
Artificial Intelligence 1

III Year –II-Semester 2018-19 CSE

GUDLAVALLERU ENGINEERING COLLEGE
(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521 356.

Department of Computer Science and Engineering

HANDOUT
on

ARTIFICIAL INTELLIGENCE
(ELECTIVE I)

Artificial Intelligence 2

III Year –II-Semester 2018-19 CSE

Vision

To be a Centre of Excellence in computer science and engineering
education and training to meet the challenging needs of the industry
and society

Mission

 To impart quality education through well-designed curriculum in
tune with the growing software needs of the industry.

 To be a Centre of Excellence in computer science and engineering
education and training to meet the challenging needs of the industry
and society.

 To serve our students by inculcating in them problem solving,
leadership, teamwork skills and the value of commitment to quality,
ethical behavior & respect for others.

 To foster industry-academia relationship for mutual benefit and
growth.

Program Educational Objectives

• Identify, analyze, formulate and solve Computer Science and

Engineering problems both independently and in a team environment

by using the appropriate modern tools.

• Manage software projects with significant technical, legal, ethical,

social, environmental and economic considerations

• Demonstrate commitment and progress in lifelong learning,

professional development, leadership and Communicate effectively

with professional clients and the public.

Artificial Intelligence 3

III Year –II-Semester 2018-19 CSE

HANDOUT ON ARTIFICIAL INTELLIGENCE

Class & Sem. :III B.Tech – II Semester Year : 2018-
19
Branch : CSE Credits : 3
===

1. Brief History and Scope of the Subject

The seeds of modern AI were planted by classical philosophers who
attempted to describe the process of human thinking as the mechanical
manipulation of symbols. This work culminated in the invention of
the programmable digital computer in the 1940s, a machine based on the
abstract essence of mathematical reasoning. This device and the ideas
behind it inspired a handful of scientists to begin seriously discussing
the possibility of building an electronic brain.

The field of AI research was founded at a workshop held on the campus
of Dartmouth College during the summer of 1956. Those who attended
would become the leaders of AI research for decades. Many of them
predicted that a machine as intelligent as a human being would exist in
no more than a generation and they were given millions of dollars to
make this vision come true.

In the 1940s and 50s, a handful of scientists from a variety of fields
(mathematics, psychology, engineering, economics and political science)
began to discuss the possibility of creating an artificial brain. The field
of artificial intelligence research was founded as an academic discipline
in 1956.

2. Pre-Requisites
 Mathematical Logic
 Formal Reasoning

3. Course Objectives:
 To familiarize the concepts of AI for representation of knowledge

and problem solving

 4. Course Outcomes:
At the end of the course, the students will be able to

 CO1: Analyze different problem solving and game playing
techniques.

 CO2: Compare different approaches to represent knowledge.

 CO3: Analyze expert systems and their applications.

 CO4: Apply probability theory for real world problems.

Artificial Intelligence 4

III Year –II-Semester 2018-19 CSE

5. Program Outcomes:

Graduates of the Computer Science and Engineering Program will
have an ability to

a. apply knowledge of computing, mathematics, science and engineering

fundamentals to solve complex engineering problems.

b. formulate and analyze a problem, and define the computing

requirements appropriate to its solution using basic principles of

mathematics, science and computer engineering.

c. design, implement, and evaluate a computer based system, process,

component, or software to meet the desired needs.

d. design and conduct experiments, perform analysis and interpretation

of data and provide valid conclusions.

e. use current techniques, skills, and tools necessary for computing

practice.

f. understand legal, health, security and social issues in Professional

Engineering practice.

g. understand the impact of professional engineering solutions on

environmental context and the need for sustainable development.

h. understand the professional and ethical responsibilities of an

engineer.

i. function effectively as an individual, and as a team member/ leader in

accomplishing a common goal.

j. communicate effectively, make effective presentations and write and

comprehend technical reports and publications.

k. learn and adopt new technologies, and use them effectively towards

continued professional development throughout the life.

l. understand engineering and management principles and their

application to manage projects in the software industry.

Artificial Intelligence 5

III Year –II-Semester 2018-19 CSE

6. Mapping of Course Outcomes with Program Outcomes:

 a b c d e f g h i j k l

CO1 H H M
CO2 H M
CO3 H H M M
CO4 H M M

7. Prescribed Text Books

1.Elaine Rich & Kevin Knight, ‘Artificial Intelligence’, Tata McGraw Hill
Edition, 2 nd Edition.

2.Stuart J. Russell,Artificial Intelligence: A Modern Approach,2nd
Edition.

8. Reference Text Books

1. Patrick Henry Winston, ‘Artificial Intelligence’, Pearson Education.
2. Russel and Norvig, ‘Artificial Intelligence’, Pearson Education/ PHI.

9. URLs and Other E-Learning Resources

URLs:

 https://nptel.ac.in/courses/106105077/

 https://nptel.ac.in/courses/106105079/

 https://ocw.mit.edu/courses/electrical...and...artificial-
intelligence.../lecture-videos/

 Journals:

 International Journal on Artificial Intelligence Tools
 Journal of Artificial Intelligence Research
 Applied Artificial Intelligence

10. Lecture Schedule / Lesson Plan

Topic No. of Periods
Theory Tutorial

UNIT - I : Introduction to artificial intelligence
Introduction 1

1 History 1
Intelligent systems 1
Foundations of AI 1

1
Applications 2

Artificial Intelligence 6

III Year –II-Semester 2018-19 CSE

tic-tac-toe game playing 2
Current trends in AI 2
UNIT - II: Problem solving and game playing
Problem solving: state-space search and control strategies 2

1 Introduction, general problem solving 1
Characteristics of problem 1

1

Exhaustive searches 2
Heuristic search techniques 2
Iterative-deepening a* 2
Problem reduction 2
Constraint satisfaction 2
Game playing: Introduction 1

1
Game playing 2
Alpha-beta pruning 2
Two-player perfect information games 1
UNIT - III: Logic Concepts
Introduction 1

1
 Propositional calculus 1

Proportional logic 1
Natural deduction system 1
Axiomatic system 1

1 Semantic tableau system in proportional logic 1
Resolution in proportional logic 1
Predicate logic 1
UNIT - IV: Knowledge representation
Introduction 1

1

Approaches to knowledge representation 1
Knowledge representation using semantic network 1
Extended semantic networks for KR 1
Knowledge representation using frames 1
Advanced knowledge representation techniques: Introduction 1
Conceptual dependency theory 1

1 Script structure 1
Semantic web 1
UNIT - V: Expert system and applications
Introduction phases in building expert systems 1

1 Expert system versus traditional systems 1
Rule-based expert systems 1
Blackboard systems truth maintenance systems 1

1 Application of expert systems 1
List of shells and tools 1
UNIT - VI: Uncertainty measure
Introduction 2 1
Probability theory 2

Artificial Intelligence 7

III Year –II-Semester 2018-19 CSE

Bayesian belief networks 2 1 Certainty factor theory 1
Total No.of Periods: 60 13

Artificial Intelligence 8

III Year –II-Semester 2018-19 CSE

UNIT – I

 Introduction to artificial intelligence

Syllabus:

Introduction, history, intelligent systems, foundations of AI, applications,
tic-tac-toe game playing, current trends in AI.

Outcomes:

Student will be able to:

 define the concept of Artificial Intelligence
 explain brief history that contributed ideas and techniques to Artificial

Intelligence
 outline current trends in AI
 interpret the steps in solving of tic-tac-toe problem

Introduction:

 The field of artificial intelligence, or AI, attempts to understand
intelligent entities.

 Computers with human-level intelligence (or better) would have a huge
impact on our everyday lives and on the future course of civilization.

 Computers have unlimited potential for intelligence.
 AI currently encompasses a huge variety of subfields, from general-

purpose areas such as
perception and logical reasoning, to specific tasks such as playing chess,
proving mathematical theorems, writing poetry, and diagnosing diseases.

 Definitions of artificial intelligence:

 Definitions of AI vary along following dimensions.

 thought processes and reasoning
 address behaviour
 measure success in terms of human performance,
 measure against an ideal concept of intelligence, which we will call

rationality
 A system is “rational” if it does the right thing.
 Definitions are organized into four categories:

Artificial Intelligence 9

III Year –II-Semester 2018-19 CSE

 Systems that think like humans: The exciting new effort to make
computers think machines with minds.

 Systems that think rationally: The study of the computations that
make it possible to perceive, reason, and act.

 Systems that act like humans: The study of how to make computers
do things at which, at the moment, people are better.

 Systems that act rationally: The branch of computer science that is
concerned with the automation of intelligent behaviour.

Acting humanly: The Turing Test approach:

 The Turing Test, proposed by Alan Turing (1950), was designed to

provide a satisfactory operational definition of intelligence.
 Turing defined intelligent behaviour as the ability to achieve human-

level performance in all cognitive tasks, sufficient to fool an
interrogator.

 The test he proposed is that the computer should be interrogated by a
human via a teletype, and passes the test if the interrogator cannot
tell if there is a computer or a human at the other end.

 The computer would need to possess the following capabilities:
 natural language processing to enable it to communicate

successfully in English (or some other human language);
 knowledge representation to store information provided before

or during the interrogation;
 automated reasoning to use the stored information to answer

questions and to draw new conclusions
 machine learning to adapt to new circumstances and to detect

and extrapolate patterns.
 Turing's test deliberately avoided direct physical interaction between

the interrogator and the computer, because physical simulation of a
person is unnecessary for intelligence.

Thinking humanly: The cognitive modelling approach:

 To say that a given program thinks like a human, we must have some

way of determining how humans think. We need to get inside the
actual workings of human minds.

 There are two ways for this:
 through introspection—trying to catch our own thoughts as

they go by.
 through psychological experiments

Artificial Intelligence 10

III Year –II-Semester 2018-19 CSE

 Once we have a sufficiently precise theory of the mind, it becomes
possible to express the theory as a computer program. If the
program's input/output and timing behaviour matches human
behaviour, that is evidence that some of the program's mechanisms
may also be operating in humans.

Thinking rationally: The laws of thought approach:

 The Greek philosopher Aristotle was one of the first to attempt to

codify "right thinking," that is, irrefutable reasoning processes.
 His famous syllogisms provided patterns for argument structures that

always gave correct conclusions given correct premises. For example,
"Socrates is a man; all men are mortal; therefore Socrates is mortal."

 These laws of thought were supposed to govern the operation of the
mind, and initiated the field of logic.

 There are two main obstacles to this approach.
 First, it is not easy to take informal knowledge and state it in

the formal terms required by logical notation, particularly when
the knowledge is less than 100% certain.

 Second, there is a big difference between being able to solve a
problem "in principle" and doing so in practice.

Acting rationally: The rational agent approach:

 Acting rationally means acting so as to achieve one's goals, given one's

beliefs.
 An agent is just something that perceives and acts.
 In this approach, AI is viewed as the study and construction of

rational agents. In the ‘laws of thought" approach to AI, the whole
emphasis was on correct inferences.

 Making correct inferences is sometimes part of being a rational agent,
because one way to act rationally is to reason logically to the
conclusion that a given action will achieve one's goals, and then to act
on that conclusion.

 Correct inference is only a useful mechanism for achieving rationality,
and not a necessary one.

Foundations of Artificial Intelligence:

 AI itself is a young field; it has inherited many ideas, viewpoints, and

techniques from other disciplines.

Artificial Intelligence 11

III Year –II-Semester 2018-19 CSE

 Over 2000 years of tradition in philosophy, theories of reasoning and
learning have emerged, along with the viewpoint that the mind is
constituted by the operation of a physical system.

 From over 400 years of mathematics, we have formal theories of logic,
probability, decision making, and computation.

 From psychology, we have the tools with which to investigate the
human mind, and a scientific language within which to express the
resulting theories.

 From linguistics, we have theories of the structure and meaning of
language.

 From computer science, we have the tools with which to make AI a
reality.

Philosophy (428 B.C.-present)

 We have the idea of a set of rules that can describe the working of (at
least part of) the mind, the next step is to consider the mind as a
physical system.

 Mental processes and consciousness are therefore part of the physical
world, but inherently unknowable; they are beyond rational
understanding.

 Some philosophers critical of AI have adopted exactly this position.
 Barring these possible objections to the aims of AI, philosophy had

thus established a tradition in which the mind was conceived of as a
physical device operating principally by reasoning with the knowledge
that it contained.

 All knowledge can be characterized by logical theories connected,
ultimately, to observation sentences that correspond to sensory
inputs.

 Confirmation theory of Rudolf Carnap and Carl Hempel attempted to
establish the nature of the connection between the observation
sentences and the more general theories—understand how knowledge
can be acquired from experience.

Mathematics (c. 800-present)

 AI used mathematical formalization in three main areas: computation,
logic, and probability.

 First-order logic is used today as the most basic knowledge
representation system.

 Theory of reference that shows how to relate the objects in a logic to
objects in the real world.

 There are some functions on the integers that cannot be represented
by an algorithm—that is, they cannot be computed.

Artificial Intelligence 12

III Year –II-Semester 2018-19 CSE

 This motivated Alan Turing (1912-1954) to try to characterize exactly
which functions are capable of being computed.

 Church-Turing thesis, which states that the Turing machine (Turing,
1936) is capable of computing any computable function, is generally
accepted as providing a sufficient definition.

Psychology (1879-present)

 The view that the brain possesses and processes information, is the
principal characteristic of cognitive psychology,

 The three key steps of a knowledge-based agent:
 The stimulus must be translated into an internal

representation,
 The representation is manipulated by cognitive processes to

derive new internal representations,
 These are in turn retranslated back into action.

Computer engineering (1940-present)

 For artificial intelligence to succeed, we need two things: intelligence
and an artifact.

 The computer has been unanimously acclaimed as the artifact with
the best chance of demonstrating intelligence.

 AI also owes a debt to the software side of computer science, which
has supplied the operating systems, programming languages, and
tools needed to write modern programs.

 AI has pioneered many ideas that have made their way back to
"mainstream" computer science, including time sharing, interactive
interpreters, the linked list data type, automatic storage management,
and some of the key concepts of object-oriented programming and
integrated program development environments with graphical user
interfaces.

Linguistics (1957-present)

 Understanding language requires an understanding of the subject

matter and context, not just an understanding of the structure of
sentences.

 Much of the early work in knowledge representation (the study of how
to put knowledge into a form that a computer can reason with) was
tied to language and informed by research in linguistics, which was
connected in turn to decades of work on the philosophical analysis of
language.

 Modern linguistics and AI were "born" at about the same time, so
linguistics does not play a large foundational role in the growth of AI.

Artificial Intelligence 13

III Year –II-Semester 2018-19 CSE

Instead, the two grew up together, intersecting in a hybrid field called
computational linguistics or natural language processing, which
concentrates on the problem of language use.

The History of Artificial Intelligence
The gestation of artificial intelligence (1943-1956)

 The first work that is now generally recognized as AI was done by

Warren McCulloch and Walter Pitts (1943). They drew on three
sources:

 knowledge of the basic physiology
 function of neurons in the brain
 the formal analysis of propositional logic

 Turing's theory of computation: They proposed a model of artificial
neurons in which each neuron is characterized as being "on" or "off,"
with a switch to "on" occurring in response to stimulation by a
sufficient number of neighbouring neurons.

 Claude Shannon (1950) and Alan Turing (1953) were writing chess
programs for von Neumann-style conventional computers.

 At the same time, two graduate students in the Princeton
mathematics department, Marvin Minsky and Dean Edmonds, built
the first neural network computer in 1951.

Early enthusiasm, great expectations (1952-1969)

 Newell and Simon's early success was followed up with the General

Problem Solver, or GPS. Unlike Logic Theorist, this program was
designed from the start to imitate human problem-solving protocols.

 Within the limited class of puzzles it could handle, it turned out that
the order in which the program considered subgoals and possible
actions was similar to the way humans approached the same
problems. Thus, GPS was probably the first program to embody the
"thinking humanly" approach.

 Herbert Gelernter (1959) constructed the Geometry Theorem Prover.
Like the Logic Theorist, it proved theorems using explicitly
represented axioms.

 Gelernter soon found that there were too many possible reasoning
paths to follow, most of which turned out to be dead ends.

 Arthur Samuel wrote a series of programs for checkers (draughts) that
eventually learned to play tournament-level checkers. Along the way,
he disproved the idea that computers can only do what they are told

Artificial Intelligence 14

III Year –II-Semester 2018-19 CSE

to, as his program quickly learned to play a better game than its
creator.

 McCarthy defined the high-level language Lisp, which was to become
the dominant AI programming language.

 Rosenblatt proved the famous perceptron convergence theorem,
showing that his learning algorithm could adjust the connection
strengths of a perceptron to match any input data.

A dose of reality (1966-1974)

 Most of the early AI programs worked by representing the basic facts

about a problem and trying out a series of steps to solve it, combining
different combinations of steps until the right one was found.

 The early programs were feasible only because micro worlds contained
very few objects.

 Before the theory of NP-completeness was developed, it was widely
thought that "scaling up" to larger problems was simply a matter of
faster hardware and larger memories.

 Resolution theorem proving, was soon dampened when researchers
failed to prove theorems involving more than a few dozen facts.

 A two-input perceptron could not be trained to recognize when its two
inputs were different.

 Although their results did not apply to more complex, multilayer
networks, solved the problem.

 The new back-propagation learning algorithms for multilayer networks
that were to cause an enormous resurgence in neural net research.

Knowledge-based systems: The key to power? (1969-1979)

 General-purpose search mechanism performs elementary reasoning

steps to find complete solutions. Such approaches are called weak
methods, because they use weak information about the domain.

 The only way around this is to use knowledge more suited to making
larger reasoning steps and to solving typically occurring cases in
narrow areas of expertise.

 The DENDRAL program solves the problem of inferring molecular
structure from the information provided by a mass spectrometer.

 The input to the program consists of the elementary formula of the
molecule, and the mass spectrum giving the masses of the various
fragments of the molecule generated when it is bombarded by an
electron beam.

Artificial Intelligence 15

III Year –II-Semester 2018-19 CSE

 The naive version of the program generated all possible structures
consistent with the

 formula, and then predicted what mass spectrum would be observed
for each.

 The significance of DENDRAL was that it is the first successful
knowledge-intensive

 System.
 MYCIN diagnoses blood infections. With about 450 rules, MYCIN was

able to perform as well as some experts, and considerably better than
junior doctors.

 It also contained two major differences from DENDRAL.:
 First, unlike the DENDRAL rules, no general theoretical model

existed from which the MYCIN rules could be deduced. They
had to be acquired from extensive interviewing of experts, who
in turn acquired them from direct experience of cases.

 Second, the rules had to reflect the uncertainty associated with
medical knowledge. MYCIN incorporated a calculus of
uncertainty called certainty factors.

 AI becomes an industry (1980-1988)

 In 1981, the Japanese announced the "Fifth Generation" project, a 10-

year plan to build intelligent computers running Prolog in much the
same way that ordinary computers run machine code.

 It has the ability to make millions of inferences per second.
 The project proposed to achieve full-scale natural language

understanding, among other ambitious goals.
 The booming AI industry also included companies such as Carnegie

Group, Inference, Intellicorp, and Teknowledge that offered the
software tools to build expert systems, and hardware companies such
as Lisp Machines Inc., Texas Instruments, Symbolics, and Xerox that
were building workstations optimized for the development of Lisp
programs.

The return of neural networks (1986-present)

 Back-propagation learning was applied to many learning problems in
computer science and psychology, and the widespread dissemination
of the results in Parallel Distributed Processing.

 In recent years, approaches were based on hidden Markov models
(HMMs) which are based on a rigorous mathematical theory. These
are generated by a process of training on a large corpus of real speech
data.

Artificial Intelligence 16

III Year –II-Semester 2018-19 CSE

Intelligent Systems
 Intelligence:The ability of a system to calculate, reason, perceive

relationships and analogies, learn from experience, store and retrieve
information from memory, solve problems, comprehend complex
ideas, use natural language fluently, classify, generalize, and adapt
new situations.

 Intelligent systems are technologically advanced machines that
perceive and respond to the world around them.

 An intelligent system is a computer-based system that can represent
reason about, and interpret data.

 An intelligent system is a system with artificial intelligence.

 Reasoning − It is the set of processes that enables us to provide basis
for judgement, making decisions, and prediction.

 Learning − It is the activity of gaining knowledge or skill by studying,
practising, being taught, or experiencing something.

 Problem solving- It is the process of selecting the best suitable
alternative out of multiple alternatives to reach the desired goal are
available.

 Perception − It is the process of acquiring, interpreting, selecting, and
organizing sensory information. Perception presumes sensing. In
humans, perception is aided by sensory organs. In the domain of AI,
perception mechanism puts the data acquired by the sensors together
in a meaningful manner.

 Linguistic Intelligence − It is one’s ability to use, comprehend,
speak, and write the verbal and written language. It is important in
interpersonal communication.

Applications of AI
 Air Operations Division (AOD) - uses AI for the rule based expert

systems.
 The AOD has use for artificial intelligence for surrogate

operators for combat and training simulators, mission
management aids, support systems for tactical decision making,

Artificial Intelligence 17

III Year –II-Semester 2018-19 CSE

and post processing of the simulator data into symbolic
summaries.

 Airplane simulators are using artificial intelligence in order to
process the data taken from simulated flights.

 Simulated aircraft warfare computers are able to come up with
the best success scenarios in these situations

 Computer Science: AI researchers have created many tools to solve
the most difficult problems in computer science.

 time sharing ,
 interactive interpreters,
 graphical user interfaces and the computer mouse,
 rapid development environments,
 the linked list data structure,
 automatic storage management,
 symbolic programming,
 functional programming,
 dynamic programming
 object-oriented programming

 Education: Number of companies that create robots to teach subjects
to children ranging from biology to computer science.

 Intelligent tutoring systems: An ITS called SHERLOCK
teaches Air Force technicians to diagnose electrical systems
problems in aircraft. Another example is DARPA, Defense
Advanced Research Projects Agency, which used AI to develop a
digital tutor to train its Navy recruits in technical skills in a
shorter amount of time.

 Finance: Algorithmic Trading involves the use of complex AI
systems to make trading decisions at speeds several orders of
magnitudes greater than any human is capable of, often making
millions of trades in a day without any human intervention. Such
trading is called High-frequency Trading. Many banks, funds, and
proprietary trading firms now have entire portfolios which are
managed purely by AI systems.

 Hospitals and medicine: used as clinical decision support
systems for medical diagnosis.

 Computer-aided interpretation of medical images help scan
digital images, e.g. from computed tomography, for typical
appearances and to highlight conspicuous sections, such as
possible diseases. A typical application is the detection of a
tumor.

 Heart sound analysis

Artificial Intelligence 18

III Year –II-Semester 2018-19 CSE

 Companion robots for the care of the elderly
 Mining medical records to provide more useful information.
 Design treatment plans.
 Assist in repetitive jobs including medication management.
 Provide consultations.
 Drug creation[27]
 Using avatars in place of patients for clinical training[28]
 Predict the likelihood of death from surgical procedures
 Predict HIV progression

 Media and E-commerce: Typical use case scenarios include:
 analysis of images using object recognition or face

recognition techniques,
 analysis of video for recognizing relevant scenes, objects or

faces.
 facilitation of media search,
 creation of a set of descriptive keywords for a media item,
 media content policy monitoring (such as verifying the

suitability of content for a particular TV viewing time),
 speech to text for archival or other purposes, and the detection

of logos,
 products or celebrity faces for the placement of relevant

advertisements
 AI is also widely used in E-commerce Industry for applications

like Visual search, Visually similar
recommendation, Chatbots, Automated product tagging etc

 Music: At Sony CSL Research Laboratory, their Flow Machines
software has created pop songs by learning music styles from a huge
database of songs. By analyzing unique combinations of styles and
optimizing techniques, it can compose in any style.

