whereid=1;

hive> create view max_sal as

 select name ,max(sal) from posts;

 Show views

BigData 23

IV.B.Tech-II-Semester 2018-19 CSE

hive> show tables;

 Altering views

hive> alter view first_id rename to 1stid;

 Drop a view

hive> drop view

1stid;

Joins

 JOIN is a clause that is used for combining specific fields from two tables

by using values common to each one.

 used to combine records from two or more tables in the database.

 similar to SQL JOINS.

 There are different types of joins given as follows:

o JOIN

o LEFT OUTER JOIN

o RIGHT OUTER JOIN

o FULL OUTER JOIN

 Can join multiple tables

 Default join Is Inner join

 Rows are joined where the keys match

BigData 24

IV.B.Tech-II-Semester 2018-19 CSE

 Rows that do not have matches are not included in the result

The simplest kind of join is the inner join, where each match in the input

tables results in a row in the output table it is being joined to (things): hive>

SELECT * FROM sales;

joe 2

Hank 4

Ali 0

Eve 3

Hank 2

hive> SELECT * FROM things;
2 Tie

4 Coat

3 Hat

 1 Scarf

 hive> SELECT sales.*, things.*

> FROM sales JOIN things ON (sales.id = things.id);

Joe 2 2 Tie

Hank 2 2 Tie

Eve 3 3 Hat

Hank 4 4 Coat

 The table in the FROM clause (sales) is joined with the table in the JOIN

clause (things), using the predicate in the ON clause

BigData 25

IV.B.Tech-II-Semester 2018-19 CSE

 Hive only supports equijoins, which means that only equality can be

used in the join predicate, which here matches on the id column in both

tables.

 the row for Ali did not appear in the output, since the ID of the item she

purchased was not present in the things table

Left Outer Join

Outer joins allow you to find non matches in the tables being joined.

If we change

the join type to LEFT OUTER JOIN, then the query will return a row for

every row in the left table (sales), even if there is no corresponding row in

the table it is being joined to (things):

hive> SELECT * FROM sales;

Joe 2

Hank 4

Ali 0

Eve 3

Hank 2

hive> SELECT * FROM things;

2 Tie

4 Coat

3 Hat

1 Scarf

BigData 26

IV.B.Tech-II-Semester 2018-19 CSE

The row for Ali is now returned, and the columns from the things table are

NULL, since there is no match.

i.e Row from the first table are included whether they have a match or not.

Columns from the unmatched(second) table are set to null.

Right Outer Join

 Opposite of Left Outer Join, Rows from the second table are included no

matter what. Columns from the unmatched (first) table are set to null.

 all items from the things table are included, even those that weren’t

purchased by anyone

(a scarf):

hive> SELECT * FROM sales;

Joe 2

Hank 4

Ali 0

Eve 3

Hank 2

hive> SELECT * FROM things;

2 Tie

4 Coat

3 Hat

1 Scarf

We can perform left outer join on the two tables as follows:

hive> SELECT sales.*, things.*

BigData 27

IV.B.Tech-II-Semester 2018-19 CSE

> FROM sales RIGHT OUTER JOIN things ON (sales.id =
things.id); NULL NULL 1 Scarf

Joe 2 2 Tie

Han

k

 2 2

Tie

Eve 3 3 Hat

Hak 4 4

Coa

t

Full Outer Join

 Rows from both sides are includes. For unmatched rows the columns

from the other table are set to null

 In full outer join, the output has a row for each row from both tables in

the join:

hive> SELECT * FROM sales;
Joe 2

Hank 4

Ali 0

Eve 3

We can perform left outer join on the two tables as follows:

hive> SELECT sales.*, things.*

BigData 28

IV.B.Tech-II-Semester 2018-19 CSE

Ali

Joe

HanEve

 Hank

BigData 29

IV.B.Tech-II-Semester 2018-19 CSE

> FROM sales LEFT OUTER JOIN

0 NULL NULL

2 2 Tie

2 2 Tie

3 3 Hat

4 4 Coat

Subqueries
 A subquery is a SELECT statement that is embedded in another SQL

statement.

 Hive has limited support for subqueries

The query finds the mean maximum temperature for every year and weather

station:

SELECT station, year, AVG(max_temperature)

FROM (

SELECT station, year, MAX(temperature) AS

max_temperature FROM records2

WHERE temperature != 9999

AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality =

9)

BigData 30

IV.B.Tech-II-Semester 2018-19 CSE

GROUP BY station, year

) mt

GROUP BY station, year;

 The subquery is used to find the maximum temperature for each

station/date combination,

 the outer query uses the AVG aggregate function to find the average of

the maximum temperature readings for each station/date combination.

 The outer query accesses the results of the subquery like it does a table,

which is why the subquery must be given an alias (mt).

 The columns of the subquery have to be given unique names so that the

outer query can refer to them.

5.9 User-Defined functions
 Write the query that can’t be expressed easily using built-in functions.

 Write a User-Defined Function(UDF) .

 Easy to plug in own processing code and invoke it from a Hive Query.

 There are 3 types of UDF in Hive

1) Regular UDFs

Operates on a single row and produces a single row as its output. Ex:

Mathematical and String functions

2) UDAF (User-defined aggregate functions)

 works on multiple input rows and creates a single output row.

 Aggregate functions include such functions as COUNT and MAX.

BigData 31

IV.B.Tech-II-Semester 2018-19 CSE

3) UDTFs (user-defined table-generating functions)

 operates on a single row and produces multiple rows—a table—as

output

5.9 User-Defined functions
 Write the query that can’t be expressed easily using built-in functions.

 Write a User-Defined Function(UDF) .

 Easy to plug in own processing code and invoke it from a Hive Query.

