
Operating Systems 1

II Year - II Semester 2019-20 CSE

GUDLAVALLERU ENGINEERING COLLEGE
(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521 356.

Department of Computer Science and Engineering

HANDOUT

on

OPERATING SYSTEMS

Operating Systems 2

II Year - II Semester 2019-20 CSE

Vision

To be a Centre of Excellence in computer science and engineering
education and training to meet the challenging needs of the industry and
society.

Mission

 To impart quality education through well-designed curriculum in tune
with the growing software needs of the industry.

 To serve our students by inculcating in them problem solving,
leadership, teamwork skills and the value of commitment to quality,
ethical behavior & respect for others.

 To foster industry-academia relationship for mutual benefit and growth.

Program Educational Objectives

PEO1 : Identify, analyze, formulate and solve Computer Science and
Engineering problems both independently and in a team
environment by using the appropriate modern tools.

PEO2 : Manage software projects with significant technical, legal, ethical,
social, environmental and economic considerations.

PEO3 : Demonstrate commitment and progress in lifelong learning,
professional development, leadership and Communicate effectively
with professional clients and the public.

Operating Systems 3

II Year - II Semester 2019-20 CSE

HANDOUT ON OPERATING SYSTEMS

Class & Sem : II B.Tech. – II Semester Year : 2019-20
Branch : CSE Credits : 3
===
1. Brief History and Scope of the Subject

 Computer operating systems (OS) provide a set of functions needed and
used by most application programs on a computer, and the links needed
to control and synchronize computer hardware. On the first computers,
with no operating system, every program needed the full hardware
specification to run correctly and perform standard tasks, and its own
drivers for peripheral devices like printers and punched paper card
readers.

 Operating systems can also be considered to be managers of the
resources. An operating system determines which computer resources
will be utilized for solving which problem and the order in which they will
be used. In general, an operating system has three principal types of
functions.

 Allocation and assignment of system resources such as input/output
devices, software, central processing unit, etc.

 Scheduling: This function coordinates resources and jobs and follows
certain given priority.

 Monitoring: This function monitors and keeps track of the activities in
the computer system. It maintains logs of job operation, notifies end-
users or computer operators of any abnormal terminations or error
conditions. This function also contains security monitoring features such
as any authorized attempt to access the system as well as ensures that
all the security safeguards are in place .

 Throughout the history of computers, the operating system has
continually evolved as the needs of the users and the capabilities of the
computer systems have changed.

2. Pre-Requisites
 Basic knowledge of system programs and application programs

3. Course Objectives:
 To impart the concepts of process, memory and file management

techniques.
 To familiarize with the deadlock handling techniques.

Operating Systems 4

II Year - II Semester 2019-20 CSE

4. Course Outcomes:

Upon successful completion of the course, the students will be able to
 describe the role, functions and structures of operating systems.
 evaluate the performance of CPU scheduling algorithms by

calculating average waiting time and turnaround time.
 compare and contrast memory management schemes for efficient

utilization of memory.
 apply deadlock prevention, avoidance and recovery techniques to

keep the system in safe state.
 determine seek time of disk scheduling algorithms.
 develop software or hardware based solutions for critical section

problems.
 analyze files and directory structures and implementations.

5. Program Outcomes:

Graduates of the Computer Science and Engineering Program will have
Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the
solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and
analyze complex engineering problems reaching substantiated
conclusions using first principles of mathematics, natural sciences, and
engineering sciences.

3. Design/development of solutions: Design solutions for complex
engineering problems and design system components or processes that
meet the specified needs with appropriate consideration for the public
health and safety, and the cultural, societal, and environmental
considerations.

4. Conduct investigations of complex problems: Use research-based
knowledge and research methods including design of experiments,
analysis and interpretation of data, and synthesis of the information to
provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques,
resources, and modern engineering and IT tools including prediction and
modeling to complex engineering activities with an understanding of the
limitations.

Operating Systems 5

II Year - II Semester 2019-20 CSE

6. The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal and cultural issues
and the consequent responsibilities relevant to the professional
engineering practice.

7. Environment and sustainability: Understand the impact of the
professional engineering solutions in societal and environmental
contexts, and demonstrate the knowledge of, and need for sustainable
development.

8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as
a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering
activities with the engineering community and wit society at large, such
as, being able to comprehend and write effective reports and design
documentation, make effective presentations, and give and receive clear
instructions.

11. Project management and finance: Demonstrate knowledge and
understanding of the engineering and management principles and apply
these to one’s own work, as a member and leader in a team, to manage
projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation
and ability to engage in independent and life-long learning in the
broadest context of technological change.

6. Mapping of Course Outcomes with Program Outcomes:

 1 2 3 4 5 6 7 8 9 10 11 12

CO1 H L M L

CO2 H L M L

CO3 M L M L

CO4 H L M L

CO5 H L M L

CO6 H L M L

CO7 H L M L

Operating Systems 6

II Year - II Semester 2019-20 CSE

7. Prescribed Text Books
i. Abraham Silberschatz, Peter B, Galvin, Greg Gagne, Operating System

Principles, John Wiley, 7th edition.

ii. Stallings, Operating Systems - Internal and Design Principles, Pearson

education, 6th edition–2005.

8. Reference Text Books
i. D. M. Dhamdhere, Operating systems- A Concept based Approach, TMH,

2nd edition.

ii. Andrew S Tanenbaum, Modern Operating Systems, PHI, 3rd edition.

9. URLs and Other E-Learning Resources
http://www.nptel.iitm.ac.in/video.php?subjectId=112106134
http://www.preservearticles.com/2012051832397/5-important-limitation-of-operations-
research.html

 http://www.nptel.iitm.ac.in/video.php?subjectId=112106134

 http://personal.maths.surrey.ac.uk/st/J.F/chapter7.pdf

 http://nptel.iitm.ac.in/syllabus/syllabus_pdf/111107064.pdf

 http://nptel.iitm.ac.in/courses/110106045/

 http://nptel.iitm.ac.in/syllabus/109103021/

http://nptel.iitm.ac.in/video.php?subjectId=112106131

10. Digital Learning Materials:
 http://www.scribd.com/doc/39223153/Replacement-Models-Operation-Research#download

http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-ROORKEE/INDUSTRIAL-
ENGINERRING/part3/inventory/lecture2.htm

 http://www.eolss.net/sample-chapters/c02/E6-05-05-05.pdf

11. Lecture Schedule / Lesson Plan(3+1*)

Topic
No. of Periods

Theory Tutorial

UNIT- 1: INRODUCTION

Operating system operations 1

2
Operating system services 2
System calls 1
Types of system calls 2
Operating –system structure 2

Operating Systems 7

II Year - II Semester 2019-20 CSE

UNIT-II: Process Management
Process, Process state, Process control block
(PCB) 1

3

Process scheduling 1
Scheduling queues 1
Schedulers 1
Context switch 1
Scheduling criteria 1
Scheduling algorithms 3
Operations on processes 2
Inter process communication 2

UNIT – III: Memory Management Strategies
Swapping 1

2

Contiguous memory allocation 1
Paging 3
Segmentation 1
Virtual-Memory Management 1
Demand paging 1
Page replacement Algorithms 2
Allocation of Frames 1
Thrashing 1

UNIT - IV : Deadlocks and Mass-storage structure

System model, Deadlock characterization 1

2

Methods for handling deadlocks:

deadlock- prevention, Avoidance 3

Detection, recovery 1

Mass-storage structure:

Overview, Disk Scheduling 2

Disk Management 2

Operating Systems 8

II Year - II Semester 2019-20 CSE

UNIT - V: Synchronization
The critical section problem 1

2

Peterson’s solution 1

Synchronization hardware 1

Semaphores 2

Classic problems of synchronization 2

Monitors 2
UNIT-VI: File system Interface

Concept of a file 1

2
Access methods 1
Directory structure 1
File system mounting 1
Files sharing and protection 1

Total No. of periods 56 13

12. Seminar Topics

CPU Scheduling
 Deadlocks
 Disk Scheduling

Operating Systems 9

II Year - II Semester 2019-20 CSE

OPERATING SYSTEMS
Unit – 1

Introduction

Objectives:

 To introduce the basic concepts and functions of various operating
systems

Syllabus: Introduction

Operating system operations, Operating system services, System calls,

Types of system calls, Operating –system structure.

Outcomes:
Students will be able to

 Understand the structure of Operating System

 Know the Services provided by Operating System

 Identify various System calls

Operating Systems 10

II Year - II Semester 2019-20 CSE

LEARNING MATERIAL
UNIT-I

Definitions:

 An Operating System is a program that acts as an intermediary between

a user of a computer and the computer hardware.

 An operating system is software that manages the computer hardware.

 The operating system controls the hardware and coordinates its use

among the various application programs for the various users.

 An operating system is similar to a government. Like a government, it

performs no useful function by itself. It simply provides an environment

within which other programs can do useful work.

 An operating system is a control program. A manages the execution of

user programs to prevent errors and improper use of the computer.

 An operating system is a control program. A manages the execution of

user programs to prevent errors and improper use of the computer.

 It is a set of programs previously written and stored in the memory of the

computer.