 News, publishing and writing: Artificial intelligence is used to turn
structured data into intelligent comments and recommendations in
natural language. We can be able to write financial reports, executive
summaries, personalized sales or marketing documents and more at a
speed of thousands of pages per second and in multiple languages
including English, Spanish, French & German.

 Online and telephone customer service: Artificial intelligence is
implemented in automated online assistants which uses natural
language processing.

 Sensors: Artificial Intelligence has been combined with
many sensor technologies, such as Digital Spectrometry TM which
enables many applications such as at home water quality monitoring.

Artificial Intelligence 19

III Year –II-Semester 2018-19 CSE

 Telecommunications maintenance: Many telecommunications
companies make use of heuristic search in the management of their
workforces, for example BT Group has deployed heuristic search in a
scheduling application that provides the work schedules of 20,000
engineers.

 Toys and games: AI has been applied to video games, for
example video game bots, which are designed to stand in as
opponents where humans aren't available or desired.

 Transportation: Fuzzy Logic controllers have been developed for
automatic gearboxes in automobiles. For example, the 2006 Audi
TT, feature the DSP transmission which utilizes Fuzzy Logic.

AI trends in various sectors
 Healthcare:

 AI and ML technology has been particularly useful in the
healthcare industry because it generates massive amounts of
data to train with and enables algorithms to spot patterns faster
than human analysts.

 Medecision developed an algorithm that detects 8 variables in
diabetes patients to determine if hospitalization is required.

 An app called BiliScreen utilizes a smartphone camera, ML
tools, and computer vision algorithms to detect increased levels
of bilirubin in the sclera (white portion) of a person’s eye, which
is used to screen people for pancreatic cancer. This cancer has
no telltale symptoms, hence it has one of the worst prognoses of
all cancers.

 NuMedii, a biopharma company, has developed a platform
called Artificial Intelligence for Drug Discovery (AIDD), which
uses big data and AI to detect the link between diseases and
drugs at the systems level.

 GNS Healthcare uses ML algorithms to match patients with the
most effective treatments for them.

 Entertainment:
 A familiar application of AI in everyday life is seen with services

like Netflix or Amazon, wherein ML algorithms analyze the
user’s activity and compare it with that of other users to
determine which shows or products to recommend. The
algorithms are becoming intelligent with time—to the extent of
understanding that a user may want to buy a product as a gift
and not for him/her, or that different family members have
different watching preferences.

Artificial Intelligence 20

III Year –II-Semester 2018-19 CSE

 Finance:
 Financial services companies use AI-based natural language

processing tools to analyze brand sentiment from social media
platforms and provide actionable advice.

 Investment companies like Aidya and Nomura Securities use AI
algorithms to conduct trading autonomously and robo-traders
to conduct high-frequency trading for greater profits,
respectively.

 Fintech firms like Kensho and ForwardLane use AI-powered
B2C robo-advisors to augment rebalancing decisions and
portfolio management performed by human analysts.
Wealthfront uses AI algorithms to track account activity and
help financial advisors customize their advice.

 Chatbots, powered by natural language processing, can serve
banking customers quickly and efficiently by answering
common queries and providing information promptly.

 Fraud detection is an important application of AI in financial
services. For example, Mastercard uses Decision Intelligence
technology to analyze various data points to detect fraudulent
transactions, improve real-time approval accuracy, and reduce
false declines.

 Data security:
 Cyber attacks are becoming a growing reality with the move to a

digital world. There are also concerns about AI programs
themselves turning against systems.

 Automatic exploit generation (AEG) is a bot that can determine
whether a software bug, which may cause security issues, is
exploitable. If a vulnerability is found, the bot automatically
secures it. AEG systems help develop automated signature
generation algorithms that can predict the likelihood of
cyberattacks.

 PatternEx and MIT’s Computer Science and Artificial
Intelligence Laboratory (CSAIL) have developed an AI platform
called AI2 which claims to predict cyber attacks better than
existing systems. The platform uses Active Contextual Modeling,
a continuous feedback loop between a human analyst and the
AI system, to provide an attack detection rate that is better than
ML-only solutions by a factor of 10.

 Deep Instinct, an institutional intelligence company, says that
malware code varies between 2%-10% in every iteration and

Artificial Intelligence 21

III Year –II-Semester 2018-19 CSE

that its AI model is able to handle the variations and accurately
predict which files are malware.

 Manufacturing:
 Landing AI claims to have created machine-vision tools to find

microscopic defects in objects like circuit boards using an ML
algorithm trained using tiny volumes of sample images. In the
future, self-driving robots may be created which can move
finished goods around without endangering anyone or anything
around.

 Robots in factories are often stationary but are still in danger of
crashing into objects around it. A new concept
called collaborative robots or “cobots, enabled by AI, can take
instructions from humans, including instructions that the robot
has not been previously exposed to, and work productively with
them.

 AI algorithms can influence the manufacturing supply chain by
detecting the patterns of demand for products across
geographies, socioeconomic segments, and time, and predicting
market demand. This, in turn, will affect inventory, raw material
sourcing, financing decisions, human staffing, energy
consumption, and maintenance of equipment.

 AI tools help in predicting malfunctions and breakdown of
equipment and taking or recommending preemptive actions as
well as tracking operating conditions and performance of factory
tooling.

 Automotive industry
 Tesla introduced TeslaBot, an intelligent virtual assistant

integrated with Tesla models S and X, allows users to interact
with their car from their phone or desktop.

 Uber AI Labs is working on developing self-driven cars with the
help of the best engineers and scientists. Uber has already
tested a batch of self-driving cars in 2016.

 Nvidia has partnered with Volkswagen to develop “intelligent co-
pilot systems” in cars that will enable safety warnings, gesture
control, and voice and facial recognition.

 Ericsson predicts that 5G technology will improve vehicle-to-
vehicle communication wherein sensors will be implanted in
airport runways, railways, and roads.

Artificial Intelligence 22

III Year –II-Semester 2018-19 CSE

Tic Tac Toe Game playing
 The game Tic Tac Toe is also known as Noughts and Crosses or Xs

and Os ,the player needs to take turns marking the spaces in a 3x3
grid with their own marks, if 3 consecutive marks
(Horizontal, Vertical, Diagonal)
are formed then the player
who owns these moves get
won.
Assume ,
Player 1 - X
Player 2 – O

 Board's Data Structure:

 The cells could be represent as Center square, Corner,Edge as like

below:

Artificial Intelligence 23

III Year –II-Semester 2018-19 CSE

Unit- I
Assignment-Cum-Tutorial Questions

 Objective Questions

1. Define Artificial Intelligence.

2. A system is said to be _____________ if it does the right thing, given known

facts.

3. The study of how to make computers do things at which, at the moment,

people are better-is a characteristic of_____. []

(a) Systems that think like humans (b) Systems that think rationally
(c) Systems that act like humans (d) Systems that act rationally

4. The “Turing Test approach” is used to test whether a system ___.[]

(a) think like humans (b) think rationally
(c) act like humans (d) act rationally

5. The “Cognitive Modelling” approach is used to test whether a system

____.

(a) think like humans (b) think rationally []
(c) act like humans (d) act rationally

6. The “Laws of Thought” approach is used to test whether a system ____.

(a) think like humans (b) think rationally []

(c) act like humans (d) act rationally

7. For artificial intelligence to succeed, we need_____. []

(a) intelligence (b) artifact (c) both a & b (d) none

8. Understanding language requires an understanding of _______. []

(a) subject matter (b) context (c) structure of sentences (d) only a & b

9. GPS was probably the first program to embody _________ approach.

(a) thinking humanly (b) acting humanly []
 (c) thinking rationally (d) acting rationally

10. The ________program solves the problem of inferring molecular structure

from the information provided by a mass spectrometer. []

 (a) MYCIN (b) DENDRAL (c) both a & b (d) none

Artificial Intelligence 24

III Year –II-Semester 2018-19 CSE

11. __________ diagnoses blood infections. []

(a) MYCIN (b) DENDRAL (c) both a & b (d) none
12. ____________teaches Air Force technicians to diagnose electrical systems

problems in aircraft. []

 (a) SHERLOCK (b) DARPA (c) DENDRAL (d) none

13. DARPA stands for_____________.

SECTION-B
 SUBJECTIVE QUESTIONS

1. Summarize AI definition categories?

2. Illustrate the capabilities that a computer must possess to pass Turing

Test?

3. Explain the areas from which Artificial Intelligence laid its foundation?

4. Explain the history of Artificial Intelligence?

5. List the applications of Artificial Intelligence?

6. Outline the current trends in Artificial Intelligence?

7. What is an Intelligent System? Explain its characteristics?

8. Interpret the steps to solve tic-tac-toe problem.

Artificial Intelligence 1

III Year –II-Semester 2018-19 CSE

UNIT - II
Problem solving and Game playing

Syllabus:

Problem solving: state-space search and control strategies: Introduction,
general problem solving, characteristics of problem, exhaustive searches,
heuristic search techniques, iterative-deepening a*, problem reduction,
constraint satisfaction.
Game playing: Introduction, game playing, alpha-beta pruning, two-player
perfect information games.
Outcomes:
Student will be able to:

General Problem Solving
 To build a system to solve a particular problem, we need to do four

things:
1. Define the problem precisely. This definition must include precise
specifications of what the initial situation(s) will be as well as what
final situations constitute acceptable solutions to the problem.
2 Analyse the problem. A few very important features can have an
immense impact on the appropriateness of various possible
technique(s)for solving the problem.
3. Isolate and represent the task knowledge that is necessary to
solve the problem.
4. Choose the best problem-solving technique(s) and apply it (them)
to the particular problem.

State-Space Search
 To build a program that could "Play chess," we would first have to

specify the starting position of the chess hoard, the rules that define
the legal moves, and the board positions that represent a win for one
side or the other.

 The starting position can he described as an 8-by-8 array where each
position contains a symbol standing for the appropriate piece in the
official chess opening position.

 We can define as our goal any board position in which the opponent
does not have a legal move and his or her king is under attack.

 The legal moves provide the way of getting from the initial state to a
goal state. They can he described easily as a set of rules consisting of
two parts: a left side that serves as a pattern to he matched against
the current board position and a right side that describes the change
to be made to the board position in reflect the move.

Artificial Intelligence 2

III Year –II-Semester 2018-19 CSE

 We have to write a very large number of rules since there have to be a
separate rule for each of the 10120 possible board positions. Using so
many rules poses two serious practical difficulties:

 No person could ever supply a complete set of such rules. It
would take too long and could certainly not be done without
mistakes.

 No program could easily handle all those rules. Although
hashing scheme could be used to find the relevant rules for
each move fairly quickly, just storing that many rules poses
serious difficulties.

 We should write the rules describing the legal moves in as general a
way possible. The convenient notation for describing patterns and
substitutions is as follows:

 A problem can be defined in a “State Space”, where each state
corresponds to a legal position of the board.

 We can start at an initial state using a set of rules to move from
one state to another, and attempting to end up in one of a set of
final states.

 The state space representation forms the basis of most of the Al
methods. Its structure corresponds to the structure of problem solving
in two important ways:

 It allows formal definition of a problem as the need to convert
some given situation into some desired situation using a set of
permissible operations.

Artificial Intelligence 3

III Year –II-Semester 2018-19 CSE

 It permits us to define the process of solving a particular
problem as a combination of known techniques) each
represented as a role defining a single step in the space) and
search, the general technique of exploring the space to try to
find some path from the current state to a goal state. Search is
a very important process in the solution of hard problems for
which no more direct techniques are available.

Water Jug Problem
 Consider the following problem: A Water Jug Problem: You are given

two jugs, a 4-gallon one and a 3-gallon one, a pump which has
unlimited water which you can use to fill the jug, and the ground on
which water may be poured. Neither jug has any measuring markings
on it. How can you get exactly 2 gallons of water in the 4-gallon jug?

 State Representation and Initial State – we will represent a state of
the problem as a tuple (x, y) where x represents the amount of water
in the 4-gallon jug and y represents the amount of water in the 3-
gallon jug. Note 0 ≤ x ≤ 4, and 0 ≤ y ≤ 3.

 Our Initial state: (0,0) Goal state = (2,y) where 0 ≤ y ≤ 3.
 To solve this we have to make some assumptions not mentioned in the

problem. They are:
1. We can fill a jug from the pump.
2. We can pour water out of a jug to the ground.
3. We can pour water from one jug to another.
4. There is no measuring device available. To solve the water jug
problem, all we need is a control structure that loops through a simple
cycle in which some rule whose left side matches the current state is
chosen. The appropriate change to the state is made as described in
the corresponding right side, and the resulting state is checked to see
ii ii corresponds to a goal state. As long as it does not, the cycle
continues. Clearly the speed with which the problem gets solved
depends on the mechanism that is used to select the next operation to
be performed.

 We must define a set of operators that will take us from one state to
another:

Artificial Intelligence 4

III Year –II-Semester 2018-19 CSE

Artificial Intelligence 5

III Year –II-Semester 2018-19 CSE

 The first step toward the design of a program to solve a problem must
be the creation of a formal and manipulable description of the
problem itself. We should be able to write programs that can
themselves produce such formal descriptions from informal ones. This
process is called Operationalization.

 In order to provide a formal description of a problem, we must do the
following:
 Define a state space that contains all the possible configurations

of the relevant objects (and perhaps some impossible ones). It is, of
course, possible to define this space without explicitly enumerating
all of the states it contains.

 Specify one or more states within that space that describes
possible situations from which the problem-solving process may
start. These states are called the Initial states.

 Specify one or more states that would be acceptable as solutions to
the problem. These states are called goal states.

 Specify a set of rules that describe the actions (operators)
available.

 The problem can then be solved by using the rules, in combination
with an appropriate Control Strategy, to move through the problem
space until a path from an initial state to a goal state is found. Thus
the process of search is fundamental to the problem-solving process.

Control Strategies
 It is important to decide which rule to apply next during the process of

searching for a solution to a problem. This question arises when more
than one will have its left side match the current state.

 The decisions made will have a crucial impact on how quickly a
problem is finally solved.

 The following are the requirements of a control strategy:
 The first requirement of a good control strategy is that it causes

motion. Consider again the water jug problem. Suppose we
implemented the simple control strategy of starting each time at
the top of the list of rules and choosing the first applicable one.
If we did that, we would never solve the problem. We would
continue indefinitely filling the 4-gallon jug with water. Control
strategies that do not cause motion will never lead to a solution.

 The second requirement of a good control strategy is that it be
systematic. Let us consider a simple control strategy for the
water jug problem. On each cycle, choose at random from
among the applicable rules. This strategy is better than the first.
It causes motion. It will lead to a solution eventually. Sometimes

Artificial Intelligence 6

III Year –II-Semester 2018-19 CSE

we arrive at the same state several times during the process
and to use many more steps than are necessary. Because the
control strategy is not systematic, we may explore a particular
useless sequence of operators several times before we finally
find a solution. The requirement that a control strategy be
systematic corresponds to the need for global motion (over the
course of several steps) as well as for local motion (over the
course of a single step).

Breadth First Search
 For each leaf node, generate all its successors by applying all the rules

that are appropriate. Continue this process until some rule produces
a goal state. This process, called Breadth-First search.

Algorithm: Breadth-First Search
1. Create a variable called NODE-LIST and set it to the initial state.
2. Until a goal state is found or NODE-LIST is empty do:

(a) Remove the first element from NODE-LIST and call it E. If
NODE-LIST was empty, quit.
(b) For each way that each rule can match the state described in
E do:

i. Apply the rule to generate a new state.
ii. If the new state is a goal state, quit and return this
state.
iii. Otherwise, add the new state to the end of' NODE-
LIST.

 Advantages of Breadth-First Search:
 Breadth-first search will not get trapped exploring a blind alley.
 If there is a solution, then breadth-first search is guaranteed to

find it. Furthermore, if there are multiple solutions, then a
minimal solution will be found. This is guaranteed by the fact
that longer paths are never explored until all shorter ones have
already been examined.

Artificial Intelligence 7

III Year –II-Semester 2018-19 CSE

 Disadvantages of Breadth-First Search:
 All of the tree that has so far been generated must be stored

which requires more memory.
 In breadth-first search, all parts of the tree must be examined to

level n before any nodes on level n + 1 can be examined. This is
particularly significant if many acceptable solutions exist.

Depth First Search
 We could pursue a single branch of the tree until it yields a solution

or until a decision to terminate the path is made.
 It makes sense to terminate a path if it reaches a dead-end, produces

a previous state, or becomes longer than some prespecified "futility"
limit.

 In such a case backtracking occurs. The most recently created state
from which alternative moves are available will be revisited and a new
state will he created. This form of backtracking is called
Chronological Backtracking because the order in which steps arc
undone depends only on the temporal sequence in which the steps
were originally made.

 The search procedure we have just described is called Depth-First
search.
Algorithm: Depth-First Search
1. If the initial state is a goal state, quit and return success.
2. Otherwise, do the following until success or failure is signalled:

(a) Generate a successor, E, of the initial state. It there are no
more successors,

 signal failure.
(b) Call Depth-First Search with E as the initial state.

 (c) If success is returned, signal success. Otherwise continue in
this loop.

Artificial Intelligence 8

III Year –II-Semester 2018-19 CSE

 Advantages of Depth-First Search:
 Depth-first search requires less memory since only the nodes on

the current path are stored.
 By chance (or if care is taken in ordering the alternative

successor states), depth first search may find a solution without
examining much of the search space at all. Depth-first search
can stop when one of solution is found.

 Disadvantages of Depth-First Search:
 Depth- first searching may follow a single unfruitful path for a

very long time.
 Depth-first search, may find a long path to a solution in one

part of the tree, when a shorter path exists in some other
unexplored part of the tree.

Problem Characteristics
 A heuristic is a technique that improves the efficiency of a search

process, possibly by sacrificing claims such as completeness.
Heuristics are like tour guides. They are good to the extent that they
point in generally interesting directions: they are bad to the extent
that they may miss points of interest to particular individuals. But, on
the average, they improve the quality of the paths that are explored.

 Heuristic search is a very general method applicable to a large class of
problems; it encompasses a variety of specific techniques, each of
which is particularly effective for a small class of problems. In order to
choose the most appropriate method (or combination of methods for a
particular problem, it is necessary to analyze the problem along
several key dimensions:
 Is the problem decomposable into a set of (nearly) independent

smaller or easier sub problems?
 Can solution steps be ignored or at least undone if they prove

unwise?
 Is the problem's universe predictable?
 Is good solution to the problem obvious without comparison to all

other possible solutions?
 Is the desired solution a state of the world or a path to a state?
 Is a large amount of knowledge absolutely required to solve the

problem, or is knowledge important only to constrain the search?
 Can a computer that is simple given the problem return the

solution, or will the solution of the problem require interaction n
between the computer and a person?

1. Is the Problem Decomposab1e?
 Suppose we want to solve the problem of computing the expression:

Artificial Intelligence 9

III Year –II-Semester 2018-19 CSE

 We can solve this problem by breaking it down into three smaller
problems each of which we can then solve by using a small collection
of specific rules.

 The figure shows the problem tree that will be generated by the
process of problem decomposition as it can be exploited by a simple
recursive integration program that works as follows:

 At each step. it checks to see whether the problem it is working on is
immediately solvable. If so, then the answer is returned directly.

 If the problem is not easily solvable, the integrator checks to see
whether it can decompose the problem into smaller problems. If it
can, it creates those problems and calls itself recursively on them.
Using this technique of problem decomposition we can often solve very
large problems easily.

 Example-Blocks World Problem: Assume that the following operators
are available-

Artificial Intelligence 10

III Year –II-Semester 2018-19 CSE

 Applying the technique of problem decomposition to this simple blocks
world example would lead to a solution tree such as that shown
below:

 In the figure, goals are underlined. States that have been achieved are
not underlined. The idea of this solution is to reduce the problem of
getting B on C and A on B to two separate problems.

 The first of these new problems, getting B on C. is simple, given the
start state. Simply put B on C. The second sub goal is not quite so
simple. Since the only operators we have allow us to pick up single
blocks at a time, we have to clear off B by removing C before we can
pick up A and put it on B This can easily be done.

 However, if we now try to combine the two sub solutions into one
solution, we will fail. Regardless of which one we do first, we will not
be able to do the second as we had planned.

 In this problem, the two sub problems are not independent. They
interact and those interactions must be considered in order to arrive
at a solution for the entire problem.

2. Can Solution Steps Be Ignored or Undone?
 Theorem Proving: We proceed by first proving lemma that we think

will be useful. Eventually, we realize that the lemma is no help at all.
 Everything we need to prove the theorem is still true. Any rules that

could have been applied can still be applied.
 We can just proceed as we should have in the first place. All we have

lost is the effort that was spent exploring the blind alley.
 The 8-Puzzle: The 8-puzzle is a square tray in which are placed eight

square tiles. The remaining ninth square is uncovered. Each tile has a
number on it. A tile that is adjacent to the blank space can he slid
into that space. A game consists of a starting position and a specified
goal position. The goal is to transform the starting position into a goal
position by sliding the tiles around.

Artificial Intelligence 11

III Year –II-Semester 2018-19 CSE

 In attempting to solve the 8-puzzle, we might make a stupid move. We
might start by sliding tile 5 into the empty space. Having done that,
we cannot change our mind and immediately slide tile 6 into the
empty space since the empty space will essentially have moved.

 But we can backtrack and undo the first move, sliding tile 5 back to
where it was. Then we can move tile 6. Mistakes can still be recovered
from but not quite easily. An additional step must be performed to
undo each incorrect step,

 The control mechanism for an 8.puzzle solver must keep track of the
order in which operations are performed so that the operations can be
undone one at a time if necessary.

 Chess: Now consider again the problem of playing chess. Suppose a
chess-playing program makes a stupid move and realizes it a couple of
moves later. It cannot simply play as though it had never made the
stupid move. Nor can it simply back up and start the game over from
that point. All it can do is to try to make the best of the current
situation and go on from there.

 The three problems—theorem proving, the 8-puzzle, and chess—
illustrate the differences between three important classes of problems:
• Ignorable(e.g... theorem proving), in which solution steps can be
ignored
• Recoverable(e.g... 8-puzzle), in which solution steps can be undone.
• Irrecoverable(e.g... chess), in which solution steps cannot be
undone

 The recoverability of a problem plays an important role in
determining the complexity of the control structure necessary for the
problem's solution.
 Ignorable problems can be solved using a simple control structure

that never backtracks. Such a control structure is easy to
implement.

 Recoverable problems can be solved by a slightly more
complicated control strategy that does sometimes make mistakes.
Backtracking will be necessary to recover from such mistakes, so
the control structure must be implemented using a push-down
stack, in which decisions are recorded in case they need to be
undone later.

Artificial Intelligence 12

III Year –II-Semester 2018-19 CSE

 Irrecoverable problems, on the other hand, will need to be solved
by a system that expends a great deal of effort making each
decision since the decision must be final

 3. Is the Universe Predictable?
 8-puzzle: Every time we make a move, we know exactly what will

happen. This means that it is possible to plan an entire sequence of
moves and be confident that we know what the resulting state will be.
We can use planning to avoid having to undo actual moves, although
it still be necessary to backtrack past those moves one at a time
during the planning process. Thus a control structure that allows
backtracking will be necessary.

 Play Bridge: One of the decisions we will have to make is which card
to play on the first trick. What we would like to do is to plan the entire
hand before making that first play. But now it is not possible to do
such planning with certainty since we cannot know exactly where all
the cards are what the other players will do on their turns. The best
we can do is to investigate several plans and use probabilities of the
various outcomes to choose a plan that has the highest estimated
probability of leading to a good score on the hand.