 There are 3 types of UDF in Hive

2) Regular UDFs

Operates on a single row and produces a single row as its output. Ex:

Mathematical and String functions

4) UDAF (User-defined aggregate functions)
o works on multiple input rows and creates a single output row.

o Aggregate functions include such functions as COUNT and MAX.

5) UDTFs (user-defined table-generating functions)

 operates on a single row and produces multiple rows—a table—as

output

BigData 32

IV.B.Tech-II-Semester 2018-19 CSE

UNIT-VI
Assignment-Cum-Tutorial Questions

SECTION-A
Objective Questions
1. Which of the following command sets the value of a particular configuration

variable []

A) Set-v B) set <key>=<value> C) set D) reset

2. Which of the following operator executes a shell command from the Hive

shell? []

A) | B) ! C^ D) +

3. Which of the following will remove the resource(s) from the distributed

cache? []

A) Delete FILE[S] <filepath>*

B) Delete JAR[S]<filepath>*

C) Delete ARCHIVE[S]<filepath>*

D) All

4. ________ is a shell utility which can be used to run Hive queries in either

interactive or batch mode. []

A) $HIVE/bin/hive

B) $HIVE_HOME/hive

C) $HIVE_HOME/bin/hive

D) All

5. Which of the following is a command line option? []

A) –d,-define <key=value>

B) –e,-define<key=value>

C) –f,-define<key=value>

D) None

6. Hive uses___________ for logging []

A)logj4 B) log41 C) log4i D) log4j

7. Hive Server2 introduced in HIVE 0.11 has new CLI called []

A) BeeLine B) SQLLine C)HIVELine D) CLILine

8. Hcatalog is installed with HIVE, starting with HIVE relase []

A) 0.10.0 B) 0.9.0 C)0.11.0 D)0.1.20

BigData 33

IV.B.Tech-II-Semester 2018-19 CSE

9. _____ supports a new command shell Beeline that works with HIVE Server2.

 []

A) HiveServer2 B) HiveServer3 C) HiveServer4 D) None

10. In _______ mode HiveServer2 only accepts valid Thrift calls. []

A) Remote B) HTTP C) Embedded D) Interactive

11. Hive specific commands can be run from Beeline, When the Hive _____

driver is used. []

A) ODBC B) JDBC C) ODBC-JDBC D) ALL

12. The ___ allow users to read or write Avro data s Hive Table []

A) AvroSerde B) HiveSerde C) SQLSerde D) None

13. Starting in Hive_____ the Avro schema can be inferred from the hive table

schema. []

A) 0.14 B) 0.12 C) 0.13 D) 0.11

14. Which of the following data type is supported by HIVE []

A) map B) record C) string D) enum

15. which of the following data type is converted to Array prior to Hive 0.12.0

 []

A) map B) long C) float D) bytes

16.Avro-backed tables can simply be created by using _________ in a DDL

statement. []

A) “STORED AS AVERO” C. –STORED AS AVROHIVE

B) –STORED AS HIVE D. –STORED AS SERED

17. Types that may be null must be defined as a ___________ of that type and

NULL within AVRO. []

A) Union B) intersection C) Set D) All

18. use_____ and embed the schema in the create statement []

A) schema.literal B) schema.lit C) row.literal D) All

19. Serialization of string columns uses a____ to form unique column values.

A) Footer B) STRIPES C) Dictionary D) Index

20. Hive uses________ -Style escaping within the strings []

A) C B) JAVA C) python D) Scala

BigData 34

IV.B.Tech-II-Semester 2018-19 CSE

SECTION-B

SUBJECTIVE QUESTIONS
1. What is hive? List the features of hive?

2. List out hive Services

3. What is metastore? What are different types of metastores?

4. What are megastore configuration properties?

5. Comapre the SQL and HIVEQL

6. List out Hive Data Types?

7. Explain about partitions and buckets?

8. Outline about Querying Data?

9. What are user-defined functions?

10. Explain joins?

11. Explain about HIVEQL in Hadoop System

12. Illustrate the HIVE Shell?

13. Describe about the tables in HIVE.

14. Explain about HIVE architecture?

15. Compare HIVE with traditional database?

16. Elaborate on HIVE QL data manipulation and queries in details

17. Discuss about the relationship between HIVE clients and HIVE Services

with a neat diagram?

18. Explain in detail about Map side and Reduce Side joins.

	Vision
	Mission
	Program Educational Objectives
	HANDOUT ON BIGDATA
	1. Brief History and Scope of the Subject
	Technologies Supported by Big Data
	Storage Technologies
	Pre-Requisites
	2. Course Objectives:
	3. Course Outcomes:
	4. Program Outcomes
	6. Mapping of Course Outcomes with Program Outcomes:
	7. Prescribed Text Books
	8. Reference Text Books
	9. URLs and Other E -Learning Resources
	Digital Learning Materials
	http://www.dataversity.net/category/data-topics/big-data
	10 Lecture Schedule / Lesson Plan
	Characteristics of Big Data
	Volume: The amount of data
	Velocity: How fast it is generated
	Variety: Represents all kinds of data
	1.2 Why Big Data is Important
	1.3 Meet Hadoop - data Data:
	Data generated by People:
	1.Through individual interactions -
	2.Through social media
	3. Data generated by Machines:
	1.4 Data Storage and Analysis Problem:
	Solution for above problems:
	1.5 Comparison with other systems
	1.6 Grid Computing Grid computing
	Volunteer Computing
	1.7 A brief history of Hadoop
	Some of the characteristics:
	Apache Hadoop and the Hadoop Eco System
	1.Common
	2.MapReduce
	3.HDFS
	4.Pig
	5.Hive
	6.HBase
	7.ZooKeeper
	8.Sqoop

	UNIT -I
	SECTION -B