1.1 OPERATING SYSTEM OPERATIONS

 Modern operating systems are interrupt driven.

 If there are no processes to execute, no I/O devices to service, and no

users to whom to respond, an operating system is waiting for something

to happen.

 Events are almost always signaled by the occurrence of an interrupt or a

trap.

 A trap (or an exception) is a software-generated interrupt caused either

by an error or by a specific request from a user program.

 For each type of interrupt, separate segments of code in the operating

system determine what action should be taken.

Operating Systems 11

II Year - II Semester 2019-20 CSE

 If the operating system and the users share the hardware and software

resources of the computer system.

o With sharing, many processes could be adversely affected by a

bug in one program.

o For example, if a process gets stuck in an infinite loop, this loop

could prevent the correct operation of many other processes.

o One erroneous program might modify another program, the

data of another program, or even the operating system itself.

 A properly designed operating system must ensure that an incorrect

program cannot cause other programs to execute incorrectly.

 Dual-Mode Operation:

 To ensure the proper execution of the operating system, we must be

able to distinguish between the execution of operating-system code

and user defined code.

 There are two modes of operation:

o User mode and

o Kernel mode (supervisor mode, system mode, or privileged
mode).

 A bit, called the mode bit, is added to the hardware of the computer

to indicate the current mode: kernel (0) or user (1).

 When the computer system is executing on behalf of a user

application, the system is in user mode.

 When a user application requests a service from the operating system

(via a system call), it must transition from user to kernel mode to

fulfill the request.

Operating Systems 12

II Year - II Semester 2019-20 CSE

 At system boot time, the hardware starts in kernel mode.

 The operating system is then loaded and starts user applications in

user mode.

 Whenever a trap or interrupt occurs, the hardware switches from user

mode to kernel mode

 Whenever the operating system gains control of the computer, it is in

kernel mode.

 The dual mode of operation provides us with the means for protecting

the operating system from errant users—and errant users from one

another.

 We accomplish this protection by designating some of the machine

instructions that may cause harm as privileged instructions.

 The hardware allows privileged instructions to be executed only in

kernel mode.

 If an attempt is made to execute a privileged instruction in user mode,

the hardware does not execute the instruction but rather treats it as

illegal and traps it to the operating system.

 Timer:
 We must prevent a user program from getting stuck in an infinite loop

or not calling system services and never returning control to the

operating system.

 To accomplish this goal, we can use a timer.

Operating Systems 13

II Year - II Semester 2019-20 CSE

 A timer can be set to interrupt the computer after a specified period.

 There are two types of timers

o Fixed timer
o Variable timer

 A variable timer is generally implemented by a fixed-rate clock and a

counter.

 The operating system sets the counter.

o Every time the clock ticks, the counter is decremented. When

the counter reaches 0, an interrupt occurs

 Before turning over control to the user, the operating system ensures

that the timer is set to interrupt.

 If the timer interrupts, control transfers automatically to the operating

system.

1.2 OPERATING SYSTEM SERVICES
 An Operating System provides an environment for the execution of

programs.

 It provides certain services to programs and to the users of those

programs.

 The specific services provided are differ from one operating system to

another.

 One set of operating system services provides functions that are helpful

to the user.

 User Interface

 Almost all operating systems have a user interface. This interface can

take several forms

 Command Line Interface: Command Line Interface which uses

text commands and a method for entering them.

Operating Systems 14

II Year - II Semester 2019-20 CSE

 Batch Interface: Batch Interface in which commands and

directives to control those commands are entered into files, and

those are executed.

 Graphical User Interface: This interface is a window system with

a pointing device to direct I/O, choose from menus, and make

selections and a keyboard to enter text.

 Program execution

 The system must be able to load a program into memory and to

run that program.

 The program must be able to end its execution, either normally or

abnormally.
 I/O operation

 A running program may require I/O, which may involve file or an

I/O device.

 For efficiency and protection, users usually cannot control I/O

devices directly. Therefore, the operating system must provide a

means to do I/O.

 File System manipulation

 The file System is of particular interest obviously, programs need

to read and write files and directories.

 They also need to create and delete them by name, search for a

given file, and list file information.

 Some program includes permissions management to allow or

deny access to files or directories based on file ownership.

 Communication

 There are many circumstances in which one process needs to

exchange information with another process.

 Such communication may occur between processes that are

executing on the same computer or between processes that are

Operating Systems 15

II Year - II Semester 2019-20 CSE

executing on different computer systems tied together by a

computer network.

 Communication may be implemented via shared memory or

through message passing

 Error Detection:

 The operating system needs to be constantly aware of possible

errors.

 Error may occur in the CPU and memory hardware (such as a

memory error or a power failure), in I/O devices.

 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to use the system efficiently.

 Resource Allocation

 When there are multiple users or multiple jobs running at a same

time, resources must be allocated to each of them.

 Many different types of resources are managed by the operating

system.

 Some may have special allocation code, whereas others may have

much more general request and release code.
 Accounting

 We want to keep track of which users use how much and what

kinds of computer resources.

 This record keeping may be used for accounting so that user

billed or simply for accumulating usage statistics.

 Protection and security

 The owners of information stored in a multiuser or networked

computer system may want to control use of that information.

 When several separate processes execute concurrently, it should

not be possible for one process to interface with the others or with

the operating system itself.

Operating Systems 16

II Year - II Semester 2019-20 CSE

 Protection involves ensuring that all access to system resources is

controlled. Security of the system from outsiders is also

important.
1.3 SYSTEM CALLS
 System calls provide an interface to the services made available by an

operating system.

 These system calls are generally available as routines written in C and

C++.

 Certain low level tasks are written in assembly-language instructions.

 Mostly accessed by programs via a high-level Application Programming

Interface (API) rather than direct system call use.

 Three most common APIs are

o Win32 API for Windows

o POSIX* API for POSIX-based systems (including virtually all

versions of UNIX, Linux, and Mac OS X)

o Java API for the Java virtual machine (JVM)

Below is a sequence of system calls to copy the contents of one file to another

file:

Fig: Example of a System Call

Operating Systems 17

II Year - II Semester 2019-20 CSE

 Some system calls are generally in assembly language. The assembler

converts assembly language to machine language and thus system calls

are executed.

 Typically, there is a number associated with each system call

o System-call interface maintains a table indexed according to these

numbers

 The system call interface invokes intended system call in OS kernel and

returns status of the system call and any return values

 The caller need know nothing about how the system call is implemented

o Just needs to obey API and understand what OS will do as a result

call

o Most details of OS interface hidden from programmer by API

 Managed by run-time support library (set of functions built

into libraries included with compiler)

Fig: The handling of a user application invoking the open() system

call

Operating Systems 18

II Year - II Semester 2019-20 CSE

Fig: C program invoking printf() library call, which calls the write() system
call

 System Call Parameter Passing:
 Three general methods used to pass parameters to the OS

1. Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers

2. Parameters stored in a block, or table, in memory, and address of

block passed as a parameter in a register

 This approach taken by Linux and Solaris

3. Parameters placed, or pushed, onto the stack by the program and

popped off the stack by the operating system

 Block and stack methods do not limit the number or length of

parameters being passed

Fig: Passing of parameters as a table

Operating Systems 19

II Year - II Semester 2019-20 CSE

1.4 Types of System Calls
 System calls can be grouped into five major categories:

 Process control
 Load, execute, end, abort, create process, get/set process

attributes, wait for time/signal, allocate/free memory

 end, abort: The process end is used normally for the process to be

end and abort is used when the errors occur in the process.
 load, execute: To bring the job from secondary memory to main

memory, the system call load is used and to execute particular job

,execute system call is used.
 create process, terminate process: To create a process we use a

system call called create process, after the complete execution of

the parent process the system call terminate process is used.
 wait event, signal event: Wait event makes the event wait for a

while until a particular event done, and then the system call, signal

event is used. Until the signal is not given, the operation is not

done. Ex: Signal Clock
 allocate and free memory: Allocates the resources whatever the

process needs, when it is created and after its execution making

the memory free.
 File management (manipulation)

 Create/delete/open/close/read/write a file, get/set file

attributes

 Create, delete: Create means creating a file. Delete means deleting

a file. These are the system calls given by the user, and the system

process the work.
 Open, close: Open means opening a file. Close means closing a

file.
 Read, write, reposition: read means reading the contents of a file.

Write means writing the contents to a file. Reposition means

Operating Systems 20

II Year - II Semester 2019-20 CSE

changing the position i.e., moving information from one drive to

another.
 get file attributes & set file attributes: get file attributes means

the details of the file i.e., when it is created, last modified, user

name, type of file, date of creation etc., set file attributes means

changing the current attributes.
 Device management

 Request/release device, read/write data, get/set attributes

 Request device, release device: The request generated to do

particular action, if the devices already engage and set them to

release.
 Read, write, reposition: The system calls for read, write and

reposition of a device.
 get device attributes & set device attributes: It is used for

getting and setting the attributes .Ex: Settings in phone
 Information maintenance

 Get/set time or date, get/set system data, get/set attributes

for process/file/device

 get time/date , set time/date

 get system date , set system date

 get process ,file ,device attributes

 set process ,file ,device attributes

 Communications
 Create/delete connection, send/receive messages,

attach/detach devices

 Create, delete: For creating and deleting communication

connection. We are having sharing on and off options between two

systems.