 Certain–outcome problems (e.g... 8-puzzle): The open-loop approach
will work fine since the result of an action can he predicted perfectly.
Thus, planning can be used to generate a sequence of operators that
is guaranteed to lead to a solution.

 Uncertain–outcome problems (e.g... Bridge): Planning can at best
generate a sequence of operators that has a good probability of leading
to a solution. To solve such problems, we need to allow for a process
of plan revision to take place as the plan is carried out and the
necessary feedback is provided. In addition to providing no guarantee
of art actual solution, planning for uncertain -outcome problems has
the drawback that it is often very expensive since the number of
solution paths that need to be explored increases exponentially with
the number of points at which the outcome cannot be predicted.

4. Is a Good Solution Absolute or Relative?
 Simple facts problem: Consider the problem of answering questions

based on a database of simple facts, such as the following:
1. Marcus was a man.
2. Marcus was a Pompeian.
3. Marcus was born in 40 A.D.
4. All men are mortal.
5. All Pompeians died when the volcano erupted in 79 A.D.
6 No mortal lives longer than 150 years.
7.11 is now 1991 A.D.

Artificial Intelligence 13

III Year –II-Semester 2018-19 CSE

 Suppose we ask the question 'Is Marcus alive?'. By representing each
of these facts in a formal language such as predicate logic, and then
using formal inference methods we can fairly easily derive an answer
to the question. Since all we are interested in is the answer to the
que7sion, it does not matter which path we follow. If we do follow one
path successfully to the answer, there is no reason to go back and see
it some other path might also lead to a solution.

 Travelling salesman problem: Our goal is to find the shortest route

that visits each city exactly once. Suppose the cities to be visited and
the distances between them are as shown:

 One place the salesman could start is Boston. In that case, one path
that might be followed is shown, which is 8850 miles long. But is this
the solution to the problem? The answer is that we cannot be sure
unless we also try all other paths to make sure that none of them is
shorter. In this case, the first path is definitely not the solution to the
salesman's problem.

Artificial Intelligence 14

III Year –II-Semester 2018-19 CSE

 Best-path problems: These are, in general, computationally harder

than Any-path problems. No heuristic that could possibly miss the
best solution can be used.

 Any-path problems: can often be solved in a reasonable amount of
time by using heuristics that suggest good paths to explore. If the
heuristics are not perfect, the search for a solution may not be as
direct as possible. So a much more exhaustive search will be
performed.

5. Is the Solution a State or a Path?
 Consistent interpretation for the sentence (NLU): There are several

components of this sentence, each of which, in isolation, may have
more than one interpretation.

“The Bank president ate a dish of pasta salad with the fork”
 Some of the sources of ambiguity in this sentence are the following:

 The word "bank" may refer either to a financial institution or to
a side of a river. But only one of these may have a president.

 The word "dish" is the object of the verb "eat." It is possible that
a dish was eaten. But it is more likely that the pasta salad in
the dish was eaten.

 Pasta salad is a salad containing pasta. But there are other
ways meanings can be formed from pair of nouns. For example,
dog food does not normally contain dog.

 Some search may be required to find a complete interpretation for the
sentence. But to solve the problem of finding the interpretation we
need to produce only the interpretation itself. No record of the
processing by which the interpretation was found is necessary.

 Water Jug Problem: It is not sufficient to report that we have solved
the problem and that the final state (2, 0). For this kind of problem,

Artificial Intelligence 15

III Year –II-Semester 2018-19 CSE

what we really must report is not the final state but the path that we
found to that state. Thus a statement of a solution to this problem
must be a sequence of operations called a “plan” that produces the
final state.

 The difference between these problems is:
 Problems whose solution is a state.
 Problems whose solution is a path to a state.

 In water jug problem, we must re-describe the states so that each
state represents a partial path to a solution rather than just a single
state of the world.

6. What Is the Role of Knowledge?
 Playing chess: Suppose you had unlimited computing power

available. The knowledge that would be required by a perfect program
is very little—just the rules for determining legal moves and some
simple control mechanism that implements a search procedure.

 Additional knowledge about such things as good strategy, and tactics
could of course help considerably to constrain the search and speed
up the execution of the program.

 Scanning daily newspapers: to decide which are supporting the
Democrats and which are supporting the Republicans in some
upcoming election. Again assuming unlimited computing power, how
much knowledge would be required by a computer trying to solve this
problem? It would have to know such things as:
• The names of the candidates in each party.
• The fact that if the major thing you want to see done is have taxes
lowered, you are probably supporting the Republicans.
• The fact that it the major thing you want to see done is improved
education for minority students, you are probably supporting the
Democrats.
• The fact that if you are opposed to big government you are probably
supporting the Republicans.

 These two problems, chess and newspaper story understanding,
illustrate the difference between problems for which a lot of knowledge
is important only to constrain the search for a solution and those for
which a lot of knowledge is required even to be able to recognize a
solution.

7. Does the Task Require Interaction with a Person?
 Sometimes it is useful to program computers to solve problems in

ways that the majority of people would not be able to understand.
This is fine if the level of the interaction between the computer and its
human users is program-in solution-out.

Artificial Intelligence 16

III Year –II-Semester 2018-19 CSE

 But increasingly we are building programs that require intermediate
interaction with people, both to provide additional input to the
program and to provide additional reassurance to the user.

 We must distinguish between two types of problems:
 Solitary: in which the computer is given a problem description and

produces an answer with no intermediate communication and with no
demand for an explanation of the reasoning process

 Conversational: in which there is intermediate communication
between a person and the computer, either to provide additional
assistance to the computer or to provide additional information to the
user, or both.

8. Problem Classification
 Generic control strategy-Classification: The task here is to examine

an input and then decide which of a set of known classes the input is
an instance of. Most diagnostic tasks, including medical diagnosis as
well as diagnosis of faults in mechanical devices are examples of
classification.

 Propose and Refine: Many design and planning problems can be
attacked with this strategy.

Heuristic Search Techniques
 A framework for describing search methods is provided and several

general-purpose search techniques are discussed.
 There are many varieties of heuristic search. They can be described

independently of any particular task or problem domain. But when
applied to particular problems, their efficacy is highly dependent on
the way they exploit domain-specific knowledge

 Over last three decades of AI research, these techniques continue to
provide the framework into which domain-specific knowledge can be
placed, either by hand or as a result of automatic learning. Thus they
continue to form the core of most Al systems.

Best-First Search
 Best-first search, is a way of combining the advantages of both depth-

first and breadth-first search into a single method.
 Depth-first search is good because it allows a solution to be found

without all competing branches having to be expanded. Breadth-first
search is good because it does not get trapped on dead-end paths.

 One way of combining the two is to follow a single path at a time, but
switch paths whenever some competing path looks more promising
than the current one does.

 At each step of the best-first search process, we select the most
promising of the nodes we have generated so far. This is done by

Artificial Intelligence 17

III Year –II-Semester 2018-19 CSE

applying an appropriate heuristic function to each of them, We then
expand the chosen node by using the rules to generate its successors.

 If one of them is a solution, we can quit. If not, all those new nodes
are added to the set of nodes generated so far. Again the most
promising node is selected and the process continues. A bit of depth
first searching occurs as the most promising branch is explored.

 But eventually, it a solution is not found, that branch will start to look
less promising than one of the top-level branches that had been
ignored. At that point, the now more promising, previously ignored
branch will be explored. But the old branch is not forgotten, Its last
node remains in the set of generated but unexpanded nodes. The
search can return to it whenever all the others get bad enough, that it
is again the most promising path.

 Initially, there is only one node, so it will be expanded. Doing so
generates three new nodes. The heuristic function, is an estimate of
the cost of getting to a solution from a given node, is applied to each of
these new nodes.

 Since node D is the most promising, it is expanded next, producing
two successor nodes, E and F. Now the heuristic function is applied to
them.

 Now another path that going through node B looks more promising, so
it is pursued, generating nodes G and H. But again when these new
nodes are evaluated they look less promising than another path, so
attention is returned to the path through D to E. E is then expanded,
yielding nodes I and J.

 At the next step, J will be expanded, since it is the most promising.
This process can continue until a solution is found.

Artificial Intelligence 18

III Year –II-Semester 2018-19 CSE

 In best-first search, one move is selected, but the others are kept
around so that they can be revisited later if the selected path becomes
less promising.

 Further, the best available state is selected in best first search, even
it that state has a value that is lower than the value of the state that
was just explored.

 In a best-first search of a tree, it is sometimes important to search a
graph instead so that duplicate paths will not be pursued.

 An algorithm to do this will operate by searching a directed graph in
which each node represents a point in the problem space. Each node
will contain, in addition to a description of the problem state it
represents, an indication of how promising it is; a parent link that
points back to the best node from which it came, and a list of the
nodes that were generated from it.

 The parent link will make it possible to recover the path to the goal
once the goal is found. The list of successors will make it possible, if a
better path is found to an already existing node, to propagate the
improvement down to its successors.

 We will call a graph of this sort an OR graph, since each of its
branches represents an alternative problem-solving path.

 To implement such a graph-search procedure, we will need to use two
lists of nodes:
 OPEN—nodes that have been generated and have had the heuristic

function applied to them but which have not yet been examined
(i.e.. had their successors generated) OPEN is actually a priority
queue in which the elements with the highest priority are those
with the most promising value of the heuristic function.

 CLOSED— -nodes that have already been examined. We need to
keep these nodes in memory if we want to search a graph rather
than a tree, since whenever a new node is generated; we need to
check whether it has been generated before.

 We will also need a heuristic function that estimates the merits of
each node we generate. The function f1 that gives the true evaluation
of the node.

 We define this function as the sum of two components: g and h1.
 The function g is a measure of the cost of getting from the initial

state to the current node.
 The function h1 is an estimate of the additional cost of getting from

the current node to a goal state.
 The combined function f1 represents an estimate of the cost of getting

from the initial state to a goal state along the path that generated the

Artificial Intelligence 19

III Year –II-Semester 2018-19 CSE

current node. If more than one path is generated the node, then the
algorithm will record the best one.

 This process can be summarized as follows:
Algorithm: Best-First Search
1. Start with OPEN containing just the initial state.
2. Until a goal is found or there are no nodes left on OPEN do:
(a) Pick the best node on OPEN.
(b) Generate its successors.
(c) For each successor do:

i. If it has not been generated before, evaluate it, add it to OPEN,
and record its parent.
ii. If it has been generated before, change the parent if this new
path is, better than the previous one. In that case, update the
cost of getting to this node and to any successors that this node
may already have.

 The best first search algorithm is a simplification of an algorithm
called A*.

 This algorithm uses the same f1, g, and h1 functions, as well as the
lists OPEN and CLOSED.

Iterative Deepening:
 A number of ideas for searching two-player game trees have led to new

algorithm for single-agent heuristic search. One such idea is
“iterative deepening” originally used in CHESS.

 Rather than searching to a fixed depth in the game tree, CHESS first
searched only a single ply, applying its static evaluation function to
the result of each of its possible moves.

 It then initiated a new minimax search, to a depth of two ply. This was
followed by a three-ply search, then a four-ply search etc.

 The name "iterative deepening" derives from the fact that on each
iteration, the tree is searched one level deeper.

 Since it is impossible to know in advance how long a fixed-depth tree
search will take, a program may find itself running out of time. With
iterative deepening, the current search can be aborted at any time and
the best move found by the previous iteration can be played.

 Iterative deepening can also be used in improve the performance of
the A* search algorithm.

Algorithm: Iterative-Deepening-A*

1. Set THRESHOLD = the heuristic evaluation of the start state.
2. Conduct a depth-first search, pruning any branch when its total
cost function (g + h1) exceeds THRFSHOLD. If a solution path is found
during the search, return it.

Artificial Intelligence 20

III Year –II-Semester 2018-19 CSE

3. Otherwise, increment THRESHOLD by the minimum amount it was
exceeded during the previous step, and then go to Step 2.

 Iterative-Deepening-A* (IDA*) is guaranteed to find an optimal solution
provided that h1 is an admissible heuristic.

Problem Reduction: AND-OR Graphs
 AND-OR graph (or tree), is useful for representing the solution of

problems that can be solved by decomposing them into a set of
smaller problems, all of which must then he solved.

 This decomposition, or reduction, generates arcs that we call AND
arcs. One AND arc may point to any number of successor nodes all of
which must be solved in order for the arc to point to a solution.

 Several arcs may emerge from a single node, indicating a variety of
ways in which the original problem might be solved. This is why the
structure is called not simply an AND graph but rather an AND-OR
graph. AND arcs are indicated with a line connecting all the
components.

 In order to find solutions in an AND-OR graph, we need an algorithm
with the ability to handle the AND arcs appropriately. This algorithm
should find a path from the starting node of the graph to a set of
nodes representing solution states.

 The top node, A, has been expanded, producing two arcs, one leading
to B and one leading to C and D. The numbers at each node represent
the value of f1 at that node. Assume, that every operation has a
uniform cost, so each arc with a single successor has a cost of I and
each AND arc with multiple successors has a cost of 1 for each of its
components.

 If we look just at the nodes and choose for expansion the one with the
lowest; f1 value, we must select C.

 But using the information now available, it would be better to explore
the path going through B since to use C we must also use D. (for a
total cost of 9 (C+D+2) compared to the cost of 6 that we get by going
through B.

 The problem is that the choice of which node to expand next must
depend not only on the f1 value of that node but also on whether that
node is part of the current best path from the initial node.

Artificial Intelligence 21

III Year –II-Semester 2018-19 CSE

 The most promising single node is (G with an f1 value of 3). It is even
part of the most promising arc G-H, with a total cost of 9. But that are
is not part of the current best path since to use it we must also use
the arc I-J with a cost of 27.

 The path from A through B, to E and F is better, with a total cost of
18. So we should not expand G next: rather we should examine either
E or F.

 In order to describe an algorithm for searching an AND-OR graph, we
need to exploit a value called FULILITY. If the estimated cost of a
solution becomes greater than the value of FUTILITY, then we
abandon the search.

 FUTILITY should be chosen to correspond to a threshold such that
any solution with a cost above it is too expensive to be practical, even
if it is found.

Algorithm: Problem Reduction
1 Initialize the graph to the starting node.
2. Loop until the starling node is labelled SOLVED or until its cost goes
above FUTILITY:

(a) Traverse the graph, starting at the initial node and following the
current best path, and accumulate the set of nodes that are or that
path and not yet been expanded or labelled as solved.
b) Pick one of these unexpanded nodes and expand it. If there are no
successors, assign FUTILITY as the value of this node, otherwise, add
its successors to the graph and for each of them compute f1 .If f1 of
any node is 0, mark that node as SOLVED.
(c) Change the f1 estimate of the newly expanded node to reflect the
new information provided by its successors. Propagate this change
backward through the graph. If any node contains a successor arc
whose descendants are all solved, label the node itself as SOLVED. At
each node that is visited while going up the graph, decide which of its
successor arcs is the most promising and mark it as part of the

Artificial Intelligence 22

III Year –II-Semester 2018-19 CSE

current best path. But now expanded nodes must be re-examined so
that the best current path can he selected. Thus it is important that
their f1 values be the best estimates available.

 At step 1, A is the only node, so it is at the end of the current best
path. It is expanded, yielding nodes B, C and D. The arc to D is
labelled as the most promising one emerging from A, since it costs 6
compared to B and C, which costs 9. (Marked arcs are indicated in the
figures by arrows.)

 In step 2, node D is chosen for expansion. This process produces one
new arc, the AND arc to E and F, with a combined cost estimate of 10.
So we update the f1 value of D to 10.

 Going back one more level, we can see that this makes the AND arc B-
C better than the arc to D, so it is labelled as the current best path.

 At step 3, we traverse that arc from A and discover the unexpanded
nodes B and C. If we want to find a solution along this path, we will
have to expand both B and C eventually, so let's choose to explore B
first. This generates two new arcs, the ones to G and to H.

 Propagating their f1 values backward, we update f1 of B to 6. This
requires updating the cost of the AND arc B-C to 12 (6+4+2).

Artificial Intelligence 23

III Year –II-Semester 2018-19 CSE

 After doing that, the arc to D is again the better path from A, so we
record that as the current best path and either node E or node F will
be chosen for expansion at step 4.

 This process continues until either a solution is found or all paths
have led to dead ends, indicating that there is no solution.

The AO* Algorithm
 The problem reduction algorithm is a simplification of an AO*

algorithm.
 The AO* algorithm will use a single structure GRAPH, representing the

part of the search graph that has been explicitly generated so far.
 Each node in the graph will point both down to its immediate

successors and up to its immediate predecessors. Each node in the
graph will also have associated with it an h1 value, an estimate of
the cost of a path from itself to a set of solution nodes. So h1 will
serve as the estimate of goodness of a node.

Algorithm: AO*

1. Let GRAPH consists of only the node representing the initial state.
(Call this node INIT). Compute h1 (INIT).
2. Until INIT is labelled SOLVED or until INIT’s h1 value becomes greater
than FUTILITY, repeat the following procedure:

(a) Trace the labelled arcs from INIT and select for expansion one of
the yet unexpanded nodes that occurs on this path. Call the selected
node NODE.
(b) Generate the successors of NODE. If there are none, then assign
FUTILITY as the h1 value of NODE. 'This is equivalent to saying that
NODE is not solvable. If there are successors, then for each one called
SUCCESSOR that is not also an ancestor of NODE do the following:

i. Add SUCCESSOR to GRAPH.
ii. If SUCCESSOR is a terminal node, label it SOLVED and
assign it, an h1 value of 0.
iii. If SUCCESSOR is not a terminal node, compute its h1 value.

(c) Propagate the newly discovered information up the graph by doing
the following: Let S the a set of nodes that have been labelled SOLVED
or whose h1 values have been changed and so need to have values
propagated back to their parents. Initialize S to NODE. Until S is
empty, repeat the following procedure:

i. If possible, select from S a node none of whose descendants in
GRAPH occurs in S. If there is no such node, select any node
from S. Call this node CURRENT, and remove it from S.
ii. Compute the cost of each of the arcs emerging from
CURRENT. The cost of each arc is equal to the sum of the h1'
values of each of the nodes at the end of the arc plus whatever

Artificial Intelligence 24

III Year –II-Semester 2018-19 CSE

the cost of the arc itself is. Assign as CURRENT's new h1 value
the minimum or the costs just computed for the arcs emerging
from it.
iii. Mark the best path out of CURRENT by marking the arc that
had the minimum cost as computed in the previous step.
iv. Mark CURRENT SOLVED if all of the nodes connected to it
through the new labelled arc have been labelled SOLVED.
v. If CURRENT has been labelled SOLVED or if the cost of
CURRENT was just changed, then its new status must be
propagated back up the graph. So add all of the ancestors of
CURRENT to S.

Constraint Satisfaction
 Many problems in Al can be viewed as problems of Constraint

Satisfaction in which goal is to discover some problem state that
satisfies a given set of constraints.

 Examples of this sort of problem include crypt arithmetic puzzles.
 Design tasks can also be viewed as Constraint Satisfaction problems

in which a design must be created within fixed limit, on time, cost,
and materials.

 By viewing a problem as one of constraint satisfaction, its often
possible to reduce substantially the amount of search that, is required
as compared with a method that attempts to form partial solutions.

 A constraint satisfaction approach to solving this problem avoids
making guesses on particular assignments of numbers to letters.
Instead, the initial set of constraints, which says that each number
may correspond to only one letter and that the sums of the digits
must be as they are given in the problem, is first augmented to
include restrictions that can be inferred from the rules of arithmetic.

 Then, although guessing may still be required, the number of
allowable guesses is reduced.

 Constraint satisfaction is a search procedure that operates in a space
of Constraint sets.

 The initial state contains the constraints that are originally given in
the problem description. A goal state is any state that has been
constrained -enough." where "enough' must be defined for cacti
problem.

 Constraint satisfaction is a two-step process. First, constraints are
discovered and propagated as far as possible throughout the system.
Then, if there is still not a solution, search begins. A guess about
something is made and added as a new constraint. Propagation can
then occur with this new constraint, and so forth.

Artificial Intelligence 25

III Year –II-Semester 2018-19 CSE

 The first step, propagation, arises from the fact that there are usually
dependencies among the constraints. These dependencies occur
because many constraints involve more than one object and many
objects participate in more than one constraint.

 So, for example, assume we start with one constraint: N = E + I. Then,
if we added the constraint N = 3, we could propagate that to get a
stronger constraint on E, namely that E = 2.

 Constraint propagation terminates for one of two reasons.
 First, a contradiction may be detected. If this happens, then there

is no solution consistent with all the known constraints. If the
contradiction involves only those constraints that were given as
part of the problem specification (as opposed to ones that were
guessed during problem solving), then no solution exists.

 The second possible reason for termination is that the propagation
has run out of steam and there are no further changes that can be
made on the basis of current knowledge. If this happens and a
solution has not yet been adequately specified, then search is
necessary to get the process moving again.

 At this point, the second step begins. Some hypothesis about a way
to strengthen the constraints must be made. ln case of the crypt
arithmetic problem, for example this usually means guessing a
particular value for some letter. Once this has been done,
constraint propagation can begin again from this new state. If a
solution is found, it can be reported. If still more guesses are
required, they can be made. If a contradiction is detected, then
backtracking can he used to try a different guess and proceed with
it.

Algorithm: Constraint Satisfaction
1. Propagate available constraints. To do this, first set OPEN to the set of
all objects that must have values assigned to them in a complete
solution. Then do until an inconsistency is detected or until OPEN is
empty:
(a) Select an object OB from OPEN. Strengthen as much as possible the
set of constraints that apply to OB.
(b) If this set is different from the set that was assigned the last time OB
was examined or if this is the first time OB has been examined, then add
to 0PEN all objects that share any constraints with OB.
(c) Remove OB from OPEN.
2. If the union of the Constraints discovered above defines a solution,
then quit and report the solution.
3. If the union of the constraints discovered above defines a contradiction
then return failure.

Artificial Intelligence 26

III Year –II-Semester 2018-19 CSE

4. If neither of the above occurs, then it is necessary to make a guess at
something in order to proceed. To do this, loop until a solution is found
or all possible solutions have been eliminated:

(a) Select an object whose value is not yet determined and select a way
of strengthening the constraints on that object.
(b) Recursively inv006Fke constraint satisfaction with the current set
of constraints augmented by the strengthening constraint just
selected.

 The goal slate is problem state in which all letters have been assigned
a digit in such a way that all the initial constraints are satisfied.

 The solution process proceeds in cycles. At each cycle, two significant
things are done :

 Constraints are propagated by using rules that correspond to
the properties of arithmetic.

 A value is guessed for some letter whose value is not yet
determined.

 In the first step, it does not usually matter a great deal what order the
propagation is done in, since all available propagations will be
performed before the step ends.

 In the second step, the order in which guesses are tried may have a
substantial impact on the degree of search that is necessary.

 A few useful heuristics can help to select the best guess to try first.
For example, if there is a letter that has only two possible values and
other with possible values, there is a better chance of guessing right
on the first than on the second.

 Another useful heuristic is that if there is a letter that participates in
many constraints then it is a good idea to prefer it to a letter that
participates in a few. A guess on such a highly constrained letter will

Artificial Intelligence 27

III Year –II-Semester 2018-19 CSE

usually lead quickly either to a contradiction (if it’s wrong) or to the
generation of many additional constraints (if it is right). A guess on a
less constrained letter, on the other hand, provides less information.

 Let Cl, C2, C3, and C4 indicate the carry bits out of the columns,
numbering from the right. Initially, rules for propagating constraints
generate the following additional constraints:
• M 1, since two single-digit numbers plus a carry cannot total more
than 19; S=8 or 9, since S+M+C3>9 (to generate the carry) and M=1,
S+l+C3>9. So S + C3 > 8 and C3 is at most 1.
• O=0, since S + M(l)+C3(<= 1) must be at least 10 to generate a carry
and it can be at most 11. But M is already 1. So O must be 0.
• N = E or E+1, depending on the value of C2. But N cannot have the
same value as E. So, N=E+l and C2 is 1.
• In order for C2 to be1, the sum of N+ R+CI must be greater than 9,
so N+ R must be greater than 18.
• N + R cannot be greater than 18, even with a carry in, so E cannot
be 9.

 At this point, let us assume that no more constraints can be
generated. Then, to make progress from here, we must guess.
Suppose E is assigned the value 2. (We chose to guess a value for E
because it occurs three times and thus interacts highly with the other
letters.) Now the next cycle begins. The constraint propagator now
observes that:
• N =3, since N = E+ 1.
• R= 8 o 9, s ince R+ N (3)+C1 (1 or 0)=2 or 12. But since N is already
3, the sum of these non negative numbers cannot be less than 3.
Thus R + 3 + (0 or 1)= 12 and R = 8 or 9.
• 2 + D= Y or 2 + D = 10 + Y, from the sum in the rightmost column.

Game Playing
 Charles Babbage, the nineteenth-century computer architect, thought

about programming his Analytical Engine to play chess and later of
building a machine to play tic-tac-toe.

 Claude Shannon wrote a paper in which he described mechanisms
that could be used in a program to play chess.

 Alan Turing described a chess-playing program, but he never built it.
 Arthur Samuel, succeeded in building the first significant,

operational game-playing program. His program played checkers and,
in addition to simply playing the game, could learn from its mistakes
and improve its performance.

 There were two reasons that games appeared to be a good domain in
which to explore machine intelligence:

Artificial Intelligence 28

III Year –II-Semester 2018-19 CSE

 They provide a structured task in which it is very easy to measure
success or failure.

 They did not obviously require large amounts of Knowledge. They were
thought to be solvable by straightforward search from the starting
state to a winning position.

 A program that simply does a straightforward search of the game tree
will not be able to select even its first move during the lifetime of its
opponent. Some kind of heuristic search procedure is necessary.

 We use Generate-and-Test procedures in which the testing is done
after varying amounts of work by the generator.
 At one extreme, the generator generates entire proposed solutions,

which the tester then evaluates.
 At the other extreme, the generator generates individual moves in

the search space, each of which is then evaluated by the tester and
the most promising one is chosen.

 To improve the effectiveness of a search-based problem-solving
program, two things can be done:
 Improve the generate procedure so that only good moves (or paths)

are generated.
 Improve the test procedure so that the best moves (or paths) will be

recognized and explored first.
 The ideal way to use a search procedure to find a solution to a

problem is to generate moves through the problem space until a goal
state is reached.

 In order to choose the best move, the resulting board positions must
be compared to discover which is most advantageous. This is done
using a static evaluation function, which uses whatever information
it has to evaluate so that the best next move can be chosen.

The Minimax Search Procedure
 The minimax search procedure is a depth-first, depth-limited search

procedure.
 The idea is to start at the current position and use the plausible-move

generator to generate the set of possible successor positions.
 We apply the static evaluation function to those positions and simply

choose the best one. Then we can back that value up to the starting
position to represent our evaluation of it.

 Our goal is to maximize the value of the static evaluation function of
the next board position.

 Assume a static evaluation function that returns values ranging from
- 10 to 10, with 10 indicating a win for us, and -10 a win for the
opponent, and 0 an even match.

Artificial Intelligence 29

III Year –II-Semester 2018-19 CSE

 Since our goal is to maximize the value of the heuristic function, we
choose to move to B. Backing B's value up to A, we can conclude that
A’s value is 8.

 After our move, the situation would appear to be very good. But, if we
look one move ahead, we will see that one of our pieces also gets
captured and so the situation is not as favourable as it seemed.

 So we would like to look ahead to see what will happen to each of the
new game positions at the next move which will be made by the
opponent.

 Instead of applying the static evaluation function to each of the
positions that we just generated, we apply the plausible-move
generator, generating a set of successor positions for each position.

Artificial Intelligence 30

III Year –II-Semester 2018-19 CSE

 But now we must take into account that the opponent gets to choose
which successor moves to make and thus which terminal value
should he backed up to the next level.

 Suppose we made move B. Then the opponent must choose among
moves E, F, and G. The opponents goal is to minimize the value of the
evaluation function, so he or she can be expected to choose move F.
This means that if we make move B, the actual position in which we
will end up one move later is very bad for us. If node E is selected, it is
very good for us. Since at this level we are not the ones to move, we
will not get to choose it.

 At the opponent's choice, the minimum value was chosen and backed
up. At the level representing our choice, the maximum value was
chosen.

 Once the values from the second ply are backed up, it becomes clear
that the correct move for us to make at the first level, given the
information, is C, since there is nothing the opponent can do from
there to produce a value worse than –2.

 This process can he repeated for as many ply as time follows, and
more accurate evaluations that are produced can be used to choose
the correct move at the top level.

 The alternation of maximizing and minimizing at alternate ply when
evaluations are being pushed back up corresponds to the opposing
strategies of the two players and hence this method is called.
minimax.

 The recursive procedure that relies on two auxiliary procedures that
are specific to the game being played:
 MOVEGEN(Position,Player) -The plausible-move generator, which

returns the list of nodes representing the moves that can be made
by player in Position. We call the two players PLAYER-ONE and
PLAYER-TWO. In a chess program, we might use the names
BLACK and WRITE instead.

 STATIC(Position,Player)—The static evaluation function, which
returns a number representing the goodness of position from the
standpoint of Player.

 As with any recursive program. a critical issue in the design of the
MINIMAX procedure is when to stop the recursion and simply call the
static evaluation function.

 The following are the factors that may influence this decision. They
include:

• Has one side Won?
• How many ply have we already explored?
• How promising is this path?

Artificial Intelligence 31

III Year –II-Semester 2018-19 CSE

• How much time is left?
• How stable is the configuration?

 For the general MINIMAX, we use a function DEEP-ENOUGH, which is
assumed to evaluate all of these factors and to return TRUE if the
search should be stopped at the current level and FALSE otherwise.

 The implementation of DEEP-ENOUGH will take two parameters:
Position and Depth.

 It will ignore its Position parameter and simply return TRUE if its
Depth parameter exceeds a constant cut off value.

 M1NIMAX as a recursive procedure needs to return two results:
 The backed-up value of the path it chooses.
 The path itself. We return the entire path even though probably

only the first element, representing the best move from the current
position, is actually needed.

 MINIMAX returns a structure containing both results: VALUE and
PATH.

 We define the MININMAX procedure as a recursive function, called
initially that takes three parameters.
 A board position.
 The current depth of the search, and
 The player to move.

 So the initial call to compute the best move from the position
CURRENT should be :
 MI1N1MAX(CURRENT, O PLAYER-ONE) if PLAYER-ONE is to move,
 MINIMAX (CURRENT, 0, PLAYER-TWO) if PLAYER TWO is to move.

Algorithm: MINIMAX (Position, Depth, Player)
1. If DEEP-ENOUGH (Position, Depth) then return the structure.

VALUE= STATIC (Position, Player);
PATH = nil

This indicates that there is no path from this node and that its value
is that determined by the static evaluation function,
2. Otherwise, generate one more ply of the tree by calling the function
MOVEGEN (Position, Player) and setting SUCCESSORS to the list it
returns.
3. If SUCCESSORS is empty, then there are no moves to be made, so
return the same structure that would have been returned it DEEP-
ENOUGH had returned true.
4. If SUCCESSORS is not empty, then examine each element in turn
and keep track of the best one. This is done as follows.

Artificial Intelligence 32

III Year –II-Semester 2018-19 CSE

Initialize BEST-SCORE to the minimum value that STATIC can return
It will be updated in reflect the best score that can be achieved by an
element of SUCCESSORS.
For each element SUCC of SUCCESSORS, do the following:
(a)Set RESULT-SUCC to

MINIMAX(SUCC, Depth + i, OPPOSITE(Player))
(b)Set NEW_VALUE to –VALUE (RESULT-SUCC).
(c) If NFW-VALUE > BEST-SCORE, then we have found a successor
that better than any that have been examined so far. Record this by
doing the following:

i. Set BEST-SCORE to NEW-VALUE.
ii. The best known path is now from CURRENT to SUCC and
then on to the appropriate path down from SUCC as determined
by the recursive call to MINIMAX. So set BEST-PATH to the
result of attaching SUCC to the front of PATH(RESUIT-SUCC);

5. Now that all the successors have been examined, we know the
value of Position as well as which Path to take from it. So return the
structure:

VALUE = BEST-SCORE
PATH = BEST- PATH

Alpha-Beta Cutoffs
 The minimax procedure is a depth-first process. One path is explored

as far as time allows, the static evaluation function is applied to the
game positions at the last step of the path, and the value can then be
passed up the path one level at a time.

 The efficiency of depth-first procedures can be improved by using
branch-and-bound techniques in which partial solutions that are
clearly worse than known solutions can be abandoned early.

 For this, we require to store of the length of the best path found so far.
If a later partial path outgrew that bound, it was abandoned.

 It is necessary to modify our search procedure to handle both
maximizing and minimizing players.

 It is also necessary to modify the branch-and-bound strategy to
include two bounds, one for each of the players. This modified
strategy is called “alpha-beta pruning”. It requires the maintenance
of two threshold values:
 a lower bound on the value that a maximizing node may ultimately

be assigned called alpha.
 an upper bound on the value that a minimizing node may be

assigned called beta.

Artificial Intelligence 33

III Year –II-Semester 2018-19 CSE

 After examining node F, we know that the opponent is guaranteed a
score of —5 or less at C (since the opponent is the minimizing player).
But we also know that we are guaranteed a score of 3 or greater at
node A, which we can achieve if we move to B.

 Any other move that produces a score of less than 3 is worse than the
move to B, and we can ignore it.

 After examining only F, we are sure that a move to C is worse (it will
be less than or equal to —5) regardless of the score of node G. Thus
we need not bother to explore node G at all.

Artificial Intelligence 34

III Year –II-Semester 2018-19 CSE

 Alpha Value: In searching the tree, the entire sub tree headed by B is
searched, and we discover that at A we can expect a score of at least
3. When this alpha value is passed down to F, it will enable us to skip
the exploration of L.

 The reason is as follows: After K is examined; we see that I is
guaranteed a maximum score of 0, which means that F is guaranteed
a minimum of 0. But this is less than alpha's value of 3, no more
branches of I need be considered.

 The maximizing player already knows not to choose to move to C and
then to I since, if that move is made, the resulting score will be no
better than 0 and a score of 3 can be achieved by moving to B instead.
Nov,

 Beta Value: After cutting off further exploration of I, J is examined
yielding a value of 5, which is assigned as the value of F. This value
becomes the value of beta at node C. It indicates that C is guaranteed
to get a 5 or less.

 Now, we must expand G. First M is examined and it has a value of 7,
which is passed back to G as its tentative value. But now 7 is
compared to beta (5). It is greater, and the player whose turn it is at
node C is trying to minimize. So this player will not choose G, which
would lead to a score of at least 7, since there is in alternative move to
F, which will lead to a score of 5. Thus it is not necessary to explore
any of the other branches of G.

 The function MINIMAX-A-B, which requires four arguments:
Position, Depth, Use-Thresh, and Pass-Thresh.

 The initial call, to choose a move for PLAYER-ONE from the position
CURRENT should be

MINIMAX-A-B(CURRENT
0,
PLAYER-ONE,
maximum value STATIC can compute
minimum value STATIC can compute)

The initial values for Use-Thresh and Pass-Thresh represent the worst
values that each side could achieve.

Algorithm: MINIMAX-A-B((Position, Depth, Player, Use-Thresh, Pass-
Thresh)

1. If DEEP-ENOUGH (Position, Depth) then return the structure.
VALUE= STATIC (Position, Player);
PATH = nil

This indicates that there is no path from this node and that its value
is that determined by the static evaluation function,

Artificial Intelligence 35

III Year –II-Semester 2018-19 CSE

2. Otherwise, generate one more ply of the tree by calling the function
MOVEGEN (Position, Player) and setting SUCCESSORS to the list it
returns.
3. If SUCCESSORS is empty, then there are no moves to be made, so
return the same structure that would have been returned it DEEP-
ENOUGH had returned true.
4. If SUCCESSORS is not empty, then examine each element in turn
and keep track of the best one. This is done as follows.
Initialize BEST-SCORE to the minimum value that STATIC can return
It will be updated in reflect the best score that can be achieved by an
element of SUCCESSORS.
For each element SUCC of SUCCESSORS, do the following:
(a) Set RESULT-SUCC to

MINIMAX-A-B (SUCC, Depth + 1, OPPOSITE(Player),
 -Pass-Thresh, -Use-Thresh).
(b) Set NEW-VALUE to —VALUE (RESULT-SUCC).
(c) If NEW-VALUE > Pass-Thresh, then we have found a successor that
is better than any that have been examined so far. Record this by
doing the following:

i. Set Pass- Thresh to NEW-VALUE.
ii. The best known path is now from CURRENT to SUCC and
then on to the appropriate path from SUCC as determined by
the recursive call to MINIMAX-A-B. So set BEST-PATH to the
result of attaching SUCC to the front of PATH (RESULT-SUCC).
(d) If Pass-Thresh (reflecting the current best value) is not better
than Use-Thresh, then we should stop examining this branch.
But both thresholds and values have been inverted. So if Pass-
Thresh >= (Use-Thresh, then return immediately with the value

VALUE = Pass-Thresh
PATH = BEST-PATH

5. Return the structure:
VALUE Pass-Thresh
PATH = BEST-PATH

Artificial Intelligence 36

III Year –II-Semester 2018-19 CSE

UNIT-I
Assignment-Cum-Tutorial Questions

SECTION-A

 Objective Questions

1. Define the term “state space”.

2. Define the term “Operationalization”.

3. A ____________ is a technique that improves the efficiency of a search
process. []

(a) Heuristic (b) Control Strategy (c) GPS (d) none

4. List the steps for solving the problem.

5. In Theorem Proving, the solution steps can be_________. []

(a) Ignored (b) Recoverable (c) Irrecoverable (d) none

6. Problems in which solution steps cannot be undone are ___ []

(a) Ignored (b) Recoverable (c) Irrecoverable (d) none

7. Travelling Salesman problem is an example of_________. []

(a) Best-Path (b) Any-Path (c) Both (d) none

8. ____________ are the problems in which the computer is given a problem
description and produces an answer with no intermediate
communication. []

(a) Conversational (b) Solitary (c) Ignorable (d) None

9. _________is the list of nodes that have been generated and have had the
heuristic function applied to them but which have not yet been
examined. []

 (a) OPEN (b) CLOSED (c) NODES (d) none

10.The function ___ is a measure of the cost of getting from the initial state
to the current node. []

(a) f1 (b) g (c) h1 (d) none

11.____________ is useful for representing the solution of problems that can
be solved by decomposing them into a set of smaller problems, all of
which must then he solved. []
(a) OR graph (b) AND graph (c) AND-OR graph (d) none

12.____________ function uses whatever information it has to evaluate so
that the best next move can be chosen. []

Artificial Intelligence 37

III Year –II-Semester 2018-19 CSE

(a) static evaluation (b) dynamic evaluation

(c) Threshold evaluation (d) none

13.DEEP-ENOUGH will take two parameters: ________ and ___________.
14. MINIMAX returns a structure containing both results: ________ and
______________.
15. A lower bound on the value that a maximizing node may ultimately be

assigned called __________. []
(a) alpha (b) beta (c) gamma (d) none

16. An upper bound on the value that a minimizing node may be assigned
called ____________. []

(a) alpha (b) beta (c) gamma (d) none
SECTION-B

SUBJECTIVE QUESTIONS
1. List the steps for General Problem Solving.

2. Give an example of a problem for which breadth -first search would work
better than depth-first search. Give an example of a problem for which
depth-first search would work better than breadth-first search.

3. Describe the state space of water jug problem and also explain its
solution.

4. List the steps necessary to provide a formal description of a problem.

5. What are the requirements of a control strategy? Develop an algorithm
for:

 (i) Breadth First Search (ii) Depth First Search

6. Summarize the advantages and disadvantages of control strategies.

7. Outline the factors that are necessary for analyzing a problem to choose
most appropriate heuristic method.

8. Explain non-decomposable problem with suitable example.

9. Distinguish between Ignorable, Recoverable and Irrecoverable problems
with necessary examples.

10. Distinguish between:

(i) Certain Outcome Vs Uncertain Outcome problems

(ii) Best path and Any-path problems

(iii) Problems whose solution is a state and whose solution is a path to
state.

Artificial Intelligence 38

III Year –II-Semester 2018-19 CSE

(iv) Solitary Vs Conversational problems

11. Explain an algorithm for Best-first Search.

12. Explain Problem Reduction using AND-OR graph with an algorithm.

13. Explain AO* algorithm.

14. Explain the procedure of Constraint Satisfaction with an example.

15. Explain Minimax procedure with an example.

16. Explain Alpha-Beta Pruning with an example.

17. Solve the Criptarithmetic problem using Constraint Satisfaction:

 CROSS
 ROADS

 DANGER

Artificial Intelligence 1

III Year –II-Semester 2018-19 CSE

UNIT - III: Logic Concepts
Syllabus:

Introduction, propositional calculus, proportional logic, natural deduction

system, axiomatic system, semantic tableau system in proportional logic,

resolution in proportional logic, predicate logic.

Outcomes:
Student will be able to:

Introduction
 One particular way of representing facts is the language of logic.

 The logical formalism is appealing because it immediately suggests a

powerful way of deriving new knowledge from old called as

“mathematical deduction”.

 In this formalism, we can conclude that a new statement is true by

proving that it follows from the statements that are already known.

 The way of demonstrating the truth of an already believed proposition

can be extended to include deduction as a way of deriving answers to

questions and solutions to problem.

 we use the following standard logic symbols:

 (Implication)
 ¬ (Not)

 Λ (And)

 V (Or)

 ∃ (there exists)
 ∀ (For All)

Representing Simple Facts in Logic
 Propositional logic is appealing because it is simple to deal with and a

decision procedure for it exists.

 We can easily represent real-world facts as logical propositions written

as well formed formulas (wff’s) in Propositional logic.

 Some Simple Facts in Propositional logic:

Artificial Intelligence 2

III Year –II-Semester 2018-19 CSE

 It is raining

RAINING

 It is sunny

SUNNY

 It is windy

WINDY

 If it is raining, then it is not sunny.

RAINING¬SUNNY

 Suppose we want to represent the fact stated by the sentence:

 Socrates is a man

We could write SOCRATESMAN. It is represented as:

MAN (SOCRATES)

 Plato is a man

MAN (PLATO)

 Now the structure of the representation reflects the structure of the

knowledge itself. But to do that, we need to be able to use

“predicates” applied to arguments.

 To represent the following sentence:

All men are mortal

 We can’t represent this as: MORTALMAN

 But that fails to capture the relationship between any individual

being a man and that individual being a mortal. To do that, we need

variables and quantification.
 So we use first-order predicate logic as a way of representing

knowledge because it permits representations of things that cannot be

represented in propositional logic.

 In predicate logic, we can represent real-world facts as statements

written as wff's.

 The major motivation for choosing to use logic is that it we use logical

statements as a way of representing knowledge, and then we have a

good way of reasoning with that knowledge.

Artificial Intelligence 3

III Year –II-Semester 2018-19 CSE

 Determining the validity of a proposition in propositional logic is

straightforward, although it may be computationally hard.

 Before we use predicate logic as a medium for representing knowledge,

we need to check whether it also provides a good way of reasoning

with the knowledge.

 It provides a way of deducing new statements from old ones.

 Unfortunately, unlike propositional logic, it does not possess a

decision procedure.

 There do exist procedures that will find a proof of a proposed

theorem, but first-order predicate logic is not decidable, it is

semi-decidable.

 A simple such procedure is to use the rules of inference to

generate theorems from the axioms in some orderly fashion.

This method is not particularly efficient, however, and we will

want to try to find a better one.

Use of predicate logic:
 Let’s now explore the use of predicate logic as a way of representing

knowledge by looking at a following example:

Consider the following set of sentences:

1. Marcus was a man.

2. Marcus was a Pompeian.

3. All Pompeians were Romans.

4. Caesar was a ruler.

S, All Romans were either loyal to Caesar or hated him.

6. Everyone is loyal to someone.

7. People only try to assassinate rulers they are not loyal to.

8. Marcus tried to assassinate Caesar.

 The facts described by these sentences can be represented as a set of

wff’s in predicate logic as follows:

1. Marcus was a man.

 man (Marcus)

Artificial Intelligence 4

III Year –II-Semester 2018-19 CSE

This representation captures the critical fact of Marcus being a man.

It fails to capture some of the information in the English sentence, the

notion of past tense.

2. Marcus was a Pompeian.

Pompeian (Marcus)
3. All Pompeians were Romans.

∀(x): Pompeian(x) Roman(x)

4. Caesar was a ruler.

ruler (Caesar)
5. All Romans were either loyal to Caesar or hated him.

∀(x): Roman(x) loyalto(x, Caesar) V hate(x , Caesar)
6. Everyone is loyal to someone.

∀(x) : ∃(y): loyalto(x, y)
7. People only try to assassinate rulers they are not loyal to

∀(x) : ∃(y):person(x) ∧ ruler(y) ∧ tryassassinate(x, y) ¬loyalto(x, y)

8. Marcus tried to assassinate Caesar

tryassassinate(Marcus, Caesar)
 Now suppose that we want to use these statements to answer the

question:

Was Marcus loyal to Caesar?
Let's try to produce a formal proof, reasoning backward from the

desired goal:

¬loyalto (Marcus, Caesar)
To prove this, let us add a fact:

All men are people

Although we know that Marcus was a man, we do not have any way to

conclude that Marcus was a person. So, we need the representation

of another fact to our system,

�(x): man(x)person(x)

Artificial Intelligence 5

III Year –II-Semester 2018-19 CSE

Representing Instance and isa Relationships

 The specific attributes instance and isa play an important role in the

useful form of reasoning, property inheritance.

 Let us represent the following facts in three ways:

1. Marcus was a man.

2. Marcus was a Pompeian.

3. All Pompeians were Romans.

4. Caesar was a ruler.

Artificial Intelligence 6

III Year –II-Semester 2018-19 CSE

5. All Romans were either loyal to Caesar or hated him.

 Second representation: The predicate instance is a binary one, whose

first argument is an object and whose second argument is a class to

which the object belongs. But these representations do not use an

explicit isa predicate.

 In subclass relationships, such as that between Pompeians and

Romans, the implication rule there states that it an object is an

instance of the subclass Pompeian then it is an instance of the

superclass Roman.

 This rule is equivalent to the standard set-theoretic definition of the

subclass-superclass relationship.

 Third representation: It contains representations that use both the

instance and isa predicates explicitly.

 The use of the isa predicate simplifies the representation of sentence

3, but it requires that one additional axiom. This additional axiom

describes how an instance relation and an isa relation can be

combined to derive a new instance relation.

Artificial Intelligence 7

III Year –II-Semester 2018-19 CSE

Propositional Logic:
Consider the following set of facts:

1. Marcus was a man.

2. Marcus was a Pompeian.

3. Marcus was boni in 40 A.D.

4. All men are mortal.

5. All Pompeians died when the volcano erupted in 79 AD.

6. No mortal lives longer than 150 years.

7. It is now 1991.

8. Alive means not dead.

9. If someone dies, then he is dead at all later times.

Now let's attempt to answer the question:

 "Is Marcus alive?"
By proving:

¬ alive(Marcus, now)

The given facts are represented as follows:

Artificial Intelligence 8

III Year –II-Semester 2018-19 CSE

Resolution:

 Resolution is such a procedure, which gains its efficiency from the fact

that it operates on statements that have been converted to a very

convenient standard form.