 Send, receive: The send and receive system calls are used to

send and receive messages based on the requirement we need.

Operating Systems 21

II Year - II Semester 2019-20 CSE

1.5 OPERATING SYSTEM STRUCTURE

 A System as large and complex as a modern operating system must

be engineered carefully if it is to be function properly and to be

modified easily.

 The common approach is to partition the task into small components.

 Each of these modules should have inputs, outputs and functions.

There are four types of operating systems structures.

1. Simple Structure
2. Layered approach
3. Micro kernels
4. Modules

 Simple Structure:

 Many commercial operating systems do not have well-defined structures.

Operating Systems 22

II Year - II Semester 2019-20 CSE

 Frequently, such systems started as small, simple, and limited systems

and then grew beyond their original scope.

Example 1: MS-DOS operating system.

o It was written to provide the most functionality in the least space,

so it was not divided into modules carefully.

o In MS-DOS, the interfaces and levels of functionality are not well

separated.

o There is no CPU Execution Mode (user and kernel), and so errors

in applications can cause the whole system to crash.

MS-DOS layer structure

Example 2: The original UNIX operating system.

o Like MS-DOS, UNIX initially was limited by hard ware

functionality.

o It consists of two separable parts: The kernel and the system

programs.

o The kernel:

 It is further divided in to a series of interfaces and device

drivers which have been added and expanded over the years

as UNIX has evolved.

Operating Systems 23

II Year - II Semester 2019-20 CSE

 Everything below the system call interface and above the

physical hardware is the kernel.

 The Kernel provides the file system, CPU scheduling,

Memory management and other operating system functions

through system calls.

 This monolithic structure was difficult to implement and

maintain.

Traditional UNIX Operating System

 Layered Approach:

 A system can be made modular in many ways.

 One method is layered approach.

o Here, the operating system is broken into a number of layers or

levels.

o The bottom layer is an implementation of an abstract object made

up of data and the operations that can manipulate those data.

Operating Systems 24

II Year - II Semester 2019-20 CSE

o A layer of an operating system say layer M consists of data

structures and a set of routines that can be invoked by higher level

layers.

o Layer M in turn, can invoke operations on lower level layers.

Advantages:

1. Simplicity of construction and debugging

 The layers are selected so that each uses functions and services of

only lower-level layers.

 This approach simplifies debugging and system verification.

 The first layer can be debugged without any concern for the rest

of the system, because it uses only the basic hardware to

implement its functions.

 Once the first layer is debugged, its correct functioning can be

assumed while the second layer is debugged, and so on.

 If an error is found during the debugging of a particular layer, the

error must be on that layer, because the layers below it are

already debugged.

 Thus, the design and implementation of the system is simplified.

 Each layer is implemented with only those operations provided by

lower-level layers.

 A layer does not need to know how these operations are

implemented; it needs to know only what these operations do.

 Each layer hides the existence of certain data structures,

operations, and hardware from higher-lever layers.

Disadvantages:

 The major difficulty with this approach involves appropriately

defining the various layers. Because a layer can use only lower-

level layers, careful planning is necessary.

Operating Systems 25

II Year - II Semester 2019-20 CSE

 Example: The device driver for the backing store must be at a

lower level than the memory-management routines. Because,

memory management requires the ability to use the backing

store.

 Final problem with layered implementations is that they tend to

be less efficient than other types.

Example:

 When a user program executes an I/O operation, It executes a

system call that is trapped to the I/O layer, which calls the memory-

management layer, which in turn calls the CPU-scheduling layer,

which is then passed to the hardware.

 At each layer, the parameters may be modified; data may need to be

passed, and so on.

 Each layer adds overhead to the system call; the net result is a

system call that takes longer than does one on a non layered

system.

Layered Operating system

 Micro kernels:

 In the mid-1980s, researchers at Carnegie Mellon University developed

an operating system called Mach that modularized the kernel using the

Microkernel approach.

Operating Systems 26

II Year - II Semester 2019-20 CSE

 This method structures the operating system by removing all

nonessential components from the kernel and implementing them as

system and user-level programs.

 The result is a smaller kernel.

 There is a little consensus that which services should remain in the

kernel and which should be implemented in user space.

 The main function of the microkernel is to provide a communication
facility.

 This communication facility is provided between the client program and

the various services that are also running in user space.

 Communication is provided by message passing.

 Example: If the client program wishes to access a file, it must interact

with file server. The client program and service never interact directly.

Rather, they communicate indirectly by exchanging messages with the

microkernel.

 Advantages :

o One benefit of the microkernel approach is ease of extending the

operating system.

o All new services are added to user space and consequently do not

require modification of the kernel.

o The microkernel also provides more security and reliability.

 Some operating systems that have used micro kernel approach:

Tru64UNIX, QNX.

 Drawback:
o Micro kernels can suffer from performance decreases due to

increased system function overhead.

Operating Systems 27

II Year - II Semester 2019-20 CSE

 Modules:

 The best current methodology for operating system design involves using

object-oriented programming techniques to create a modular kernel.

 The kernel has a set of core components and dynamically links in

additional services either during boot time or run time.

 Such a strategy uses dynamically loadable modules and is common in

modern implementations of UNIX such as Solaris, Linux and Mac OS X.

 Example 1: Solaris operating system structure:

It is organized around a core kernel with seven types of loadable kernel

modules.

 1. Scheduling classes.

 2. File systems.

 3. Loadable system calls.

 4. Executable formats.

 5. STREAMS modules.

 6. Miscellaneous.

 7. Device and Bus drivers.

Solaris loadable module

Operating Systems 28

II Year - II Semester 2019-20 CSE

Advantages:

1. It is more flexible than layered system in that any module can call any

other module.

2. It is more efficient, because modules do not need to invoke message

passing in order to communicate.

Example 2: Mac OS X Structure

 The Apple Macintosh Mac OS X operating system uses a hybrid

structure.

 Mac OS X structures the operating system using a layered technique

where one layer consists of the Mach microkernel.

 The top layer includes application environments and a set of services

providing a graphical interface to applications.

 Below these layers is the kernel environment, which consists primarily of

the Mach microkernel and the BSD kernel.

 Mach provides memory management:

 Support for remote procedure calls.

 Inter process communication.

 Message passing.

 Thread scheduling.

 BSD component provides

 BSD command line interface

 Support for networking and file systems.

 Implementation of POSIX APIs, including Pthreads.

 In addition to Mach and BSD, the kernel environment provides an I/O

kit for development of device drivers and dynamically loadable modules.

Operating Systems 29

II Year - II Semester 2019-20 CSE

**

Operating Systems 30

II Year - II Semester 2019-20 CSE

UNIT-I
Assignment-Cum-Tutorial Questions

SECTION-A
Objective Questions
1. An _____________ acts as an interface between the user and the computer

system.

2. Which concept explains the working of an Operating System? []

a) It is event driven

b) It is object oriented

c) It is procedure based system software

d) It is a collection of procedures that interact with each other

3. A kernel is an essential part of an operating system [True/False]

4. Which of these is/are the desirable features of an Operating system

 a) Extensible b) Portable c) Reliable d) All []

5. Which one of the following is the mode bit associated for user mode and

kernel mode respectively []

 a) 1 and 0 b) 0 and 1 b)1 and 2 d) 2 and 1

6. CPU has two modes: privileged and non-privileged. In order to change the
mode from privileged to non-privileged (GATE-2001)

a) a hardware interrupt is needed. []

b) a software interrupt is needed.

c) a privileged instruction (which does not generate an interrupt) is

needed.

d) a non-privileged instruction (which does not generate an interrupt)

 is needed.

7. ___________ is a mechanism which involves in ensuring that all access to

system resources is controlled.

8. Some of the important activities that an Operating System performs
 []

a) Job accounting b) Security

 c) Error detecting aids d) All of these

Operating Systems 31

II Year - II Semester 2019-20 CSE

9. Which of the following system calls are used to maintain system

information.

a) Get/set time or date. []

b) request device, release device.

c) send, receive messages.

d) get process attributes, set process attributes.

10. ____________ provides an interface to the services made available by an

operating system.

11. In which of the following users do not interact with the computer directly
 []
 a) Batch operating system b) DOS operating system

 c) Time-sharing Operating Systems d) None of these

12. Which of the following functionality is provided by micro kernel approach

a) Communication. []

b) ease of extending of an operating system.

c) reliability and security.

d) All of the above.

13. _______________ and ___________ are two fundamental models of

implementing communication.

14. One function of an operating system is to handle interrupts. Interrupts are
 []

a) a delay in processing due to operating system overload

b) signals from hardware or software requesting attention from

 the operating system

c) messages received from other computers

d) None of the above.

14.System calls are invoked by using (NPTEL/GATE1999)

 a) software interrupt b) polling []

 c) indirect jump d) a privileged instruction

Operating Systems 32

II Year - II Semester 2019-20 CSE

SECTION-B

Descriptive Questions
1. Define operating system. Explain the operations of an operating system?