 Resolution produces proofs by refutation. To prove a statement (to

show that it is valid), resolution attempts to show that the negation of

the statement produces a contradiction with the known statements

(i.e.. that it is unsatisfiable).

 Resolution is a technique for proving theorems in the propositional or

predicate calculus that has been a part of AI problem-solving.

 Resolution describes a way of finding contradictions in a database of

clauses with minimum use of substitution. Resolution refutation

proves a theorem by negating the statement to be proved and adding

this negated goal to the set of axioms that are known (have been

assumed) to be true.

 It then uses the resolution rule of inference to show that this leads to

a contradiction. Once the theorem prover shows that the negated goal

is inconsistent with the given set of axioms, it follows that the original

goal must be consistent. This proves the theorem.

 Resolution refutation proofs involve the following steps:

1. Put the premises or axioms into clause form.

2. Add the negation of what is to be proved, in clause form, to the set

of axioms.

3. Resolve these clauses together, producing new clauses that logically

follow from them.

4. Produce a contradiction by generating the empty clause.

5. The substitutions used to produce the empty clause are those

under which the opposite of the negated goal is true.

Artificial Intelligence 9

III Year –II-Semester 2018-19 CSE

Conversion to Clause Form:
 Consider the following fact:

All Romans who know Marcus either hate Caesar or think
that anyone who hates anyone is crazy.

∀x:[Roman(X)⋀know(x,Marcus)][hate(x,Caesar)V(∀y:∃z:hate(y, z)thinkcrazy(x, y))]

Artificial Intelligence 10

III Year –II-Semester 2018-19 CSE

Algorithm: Conversion to clause form:
1. Eliminate, using the fact that ab is equivalent to¬ aVb. Performing

this transformation, we get:

∀x:¬[Roman(X)⋀know(x,Marcus)]V[hate(x,Caesar)V(∀y:¬(∃z:hate(y,

z))Vthinkcrazy(x, y))]

2. Reduce the scope of each ¬ to a single term, using the fact that ¬(¬P)=P

and deMorgan's laws [which say that (¬(a⋀b)= ¬aV ¬b and (¬(a V b)= ¬a⋀ ¬b)

and the standard correspondences between quantifiers:- ∀x: P(x)= ∃x: ¬P(x)

and ∃x: P(x)= ∀x: ¬P(x) Performing this , we get:

∀x:[¬Roman(X)V¬know(x,Marcus)]V[hate(x,Caesar)V(∀y:∀z:¬hate(y,

z))V(thinkcrazy(x, y))]

3. Standardize variables so that each quantifier binds a unique variable.

Since variables are just dummy names, this process cannot affect the truth

value of the wff. For example, the formula:

∀x : P(x) V ∀x: Q(x) would be converted to:

∀x : P(x) V ∀y: Q(y)

4. Move all quantifiers to the left of the formula without changing their

relative order. This is possible since there is no conflict among variable

names. Performing this, we get:

∀x:∀y:∀z:[¬Roman(X)V¬know(x,Marcus)]V[hate(x,Caesar)V(¬hate(y,

z)Vthinkcrazy(x, y))]

At this point, the formula is known as Prenex normal form. It consists of a

prefix of quantifiers followed by a matrix, which is quantifier-free.

5. Eliminate existential quantifiers.

For example, the formula

∃y:President(y) can be transformed into the formula:

President(S1) where S1 is a function with no arguments that somehow

produces a value that satisfies President.
If existential quantifiers occur within the scope of universal quantifiers, then

the value that satisfies the predicate may depend on the values of the

universally quantified variables. For example:

Artificial Intelligence 11

III Year –II-Semester 2018-19 CSE

∀x: ∃y: father-of(y, x)

The value of' y that satisfies father-of depends on the particular value of x,

we must generate functions with the same number of arguments as the

number of universal quantifiers in whose scope the expression occurs. So

this would be transformed into:

∀x: father-of(S2(x), x))

These generated functions are called Skolem Functions. Sometimes ones

with no arguments are called Skomlem constants.

6. Drop the prefix. All remaining variables are universally quantifled, so the

prefix can just be dropped and any proof procedure we use can simply

assume that any variable it sees is universally quantified.

[¬Roman(X)V¬know(x,Marcus)]V[hate(x,Caesar)V

(¬hate(y, z)Vthinkcrazy(x, y))]

7. Convert the matrix into a conjunction of disjuncts. Since there are no

and's, it is only necessary to exploit the associative property of (i.e., a⋁(b ⋁c)

=(a ⋁b)⋁c and simply remove the parentheses.

¬Roman(X)V¬know(x,Marcus)Vhate(x,Caesar)V (¬hate(y, z)

Vthinkcrazy(x, y)

8 Create a separate clause corresponding to each conjunct. In order for a wff

to be true, all the clauses that are generated from it must be true. If we are

going to be working with several wff's, all the clauses generated by each of

them can now be combined to represent the same set of facts as were

represented by the original wff's.

9. Standardize apart the variables in the set of clauses.

(∀x:P(x)⋀Q(x))=∀x:P(x)⋀ ∀x:Q(x)

Since each clause is a separate conjunct and since all the variables are

universally quantified, there is no relationship between the variables of two

clauses, even if they were generated from the same wff.

The Basis of Resolution
 The resolution procedure is a simple iterative process: at each step

two clauses, called the parent clauses, are compared (resolved),

Artificial Intelligence 12

III Year –II-Semester 2018-19 CSE

yielding a new clause that has been inferred from them. The new

clause represents ways that the two parent clauses interact with each

other. Suppose there are two clauses in the system:

winter V summer

¬winter V cold

 Now we observe that precisely one of winter and ¬winter will be true

at any point.

 If winter is true, then cold must be true to guarantee the truth of the

second clause.

 If ¬winter is true, then summer must be true to guarantee the truth of

the first clause.

 Thus we see that from these two clauses we can deduce:

summer V cold

 Resolution operates by taking two clauses that each contains the

same literal, in this example, winter. The literal must occur in positive

form in one clause and in negative form in the other. The resolvent is

obtained by combining all of the literals of the two parent clauses

except the ones that cancel.

 If the clause that is produced is the empty clause, then a

contradiction has been found. For example. the two clauses:

Winter

¬winter

will produce the empty clause.

 In predicate logic, the situation is more complicated since we must

consider all possible ways of substituting values for the variables.

Resolution in Propositional Logic
 In propositional logic, the procedure for producing a proof by

resolution of proposition P with respect to a set of axioms F is the

following

Artificial Intelligence 13

III Year –II-Semester 2018-19 CSE

Algorithm: Propositional Resolution
1. Convert all the propositions of F to clause form.

2. Negate P and convert the result to clause form. Add it to the set of clauses

obtained in step 1.

3. Repeat until either a contradiction is found or no progress can be made:

(a) Select two clauses. Call these the parent clauses.

(b) Resolve them together. The resulting clause, called the resolvent,
will be the disjunction of all of the literals of both of the parent clauses

with the following exception: It there are any pairs of literals L and ¬L

such that one of the parent clauses contains L and the other contains

¬L ,then select one such pair and eliminate both L and ¬L from the

resolvent.

(c) If the resolvent is the empty clause, then a contradiction has been

found. If it is not, then add it to the set of clauses available to the

procedure.

 Suppose we are given the axioms shown below and we want to prove

R. First we convert the axioms to clause form. Then we negate R.

producing ¬R, which is already in clause form.

 Then we begin selecting pairs of clauses to resolve together. Although

any pair of clauses can be resolved, only those pairs that contain

complementary literals will produce a resolvent that is likely to lead to

the goal of producing the empty clause.

 We begin by resolving with the clause ¬R .

 One way of viewing the resolution process is that it takes a set of

clauses that are all assumed to be true and, based on information

provided by the others, it generates new clauses that represent

restrictions on the way each of those original clauses can be made

true.

 A contradiction occurs when a clause when there is no way it can be

true. This is indicated by the generation of the empty clause.

Artificial Intelligence 14

III Year –II-Semester 2018-19 CSE

The Unification Algorithm

 In predicate logic, this matching process is more complicated since the

arguments of the predicates must be considered.

 For example, man(John) and ¬man(John) is a contradiction, while

man(John) and ¬man{Spot) is not.

 Thus, in order to determine contradictions, we need a matching

procedure that compares two literals and discovers whether there

exists a set of substitutions that makes them identical. The

straightforward recursive procedure, called the “unification
algorithm” does this.

 Basic idea of unification: It is very simple. To attempt to unify two

literals, we first check if their initial predicate symbols are the same. If

Artificial Intelligence 15

III Year –II-Semester 2018-19 CSE

so, we can proceed. Otherwise, there is no way they can he unified,

regardless of their arguments.

 For example, the two literals:

trytoassassinate(Marcus, Caesar)

hate(Marcus, Caesar)

cannot be unified.

 If the predicate symbols match, then we must check the arguments

one pair at a time. If the first matches, we can continue with the

second, and so on. To test each argument pair, we can simply call the

unification procedure recursively.

 The matching rules are simple: Different constants or predicates

cannot match; identical ones can. A variable can match another

variable, any constant, or a predicate expression with the restriction

that the predicate expression must not contain any instances of the

variable being matched.

 We must find a single, consistent substitution for the entire literal, not

separate ones for each piece of it. To do this, we must take each

substitution that we find and apply it to the remainder of the literals

before we continue trying to unify them.

 For example, suppose we want to unify the expressions

P(x, x)

P(y, z)

 The two instances of P match. Next we compare x and y, and decide

that if we substitute y for x, they could match. We will write that

substitution as: y/x.
 But now, if we simply continue and match x and z, we produce the

substitution z/x. But we cannot substitute both y and z for x. The

problem can be solved as follows:

 What we need to do after finding the first substitution y/x is to make

that substitution throughout the literals, giving:

P(y, y)

P(y, z)

Artificial Intelligence 16

III Year –II-Semester 2018-19 CSE

 Now we can attempt to unify arguments y and z, which succeeds with

the substitution z/y. The entire unification process has now

succeeded with a substitution that is the composition of the two

substitutions: (z/y) (y/x).
 In general, substitutions: (a1/a2, a3/a4,....)(b1/b2, b3/b4....) means

to apply all the substitutions of the right most list, then take the

result and apply all the ones of the next list, and so forth, until all

substitutions have been applied.

 The objective of the unification procedure is to discover at least one

substitution that causes two literals to match.

 For example, the literals:

hate (x, y)

hate (Marcus, z)

could be unified with any of the following substitutions:

(Marcus/x, z/y)

(Marcus/x, y/z)

(Marcus/x, Caesar/y, Caesar/z)

(Marcus/x, Polonius/y, Polonius/z)

 We describe a procedure Unify (Ll, L2), which returns as its value a

list representing the composition of the substitutions that were

performed during the match. The empty list, NIL, indicates that a

match was found without any substitutions. The list consisting of the

single value FAIL indicates that the unification procedure failed.

Algorithm: Unify (L1, L2)
1. If L1 and L2 are both variables and constants, then:

(a) If L1 and L2 are identical, then return NIL.

(b) Else if L1 is a variable, then if LI occurs in L2 then return {FAIL},

else return (L2/L1).

(c) Else if L2 is a variable then if L2 occurs in L1 then return {FAIL},

else return (LI/L2)

(d) Else return {FAIL}.

Artificial Intelligence 17

III Year –II-Semester 2018-19 CSE

2. If the initial predicate symbols in LI and L2 are not identical, then return

{FAIL}.

3. If Ll and L2 have a different number of arguments, then return {FAlL}.

4. Set SUBST to NIL. (At the end of this procedure, SUBST will contain all

the substitutions used to unify L1 and L2).

5. For i1 to number of arguments in LI:

(a) Call Unify with the ith argument of LI and ith argument of L2,

putting result in S.

(b) If contains FAIL, then return {FAIL}.

(c) If S not equal to NIL then:

i. Apply S to the remainder of both L1 and L2.

ii. SUBST= APPEND(S, SUBST).

6. Return SUBST.

Resolution in Predicate Logic
 With Unification, we now have an easy way of determining that two

literals are contradictory, if one of them can be unified with the

negation of the other.

 So, for example, man(x) and ¬man(Spot) are contradictory, since

man(x) and man(Spot) can be unified, with substitution x/spot.

 In order to use resolution for expressions in the predicate logic, we

use the unification algorithm to locate pairs of literals that cancel out.

 For example, suppose we want to resolve two clauses:

man(Marcus)

¬man(x1) V mortal(x1)

The literal man(Marcus)can be unified with the literal ¬man(x1) with

the substitution Marcus/x1. we can now conclude only that

mortal(Marcus) must be true.

 So the resolvent generated by clauses 1 and 2 must be mortal
(Marcus), which we get by applying me result of the unification

process to the resolvent. The resolution process can then proceed from

Artificial Intelligence 18

III Year –II-Semester 2018-19 CSE

there to discover whether mortal (Marcus) leads to a contradiction

with other available clauses.

Algorithm: Resolution in predicate logic
1. Convert all the statements of F to clause form.

2. Negate P and convert the result to clause form. Add it to the-set of clauses

obtained in 1.

3. Repeat until a contradiction is found, no progress can be made, or a

predetermined amount of effort has been expended.

(a) Select two clauses. Call these the parent clauses.

(b) Resolve them together. The resolvent will be the disjunction of all

the literals of both parent clauses with appropriate substitutions

performed and with the following exception: If there is one pair of

literals TI and ¬T2 such that one of the parent clauses contains T1

and the other contains ¬T2 and if T1 and T2 are unifiable, then

neither T1 nor T2 should appear in the resolvent. We call T1 and T2

Complementary Literals. Use the substitution produced by the

unification to create the resolvent. If there is more than one pair of

complementary literals, only one pair should be omitted from the

resolvent.

(c) If the resolvent is the empty clause, then a contradiction has been

found. If it is not, then add it to the set of c1auses available to the

procedure.

 There are systematic strategies for making the choice of clauses to

resolve together each step so that we will find a contradiction if one

exists. This can speed up the process considerably.

 Only resolve pairs of clauses that contain complementary

literals, since only such resolutions produce new clauses that

are harder to satisfy than their parents. To facilitate this, index

clauses by the predicates they contain, combined with an

indication of whether the predicate is negated Then, given a

particular clause, possible resolvent that contain a

Artificial Intelligence 19

III Year –II-Semester 2018-19 CSE

complementary occurrence of one of its predicates can be

located directly.

 Eliminate certain clauses as soon as they are generated so that

they cannot participate in later resolutions. Two kinds of

clauses should be eliminated:

 Tautologies (which can never be unsatisfied) and

 Clauses that are subsumed by other clauses. For

example, P⋁Q can be subsumed by P.

 Whenever possible, resolve either with one of- the clauses that

is part of the statement we are trying to refute or with a clause

generated by a resolution with such a clause. This is called the

“set-of-support strategy”.

 Whenever possible, resolve with clauses that have a single

literal. Such resolutions generate new clauses with fewer literals

than the larger of their parent clauses and thus are probably

closer to the goal of a resolvent with zero terms. This method is

called the “unit-preference-strategy”.
Example 1:

Artificial Intelligence 20

III Year –II-Semester 2018-19 CSE

Resolution Proof:

Example 2:

Artificial Intelligence 21

III Year –II-Semester 2018-19 CSE

Resolution Proof:

Natural Deduction:

 We used resolution as an easily implementable proof procedure that

relies for its simplicity on a uniform representation of the statements

it uses.

 Unfortunately, in uniformity, everything looks the same. Since

everything looks the same, there is no easy way to select those

statements that are the most likely to be useful in solving a particular

problem.

Artificial Intelligence 22

III Year –II-Semester 2018-19 CSE

 In converting everything to clause form, we often lose valuable

heuristic information that is contained in the original representation

of the facts.
 For example, suppose the fact: All judges who are not crooked are

well-educated, can be represented as:

∀x : judge(x) ⋁ ¬crooked(x) educated(x)

In this form, the statement suggests a way of deducing that someone

is educated. But when the same statement is converted to clause

form:

¬judge(x) V crooked(x) V educated(x)

It is a way of deducing that someone is not a judge by showing that he

is not crooked and not educated. Of course, in a logical sense, it is.

But it is almost certainly not the best way, or even a very good way, to

go about showing that someone is not a Judge. The heuristic

information contained in the original statement has been lost in the

transformation.

 Another problem with the use of resolution as the basis of a theorem-

proving system is that people do not think in resolution. Thus it is

very difficult for a person to interact with a resolution theorem prover,

either to give it advice or to be given advice by it. Since proving very

hard things is something that computers still do poorly, it is

important from a practical standpoint that such interaction be

possible.

 Natural deduction is describes a melange of techniques used in

combination to solve problems that are not tractable by any one

method alone.

 One common technique is to arrange knowledge, not by predicates,

but rather by the objects involved in the predicates.

Artificial Intelligence 23

III Year –II-Semester 2018-19 CSE

Unit- III
Artificial Intelligence: Logic Concepts

Assignment-Cum-Tutorial Questions

I) Objective Questions

1. List standard logic symbols.

2. Represent “It is RAINING” in propositional logic.

3. Real-world facts written as logical propositions are called ______________.

4. Represent “Marcus was a man” in propositional and predicate logic.

5. In _________________ logic decision procedure does not exist.[]

(a) Propositional (b) Predicate (c) First order (d) none

6. _____________ and ___________ attributes play an important role in process

of reasoning.

7. ________________property uses the attributes isa and instance.[]

 (a) Polymorphism (b) Inheritance (c) Reasoning (d) both b & c

8. The attribute instance is __________ predicate. []

 (a) Unary (b) Binary (c) Ternary (d) none

9. Resolution produces proofs by ___________________. []

 (a) Contradiction (b) Reasoning (c) Refutation (d) none

10. Define the term “Resolution”.

11. Moving all quantifiers to the left of the formula without changing their

relative order is called _____________________.

12. After resolving the below facts, we get_____________________.

winter V summer

¬winter V cold
13. The resultant clause after resolution is called______________. []

 (a) Implicant (b) Resolvent (c) fact (d) instance

Artificial Intelligence 24

III Year –II-Semester 2018-19 CSE

14. The substitutions in Unification algorithm are applied from __. []

 (a) right to left (b) left to right (c) any order (d) none

15. Resolving clauses that have a single literal first is called _______________

strategy.

16. Resolving either with one of- the clauses that is part of the statement we

are trying to refute or with a clause generated by a resolution with such

a clause- This is called the ____________ strategy.

SECTION-B
SUBJECTIVE QUESTIONS

1. Represent the following sentences in predicate logic:

1. Marcus was a man.
2. Marcus was a Pompeian.
3. All Pompeians were Romans.
4. Caesar was a ruler.
S, All Romans were either loyal to Caesar or hated him.
6. Everyone is loyal to someone.
7. People only try to assassinate rulers they are not loyal to.
8. Marcus tried to assassinate Caesar.
9. Answer the question: Was Marcus loyal to Caesar? using the above

facts.

10. Represent the following facts using isa and instance attributes:

11. Marcus was a man.
12. Marcus was a Pompeian.
13. All Pompeians were Romans.
14. Caesar was a ruler.
15. All Romans were either loyal to Caesar or hated him.
16. Enumerate the steps in the process of resolution.

17. Explain the steps of converting a fact to Clause form.

18. Convert the following fact into clause form:

All Romans who know Marcus either hate Caesar or think that anyone
who hates anyone is crazy.
19. Explain the algorithm for Propositional resolution.

20. Explain Unification Algorithm.

Artificial Intelligence 25

III Year –II-Semester 2018-19 CSE

21. Explain the algorithm for resolution in predicate logic.

22. Determine the possible substitutions for unifying the following facts:

 hate (x, y)
hate (Marcus, z)

23. Perform resolution in predicate logic:

 Axioms in clause form:

1. man(Marcus)

2. Pompeian(Marcus)

3.)()(11 XRomanXPompeian

4. Tuler(Caesar)

5.),hate(XCaesar) , ()(222 CaesarXloyaltoXRoman

6. Loyalto(X3,fl(X3))

7.)Y , (),(sin)ruler(Y)(141 41 4 XloyaltoYXnotetryassasXman

8. Tryassassinote(Marcus,Caesar)

24. Explain about Natural Deduction?

Artificial Intelligence 1

III Year –II-Semester 2018-19 CSE

UNIT – IV
Knowledge representation

Syllabus:
Introduction, approaches to knowledge representation, knowledge

representation using semantic network, extended semantic networks for KR,

knowledge representation using frames.

Advanced knowledge representation techniques: Introduction, conceptual

dependency theory, script structure, semantic web.

Outcomes:
Student will be able to:

Representations and Mappings
 In order to solve the complex problems encountered in artificial

intelligence; we need both a large amount of knowledge and some

mechanisms for manipulating that knowledge to create solutions to

new problems.
 A variety of ways of representing knowledge (facts) have been exploited

in Al programs.
 We deal with two different kinds of entities:

 Facts: truths in some relevant world, these are the things we

want to represent.

 Representations of facts in some chosen formalism. These are

the things we will actually be able to manipulate.

 These entities are at two levels:

 The knowledge level, at which facts (including each agent's

behaviour. and current goals) are described.

 The symbol level, at which representations of objects at the

knowledge level are defined in terms of symbols that can be

manipulated by programs.

Artificial Intelligence 2

III Year –II-Semester 2018-19 CSE

 The two-way mappings exist between facts and representations called

“Representation mappings”. The forward representation mapping

maps from facts to representations. The backward representation

mapping maps from representations to facts.

 One representation of facts is: natural language (particularly
English) sentences. Regardless of the representation for facts that we

use in a program, we may also need to be concerned with an English

representation of those facts in order to facilitate getting information

into and out of the system.

 In this case, we must have mapping function from English sentences

to the representation we are actually going to use and back to

sentences.

 Consider the English sentence:
Spot is a dog.
The fact represented by that English sentence can also be represented

in logic as:

dog (Spot)
Suppose that we also have a logical representation of the fact that all

dogs have tails:

∀x: dog (x)hastail (x)
Then, using the deductive mechanisms of logic, we may generate the

new representation object:

hastail(Spot)

Artificial Intelligence 3

III Year –II-Semester 2018-19 CSE

Using an appropriate backward mapping function, we could then

generate the English sentence:

Spot has a tail
 The available mapping functions are not one-to-one; they are many .

to-many relations. In other words, each object in the domain may map

to several elements in the range, and several elements in the domain

may map to the same element of the range.)

 Consider an example of the mappings involving English

representations of facts. The two sentences:

 "All dogs have tails" and "Every dog has a tail"
Both represent the same fact, namely that every dog has at least one
tail.
On the other hand, the former could represent either the tact that

every dog has at least one tail or the fact that each dog has several

tails.

The latter may represent either the fact that every dog has at least one

tail or the fact that there is a tail that every dog has.

 So, when we try to convert English sentences into some other

representation, such as logical propositions, we must first decide what

facts the sentences represent and then convert those facts into the

new representation.

Artificial Intelligence 4

III Year –II-Semester 2018-19 CSE

Approaches to Knowledge Representation

 A good system for the representation of knowledge in a particular

domain should possess the following four properties:

 Representational Adequacy: the ability to represent all of the

kinds of knowledge that are needed in that domain.

 Inferential Adequacy: the ability to manipulate the

representational structures in such a way as to derive new

structures corresponding to new knowledge inferred from old.

 Inferential efficiency: the ability to incorporate into the

knowledge structure additional information that can be used to

focus the attention of the inference mechanisms in the most

promising directions.

 Acquisitional Efficiency: the ability to acquire new information

easily.

 But, no single system that optimizes all of the capabilities for all kinds

of knowledge has yet been found. As a result, multiple techniques for

knowledge representation exist. Many programs rely on more than one

technique. Following are some knowledge representation techniques:

Simple Relational Knowledge:

 The simplest way to represent declarative facts is as a set of

relations of the same sort used in database systems.

Artificial Intelligence 5

III Year –II-Semester 2018-19 CSE

 The reason that this representation is simple is that standing alone

it provides very weak inferential capabilities, but knowledge

represented in this form may serve as the input to more powerful

inference engines.

 The relational knowledge corresponds to a set or attributes and

associated values that together describe the objects of the

knowledge base.

 Providing support for relational knowledge is what database

systems are designed to do.

Inheritable Knowledge

 Knowledge about objects, their attributes, and their values need

not be as simple as that shown in relational knowledge.

 In particular, it is possible to augment the basic representation

with inference mechanisms that operate on the structure of the

representation.

 For this to be effective, the structure must be designed to

correspond to the inference mechanisms that are desired.

 One of the most useful forms of inference is property inheritance,

in which elements of specific classes inherit attributes and values

from more general classes in which they are included.

 In order to support property inheritance, objects must be organized

into classes and classes must be arranged in a generalization

hierarchy.

 Lines represent attributes. Boxed nodes represent objects and

values of attributes of objects. The arrows on the lines point from

an object to its value along the corresponding attribute line. The

structure called slot-and-filler structure.

Artificial Intelligence 6

III Year –II-Semester 2018-19 CSE

 Each individual frame represents the collection of attributes and

values associated with a particular node. This structure is called a

Semantic network or a collection of Frames.

Baseball-Player isa: Adult-Male

bars: (EQUAL handed)

height: 6-1

batting-average: .252

 Basic mechanism of inheritance:

Algorithm: Property Inheritance

 To retrieve a value V, for attribute A of an instance object O:

1. Find O in the knowledge base.

2. If there is a value there for the attribute A, report that value.

3. Otherwise, see if there is a value for the attribute instance. If not,

then fail.

4. Otherwise, move to the node corresponding to that value and look

for a value for the attribute A. If one is found, report it.

Artificial Intelligence 7

III Year –II-Semester 2018-19 CSE

5. Otherwise, do until there is no value for the isa attribute or until an

answer is found:

(a) Get the value of the isa attribute and move to that node.

(b) See if there is value for the attribute A. If there is, repori it.

 We can apply this procedure to our example knowledge base to derive

answers to the following queries:

 team (Pee-Wee-Reese) = Brooklyn-fladgers. This attribute had a

value stored explicitly in the knowledge base.

 batting-average (Three- Finger-Brown) = .106. Since there is no

value for batting average stored explicitly for Three Finger Brown,

we follow the instance attribute to Pitcher and extract the value

stored there.

 height (Pee-Wee-Reese) = 6-1. This represents another default

inference. Notice here that because we get to it first, the more

specific tact about the height of baseball players overrides a more

general fact about the height of adult males.

 bats (Three- Finger-Brown) =Right. To get a value for the

attribute bats required going up the isa hierarchy to the class

Baseball-Player. But what we found there was not a value but a

rule for computing a value. This rule required another value as

input. So the entire process must be begun again recursively to

find a value for handed. This time, it is necessary to go all the way

up to Person to discover that the default value for handedness for

people is Right. Now the rule for bats can be applied, producing the

result Right.

Inferential Knowledge

 The power of traditional logic is necessary to describe the inferences

that are needed.

Artificial Intelligence 8

III Year –II-Semester 2018-19 CSE

 This knowledge is useless unless there is also an inference procedure

that can exploit it The required inference procedure is one that

implements the standard logical rules of inference.

 The procedures, may reason forward from given facts to conclusions,

or may reason backward from desired conclusions to given facts. One

of the most commonly used of these procedures is Resolution, which

exploits a proof by contradiction strategy.

Procedural Knowledge

 This kind of knowledge is operational.

 Procedural knowledge specifies what to do and when to do.

 Procedural knowledge can be represented in programs in many ways.

The most common way is simply as code (in some programming

language such as LISP) for doing something. The machine uses the

knowledge when it executes the code to perform a task.

 But, this way of representing procedural knowledge gets low scores for

the following properties:

 Inferential adequacy, because it is very difficult to write a

program that can reason about another programs behaviour.

 Acquisitional efficiency, because the process of updating and

debugging large pieces of code becomes unwieldy.

 The most commonly used technique for representing procedural

knowledge in Al Programs is the use of production rules.

Semantic Nets

 The main idea behind semantic nets is that the meaning of a concept

comes from the ways in which it is connected to other concepts.

 In a semantic net, information is represented as a set of nodes

connected to each other by a set of labeled arcs, which represent

relationships among the nodes.

Artificial Intelligence 9

III Year –II-Semester 2018-19 CSE

 This network contains examples of both the isa and instance

relations, and domain-specific relations like team and uniform-color.

In this network, we could use inheritance to derive the additional

relation:

has-part (Pee- Wee-Reese, Nose)
 Earlier, semantic nets were used to find relationships among objects

by spreading activation out from each of two nodes and seeing where

the activation met. This process is called intersection search.
 Using this process, it is possible to use the network to answer

questions such as "What is the connection between the Brooklyn
Dodgers and blue?" This kind of reasoning exploits one of the

important advantages that slot-and-filler structures have over purely

logical representations because it takes advantage of the entity-
based organization of knowledge that slot-and-filler representations

provide.

Representing Non binary Predicates:

 Semantic nets are a natural way to represent relationships that would

appear as ground instances of binary predicates in predicate logic.

 Some of the arcs can be represented in logic as:

 isa(Person, mammal)

 instance(Pee-Wee-Reese, Person)

 team(Pee-Wee-Reese, Brooklyn- Dodgers)

Artificial Intelligence 10

III Year –II-Semester 2018-19 CSE

 uniform color(Pee-Wee-Reese, Blue)

 Unary predicates in logic can be thought of as binary predicates using

general-purpose predicates, such as isa and instance. For example:

Man (Marcus) could be rewritten as instance (Marcus, Man)

 Three or more place predicates can also be converted to a binary form

by creating one new object representing the entire predicate statement

and then introducing binary predicates to describe the relationship to

this new object of each of the original arguments.

 For example, score (Cubs, Dodger, 5-3)
This can be represented in a semantic net by creating a node to

represent the specific game and then relating each of the three pieces

of information to it.

 The sentence: John gave the book to Mary could be represented by

Artificial Intelligence 11

III Year –II-Semester 2018-19 CSE

the network as follows:

 There should be a difference between a link that defines a new entity

and one that relates two existing entities. Consider the net:

Both nodes represent objects that exist independently of their

relationship to each other.

 Suppose we want to represent the fact that: John is taller than Bill,
using

the net:

The nodes HI and 112 are new concepts representing John's height

and Bill's height, respectively. They are defined by their relationships

to the nodes John and Hill.

 Sometimes it is useful to introduce the arc value to make this

distinction clear. Thus we might use the following net to represent the

fact that John is 6 feet tall and that he is taller than Bill.

Artificial Intelligence 12

III Year –II-Semester 2018-19 CSE

Extended semantic networks for KR

 Partitioned Semantic Networks allow for:

• Propositions to be made without commitment to truth.

• Expressions to be quantified.

 The basic idea is to break network into spaces which consist of groups

of nodes and arcs and regard each space as a node.
 By partitioning the semantic net into a hierarchical set of spaces, each

partition corresponds to the scope of one or more variables.

 Consider the statement: The dog bit the mail carrier.
The nodes Dogs, Bite, and Mail-Carrier represent the classes of dogs,

bitings and mail carriers. Respectively, while the nodes d, b and m

represent a particular dog, a particular biting and a particular mail

carrier. This fact can easily be represented by a single net with no

partitioning.

 But now suppose that we want to represent the fact:

Every dog has bitten a mail carrier.
∀x: Dog(x) ∃y: Mail-Carrier(y) Λ Bite(x, y)
To represent this fact, it is necessary to encode the scope of the

universally quantified variable x. This can be done using partitioning

net.

Artificial Intelligence 13

III Year –II-Semester 2018-19 CSE

Node g is an instance of the special class GS of general statements

about the world (i.e.. those with universal quantifiers). Every, element

of GS has at least two attributes: a form, which states the relation

that is being asserted, and one or more ∀ connections, one for each of

the universally quantified variables. In this example, there is only one

such variable d, which can stand for any element of the class Dogs.

The other two variables in the form, b and m are existentially

quantified. In other words, for every dog d, there exists a biting event

b, and a mail carrier, m. such that d is the assailant of b and m is the

victim.

 Consider the sentence:

Every dog in town has bitten the constable.
In this net, the node c representing the victim lies outside the form of

the general statement. Thus it is not viewed as an existentially

quantified variable whose value may depend on the value of d.

 Consider the sentence:

Every dog has bitten every mail carrier.

Artificial Intelligence 14

III Year –II-Semester 2018-19 CSE

In this case, g has two ∀ links: one pointing to d, which represents

any dog, and one pointing to m, representing any mail carrier.

Space S is included in space SA. Whenever is search process operates

in a partitioned semantic net, it can explore nodes and arcs in the

space from which it starts and in other spaces that contain the

starting point, but it cannot go downward, except in special

circumstances, such as when a form arc is being traversed. From

node d, it can be determined that d must be a dog. But if we were to

start, at the node Dogs and search for all known instances of dogs by

traversing isa links, we would not find d since it and the link to it are

in the space S1, which is at a lower level than space S4, which

contains Dogs. This is important, since d does not stand for a

particular dog; it is merely a variable that can be instantiated with a

value that represents a dog.

Frames

 A frame is a collection of attributes (usually called slots) and

associated values (and possibly constraints on values) that describes

some entity in the world.

 A single frame taken alone is rarely useful. Instead, we build frame
systems out of collection of frames that are connected to each other.

The value of an attribute of one frame may be another frame.

Frames as Sets and Instances:

 Set theory provides a good basis for understanding frame systems.

Each frame represents either a class (a set) or an instance (an element

of a class).

 Consider the following frame system:

Artificial Intelligence 15

III Year –II-Semester 2018-19 CSE

The frames Person, Adult-Male, ML-Baseball Player (corresponding to major

league baseball players), Pitcher, and ML-Baseball-Team (for major league

baseball team) are all classes. The frames Pee-Wee-Reese and Brooklyn-

Dodgers are instances.

 The set of adult males is a subset of the set of people. The set of major

league baseball players is a subset of the set of adult males, and so forth.

The instance relation corresponds to the relation “element-of”. Pee Wee

Reese is an element of the set of fielders. Thus he is also an element of all

of the supersets of fielders, including major league baseball players and

people.

 A class represents a set; there are two kinds of attributes that can be

associated with it. They are:

 attributes about the set itself, and

 attributes that are to be inherited-by each element of the set

Artificial Intelligence 16

III Year –II-Semester 2018-19 CSE

We indicate the difference between these two by prefixing the latter with

an asterisk (*).For example, consider the class ML-Basebalf-Player.
 It is important to distinguish between regular classes, whose elements

are individual entities, and metaclasses, which are special classes whose

elements are themselves classes. A class is now an element of (instance)

some class (or classes) as well as a subclass (isa) of one or more classes.

A class inherits properties from the class of which it is an instance, just

as any instance does. In addition, a class passes inheritable properties

down from its super classes to its instances.

The most basic metaclass is the class Class. It represents the set of all

classes. All classes are instances of it, either directly or through one of its

subclasses. In the example, Team is a subclass (subset) of Class and ML-
Baseball-Team is a subclass of Team. The class Class introduces the

attribute cardinality, which is to be inherited by all instances of Class

(including itself).

Artificial Intelligence 17

III Year –II-Semester 2018-19 CSE

 Ways in which classes are related to each other:

 Class1 can be a subset of Class2.

 If Class2 is a metaclass, then Class1 can be an instance of Class2.

 Mutually-disjoint-with: which relates a class to one or more other

classes that are guaranteed to have no elements in common with

it.

 Is-covered-by: which relates a class to a set of subclasses, the

union of which is equal to it. If a class is covered-by a set of

mutually disjoint classes, then S is called a partition of the class.

 The following are the properties the frames would be able to represent

and use in reasoning:

 The classes to which the attribute can be attached

 Constraints on either the type or the value of the attribute.

 A value that all instances of a class must have by the definition of

the class.

 A default value for the attribute.

 Rules for inheriting values for the attribute. The usual rule is to

inherit down isa and instance links.

Artificial Intelligence 18

III Year –II-Semester 2018-19 CSE

 Rules for computing a value separately from inheritance.

Conceptual Dependency

 Semantic networks and frame systems may have specialized links and

inference procedures, but there are no hard and fast rules about what

kinds of objects and links arc good in general for knowledge

representation.

 Conceptual Dependency specifies what types of objects and relations

are permitted.

 Conceptual Dependency (CD) is a theory of how to represent the kind

of knowledge about events that is usually contained in natural

language sentences. The goal is to represent the knowledge in a way

that:

 Facilitates drawing inferences from the sentences.

 Is independent of the language in which the sentences were

originally stated.

 The CD representation of a sentence is built not out of primitives

corresponding to the words used in the sentence, but rather out of

conceptual primitives that can be combined to form the meanings of

words in any particular language.

 Semantic nets provide only a structure into which nodes representing

information at any level can be placed. Conceptual dependency

provides both a structure and a specific set of primitives, at a

particular level of granularity out of which representations of

particular pieces information can be constructed.

 Consider a Simple Conceptual Dependency Representation of : I gave
the man a book, where the symbols have the following meanings:

Artificial Intelligence 19

III Year –II-Semester 2018-19 CSE

 Arrows indicate direction of dependency.

 Double arrow indicates two way links between actor and action.

 p indicates past tense.

 ATRANS is one of the primitive acts used by the theory. It indicates

transfer of possession.

 O indicates the object case relation.

 R indicates the recipient case relation.

 In CD, representations of actions are built from a set of primitive acts:

 The set of CD building blocks is the set of allowable dependencies

among the conceptualizations described in a sentence. There are tour

primitive conceptual categories from which dependency structures can

be built. These are:

 ACTS Actions

 PPs Objects (picture producers)

 AAs Modifiers of actions (action aiders)

 PAs Modifiers of PPs (picture aiders)

 The Dependencies of CD:

Artificial Intelligence 20

III Year –II-Semester 2018-19 CSE

 Rule 1 describes the relationship between an actor and the event he

or she causes. This is a two-way dependency since neither actor

nor event can be considered primary. The letter p above the

dependency link indicates past tense.

 Rule 2 describes the relationship between a PP and a PA that is

being asserted to describe it.

 Rule 3 describes the relationship between two PPs, one of which

belongs to the set defined by the other.

 Rule 4 describes the relationship a PP and an attribute that has

already been predicated of it. The direction of the arrow is toward

the PP being described.

 Rule 5 describes the relationship between two PPs, one of which

provides a particular kind of information about the other. The three

most common types of information to be provided in this way are:

 possession (shown as POSSBY)

 location (shown as LOC), and

 physical containment (shown as CONT)

 The direction of is again toward the concept being described

 Rule 6 describes the relationship between an ACT and the PP that is

the object oh that ACT. The direction of the arrow is toward the

ACT since the context of the specific ACT determines the meaning

of the object relation.

 Rule 7 describes the relationship between an ACT and the source

and the recipient of the ACT.

 Rule 8 describes the relationship between an ACT and the

instrument with which it is performed. The instrument must

always be a full conceptualization, not just a single physical object.

 Rule 9 describes the relationship between an ACT and its physical

source and destination.

 Rule 10 represents the relationship between a PP and a state in

which it started and another in which it ended.

Artificial Intelligence 21

III Year –II-Semester 2018-19 CSE

 Rule 10 describes the relationship between one conceptualization

and another that causes it. The arrows indicate dependency of one

conceptualization on another and point in the opposite direction of

the implication arrows. The two forms of the rule describe the

cause of an action and the cause of a state change.

 Rule 12 describes the relationship between a conceptualization and

the time at which the event it describes occurred.

 Rule 13 describes the relation between one conceptualization and

another that is the time of the first.

 Rule 14 describes the relationship between a conceptualization and

the place at which it occurred.

 The set of conceptual tenses in a CD are:

 p Past

 f Future

 t Transition

 tx Start transition

 ty Finished transition

 k Continuing

 ? Interrogative

 nil Present

 delta Timeless

 c Conditional

Artificial Intelligence 22

III Year –II-Semester 2018-19 CSE

 Consider the sentence: Since smoking can kill you, I stopped.

Artificial Intelligence 23

III Year –II-Semester 2018-19 CSE

Scripts

 CD is a mechanism for representing and reasoning about events. A

script is a structure that describes a stereotyped sequence of events in

a particular context.

 Script is a mechanism for representing knowledge about common

sequences of events.

 A script consists of a set of slots. Associated with each slot may be

some information about what kinds of values it may contain as well as

a default value to be used if no other information is available.

 Consider the following example of a restaurant script:

Artificial Intelligence 24

III Year –II-Semester 2018-19 CSE

 The important components of a script are:

 Entry conditions: Conditions that must, be satisfied before the

events described in the script can occur.

 Result: Conditions that will, be true after the events described in

the script have occurred.

 Props: Slots representing objects that are involved in the events

described in the script. The presence of these objects can be

inferred even if they are not mentioned explicitly.

 Role: Slots representing people who are involved in the events

described in the script.

 Track: The specific variation on a more general pattern that is

represented by this particular script. Different tracks of the same

script will share many but not all components.

 Scenes: The actual sequences of events that occur.

 Scripts are useful because, in the real world, there are patterns to the

occurrence of events. These patterns arise because of causal

relationships between events.

 Agents will perform one action so that they will then be able to

perform another. The events described in a script form a giant causal

chain.

 The beginning of the chain is the set of entry conditions which enable

the first events of the script to occur. The end of the chain is the set of

results which may enable later events or event sequences to occur.

Within the chain, events are connected both to earlier events that

make them possible and to later events that they enable.

 Scripts can also be used to indicate how events that were mentioned

relate to each other.

 Before a particular script can be applied, it must be activated. There

are two ways in which a script can be activated:

 For fleeting scripts (ones that are mentioned briefly and may he

referred to again but are not central to the situation), it may be

Artificial Intelligence 25

III Year –II-Semester 2018-19 CSE

sufficient to store a pointer to the script so that it can be accessed

later if necessary.

 For non-fleeting scripts it is appropriate to activate the script fully

and to attempt to fill in its slots with particular objects and people

involved in the current situation.

 Once a script has been activated, there are varieties of ways in which

it can be useful in interpreting a particular situation. The most

important of these is the ability to predict events that have not
explicitly been observed.

For example:

John went out to a restaurant last night. He ordered steak.

When he paid for it, he noticed that he was running out of

money. He hurried home since it had started to rain.

If you were then asked the question:

Did John eat dinner last night?
By using the restaurant script, a computer question-answerer would

also be able to infer that John ate dinner, since the restaurant script

could have been activated. Since all of the events in the story

correspond to the sequence of events predicted by the script, the

program could infer that the entire sequence predicted by the script

occurred normally. Thus it could conclude that John ate.

 Scripts provide a way of building a single coherent interpretation
from a collection of observations. Consider, for example:

Susan went out to lunch. Site sat down at table and called the

waitress. The waitress brought her a menu and she ordered a

hamburger.

Now consider the question:

Why did the waitress bring Susan a menu?
The script provides two possible answers to that question:

 Because Susan asked her to.

 So that Susan could decide what she wanted to eat.

Artificial Intelligence 26

III Year –II-Semester 2018-19 CSE

Unit- IV
Assignment-Cum-Tutorial Questions

Objective Questions

1. The two different kinds of entities in Ai are _____________ and
______________.

2. The __________ mappings exist between facts and representations.

(a) One-way (b) two-way (c) no mapping (d) both (a) & (b) []

3. The forward representation mapping maps from _____________ to
__________________. []

(a) representations, facts (b) facts, representations

(c) facts, facts (d) representations, representations

4. The ability to represent all of the kinds of knowledge that are needed in
that domain is called ______________. []

(a) Referential Efficiency (b) Representational Adequacy

 (c) Inferential Efficiency (d) Acquisitional Efficiency

5. The ability to acquire new information easily is called ____. []

(a) Referential Efficiency (b) Representational Adequacy

(c) Inferential Efficiency (d) Acquisitional Efficiency

6. The two important attributes of inheritance are ________ and _________.

7. Weak slot-and-filler structures are ___________and ______________.

8. Strong slot-and-filler structures are ___________and ______________.

9. Procedural knowledge is ______________.

(a) Declarative (b) Operational (c) progressive (d) none []

10. Procedural Knowledge get low scores for the properties______

(a) Inferential Adequacy (b) Acquisitional Efficiency

(c) Inferential Efficiency (d) both (a) and (b) []

Artificial Intelligence 27

III Year –II-Semester 2018-19 CSE

11. The most commonly used technique for representing procedural
knowledge in Al Programs is the use of _____________. []

(a) Production rules (b) symbols (c) facts (d) both (b) & (c)

12. The structure in which information is represented as a set of nodes
connected to each other by a set of labeled arcs, which represent
relationships among the nodes is called _____________.

13. Define the term “frame”.

14. ___________ theory provides a good basis for understanding frame
systems. []

(a) set (b) Graphics (c) Logic (d) none

15. The classes whose elements are themselves classes are called _______.

(a) Sub class (b) Base class (c) Meta class (d) Parent class []

16. ______________ is a theory of how to represent the kind of knowledge
about events that is usually contained in natural language sentences.

17. The primitive that represents transfer of an abstract relationship is
________.

(a) PTRANS (b) ATRANS (c) MOVE (d) GRASP []

18. A _______________ is a structure that describes a stereotyped sequence of
events in a particular context.

SECTION-B

Descriptive Questions

1. Enlist the four properties that a knowledge representation system must
have?

2. Explain four knowledge representation techniques.
3. Enumerate the basic mechanism of retrieving a value of an attribute,

using inheritance.
4. How non binary predicates are represented using semantic net. Explain

with suitable example.
5. Represent the following facts using semantic nets:
 John gave the book to Mary
 John is 6 feet tall and that he is taller than Bill.
6. Represent the following facts using partitioned semantic nets:

Artificial Intelligence 28

III Year –II-Semester 2018-19 CSE

 The dog bit the mail carrier.
 Every dog has bitten a mail carrier.
 Every dog in town has bitten the constable.
 Every dog has bitten every mail carrier.

7. Justify the statement- “Set theory provides a good basis for understanding

frame systems”.
8. List the ways in which classes are related to each other in frames, with
suitable example?

9. List the set of primitives and conceptual tenses used in Conceptual
Dependency.

10. Explain the rules used in Conceptual Dependency.

11. Represent the following sentence in CD:

Since smoking can kill you, I stopped.

12. Describe the important components of a script, with a suitable example.

Artificial Intelligence 1

III Year –II-Semester 2018-19 CSE

Artificial Intelligence
UNIT - V

Expert system and applications
Syllabus:
Introduction phases in building expert systems, expert system versus

traditional systems, rule-based expert systems blackboard systems truth

maintenance systems, application of expert systems, list of shells and tools.

Outcomes:
Student will be able to:

Introduction: Expert System

 The expert systems are the computer applications developed to solve

complex problems in a particular domain, at the level of extra-ordinary

human intelligence and expertise.

 Characteristics of Expert Systems:

 High performance

 Understandable

 Reliable

 Highly responsive

 Capabilities of Expert Systems: The expert systems are capable of −

 Advising

 Instructing and assisting human in decision making

 Demonstrating

 Deriving a solution

 Diagnosis

 Explaining

 Interpreting input

 Predicting results

 Justifying the conclusion

 Suggesting alternative options to a problem

 They are incapable of :

 Substituting human decision makers

Artificial Intelligence 2

III Year –II-Semester 2018-19 CSE

 Possessing human capabilities

 Producing accurate output for inadequate knowledge base

 Refining their own knowledge

Components of Expert Systems

 The components of ES include −

 Knowledge Base

 Inference Engine

 User Interface

Knowledge Base:

 It contains domain-specific and high-quality knowledge.