2. With a neat sketch explain the Dual-mode operation?

3. Explain the need of attaching timer in operating system?

4. With a neat sketch explain the structure of operating system.

5. With a neat sketch explain the structure of traditional UNIX operating

system?

6. Describe the services that an operating-system provides to users?

7. List and explain different types of system calls?

8. What are the advantages and disadvantages of layered approach?

9. Write pros and cons of micro kernels?

10. Explain the need of module structure in operating system?

Operating Systems 1

II Year - II Semester 2019-20 CSE

Unit – II

PPrroocceessss MMaannaaggeemmeenntt
Objectives:

 Students will be able to develop the concepts of process management

techniques

Syllabus:
Process, process state, process controls block (PCB),

Process scheduling- scheduling queues, schedulers, context switch,

scheduling criteria, scheduling algorithms, Operations on processes, Inter

process communication.

Outcomes:
Students will be able to

 Learn the Process, Process state diagram and various fields in process

control block.(PCB)

 Explain the terms scheduling queues, schedulers, context switch and

scheduling criteria.

 Differentiate Preemptive and non preemptive scheduling algorithms.

 Explain various techniques used for inter process communication.

 Know the benefits of multi-threading and models.

Operating Systems 2

II Year - II Semester 2019-20 CSE

Learning Material

2.1. Process:
 A program in execution is called a process.

 A process will need certain resources such as CPU time, memory, files and

I/O devices to accomplish its task.

 These resources are allocated to the process either when it is created or

while it is executing.

 An operating system executes a variety of programs: Batch system jobs,

Time shared systems, user programs or tasks

 Generally the terms job and process are almost the same.

 Process execution must progress in sequential fashion

A process includes:

 program counter

 stack

 data section

 Fig: Process in memory

 A process is a program under execution.

 It generally includes process stack, containing temporary data (such as sub

routine parameters, return addresses, temporary variables) and data section

containing global variables.

Operating Systems 3

II Year - II Semester 2019-20 CSE

 A program is a passive entity such as the contents of files stored on a disk.

 A Process is an active entity with a program counter, specifying the next

instruction to execute and set of associated resources.

2.2. Process State:

 As a process executes, it changes state.

 The state of process is defined in part by the current activity of that process.

 Each process may be in one of the following states.

Fig: Process State Diagram

New: The process is being created.

Running: Instructions are being executed.

Waiting: The process is waiting for some event to occur (such as I/O

completion or reception of a signal).

Ready: The process is waiting to be assigned to the processor.

Terminated: The process has finished execution.

 At any point of time only one process can be running. Many processes

may be ready and waiting.

Operating Systems 4

II Year - II Semester 2019-20 CSE

2.3. Process Control Block:
 Each process is represented in the operating system by a process control

block also called task control block.

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

Fig: Process Control Block (PCB)

It contains many pieces of information associated with a specific process,
including these:

 Process State: The state may be new, ready, running, and waiting, halted

and so on…

 Program Counter: The counter indicates the address of next instruction to

be executed for this process.

 CPU Registers: The registers vary in number and type, depending on

computer architecture. They include accumulators, index registers, stack

pointers and general purpose register plus any condition code information.

Operating Systems 5

II Year - II Semester 2019-20 CSE

 CPU Scheduling Information: The information includes a process priority,

pointers to scheduling queues and any other scheduling parameters

 Memory Management Information : This include information such as

the values of the base and limit registers, the page tables or segment tables

depending on the memory system used by operating system

 Accounting Information: This includes the amount of CPU and real time

used, time limits, account numbers, job or process numbers and so on…

 I/O Status Information: This includes the list of I/O devices such as tape

drivers allocated to this process, list of open files and so on….

The simply serve as the repository for any information that may vary from
process to process.

Fig: CPU switches from process to process

2.4. Process Scheduling:
 The objective of multiprogramming is to have some process running at all

times.

 To maximize CPU utilization for any processor system, there will never be

more than one running process.

 If there are more process the rest will have to wait until the CPU is free and

can be rescheduled.

Operating Systems 6

II Year - II Semester 2019-20 CSE

Fig: The ready queue and various I/O device queues

2.4.1 Scheduling Queues:
 Job Queue: As processes enter the system they are put into a job

queue this queue consists of all process in the system

 Ready queue: The processes that are residing in main memory and

are ready and waiting to execute are kept a list called the ready queue.

This queue is generally stored as a linked list. A ready queue header

will contain pointers to the first and last PCB’s in the list. Each PCB

has a pointer field that points to the next process in the ready queue.

 Device Queue: A list of process waiting for a particular I/O device is

called a device queue.

Operating Systems 7

II Year - II Semester 2019-20 CSE

Fig: Queuing diagram representation of process scheduling.

 In queuing diagram each rectangular box represents a queue.

 The circles represent the resources that serve the queues

 The arrows indicate the flow of processes in the system.

2.4.2 Schedulers:

 Long-term Scheduler:
 It is also known as job scheduler.

 It selects processes from this pool and loads them into memory for

execution.

 It executes much less frequently; minutes may separate the creation of

one new process and the next.

 It controls the degree of multiprogramming.

 Short-term Scheduler:

 It is also known as CPU scheduler.

 It selects from among the processes that are ready to execute and

allocates the CPU to one of them.

 It must select a new process for the CPU frequently.

 It executes at least once every 100ms.Because of the short time between

executions; the short-term scheduler must be fast. If it takes 10ms to

Operating Systems 8

II Year - II Semester 2019-20 CSE

decide to execute a process for 100ms, then 10/(100+10)=9% of the CPU

is being used(Wasted) simply for the scheduling work.

 Medium-term Scheduler:

 The medium-term scheduler temporarily removes processes from main

memory and places them in secondary memory and vice versa.

 This is referred as "swapping out" or "swapping in" / "paging out" or

"paging in".

 The medium-term scheduler may decide to swap out a process which has

not been active for some time, or a process which has a low priority, or a

process which is page faulting frequently, or a process which is taking up

a large amount of memory in order to free up main memory for other

processes, swapping the process back in later when more memory is

available, or when the process has been unblocked and is no longer

waiting for a resource.

Processes can be described as either:
 I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts

 CPU-bound process – spends more time doing computations; few very

long CPU bursts

 Fig: Addition of medium-term scheduling to the queuing diagram

Operating Systems 9

II Year - II Semester 2019-20 CSE

2.5. Context Switch:

 When CPU switches to another process, the system must save the state

of the old process and load the saved state for the new process.

 This is called Context Switch.

 Context-switch time is overhead; the system does no useful work while

switching Time dependent on hardware support.

 When a context switch occur kernel saves the context of old process in

its PCB and loads the context of new process that is scheduled to run.

 CPU Scheduler

 Selects from among the processes in memory that are ready to execute,

and allocates the CPU to one of them

 CPU scheduling decisions may take place when a process:

 Switches from running to waiting state

 Switches from running to ready state

 Switches from waiting to ready

 Terminates

 Scheduling under 1 and 4 is no preemptive

 All other scheduling is preemptive

2.6. Scheduling Criteria:

 Different CPU Scheduling algorithms have different properties.

 The criteria include the following.

 CPU utilization: To keep the CPU as busy as possible. it range from 0 to

100 percent. In a real system it should range from 40%(for lightly loaded

system) to 90% (for heavily loaded system)

 Throughput: The number of processes that complete their execution per

time unit

 Turnaround time: The interval from the time of submission of process to

the time of completion is the turnaround time. This time is the sum of

Operating Systems 10

II Year - II Semester 2019-20 CSE

the periods spent waiting to get into memory, waiting in the ready queue,

executing in the CPU and doing I/O. The amount of time to execute a

particular process.

 Waiting time: The amount of time that a process has been waiting in the

ready queue. It is the sum of the periods spent waiting in the ready

queue.

 Response time : amount of time it takes from when a request was

submitted until the first response is produced, not output (for time-

sharing environment)

It is desirable to maximize CPU utilization and throughput and to minimize

turnaround time, waiting time and response time.

2.7. Scheduling Algorithms :

 CPU scheduling deals with the problem of deciding which of the

processes in the ready queue is to be allocated the CPU.

 There are many different CPU scheduling algorithms are there:

1. FCFS(First –Come, First-Served)
2. SJF(Shortest-Job-First)
3. Priority Scheduling
4. Round-Robin(RR)

2.7.1 FCFS (First –Come, First-Served):

 It is the simplest CPU scheduling algorithm, the process that requests

the CPU first is allocated the CPU first.

 The implementation of FCFS is easily managed with FIFO queue.

 When a process enters the ready queue its PCB is linked on to the tail of

the queue.

 When CPU is free, it is allocated to the process at the head of the queue.

Operating Systems 11

II Year - II Semester 2019-20 CSE

 FCFS is non preemptive. Once the CPU has been allocated to a process,

that process keeps the CPU until it releases the CPU, either by

terminating or by requesting I/O.