 Knowledge is required to exhibit intelligence. The success of any ES

majorly depends upon the collection of highly accurate and precise

knowledge.

 What is Knowledge?-The data is collection of facts. The information is

organized as data and facts about the task domain. Data,
information, and past experience combined together are termed as

knowledge.

Artificial Intelligence 3

III Year –II-Semester 2018-19 CSE

 Components of Knowledge Base: The knowledge base of an ES is a

store of both, factual and heuristic knowledge.

 Factual Knowledge − It is the information widely accepted by the

Knowledge Engineers and scholars in the task domain.

 Heuristic Knowledge − It is about practice, accurate judgement,

one’s ability of evaluation, and guessing.

 Knowledge representation: It is the method used to organize and

formalize the knowledge in the knowledge base. It is in the form of IF-

THEN-ELSE rules.

 Knowledge Acquisition: The success of any expert system majorly

depends on the quality, completeness, and accuracy of the

information stored in the knowledge base.

 The knowledge base is formed by readings from various experts,

scholars, and the Knowledge Engineers. The knowledge engineer is a

person with the qualities of empathy, quick learning, and case

analyzing skills.

 He acquires information from subject expert by recording,

interviewing, and observing him at work, etc. He then categorizes and

organizes the information in a meaningful way, in the form of IF-

THEN-ELSE rules, to be used by interference machine. The

knowledge engineer also monitors the development of the ES.

Inference Engine:

 Use of efficient procedures and rules by the Inference Engine is

essential in deducting a correct solution.

 In case of knowledge-based ES, the Inference Engine acquires and

manipulates the knowledge from the knowledge base to arrive at a

particular solution.

 In case of rule based ES, it −

 Applies rules repeatedly to the facts, which are obtained from

earlier rule application.

 Adds new knowledge into the knowledge base if required.

Artificial Intelligence 4

III Year –II-Semester 2018-19 CSE

 Resolves rules conflict when multiple rules are applicable to a

particular case.

 To recommend a solution, the Inference Engine uses the following

strategies −

 Forward Chaining

 Backward Chaining

 Forward Chaining: It is a strategy of an expert system to answer the

question, “What can happen next?”

 Here, the Inference Engine follows the chain of conditions and

derivations and finally deduces the outcome. It considers all the

facts and rules, and sorts them before concluding to a solution.

 This strategy is followed for working on conclusion, result, or

effect. For example, prediction of share market status as an effect

of changes in interest rates.

 Backward Chaining: With this strategy, an expert system finds out the

answer to the question, “Why this happened?”

 On the basis of what has already happened, the Inference Engine

tries to find out which conditions could have happened in the past for

this result. This strategy is followed for finding out cause or reason.

For example, diagnosis of blood cancer in humans.

Artificial Intelligence 5

III Year –II-Semester 2018-19 CSE

User Interface:
 User interface provides interaction between user of the ES and the ES

itself. It is generally Natural Language Processing so as to be used by

the user who is well-versed in the task domain. The user of the ES

need not be necessarily an expert in Artificial Intelligence.

 It explains how the ES has arrived at a particular recommendation.

The explanation may appear in the following forms −

 Natural language displayed on screen.

 Verbal narrations in natural language.

 Listing of rule numbers displayed on the screen.

 The user interface makes it easy to trace the credibility of the

deductions.

 Requirements of Efficient ES User Interface:

 It should help users to accomplish their goals in shortest possible

way.

 It should be designed to work for user’s existing or desired work

practices.

 Its technology should be adaptable to user’s requirements; not the

other way round.

 It should make efficient use of user input.

Artificial Intelligence 6

III Year –II-Semester 2018-19 CSE

Expert Systems Limitations

 No technology can offer easy and complete solution. Large systems

are costly, require significant development time, and computer

resources. ESs have their limitations which include −

 Limitations of the technology

 Difficult knowledge acquisition

 ES are difficult to maintain

 High development costs

Applications of Expert System

 The following table shows where ES can be applied.

Application Description

Design Domain Camera lens design, automobile design.

Medical Domain

Diagnosis Systems to deduce cause of disease

from observed data, conduction medical

operations on humans.

Monitoring Systems

Comparing data continuously with observed

system or with prescribed behavior such as

leakage monitoring in long petroleum pipeline.

Process Control Systems
Controlling a physical process based on

monitoring.

Knowledge Domain Finding out faults in vehicles, computers.

Artificial Intelligence 7

III Year –II-Semester 2018-19 CSE

Finance/Commerce

Detection of possible fraud, suspicious

transactions, stock market trading, Airline

scheduling, cargo scheduling.

Expert System Technology

 There are several levels of ES technologies available. Expert systems

technologies include −

 Expert System Development Environment − The ES

development environment includes hardware and tools. They are −

o Workstations, minicomputers, mainframes.

o High level Symbolic Programming Languages such

as LISt Programming (LISP) and PROgrammation en LOGique

(PROLOG).

o Large databases.

 Tools − They reduce the effort and cost involved in developing an

expert system to large extent.

o Powerful editors and debugging tools with multi-windows.

o They provide rapid prototyping

o Have Inbuilt definitions of model, knowledge representation,

and inference design.

 Shells − A shell is nothing but an expert system without

knowledge base. A shell provides the developers with knowledge

acquisition, inference engine, user interface, and explanation

facility. For example, few shells are given below −

o Java Expert System Shell (JESS) that provides fully developed

Java API for creating an expert system.

Artificial Intelligence 8

III Year –II-Semester 2018-19 CSE

o Vidwan, a shell developed at the National Centre for Software

Technology, Mumbai in 1993. It enables knowledge encoding in

the form of IF-THEN rules.

Benefits of Expert Systems

 Availability − They are easily available due to mass production of

software.

 Less Production Cost − Production cost is reasonable. This makes

them affordable.

 Speed − They offer great speed. They reduce the amount of work an

individual puts in.

 Less Error Rate − Error rate is low as compared to human errors.

 Reducing Risk − They can work in the environment dangerous to

humans.

 Steady response − They work steadily without getting motional,

tensed or fatigued.

Phases in building Expert Systems

The process of ES development is iterative. Steps in developing the ES

include −

 Identify Problem Domain

 The problem must be suitable for an expert system to solve it.

 Find the experts in task domain for the ES project.

 Establish cost-effectiveness of the system.

 Design the System

 Identify the ES Technology

 Know and establish the degree of integration with the other

systems and databases.

 Realize how the concepts can represent the domain knowledge

best.

 Develop the Prototype

 From Knowledge Base: The knowledge engineer works to −

Artificial Intelligence 9

III Year –II-Semester 2018-19 CSE

o Acquire domain knowledge from the expert.

o Represent it in the form of If-THEN-ELSE rules.

 Test and Refine the Prototype

 The knowledge engineer uses sample cases to test the prototype for

any deficiencies in performance.

 End users test the prototypes of the ES.

 Develop and Complete the ES

 Test and ensure the interaction of the ES with all elements of its

environment, including end users, databases, and other

information systems.

 Document the ES project well.

 Train the user to use ES.

 Maintain the System

 Keep the knowledge base up-to-date by regular review and update.

 Cater for new interfaces with other information systems, as those

systems evolve.

Expert system versus traditional systems

Expert System Traditional System

The entire problem related expertise

is encoded in data structures only,

none is in programs.

Problem expertise is encoded in both

program and data structures.

The use of knowledge is vital. Data is used more efficiently than

knowledge.

These are capable of explaining how

a particular conclusion is reached

and why requested information is

needed during a process.

These are not capable of explaining a

particular conclusion for a problem.

These systems try to solve in a

straight forward manner.

Problems are solved more efficiently Not so efficient as an expert system

It uses the symbolic representations

for knowledge i.e. the rules, different

These are unable to express in

symbols. They just simplify the

Artificial Intelligence 10

III Year –II-Semester 2018-19 CSE

forms of networks, frames, scripts

etc. and performs their inference

through symbolic computations

problems in a straight forward

manner and are incapable to express

the “how, why” questions.

Problem solving tools those are

present in expert system

 No problem solving tools in specific.

Solution of the problem is more

accurate.

Solution of the problem may not be

more accurate.

Provide a clear separation of

knowledge from its processing.

Do not separate knowledge from the

control structure to process this

knowledge.

Process knowledge expressed in the

form of rules and use symbolic

reasoning to solve problems in a

narrow domain.

Process data and use algorithms, a

series of well-defined operations, to

solve general numerical problems.

Trace the rules fired during a

problem-solving session and explain

how a particular conclusion was

reached and why specific data was

needed.

Do not explain how a particular

result was obtained and why input

data was needed.

Permit inexact reasoning and can

deal with incomplete, uncertain and

fuzzy data.

W ork only on problems where data

is complete and exact.

Enhance the quality of problem

solving by adding new rules or

adjusting old ones in the knowledge

base. W hen new knowledge is

acquired, changes are easy to

accomplish.

Enhance the quality of problem

solving by changing the program

code, which affects both the

knowledge and its processing,

making changes difficult.

Artificial Intelligence 11

III Year –II-Semester 2018-19 CSE

Rule-based Systems

 Rule-based systems are used as a way to store and manipulate

knowledge to interpret information in a useful way. They are often

used in artificial intelligence applications and research.

 An RBS consists of a knowledge base and an inference engine. The

knowledge base contains rules and facts.

 A typical rule-based system has four basic components:

 A list of rules or rule base, which is a specific type of knowledge

base.

 An inference engine or semantic reasoner, which infers

information or takes action based on the interaction of input and

the rule base. The interpreter executes a production

system program by performing the following match-resolve-act

cycle:
o Match: In this first phase, the left-hand sides of all productions

are matched against the contents of working memory. As a

result a conflict set is obtained, which consists of instantiations

of all satisfied productions. An instantiation of a production is

an ordered list of working memory elements that satisfies the

left-hand side of the production.

o Conflict-Resolution: In this second phase, one of the

production instantiations in the conflict set is chosen for

execution. If no productions are satisfied, the interpreter halts.

o Act: In this third phase, the actions of the production selected

in the conflict-resolution phase are executed. These actions may

change the contents of working memory. At the end of this

phase, execution returns to the first phase.

 Temporary working memory- set of facts.

 A user interface or other connection to the outside world through

which input and output signals are received and sent.

Artificial Intelligence 12

III Year –II-Semester 2018-19 CSE

 The most common RBS modes of operation are:

 forward chaining (stimulus driven)

 backward chaining (goal directed)

 Forward Chaining: Forward chaining mode of operation means that a

rule is triggered when changes in the working memory produce a

situation that matches all of its antecedents.

Forward chaining is the process of inferring then-patterns from if-

patterns that is consequents from antecedents. When an antecedent

matches an assertion the antecedent is satisfied. When all antecedents

of a rule are satisfied the rule is triggered. In deduction systems all

triggered rules are allowed and may fire.

 Forward Chaining Algorithm

 Repeat

Artificial Intelligence 13

III Year –II-Semester 2018-19 CSE

 For each rule do

 - Match all its antecedents to

 the facts from the Working memory

 - if all antecedents of a rule are matched,

 Execute is consequents

 until no rule produces a new assertion, or the goal is satisfied.

 Backward Chaining: The backward chaining mode of operation

means that the systems begins with a goal and successively

examines any rules with matching consequents. These candidate

rules are considered one at a time. The unmet conditions are in

turn reintroduced as new goals. The control procedure then shifts

attention recursively toward the new goal. The effort terminates

when the top goal is finally satisfied.

 In a Rule-based System:

 The domain knowledge is represented by a set of IF-THEN

production rules

 Data is represented by a set of facts about the current situation.

 The inference engine compares each rule stored in the

knowledge base with facts contained in the database.

 When the IF (condition) part of the rule matches a fact, the rule

is fired and its THEN (action) part is executed.

Artificial Intelligence 14

III Year –II-Semester 2018-19 CSE

Rule 1: IF Y is true AND D is true THEN Z is true

Rule 2: IF X is true AND B is true AND E is true THEN Y is true

Rule 3: IF A is true THEN X is true

Blackboard System

 A blackboard system is an artificial intelligence approach based on

the blackboard architectural model, where a common knowledge base,

the "blackboard", is iteratively updated by a diverse group of specialist

knowledge sources, starting with a problem specification and ending

with a solution.

 Each knowledge source updates the blackboard with a partial solution

when its internal constraints match the blackboard state. In this way,

the specialists work together to solve the problem.

 The blackboard model was designed to handle complex, ill-defined

problems, where the solution is the sum of its parts.

 A blackboard-system application consists of three major components:

 The software specialist modules, which are called knowledge
sources (KSs). Like the human experts at a blackboard, each

knowledge source provides specific expertise needed by the

application.

 The blackboard, a shared repository of problems, partial solutions,

suggestions, and contributed information. The blackboard can be

Artificial Intelligence 15

III Year –II-Semester 2018-19 CSE

thought of as a dynamic "library" of contributions to the current

problem that have been recently "published" by other knowledge

sources.

 The control shell, which controls the flow of problem-solving

activity in the system. KSs need a mechanism to organize their use

in the most effective and coherent fashion. In a blackboard system,

this is provided by the control shell.

Artificial Intelligence 16

III Year –II-Semester 2018-19 CSE

 The advantages of a blackboard include separation of knowledge into

independent modules with each module being free to use the

appropriate technology to arrive at the best solution with the most

efficiency.

 Justification-Based Truth Maintenance Systems (JTMS)
 The idea of a truth maintenance system or TMS is providing the ability

to do dependency-directed backtracking and so to support non-
monotonic reasoning.

 Dependency-Directed Backtracking:

 We need to know a fact, F. which cannot be derived monotonically

from what we already know, but which can be derived by making

some assumption A which seems plausible.

 So we make assumption A, derive F, and then derive some

additional facts G and H from F. We later derive some other facts M

and N, but they are completely independent of A and F.

 A little while later, a new fact comes in that invalidates A. We need

to rescind our proof of F, and also our proofs of G and H since they

depended on F. But what about M and N? They didn't depend on F,

so there is no logical need to invalidate them.

 But if we use a conventional backtracking scheme, we have to back

up past conclusions in the order in which we derived them. So we

have to backup past M and N, thus undoing them, in order to get

back to F, G, H and A.

 To get around this problem, we need a slightly different notion of

backtracking, one that is based on logical dependencies rather

than the chronological order in which decisions were made. This

new method is called “Dependency-directed backtracking”.
 Nonmonotonic reasoning, in which the axioms/or the rules of

inference are extended to make it possible to reason with incomplete

Artificial Intelligence 17

III Year –II-Semester 2018-19 CSE

information. These systems preserve, however, the property that, at

any given moment, a statement is either believed to be true, believed

to be false, or not believed to be either.

 A TMS allows assertions to be connected via a spreadsheet-like

network of dependencies.

 Consider an example: ABC Murder story.

Let Abbott, Babbitt, and Cabot be suspects in a murder case. Abbott

has an alibi, in the register of a respectable hotel in Albany. Babbitt

also has an alibi, for his brother-in-law testified that Babbitt was

visiting him in Brooklyn at the time. Cabot pleads alibi too, claiming

to have been watching a ski meet in the Catskills, but we have only

his word for that. So we believe:

(1) That Abbott did not commit the crime,

(2) That Babbitt did not.

(3) That Abbott or Babbitt or Cabot did.

But presently Cabot documents his alibi—he had the good luck to

have been caught by television in the sidelines at the ski meet. A new

belief is:

(4) That Cabot did not.

 Which has the weakest evidence? The basis for (1) in the hotel register

is good, since it is a fine old hotel. The basis for (2) is weaker, since

Babbitt's brother-in-law might be lying. The basis for (3) is perhaps

twofold; that there is no sign of burglary and that only Abbott, Babbitt

and Cabot seem to have stood to gain from the murder apart from

burglary. This exclusion of burglary seems conclusive, but the other

consideration does not: there could be some fourth beneficiary. For

(4), finally, the basis is conclusive: the evidence from television. Thus

(2) and (3) are the weak points. To resolve the inconsistency of (1)

Artificial Intelligence 18

III Year –II-Semester 2018-19 CSE

through (4) we should reject (2) or (3), thus either incriminating

Babbitt or widening our net for some new suspect.

 Let us see how TMS works in ABC Murder story. Initially, we might

believe that Abbott is the primary suspect because he was a

beneficiary of the deceased and he had no alibi. There are three

assertions here, a specific combination of which we now believe,

although we may change our beliefs later. We can represent these

assertions in shorthand as follows:

 Suspect Abbott (Abbott is the primary murder suspect.)

 Beneficiary Abbott (Abbott is a beneficiary of the victim.)

 Alibi Abbott (Abbott was at an Albany hotel at the time.)

 A TMS dependency network offers a purely syntactic domain-

independent way to represent belief and change it consistently.

 The assertion Suspect Abbott has an associated TMS Justification. Each

justification consists of two parts: an IN-list and an OUT-List. In the

figure, the assertions on the IN-list are connected to the justification by

"+" links, those on the OUT-list by “-"links. The justification is connected

by an arrow to the assertion that it supports. In the justification shown,

there is exactly one assertion in each list. Beneficiary Abbott is in the IN-

list and Alibi Abbott is in the OUT-list. Such a justification says that

Abbott should be a suspect just when it is believed that he is a

beneficiary and it is not believed that he has an alibi.

Artificial Intelligence 19

III Year –II-Semester 2018-19 CSE

 Assertions (usually called nodes) in a TMS dependency network are

believed when they have a valid justification. A justification is valid if

every assertion in the IN-list is believed and none of those in the OUT list

is. A justification is nonmonotonic if its OUT-list is not empty, or,

recursively, if any assertion in its IN-list has a nonmonotonic

justification. Otherwise, it is monotonic.

 In a TMS network, nodes are labelled with a belief status. If the assertion

corresponding to the node should be believed, then in the TMS it is

labelled IN. If there is no good reason to believe the assertion, then it is

labelled OUT.

 The labelling task of a TMS is to label each node so that two criteria

about the dependency network structure are met. The first criterion is

consistency: every node labelled IN is supported by at least one valid

justification and all other nodes are labelled OUT.

 A justification is valid if every node in its IN-list is labelled IN and
every node in it’s OUT-list is labelled OUT.

 We are told that Abbott is a beneficiary. We have no further justification

for this fact; we must simply accept it. For such facts, we give a premise

justification: a justification with empty IN and OUT-lists. Premise

justifications are always valid. The figure shows such a justification

added to the network and a consistent labelling for that network, which

shows Suspect Abbott labelled IN.

Artificial Intelligence 20

III Year –II-Semester 2018-19 CSE

 That Abbot is the primary suspect represents an initial slate of the

murder investigation. Subsequently, the detective establishes that

Abbott is listed on the register of a good Albany hotel on the day of the

murder. This provides a valid reason to believe Abbott's alibi. The

figure shows the effect of adding such justification to the network.

That Abbott was registered at the hotel. Registered Abbott, was told to

us and has a premise justification and so is labelled IN. That the hotel

is far away is also asserted as a premise. The register might have been

forged, but we have no good reason to believe it was. Thus Register

Forged lacks any justification and is labelled OUT. That Abbott was on

the register of a far away hotel and the lack of belief that the register

was forged will cause the

appropriate forward rule to fire and create a justification for Alibi

Abbott, which is thus labelled IN. This means that Suspect Abbott no

longer has a valid justification and must be labelled OUT. Abbott is no

longer a suspect.

Artificial Intelligence 21

III Year –II-Semester 2018-19 CSE

 The key reasoning operations that are performed by a JTMS:

• consistent labelling

• contradiction resolution

 A set of important reasoning operations that a JTMS does not

perform, includes:

• Applying rules to derive conclusions.

• Creating justifications for the results of applying rules (although

justifications are created as part of contradiction resolution).

• Choosing among alternative ways of resolving a contradiction.

• Detecting contradictions.

Logic-Based Truth Maintenance Systems (LTMS)

 In a JTMS, the nodes in the network are treated as atoms by the TMS,

which assumes no relationships among them except the ones that are

explicitly stated in the justifications.

 A JTMS has no problem simultaneously labelling both P and ⌐P, IN.

For example, we could have represented explicitly both Lies B-I-L and

Not Lies B-I-L and labelled both of them IN. No contradiction will be

detected automatically. In an LTMS, on the other hand, a

contradiction would be asserted automatically in such a case.

Artificial Intelligence 22

III Year –II-Semester 2018-19 CSE

Assumption-Based Truth Maintenance Systems (ATMS)

 The ATMS is an alternative way of implementing nonmonotonic

reasoning. In both JTMS and LTMS systems, a single line of reasoning

is pursued at a time, and dependency-directed backtracking occurs

whenever it is necessary to change the system's assumptions.

 In an ATMS, alternative paths are maintained in parallel.

Backtracking is avoided the expense of maintaining multiple contexts,

each of which corresponds to a set of consistent assumptions. As

reasoning proceeds in an ATMS-based system, the universe of

consistent contexts is pruned as contradictions are discovered.

 The remaining consistent contexts are used to label assertions, thus

indicating the contexts in which each assertion has a valid

justification.

 Assertions that do not have a valid justification in any consistent

context can be pruned from consideration by the problem solver. As

the set of consistent contexts gets smaller, so too does the set of

assertions that can consistently be believed by the problem solver.

 An ATMS system works breadth-first, considering all possible contexts

at once, while both JTMS and LTMS systems operate depth-first.

 The ATMS, uses a problem solver whose job is to:

• Create nodes that correspond to assertions (both those that are

given as axion1s and those that are derived by the problem solver).

• Associate with each such node one or more justifications, each of

which describes reasoning chain that led to the node.

• Inform the ATMS of inconsistent contexts.

 The role of the ATMS system is to:

• Propagate inconsistencies, thus ruling out contexts, that include

sub contexts (sets of assertions) that are known to be inconsistent

• Label each problem solver node with the contexts in which it has

valid justification. This is done by combining contexts that

correspond to the components of a justification.

Artificial Intelligence 23

III Year –II-Semester 2018-19 CSE

Al Λ A2 Λ.... Λ AnC

 One problem with this approach is that given a set of n assumptions,

the number of possible contexts that may have to be considered is 2n.

 Consider how an ATMS-based problem solver works, in ABC Murder

story. Again, our goal is to find a primary suspect. We need the

assumptions:

• Al. Hotel register was forged.

• A2. Hotel register was not forged.

• A3. Babbitt's brother-in-law tied.

• A4. Babbitt's brother-in-law did not lie.

• A5. Cabot lied.

• A6. Cabot did not lie.

• A7. Abbott, Babbitt, and Cabot are the only possible suspects.

• A8. Abbott. Babbitt, and Cabot are not the only suspects

Artificial Intelligence 24

III Year –II-Semester 2018-19 CSE

MYCIN

 MYCIN was an backward chaining expert system that used artificial

intelligence to identify bacteria causing severe infections, such

as bacteremia and meningitis, and to recommend antibiotics, with the

dosage adjusted for patient's body weight .

 MYCIN was developed over five or six years in the early 1970s

at Stanford University. It was written in Lisp.

Artificial Intelligence 25

III Year –II-Semester 2018-19 CSE

 MYCIN operated using fairly simple inference engine, and a knowledge

base of ~600 rules. It would query the physician running the program

via a long series of simple yes/no or textual questions.

 At the end, it provided a list of possible culprit bacteria ranked from

high to low based on the probability of each diagnosis,

its confidence in each diagnosis' probability, the reasoning behind

each diagnosis.