Example: Consider the following set of processes that arrive at time 0, with

the length of the CPU burst given in milliseconds:

 Process Burst Time
 P1 24
 P2 3
 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

 The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

 Suppose that the processes arrive in the order

o P2 , P3 , P1

Convoy Effect:

 All other processes wait for the one big process to get off the CPU. This

effect results in lower CPU utilization and device utilization.

The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

Operating Systems 12

II Year - II Semester 2019-20 CSE

 Convoy effect short process behind long process

2.7.2 SJF (Shortest-Job-First):

 Associate with each process the length of its next CPU burst. Use these

lengths to schedule the process with the shortest time

 Two schemes:

 Non preemptive – once CPU given to the process it cannot be preempted

until completes its CPU burst

 Preemptive – if a new process arrives with CPU burst length less than

remaining time of current executing process, preempt. This scheme is

known as the Shortest-Remaining-Time-First (SRTF)

 SJF is optimal – gives minimum average waiting time for a given set of

processes

Example of Non-Preemptive SJF

 Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

 SJF (non-preemptive)

 Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Preemptive SJF:

 Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

Operating Systems 13

II Year - II Semester 2019-20 CSE

SJF (preemptive)

 Average waiting time = (9 + 1 + 0 +2)/4 = 3

2.7.3 Priority Scheduling:
 SJF algorithm is a special case of the general priority scheduling algorithm.

 A priority is associated with each process, and the CPU is allocated to the

process with highest priority.

 Equal-priority processes are scheduled in FCFS order.

 An SJF algorithm is simply a priority algorithm where the priority(p) is the

inverse of the (predicted) next CPU burst .

 The large CPU burst, the lower the priority, and vice versa.

 Priorities are generally indicated by some fixed range of numbers, such

as 0 to 7, or 0 to 4095. Here we assume low numbers represent high

priority.

 As an example, consider the following set of processes, assumed to have

arrived at time 0, in the order p1, p2,…., p5, with the length of the CPU

burst given in milliseconds.

Process Burst Time Priority

 P1 10 3
 P2 1 1
 P3 2 4
 P4 1 5
 P5 5 2

Using priority scheduling, we would schedule these processes according to the
following Gantt chart:

P2 P5 P1 P3 P4

0 1 6 16 18 19
The average waiting time is 8.2 milliseconds.

Operating Systems 14

II Year - II Semester 2019-20 CSE

 Priorities can be defined either internally or externally. Internally defined

priorities are influenced by time limits, memory requirements, the number

of open files, and the ratio of I/O burst to average CPU burst.

 External priorities are set by criteria outside operating system, such as

importance of the process, type and amount of funds being paid for

computer use.

 Priority scheduling can be either preemptive or non preemptive.

 When a process arrives at the ready queue, its priority compared with the

priority of currently running process.

 A preemptive priority scheduling algorithm will preempt the CPU if the

priority of newly arrived process is higher, than the currently running

process.

 A non preemptive scheduling algorithm will simply put the new process at

the head of the ready queue.

Drawback:
Starvation

 Starvation or indefinite blocking is the major problem in priority

scheduling algorithms.

 A process that is ready to run but waiting for the CPU can be considered

blocked.

 A priority scheduling algorithm can leave some low priority processes

indefinitely.

 High priority processes can prevent low- priority processes from ever

getting the CPU.

Aging

 Aging is a solution to the problem of indefinite blocking of low – priority

processes.

 Aging is a technique of gradually increasing the priority of a process that

wait in the system for a long time.

Operating Systems 15

II Year - II Semester 2019-20 CSE

 For ex: Priorities range from low to high that is 127 to 0, we could

increase the priority of a waiting process by 1 every 15 minutes.

2.7.4 Round Robin Scheduling:
 This algorithm is designed especially for time sharing systems.

 It is similar to FCFS scheduling, but pre-emption is added to switch

between processes.

 A small unit of time called time quantum or time slice is defined.

 Time quantum is generally from 10 to 100 ms. the ready queue is treated

as a circular queue.

 The CPU scheduler goes around the ready queue, allocating the CPU to

each process for a time interval of upto 1 time quantum.

 The ready queue acts as FIFO queue of processes, new processes are

added to tail of ready queue.

 The CPU scheduler pick the first processes from the ready queue The CPU

scheduler picks the first process from the ready queue, sets a timer to

interrupt after 1 time quantum, and dispatches the process.

 In RR scheduling we are having two possibilities first one is the process

may have CPU burst of less than 1 time quantum.

 In this case the process itself releases the CPU voluntarily. Scheduler

will then proceed to the next process in ready queue.

 Second possibility is CPU burst of currently running process is longer

than 1 time quantum, the timer will go off and cause interrupt to the

operating system.

 A context switch will be executed, and the process will be executed, and

the process will be put any the tail of ready queue.

 The CPU scheduler will then select the next process in the ready queue.

 The average waiting time in RR policy is long.

 consider the following set of processes that arrive at 0, with the length

of the CPU burst given in milliseconds.

Operating Systems 16

II Year - II Semester 2019-20 CSE

Process Burst Time
P1 24
P2 3
P3 3

 If we use time quantum of 4 milliseconds, then process p1 gets the

first 4 milliseconds. Since it requires another 20 milliseconds, it is pre-

empted after the first time quantum, and CPU is given to the next

process in the queue, process p2.

 Since p2 does not need 4 milliseconds, it quits before its time quantum

expires. The CPU is given to process p3.

 Once each process received 1 time quantum the CPU is returned to

process p1 for an additional time quantum

P1 P2 P3 P1 P1 P1 P1 P1

 0 4 7 10 14 18 22 26 30

The average waiting time is 17/3=5.66 ms
2.7.5 Multilevel Queue Scheduling:

 Processes are easily classified into different groups.

 For example common division is made between foreground (interactive)

processes and background (batch) processes.

 These two types of processes have different response time requirements.

Fig: Multilevel queue scheduling.

Operating Systems 17

II Year - II Semester 2019-20 CSE

 A multi level queue scheduling algorithm partitions ready queue into

several separate queues.

 The processes are permanently assigned to one queue, generally based on

some property of process, such as memory size, process priority, or

process type.

 For example, separate queues might be used for foreground and

background processes.

 The foreground queue might be scheduled by an RR- algorithm.

 Example of a multilevel queue scheduling algorithm with five queues,

listed below in order of priority.

1. System processes

2. Interactive process

3. Interactive editing processes

4. Batch processes

5. Student processes

 If interactive editing processes entered the ready queue while a batch

processes was running, the batch process would be pre-empted.

 The foreground queue can be given can be given 80 percent of CPU time

for RR scheduling among its processes, where as the background queue

receives 20 percent of CPU time for its processes in FCFS basis.

2.7.6 Multilevel Feedback Queue Scheduling:
 This algorithm allows a process to move between queues. The idea is to

separate processes according to the CPU bursts.

 If a process uses too much CPU time, it will be moved to lower-priority

queue.

 A process that waits too long in a lower priority queue may be moved to a

higher priority queue.

 For example, consider a multilevel feedback queue scheduler with three

queues, numbered from 0 to 2. The scheduler first executes all the process

in the queue 0.

Operating Systems 18

II Year - II Semester 2019-20 CSE

Fig: Multilevel feedback queues.

 Only when queue 0 is empty it executes processes in queue 1.

 Processes in queue 2 will only be executed if queue 0 and 1 are empty.

 A process that arrives for queue 1 will in turn be pre-empted by a process

arriving for queue 0.

2.8. Operations on Processes

 Process in most systems can execute concurrently and they may be

created and deleted dynamically.

 Process Creation

 Process Termination

2.8.1 Process Creation:

 A process may create several new processes by using Create-process

system call, during execution.

 Parent process creates children processes, which, in turn create other

processes, forming a tree of processes.

 In most operating system s a process can be identified by using a unique

process identifier (pid), which is typically an integer number.

Operating Systems 19

II Year - II Semester 2019-20 CSE

Fig: A tree of processes on a typical Solaris system

When a process creates a new process, two possibilities exist in terms of

execution:

 Parent and children execute concurrently

 Parent waits until children terminate

Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 A new process is created by the fork () system call.

 The new process consists of copy of Address space of the original process.

Here parent process easily communicates with its child process.

 Both parent and child process continues execution at the instruction after

the fork () with one difference:

 The return code for fork () is zero for child process whereas the

non zero process identifier of the child is returned to parent.

Operating Systems 20

II Year - II Semester 2019-20 CSE

Fig: Process Creation

 The exec () system call is invoked after fork () and then parent will create

more children or if it has nothing else to do it waits while the child runs by

invoking wait () system call.

 If child completes its execution and terminates then parent also terminates

using exit () system call.

2.8.2 Process Termination:

 A Process terminates when it finishes executing its last statement and asks

the operating system to delete it by using exit () system call.

 All the resources the resources of the process including physical and

virtual memory, open files and I/O buffers and deallocated by the operating

system.

 Termination can occur in other circumstances as the process can cause

termination of another process. Parent process can terminate its child

process.

Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating system do not allow child to continue if its parent

terminates.

 If a process terminates either normally or abnormally, then all of its

children must also be terminated.

Operating Systems 21

II Year - II Semester 2019-20 CSE

 This phenomenon is referred to as - cascading termination

2.9. Inter-process Communication:

 Processes executing concurrently in the operating system may be either

independent process or cooperating process.

 Independent Process:
An independent process is a process which cannot affect or be affected

by other processes in the system. Any process that does not share data

with any other process is independent.

 Cooperating Process:
It can effect or be affected by other process executing in the system. Any

process that shares information with other process is a cooperating

process.

There are several reasons behind process cooperation:

1. Information Sharing: Several users may be interested in the same piece

of information for example a shared file; we must allow concurrent

access to such information.

2. Computation Speed: If we want a particular task to run faster, we must

break it into subtasks, each of which will be executing in parallel with

others.

3. Modularity: We may want to construct the system in a modular fashion,

dividing the system functions into separate processes or threads.

4. Convenience: Even an individual user may work on many tasks at the

same time. For instance, a user may be editing, printing and compiling in

parallel.

 Cooperating processes require an inter process communication (IPC),

which allow them to exchange data and information.

There are two fundamental models in Inter Process Communication:

Operating Systems 22

II Year - II Semester 2019-20 CSE

 1. Shared memory systems.

 2. Message Passing Systems.

 In shared- memory model, a region of memory that is shared by

cooperating processes is established.

 Processes can then exchange information by reading and writing the data

to the shared region.

 In message- passing, the communication takes place by means of

messages exchanged between cooperating processes.

Fig: Communications models (a) Message passing (b) Shared Memory

 Message passing is useful for exchanging smaller amounts of data, it is

also easier to implement than shared memory.

 Shared memory allows maximum speed and convenience of

communication, as it can be done at memory speeds when within a

computer.

 Shared memory is faster than message passing systems.

Operating Systems 23

II Year - II Semester 2019-20 CSE

2.9.1 Shared memory Systems:

 Inter-process communication using shared memory requires

communicating processes to establish a region of shared memory.

 A shared memory region resides in the address space of the process

creating the shared memory segment.

 The other processes that wish to communicate using this shared memory

segment must attach it to their address space.

 Ex: The concept of cooperating process can be illustrated by Producer-

Consumer problem.

 The producer produces the information that is consumed by a consumer

process.

 If producer and consumer process are executing concurrently, then the

buffer is filled by producer and emptied by consumer.

Two types of buffers are used:

Unbounded Buffer: This has no limit on the size of buffer. The consumer

may have to wait for new items, but producer can always produce new

items.

Bounded Buffer: Here buffer size is fixed. The consumer must wait, if
buffer is empty and producer must wait if buffer is full.

2.9.2 Message Passing System:

 This system allows processes to communicate without sharing some

address space, here communicating processes may reside on different

computers connected by a network.

 A message passing facility provides at least two operations: send

(message) and receive (message).

 Messages sent by a process can be either fixed size or variable size.

 Fixed size: If fixed size messages only sent, the system level

implementation is straight forward and programming is more difficult.

Operating Systems 24

II Year - II Semester 2019-20 CSE

 Variable size: Variable sized messages required a more complex system

level implementation, but programming task become simpler.

 If process p and q want to communicate they must send messages to and

receive messages from each other, a communication link must exist

between them.

 The link may be physical implementation such as shared memory

hardware bus, or network or logical implementation.

 Logical implementation of a link include send ()/ receive () operations.

1. Naming

2. Synchronization

3. Buffering

1. Naming:

 Processes that want to communicate must have a way to refer each

other. They use either direct or indirect communication.
Direct Communication

 Each process that wants to communicate must explicitly name the

recipient or sender of the communication.

 Send (p, message) ---- send a message to process p.
 Receive (q, message) --- receive a message from process q.

 Here communication link is established with exactly two processes.

 This scheme exhibits symmetry in addressing;

 Therefore both sender and receiver processes must name the other

process. Asymmetric in addressing, here only sender names, the

recipient, where recipient is not require to name the sender.
 Send (p, message) ---- send a message to process p.
 Receive (id, message) --- receive a message from any process.

 The variable id is set to the name of process with which

communication has taken place.

Operating Systems 25

II Year - II Semester 2019-20 CSE

Indirect Communication

 Here, the messages are sent to and received from mailboxes or

ports.

 A process can communicate with other process can communicate

with other process only if the processes has shared mailbox.
 Send (A, message) ---- send a message to mailbox A.

 Receive (A, message) --- receive a message from mailbox A.

 Here communication link may be associated with more than two

processes.

 For example the processes p1, p2 and p3 all shared mailbox A.

Process P1 sends message to A. while both P2 and P3 both

executes receive() from A.

 The operating system will provide a mechanism that allows a

process to do the following:
 Create a new mail box

 Send and receive messages through the mail box

 Delete mail box

2. Synchronization

 Communication between processes takes place through calls to

send () and receive () primitives.

 Message passing may be either blocking or non blocking also

known as synchronous and non synchronous.

 Blocking send: The sending process is blocked until the message

is received by receiving process or by the mailbox.

 Non-Blocking send: The sending process sends the message and

resumes operation.

 Blocking receive: The receiver blocks until a message is available

 Non Blocking receiver: The receiver retrieves either a valid

message or null.

Operating Systems 26

II Year - II Semester 2019-20 CSE

3. Buffering

 Whether a communication is direct or indirect, messages

exchanged by communicating processes reside in temporary

queue.

These queues are 3 types.
 Zero capacity: Maximum length of queue is zero, here link cannot

have any messages waiting in it, therefore the sender must block

until recipient receives message.

 Bounded Capacity: Queue has finite length n; thus almost n

messages can reside in it. If queue is not full when a new message

is sent, the message is placed in queue, and sender continues

execution without waiting. If link is full the sender must block until

space is available.

**

Operating Systems 27

II Year - II Semester 2019-20 CSE

UNIT-II
Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions
1. Long term scheduler is also known as_______________ []

A. High scheduler C. CPU scheduler

B. Job scheduler D. None of the above

2. Short term scheduler is also known as_______________ []

A. High scheduler C. CPU scheduler

B. Job scheduler D. None of the above

3. Process Control Block is also called as_________________ []

A. Program Control Block C. Project Control Block

B. Task Control Block D. Procedure Control Block

4. In which of the following scheduling policies does context switching never

takes place. []

A. Round-Robin C. Shortest Job First

B. Preemptive D. FCFS

5. Suppose that a process is in ‘BLOCKED’ state waiting for some I/O service.

When the service is completed, it goes to the []

A. Running State C. Ready State

B. Suspended State D. Terminated State

6. Which of the following scheduling algorithm give minimum average waiting

time? []

A. FCFS B. SJF C. Round-Robin D. Priority

7. Which of the following scheduling policy is well suited for time-shared OS

A. FCFS B. SJF C. Round-Robin D. Elevator []

8. Shortest Remaining Time First is a preemptive version of ____ []

A. FCFS B. SJF C. Round-Robin D. Priority

9. Which combination of the following features will suffice to characterize an

OS as a multi-programmed OS? (GATE-2002)

Operating Systems 28

II Year - II Semester 2019-20 CSE

I. More than one program may be loaded into main memory at the same time

for execution.

II. If a program waits for certain events such as I/O, another program is

immediately scheduled for execution.

III. If the execution of a program terminates, another program is immediately

scheduled for execution. []

A. i B. i and ii C. i and iii D. i, ii and iii

10. The processes that are residing in main memory and are ready and waiting

to execute are kept on a list called __________ []

A. Job queue B. Ready queue C. Device queue D. FIFO queue

11. Which of the following statement(s) is false about SJF? []

S1: It causes minimum average waiting time

S2: It can cause starvation
A. Only S1 B. Only S2 C. Both S1 and S2 D. Neither S1 nor S2

12. Pre-emptive scheduling is the strategy of temporarily suspending a

running process []

A. before the CPU time slice expires

B. to allow starving processes to run

C. when it requests I/O

D.to avoid collision

13. What is the range of a time quantum in Round-Robin Scheduling?

A. 10-100 ms C. 10-100 ns []

B. 100-1000 ms D. 100-1000ns

14. As a rule of thumb what percentage of the CPU bursts should be shorter

than the time quantum? []

A. 80% B. 70% C. 60% D. 50%

15. Interval between the time since submission of the job to the time its

results become available, is called []

A. Response Time C. Throughput

Operating Systems 29

II Year - II Semester 2019-20 CSE

B. Waiting time D. Turnaround Time
16. The scheduling in which CPU is allocated to the process with least CPU-

burst time is called []
A. Priority Scheduling C. Round Robin Scheduling

B. Multilevel Queue Scheduling D. Shortest job first Scheduling

17. Which scheduling policy is used for a batch processing operating system

A. Shortest-job First. C. Round-Robin. []
B. Priority Based D. First-Come-First-Serve.

18. Which of these is a technique of improving the priority of process waiting

in Queue for CPU allocation []

A. Starvation B. Relocation C. Promotion D. Aging
19. Consider a set of n tasks with known runtimes r1, r2, … rn to be run on a

uniprocessor machine. Which of the following processor scheduling

algorithms will result in the maximum throughput? (GATE-2001)

A. Round-Robin C. Shortest-Job-First []
B. Highest-Response-Ratio-Next D. First-Come-First-Served

20. Which of the following scheduling algorithms is non-preemptive?
 (GATE CS 2002)

A. Round Robin []

B. First come first serve

C. Multilevel Queue Scheduling

D.Multilevel Queue Scheduling with Feedback

SECTION-B
Descriptive Questions

1. With a neat sketch explain process state diagram?

2. Explain about the contents of process control block?

3. Define long term scheduler and short term scheduler?

4. Compare and contrast short term, medium term and long term

 scheduling.?