 Mycin is a program that diagnoses infectious diseases. It reasons

backward from its goal of determining the cause of a patient illness.
 It attempts to solve its goal of recommending a therapy for a particular

patient by first finding the cause of the patient’s illness.
 It uses its production rules to reason backward from goals to clinical

observations.

DENDRAL

 Dendral was a project in artificial intelligence (AI) of the 1960s, and

the computer software expert system that it produced. Its primary

aim was to study hypothesis formation and discovery in science.

For that, a specific task in science was chosen: help organic

Artificial Intelligence 26

III Year –II-Semester 2018-19 CSE

chemists in identifying unknown organic molecules, by analyzing

their mass spectra and using knowledge of chemistry.

 The software program Dendral is considered the first expert system

because it automated the decision-making process and problem-

solving behaviour of organic chemists.

 It was written in the LISP programming language, which was

considered the language of AI because of its flexibility.

 Dendral is a program that uses mass spectra or other experimental

data together with knowledge base of chemistry, to produce a set of

possible chemical structures that may be responsible for producing

the data.

 A mass spectrum of a compound is produced by a mass

spectrometer, and is used to determine its molecular weight, the

sum of the masses of its atomic constituents.

 For example, the compound water (H2O), has a molecular weight of

18 since hydrogen has a mass of 1.01 and oxygen 16.00, and its

mass spectrum has a peak at 18 units.

 Dendral uses input mass and the knowledge of atomic mass

numbers and valence rules, to determine the possible

combinations of atomic constituents whose mass would add up to

18.

 As the weight increases and the molecules become more complex,

the number of possible compounds increases drastically.

R1

 The R1 (internally called XCON, for eXpert CONfigurer) program was a

production-rule-based system written in OPS5 in 1978 to assist in

the ordering of DEC's VAX computer systems by automatically

selecting the computer system components based on the customer's

requirements.

 R1 is a program that configures VAX-11/780 computer systems.

Given a customer's order, it determines what, if any, modifications

Artificial Intelligence 27

III Year –II-Semester 2018-19 CSE

have to be made to the order for reasons of system functionality and

produces a number of diagrams showing how the various components

on the order are to be associated.

 The program is currently being used on a regular basis by Digital

Equipment Corporation's manufacturing organization. R1 is

implemented as a production system.

 It uses Match as its principal problem solving method; it has sufficient

knowledge of the configuration domain and of the peculiarities of the

various configuration constraints that at each step in the

configuration process, it simply recognizes what to do. Consequently,

little search is required in order for it to configure a computer system.

 A typical VAX system includes many components from 50 to 150 in

the following categories: CPU, memory control units, peripherals: tape

drives, floppy disks, hard disks, size, printers, drivers for the

peripherals, cabinets, and cables.

 There are many constraints because most permutations of

components are not feasible. Only certain components can be

attached to one another, and this limits the possible combinations

that can be considered.

 Knowledge about the interconnections is represented by thousands of

production rules. The control strategy is hierarchical and sub-

problems are solved in order of the importance of their associated

goal.

 XCON uses forward reasoning and is written in the OPS5 language.

PROSPECTOR

 PROSPECTOR is an expert system designed for decision-making

problems in mineral exploration. It aids geologists in evaluating the

favourability of an exploration site or region for occurrences of ore

deposits of particular types.

 Once a site has been identified, PROSPECTOR can also be used for

drilling-site selection.

Artificial Intelligence 28

III Year –II-Semester 2018-19 CSE

 PROSPECTOR is written in INTERLISP, an advanced dialect of the

LISP language.

 PROSPECTOR can reach a conclusion about a particular ore deposit.

It gives a certainty value of the ore deposit. It as well provides the

explanation text for the conclusion.

 When PROSPECTOR is used for the drilling site selection, it could also

produce the favourability map of the site.

Artificial Intelligence 29

III Year –II-Semester 2018-19 CSE

Unit- V
Artificial Intelligence: Expert system and applications

 (Open Elective –I)

Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1. Define the term “Expert System”.

2. The components of expert system are _________________,

__________________and _________________.

3. Knowledge comprises of _____________. []

(a) Data (b) Information (c) Past Experience (d) All the above
4. The information that is widely accepted by the Knowledge Engineers

and scholars in the task domain is called __________ knowledge.

(a) Factual (b) Heuristic (c) Domain (d) none []
5. Knowledge that is about practice, accurate judgment, one’s ability of

evaluation, and guessing is called _______________ knowledge.
(a) Factual (b) Heuristic (c) Domain (d) none []

6. ____________categorizes and organizes the information in a meaningful

way. []
(a) Knowledge Engineer (b) Human Expert (c) User (d) Tool

7. ___________is a strategy of an expert system to answer the

question, “What can happen next?” []

(a) Forward Chaining (b) Backward chaining (c) both (d) none
8. ___________is a strategy of an expert system finds out the answer to

the question, “Why this happened?” []

(a) Forward Chaining (b) Backward chaining (c) both (d) none
9. ____________ is an expert system without knowledge base. []

(a) Tool (b) Shell (c) Task (d) none
10. In an Expert System, the entire problem related expertise is encoded

in _______________________. []
(i) Data Structures

(ii) (ii) Programs
(a) Only (i) (b) Only (ii) (c) Both (i) and (ii) (d) none

Artificial Intelligence 30

III Year –II-Semester 2018-19 CSE

11. In a traditional system, the entire problem related expertise is

encoded in _______________________. []
(i) Data Structures

(ii) (ii) Programs
(a) Only (i) (b) Only (ii) (c) Both (i) and (ii) (d) none

12. The knowledgebase in a Rule-base system consists of _____. []
(a) Rules (b) Facts (c) Both a & b (d) productions

13. Truth maintenance system supports ____________reasoning. []
(a) Monotonic (b) Non-Monotonic (c) Both a & b (d) none

14. MYCIN is a ______________ expert system. []

15. (a) Forward Chaining (b) Backward chaining (c) both (d) none
16. DENDRAL was written in the __________ programming language.

(a) PROLOG (b) LISP (c) FORTRAN (d) PYTHON []

SECTION-B

 Descriptive Questions

1. List the characteristics and capabilities of Expert System.

2. Explain the components of an expert system.

3. Distinguish between Forward chaining and Backward chaining.

4. Enlist the application of Expert systems.

5. Describe the phases of developing an Expert system.

6. What do you mean by expert system technology? Explain.

7. Distinguish Expert system and Traditional system.

8. Explain about Rule-based Systems.

9. Explain Justification-based Truth maintenance system.

10. Write short notes on:

(i) MYCIN

(ii) DENDRAl

(iii) R1

Artificial Intelligence 1

III Year –II-Semester 2018-19 CSE

UNIT - VI: Uncertainty measure

Syllabus:
Introduction, probability theory, Bayesian belief networks, certainty factor

theory, Dempster- Shafer theory.

Outcomes:
Student will be able to:

Introduction:

 In several representation techniques, at any given point, a particular

fact is believed to be true, believed to be false, or not considered one

way or the other.

 For some kinds of problem solving, though, it is useful to be able to

describe beliefs that are not certain but for which there is some

supporting evidence.

 Let's consider two classes of such problems.

 The first class contains problems in which there is genuine

randomness in the world. Playing card games such as bridge and

blackjack is good example of this class. Although in these

problems, it is not possible to predict the world with certainty,

some knowledge about the likelihood of various outcomes is

available, and we would like to be able to exploit it.

 The second class contains problems in which the relevant world is
not random: it behaves "normally" unless there is some kind of

exception. The difficulty is that there are many more possible

exceptions. Many common sense tasks fall into this category. For

problems like this, statistical measures may serve a very useful

function as summaries of the world; rather than enumerating all

the possible exceptions, we can use a numerical summary that

tells us how often an exception of some sort can be expected to

occur.

Artificial Intelligence 2

III Year –II-Semester 2018-19 CSE

Probability and Bayes' Theorem

 An important goal for many problem-solving systems is to collect

evidence as the system goes along and to modify its behaviour on the

basis of the evidence.

 To model this behaviour, we need a statistical theory of evidence.

Bayesian statistics is such a theory. The fundamental notion of

Bayesian statistics is that of conditional probability.

P(H/E) - the probability of hypothesis H given that we have

observed evidence E

 To compute this, we need to take into account the prior probability of

H (the probability that we would assign to H if we had no evidence)

and the extent to which E provides evidence of H.

 P(Hi/E) =the probability that hypothesis Hi is true given evidence

E.

 P(E/Hi) =the probability that we will observe evidence E given that

hypothesis i is true.

 P(Hi) =the a Priori probability that hypothesis i is true in the

absence of any specific evidence. These probabilities are called

prior probabilities or priors.

 k =the number of possible hypotheses

 Bayes theorem then states that:

 Suppose, for example, that we are interested in examining the

geological evidence at a particular location to determine whether that

would be a good place to dig to find a desired mineral. If we know the

prior probabilities of finding each of the various minerals and we know

the probabilities that if a mineral is present then certain physical

Artificial Intelligence 3

III Year –II-Semester 2018-19 CSE

characteristics will be observed, then we can use Bayes formula to

compute, from the evidence we collect, how likely it is that the various

minerals are present. This is, in fact, what is done by the

PROSPECTOR program which has been used successfully to help

locate deposits of several minerals, including copper and uranium.

 The key to using Bayes theorem as a basis for uncertain reasoning is

to recognize exactly what it says. When we say P(A/B), we are

describing the conditional probability of A given that the only evidence

we have is B. If there is also other relevant evidence, then it too must

be considered.

 Suppose, for example, that we are solving a medical diagnosis

problem. Consider the following assertions:

S: patient has spots

M: patient has measles

F: patient has high fever

Without any additional evidence, the presence of spots serves as

evidence in favour of measles. It also serves as evidence of fever since

measles would cause fever. But suppose we already know that the

patient has measles. Then the additional evidence that he has spots

actually tells us nothing about the likelihood of fever. Alternatively,

either spots alone or fever alone would constitute evidence in favour of

measles. If both are present, we need to take both into account in

determining the total weight of evidence. But, since spots and fever

are not independent events, we cannot just sum their effects. Instead,

we need to represent explicitly the conditional probability that arises

from their conjunction.

 In general, given a prior body of evidence e and some new observation

E, we need to compute:

Artificial Intelligence 4

III Year –II-Semester 2018-19 CSE

 The size of the set of joint probabilities that we require in order to

compute this function grows as 2n if there are n different propositions

being considered.

 Drawbacks of Bayes Theorem:

 The knowledge acquisition problem; too many probabilities have to

be provided.

 The space that would be required to store all the probabilities is too

large.

 The time required to compute the probabilities is too large.

 Despite these problems, Bayesian statistics provide an attractive

basis for an uncertain reasoning system. The mechanisms that use

this technique are:

 Attaching certainly factors to rules

 Bayesian networks

 Dempster-Shafer theory

Certainty Factor Theory

 MYCIN represents most of its diagnostic knowledge as a set of rules.

Each rule has associated with it a certainty factor, which is a

measure of the extent to which the evidence that is described by the

antecedent of the rule supports the conclusion that is given in the

rule's consequent.

If: (1) the stain of the organism is gram-positive, and

 (2) the morphology of the organism is coccus, and

 (3) the growth conformation of the organism is Clumps,

then there is suggestive evidence (0.7) that the identity of the

organism is staphylococcus.

This is the form in which the rules are stated to the user. They are

actually represented internally in an easy-to manipulate LISP list

structure.

Artificial Intelligence 5

III Year –II-Semester 2018-19 CSE

 MYCIN uses these rules to reason backward to the clinical data available

from its goal of finding significant disease-causing organisms. Once it

finds the identities of such organisms, it then attempts to select a

therapy by which the disease(s) may be treated.

 In order to understand how MYCIN exploits uncertain information, we

need answers to two questions:

1. "What do certainty factors mean?"

2. “How does MYCN combine the estimates of certainty in each of its

rules to produce a final estimate of the certainty of its conclusions?"

 A certainty factor (CF[h, e]) is defined in terms of two components:

 MB[h, e]: a measure (between 0 and 1) of belief in hypothesis h

given the evidence e. MB measures the extent to which the

evidence supports the hypothesis. It is zero if the evidence fails to

support the hypothesis.

 MD[h, e]: a measure (between 0 and 1) of disbelief in hypothesis

h given the evidence e. MD measures the extent to which the

evidence supports the negation of the hypothesis. It is zero if the

evidence supports the hypothesis.

 we can define the certainty factor as:

CF[h, el = MB[h, e] – MD[h, e]
 Since any particular piece of evidence either supports or denies a

hypothesis (but not both), and since each MYCIN rule corresponds to one

piece of evidence, a single number suffices for each rule to define both

the MB and MD and thus the CF.

 The CF's of MYCIN's rules are provided by the experts who write the

rules. They reflect the expert’s assessments of the strength of the

evidence in support of the hypothesis. As MYCIN reasons, these CF's

Artificial Intelligence 6

III Year –II-Semester 2018-19 CSE

need to be combined to reflect the operation of multiple pieces of evidence

and multiple rules applied to a problem.

 The above figure illustrates three combination scenarios that we need to

consider. In Figure (a), several rules provide evidence that relates to a

single hypothesis. In Figure (b), we need to consider our belief in a

collection of several propositions taken together. In Figure (c), the output

of one rule provides the input to another.

 The following are the properties that the combining functions should

satisfy:

 Since the order in which evidence is collected is arbitrary, the

combining functions should be commutative and associative.

 Until certainty is reached, additional confirming evidence should

increase MB (and similarly for disconfirming evidence and MD).

 It uncertain inferences are chained together, then the result should be

less certain than either of the inferences alone.

 Consider case (a), where several pieces of evidence are combined to

determine the CF of one hypothesis, the measures of belief and disbelief

of a hypothesis given two observations sl and s2 are computed from:

Artificial Intelligence 7

III Year –II-Semester 2018-19 CSE

The measure of belief in h is 0 if h, is disbelieved with certainity.

Otherwise, the measure of belief in h, given two observations is the

measure of belief given only one observation plus some increment for the

second observation. This increment is computed by first taking the

difference between 1 (certainity) and the belief given only the first

observation. This difference is the most that can be added by the second

observation.

Example: Suppose we make an initial observation that confirms our

belief in h with MB = 0.3. then MD[h,s1] = 0 and CF[h,s1] = 0.3. Now we

make a second observation, which also confirms h, with MB[h, s2] = 0.2.

Now:

 Consider case (b), in which we need to compute the certainty factor of a

combination of hypotheses. This is necessary when we need to know the

certainty factor of a rule antecedent that contains several clauses. The

combination certainty factor can be computed from its MB and MD. The

formulas MYCIN uses for the MB of the conjunction and the disjunction

of two hypotheses are:

 Consider case (c), in which rules are chained together with the result

that the uncertain outcome of one rule must provide the input to

another. Our solution to this problem will also handle the case in which

we must assign a measure of uncertainty to initial inputs. This could

Artificial Intelligence 8

III Year –II-Semester 2018-19 CSE

easily happen in situations where the evidence is the outcome of an

experiment or a laboratory test whose results are not completely

accurate. In such a case, the certainty factor of the hypothesis must take

into account both the strength with which the evidence suggests the

hypothesis and the level of confidence in the evidence. MYCIN provides a

chaining rule that is defined as follows:

Let MB1[h,s] be the measure of belief in h given that we are absolutely

sure of the validity of s. Let e be the evidence that led us to believe in s.

 Since initial CF's in MYCIN are estimates that are given by experts

who write the rules, they define MB as:

MD is the proportionate decrease in belief in h as a result of e:

 It turns out that these definitions are incompatible with a Bayesian

view of conditional probability, we can redefine MB as:

Artificial Intelligence 9

III Year –II-Semester 2018-19 CSE

MYCIN violates Bayesian system:

 Each CF in a MYCIN rule represents the contribution of in individual

rule to MYCIN's belief in a hypothesis. It represents a conditional

probability, P(H/E).

 But in a pure Bayesian system, P(H/E) describes the conditional

probability of H given that the only relevant evidence is E. It there is

other evidence, joint probabilities need to be considered.

 This is where MYCIN diverges from a pure Bayesian system, with the

result that it is easier to write and more efficient to execute, but with

the corresponding risk that its behaviour will be counterintuitive.

 In particular, the MYCtN formulas for the entire three combination

scenarios make the assumption that all rules are independent. The

burden of guaranteeing independence (at least to the extent that it

matters) is on the rule writer. Each of the combination scenarios is

vulnerable when this independence assumption is violated.

Bayesian Networks

 In Bayesian Networks, we preserve the formalism and rely instead on

the modularity of the world we are trying to model.

 The main idea is that to describe the real world, it is not necessary to

use a huge joint probability table in which we list the probabilities of

all combinations of events.

 Most events are conditionally independent of most other ones, so their

interactions need not be considered. Instead, we can use a more local

representation in which we will describe clusters of events that

interact.

 Let's consider a example:

S: sprinkler was on last night

W: grass is wet

R: it rained last night

Artificial Intelligence 10

III Year –II-Semester 2018-19 CSE

 This scenario can be shown by MYCIN and Bayesian network as

follows:

 There are two different ways that propositions can influence the

likelihood of each other.

 The first is that causes influence the likelihood of their symptoms.

 The second is that observing a symptom affects the likelihood of all

of its possible causes.

 The idea behind the Bayesian network structure is to make a clear

distinction between these two kinds of influence. We construct a

directed acyclic graph (DAG) that represents causality relationships

(cause and effect) among variables. The idea of a causality graph (or

network) has proved to be very useful in several systems, particularly

medical diagnosis systems.

 In the above example, in addition to the three nodes we have been

talking about, the graph contains a new node corresponding to the

propositional variable that tells us whether it is currently the rainy

season.

Artificial Intelligence 11

III Year –II-Semester 2018-19 CSE

 A DAG illustrates the causality relationships that occur among the

nodes it contains. In order to use it as a basis for probabilistic

reasoning, we need more information. In particular, we need to know,

for each value of a parent node, what evidence is provided about the

values that the child node can take on. We can state this in a table in

which the conditional probabilities are provided.

 From the table we see that the prior probability of the rainy season is

0.5. Then, if it is the rainy season, the probability of rain on a given

night is 0.9; if it is not, the probability is only 0.1.

 To be useful as a basis for problem solving, we need a mechanism for

computing the influence of any arbitrary node on any other.

 Suppose that we have observed that it rained last night. 'What does

that tell us about the probability that it is the rainy season?

 To answer this question we require that the initial DAG be converted

to an undirected graph in which the arcs can he used to transmit

probabilities in either direction depending on where the evidence has

coming from.

 We require a mechanism for using the graph that guarantees that

probabilities are transmitted correctly.

 For example, while it is true that observing wet grass may be evidence

for rain, and observing rain is evidence for wet grass, we must

Artificial Intelligence 12

III Year –II-Semester 2018-19 CSE

guarantee that no cycle is ever traversed in such a way that wet grass

is evidence for rain, which is then taken as evidence for wet grass, and

so forth.

 There are three broad classes of algorithms for doing these

computations:

 a message passing method

 a clique triangulation method,

 a variety of stochastic algorithms.

 The message-passing approach is based on the observation that to

compute the probability of a node A given what is known about other

nodes in the network, it is necessary to know three things:

 π- the total support arriving at A from its parent nodes (which

represent its causes).

 λ - the total support arriving at A from its children (which

represent its symptoms)

 The entry in the fixed conditional probability matrix that relates

A to its causes.

 Several methods for propagating π and λ messages and updating the

probabilities at the nodes have been developed. The structure of the

network determines what approach can be used.

Dempster-Shafer Theory

 We have described several techniques, all of which consider individual

propositions and assign to each of them a point estimate (i.e., a single

number) of the degree of belief that is warranted given the evidence.

 This new approach considers sets of propositions and assigns to each

of them an interval: [Belief, Plausibility] in which the degree of belief

must lie.
 Belief (usually denoted Bel), measures the strength of the evidence

in favour of a set of propositions. It ranges from 0(indicating no

evidence) to 1 (denoting certainty).

Artificial Intelligence 13

III Year –II-Semester 2018-19 CSE

 Plausibility (P1) is defined to be: Pl (s) = I – Bel (¬s). It also ranges

from 0 to 1 and measures the extent to which evidence in favour of ¬s

leaves room for belief in s.

 If we have certain evidence in favour of ¬s, then Bel (¬s) will be 1 and

Pl(s) will be 0. This tells us that the only possible value for Bel(s) is

also 0.

 The belief-plausibility interval we have just defined measures not only

our level of belief in some propositions, but also the amount of

information we have.

 Suppose that we are currently considering three competing

hypotheses: A. B, and C .If we have no information, we represent that,

for each of them, that the true likelihood is in the range [1, 0]. As

evidence is accumulated, this interval can be expected to shrink,

representing increased confidence that we know how likely each

hypothesis is.

 This contrasts with a pure Bayesian approach, in which we would

probably begin by distributing the prior probability equally among the

hypotheses and thus assert to each that P(h) = 0.33. The interval

approach makes it clear that we have no information when we start.

Artificial Intelligence 14

III Year –II-Semester 2018-19 CSE

Unit- VI
Assignment-Cum-Tutorial Questions

Objective Questions

1. At any given point, a particular fact is believed to be _________,
believed to be _________, or not considered one way or the other.

2. The fundamental notion of Bayesian statistics is ________________.
3. The probability of hypothesis H given that we have observed

evidence E is __________. []
(a) p(H/E) (b) P(E/H) (c) P(HE) (d) P(H)

4. ____________ probability states that hypothesis i is true in the
absence of any specific evidence. []
(a) conditional (b) Prior (c) statistical (d) Bayesian

5. State Bayes theorem.
6. ___________ provide an attractive basis for an uncertain reasoning

system. []

(a) Bayesian statistics (b) probability (c) Reasoning (d) none
7. A certainty factor (CF[h, e]) is defined in terms of two

components:___________ and ___________.

8. ___________ measures the extent to which the evidence supports the

hypothesis. []

(a) MB (b) MD (c) CF (d) none
9. ___________ measures the extent to which the evidence supports the

negation of the hypothesis. []

(a) MB (b) MD (c) CF (d) none
10. In _____________, we preserve the formalism and rely on the

modularity of the world we are trying to model. []

(a) Bayesian Networks (b) Fuzzy logic (c) Bayes theorem (d) none
11. In Bayesian networks, we construct a _________ that represents

causality relationships among variables. []

(a) Graph (b) DAG (c) Tree (d) nodes
12. DAG illustrates the _________ relationships that occur among the

nodes it contains. []

Artificial Intelligence 15

III Year –II-Semester 2018-19 CSE

(a) influence (b) causality (c) parent-node (d) none
13. In message-passing approach, _________ represents the total support

arriving at node A from its parent nodes. []

(a) π (b) λ (c) µ (d) α
14. In message-passing approach, _________ represents the total support

arriving at A from its children. []

(a) π (b) λ (c) µ (d) α
15. _____________ measures the strength of the evidence in favour of a set

of propositions. []

(a) Plausibility (b) Belief (c) Point Estimate (d) none
16. If we have certain evidence in favour of ¬s, then Bel (¬s) will be

_______ and Pl(s) will be _________. []

(a) 1, 0 (b) 0, 0 (c) 0, 1 (d) 1,1

Descriptive Questions

1. Explain how probability and Bayes theorem helps in reasoning

uncertainty.

2. Illustrate how MYCIN exploits uncertain information?

3. Calculate the certainty factor in the following cases?

4. Analyze the cases in which MYCIN violates Bayesian System.

5. Explain about Bayesian Networks?

6. Represent the above scenario using MYCIN and Bayesian Network.

S: sprinkler was on last night
W: grass is wet
R: it rained last night

7. Briefly explain with an example how Directed acyclic graph (DAG) that

represents causality relationships (cause and effect) among variables?

8. Explain briefly about Dempster- Shafer theory?