5. Discuss criteria involved in scheduling a process?

Operating Systems 30

II Year - II Semester 2019-20 CSE

6. Explain about inter process communication (IPC)?

7. Demonstrate two different operations performed on processes?

8. What is convey effect? Explain with an example?

9. Discuss the problem involved in priority scheduling algorithm with a

suitable example and provide a solution to that problem?

10. Differentiate shared memory and message passing models of process

communication?

11. Explain the role of schedulers with the help of process transition diagram?

12. With a suitable example explain about context switching?

13. Write about Priority and SJF(Shortest Job First) scheduling algorithms

 with an example.

Problems:

1. Suppose that the following processes arrive for execution at the times

indicated

What is the average waiting and turnaround time for these processes using

a) FCFS scheduling algorithm

b) SJF Non Preemptive scheduling algorithm

c) SJF Preemptive scheduling algorithm

2. Consider the following processes, with the arrival time and the length of the

CPU burst given in milliseconds.

Operating Systems 31

II Year - II Semester 2019-20 CSE

 Calculate average waiting and average turnaround time using

a) Non preemptive priority CPU scheduling algorithm

b) Preemptive priority CPU scheduling algorithm

c) Round robin scheduling algorithm(TQ=3ms)

3. Consider the following set of processes, with the arrival times and the CPU-

burst times given in milliseconds (GATE-CS-2004)

 Process Arrival Time Burst Time
 P1 0 5

 P2 1 3

 P3 2 3

 P4 4 1

What is the average turnaround time for these processes with the preemptive

shortest remaining processing time first (SRTF) algorithm ?

4. Consider the following set of Processes with CPU Burst times in

milliseconds, arrival times in milliseconds and Priorities:

Process Burst time Arrival Time Priority
 P1 8 1 2

P2 5 0 1

P3 14 2 4

P4 3 4 3

 Draw the Gantt Chart. Calculate Average Turnaround Time and Average

Waiting Time by using:

i) Round Robin (if Time Quantum = 4msec)

ii) Priority Scheduling.(both preemption and non preemption)

Operating Systems 32

II Year - II Semester 2019-20 CSE

SECTION-C

QUESTIONS AT THE LEVEL OF GATE

1. An operating system uses Shortest Remaining Time first (SRT) process

scheduling algorithm. Consider the arrival times and execution times for the

following processes: [GATE 2007]
 Process Execution time Arrival time

 P1 20 0

 P2 25 15

 P3 10 30

 P4 15 45

 What is the total waiting time for process P2? []

 (A) 5 (B)15 (C)40 (D)55
2. In the following process state transition diagram for a uni processor system,

assume that there are always some processes in the ready state: Now

consider the following statements: [GATE 2009]

I. If a process makes a transition D, it would result in another process

making transition A immediately.

II. A process P2 in blocked state can make transition E while another

process P1 is in running state.

III. The OS uses pre emptive scheduling.

IV. The OS uses non-pre emptive scheduling.

Which of the above statements are TRUE? []

A. I and II B. I and III C. II and III D. II and IV

3. Which of the following statements are true? [GATE 2010]

Operating Systems 33

II Year - II Semester 2019-20 CSE

a) Shortest remaining time first scheduling may cause starvation

b) Pre emptive scheduling may cause starvation

c) Round robin is better than FCFS in terms of response time []

A. I only B. II and III only C. I and III only D. I,II and III.

4. Consider the following table of arrival time and burst time for three

processes P0, P1 and P2. [GATE 2011]
 Process Arrival time Burst Time

 P0 0 ms 9 ms

 P1 1 ms 4 ms

 P2 2 ms 9 ms

The pre-emptive shortest job first scheduling algorithm is used. Scheduling is

carried out only at arrival or completion of processes. What is the average

waiting time for the three processes?

A. 5.0 ms B. 4.33 ms C. 6.33 D. 7.33.

5. Consider the 3 processes, P1, P2 and P3 shown in the table. [GATE 2012]
 Process Arrival time Time Units Required

 P1 0 5

 P2 1 7

 P3 3 4

 The completion order of the 3 processes under the policies FCFS and RR2

(round robin scheduling with CPU quantum of 2 time units) are []

A. FCFS: P1, P2, P3
 RR2: P1, P2, P3
B. FCFS: P1, P3, P2
 RR2: P1, P3, P2
C. FCFS: P1, P2, P3
 RR2: P1, P3, P2
D.FCFS: P1, P3, P2
 RR2: P1, P2, P3

Operating Systems 34

II Year - II Semester 2019-20 CSE

6. A scheduling algorithm assigns priority proportional to the waiting time of a

process. Every process starts with priority zero (the lowest priority). The

scheduler re-evaluates the process priorities every T time units and decides

the next process to schedule. Which one of the following is TRUE if the

processes have no I/O operations and all arrive at time zero?

 [GATE2013]
A. This algorithm is equivalent to the first-come-first-serve algorithm.[]

B. This algorithm is equivalent to the round-robin algorithm.

C. This algorithm is equivalent to the shortest-job-first algorithm.

D. This algorithm is equivalent to the shortest-remaining-time-first algorithm.

7. An operating system uses shortest remaining time first scheduling algorithm

for pre-emptive scheduling of processes. Consider the following set of

processes with their arrival times and CPU burst times (in milliseconds):

Process Arrival time Burst Time

P1 0 12

P2 2 4

P3 3 6

P4 8 5

 The average waiting time (in milliseconds) of the processes is __[GATE-2014]

8. Consider the following set of processes that need to be scheduled on a single

CPU. All the times are given in milliseconds.

Process NameArrival TimeExecution Time

A 0 6

B 3 2

C 5 4

D 7 6

Operating Systems 35

II Year - II Semester 2019-20 CSE

E 10 3

Using the shortest remaining time first scheduling algorithm, the average

process turnaround time (in msec) is [GATE-2014]

9. Consider a uniprocessor system executing three tasks T1, T2 and T3, each of

which is composed of an infinite sequence of jobs (or instances) which arrive

periodically at intervals of 3, 7 and 20 milliseconds, respectively. The priority

of each task is the inverse of its period, and the available tasks are

scheduled in order of priority, with the highest priority task scheduled first.

Each instance of T1, T2and T3 requires an execution time of 1, 2 and 4

milliseconds, respectively. Given that all tasks initially arrive at the

beginning of the 1stmillisecond and task preemptions are allowed, the first

instance of T3 completes its execution at the end of ______ milliseconds.

 [GATE-2015]
A. 5 B. 10 C. 12 D.15 []

10. For the processes listed in the following table, which of the following

scheduling schemes will give the lowest average turnaround time?
 [GATE-2015]

Process Arrival Time Burst Time

A 0 3

B 1 6

C 4 4

D 6 2

A. First Come First Serve []

B. Non – preemptive Shortest Job First

C. Shortest Remaining Time

D. Round Robin with Quantum value two

Operating Systems 36

II Year - II Semester 2019-20 CSE

11. Consider the following processes, with the arrival time and the length of

the CPU burst given in milliseconds. The scheduling algorithm used is

preemptive shortest remaining-time first.

ProcessArrival TimeBurst Time

P1 0 10

P2 3 6

P3 7 1

P4 8 3

 The average turnaround time of these processes is_____. [GATE-2016]
12. Consider the following CPU processes with arrival times (in milli seconds)

and length of CPU bursts (in milli seconds) as given below: [GATE-2017]

Process Arrival time Burst time

P1 0 7

P2 3 3

P3 5 5

P4 6 2

If the pre-emptive shortest remaining time first scheduling algorithm is used

to schedule the processes, then the average waiting time across all processes

is_______________ milliseconds.

13. Consider the set of processes with arrival time (in milliseconds), CPU burst

time (in milliseconds) , and priority (0 is the highest priority) shown below.

None of the processes have I/O burst time.

Process Arrival time Burst Time Priority

P1 0 11 2

P2 5 28 0

P3 12 2 3

Operating Systems 37

II Year - II Semester 2019-20 CSE

P4 2 10 1

P5 9 16 4

The average waiting time (in milliseconds) of all the processes using preemptive

priority scheduling algorithm is_________ [GATE-2017]

14. Consider the following four processes with arrival times (in milliseconds)

and their length of CPU burst (in milliseconds) as shown below:

 [GATE-2019]

These processes are run on a single processor using preemptive Shortest

Remaining Time First scheduling algorithm. If the average waiting time of

the processes is 1 millisecond, then the value of Z is __________.

(A) 2

(B) 3

(C) 1

(D) 4

Operating Systems 38

II Year - II Semester 2019-20 CSE

Operating Systems 1

II Year - II Semester 2019-20 CSE

UNIT – III
MMeemmoorryy MMaannaaggeemmeenntt SSttrraatteeggiieess

Objectives:

 Students will be able To develop the concepts of memory management

techniques
Syllabus:
Memory Management Strategies
 Swapping, contiguous memory allocation (memory mapping and protection,

memory allocation, fragmentation), paging (basic method, hardware support,

shared pages), Segmentation (basic method, Hardware).

Virtual-Memory Management:
 Demand paging (Basic concepts, Performance of Demand Paging), page

replacement (FIFO, Optimal, LRU), Allocation of frames (Minimum number of

frames, Allocation Algorithms), Thrashing (Cause of Thrashing, Working-Set

model, Page fault frequency).

Subject Outcomes:
Students will be able to

 Describe the benefits of a virtual memory system

 Explain the concepts of demand paging, page-replacement algorithms, and

allocation of page frames

 Discuss the principle of the working-set model

 Describe various ways of organizing memory hardware

 Discuss various memory-management techniques, including paging and

segmentation

 Describe both pure segmentation and segmentation with paging

Operating Systems 2

II Year - II Semester 2019-20 CSE

Learning Material

3.1. Swapping
 A process must be in memory to be executed.

 A process can be swapped temporarily out of memory to a backing store, and

then brought back into memory for continued execution

 For example:
o Consider a round –robin CPU scheduling algorithm, when time

quantum expires , the memory manager will start to swap out the

process that just finished and to swap another process into memory

space that has been freed.

o Swapping policy is used for priority based scheduling algorithms. If a

higher priority process arrives and wants service, the memory manager

can swap out the lower priority processes and then load and execute

the higher priority process.

 Roll out–Swapping variant used for priority-based scheduling algorithms;

lower-priority process is swapped out so higher-priority process can be loaded

and executed

 Roll in: Swapping in the higher priority process is known as roll-in.

 Swapping requires a backing store.

 The backing store is commonly a fast disk.

 It must be large enough to accommodate copies of all memory images for all

users, and it must provide direct access to these memory images.

 When the CPU scheduler decides to execute a process, it calls the dispatcher.

 The dispatcher checks whether the next process in the queue is in memory.

 If not, and if there is no free memory region, the dispatcher swaps out a

process currently in memory and swaps in the desired process.

Operating Systems 3

II Year - II Semester 2019-20 CSE

Fig: Swapping of two processes using a disk as a backing store

 The context-switch time in such a swapping system is fairly high.

 For example

o If the user process is 10 MB in size and the backing store is a standard

hard disk with a transfer rate of 40 MB per second.

o The actual transfer of the 10-MB process to or from main memory takes

10000 KB/40000 KB per second = 1/4 second

 = 250 milliseconds.

3.2. Contiguous Memory Allocation:
 The main memory must accommodate both the operating system and the

various user processes.

 So the main memory must be allocated in an efficient way possible

 The memory is usually divided into two partitions:

1) Operating system

2) User processes.

 We can place the operating system in either low memory or high memory.

 The major factor affecting this decision is the location of the interrupt vector.

Since the interrupt vector is often in low memory, so programmers place the

operating system in low memory.

Operating Systems 4

II Year - II Semester 2019-20 CSE

 We have to allocate all available memory to the processes.

 In contiguous memory allocation, each process is contained in a single

contiguous section of memory.

3.2.1. Memory mapping and Protection:
 We can provide memory mapping and protection by using a relocation register

and a limit register.

 The relocation register contains the value of the smallest physical address;

 the limit register contains the range of logical addresses

 For example, relocation = 100040 and limit = 74600.

 With relocation and limit registers, each logical address must be less than the

limit register;

 The MMU maps the logical address dynamically by adding the value in the

relocation register.

Fig: Hardware support for relocation and limit register

 When the CPU scheduler selects a process for execution, the dispatcher loads

the relocation and limit registers with the correct values as part of the context

switch.

 Because every address generated by a CPU is checked against these registers.

 We can protect both the operating system and the other users' programs and

data being modified by the running process.

Operating Systems 5

II Year - II Semester 2019-20 CSE

 The relocation-register scheme provides an effective way to allow the

operating system size to change dynamically.

3.2.2. Memory Allocation:
3.2.2.1. Multiprogramming with Fixed number of Tasks: (Fixed Partitioning)

o OS occupies some fixed portion of main memory

o Rest of main memory is divided into several fixed-number of
partitions of equal size

o Each partition may contain exactly one process

o Any process whose size is <= to the partition size can be loaded into

any available partition

o If all the partitions are full – swapping is done

o Difficulties with equal – sized fixed partitions:

 A program may be too big to fit into a partition

 Example:

1. Partition size – 8 M

Program size – 20 M

Main memory utilization is extremely inefficient

2. Program size – 2 M

Partition size – 8 M = 6M wasted

Operating Systems 6

II Year - II Semester 2019-20 CSE

 Drawback: Internal fragmentation:
o Amount of space wasted inside a partition allocated to a process is

called as Internal Fragmentation.

o allocated memory may be slightly larger than requested memory

o Example:

o Program size –> 2 M

Partition size –> 8 M

= 6M Internal fragmentation

 MFT – Unequal size partitions
o Example:

Operating Systems 7

II Year - II Semester 2019-20 CSE

 Advantages:
 Simple to implement

 Little OS overhead

 Disadvantages:
 Internal Fragmentation

 Maximum number of active processes is fixed

 Degree of multiprogramming is fixed.

3.2.2.2. Multiprogramming with Variable number of Tasks (Dynamic
partitioning):
o Partitions are of variable length and number

o Initially all memory available for user processes is considered as one

large block of available memory (hole)

o When a process arrives and needs memory, search for a hole large

enough for this process.

o If found – allocate only as much memory as is need keeping the rest

available to satisfy future requests

Operating Systems 8

II Year - II Semester 2019-20 CSE

 Drawback: External Fragmentation
 Total memory space exists to satisfy a request, but it is not contiguous.

 Storage space is fragmented into a large number of small holes

 Solution :
 Compaction: OS shifts the processes so that they are contiguous and so

that all of the free memory is together in one block

 Advantages:

o No Internal Fragmentation

o More efficient use of main memory

 Disadvantages:
o External Fragmentation

Operating Systems 9

II Year - II Semester 2019-20 CSE

o Inefficient use of processor due to the need for compaction to

counter external fragmentation.

o Compaction is very expensive scheme.

3.2.2.3. Dynamic Storage Allocation Problem:

 This problem deals with how to satisfy a request of size n from a list of free

holes.

 This problem has many solutions and these strategies are used to select a

free hole from a set of available holes.

 First fit

 Best fit

 Worst fit

 First fit: Allocate the first hole that is big enough. Searching can start either

at the beginning of the set of holes or where the previous first-fit ended. We

can stop searching when we find a free hole that is large enough.

 Best fit. Allocate the smallest hole that is big enough. We must search the

entire list, unless the list is ordered by size. This strategy produces the

smallest leftover hole.

 Worst fit: Allocate the largest hole. We must search the entire list, unless it is

sorted by size. This strategy produces the largest leftover hole.

Both first fit and best fit are better than worst fit in terms of decreasing time and

storage utilization.

Example: New process size is 12 KB

Operating Systems 10

II Year - II Semester 2019-20 CSE

 50-percent rule: If we are having N allocated blocks, another 0.5 N blocks

will be lost to fragmentation. That is, one-third of memory may be

unusable. This property is known as 50-percent rule.

3.3. Paging:
 Paging permits a program memory to be noncontiguous.

 Thus allowing a program to be allocated physical memory whenever it is

available.

 Every address generated by the CPU is divided into two parts:

 1. Page number (p)

 2. Page offset (d).

 The page number is used as an index into a page table.

 The page table contains the base address of each page in physical memory.

 This base address is combined with the page offset to define the physical

memory address that is sent to the memory unit.

Fig: Paging Hardware

3.3.1. Basic method:
 Physical memory is broken into fixed-sized blocks called frames and breaking

logical memory into blocks of the same size called pages.

 When a program is to be executed, its pages are loaded into any available

frames.

Operating Systems 11

II Year - II Semester 2019-20 CSE

 The page table is defined to translate from user pages to memory frames (IBM

370 uses 2048 or 4096 bytes for page).

Fig: Paging model of logical and physical memory.

 If a page size is 2n addressing units (bytes or words) long, then the lower -

order n bits of a logical addresses designates the page offset and the

remaining higher order bits designates the paging number.

Fig: Paging example for a 32-byte memory with 4-byte pages.

Operating Systems 12

II Year - II Semester 2019-20 CSE

 Logical address 0 is page 0, offset 0. Indexing into the page table, we find that

page 0 is in frame 5. This logical address 0 maps to physical address 20 [= (5

x 4) + 0].

 Logical address 3 (page 0, offset 3) maps to physical address 23 [= (5 x 4) + 3].

 Every Logical address is mapped by the passing hardware to same physical

address.

 physical address of word = (frame number x page size offset)

Fig: Free frames (a) before allocation and (b) after allocation.

3.3.2. Hardware support:
 Implementation of page table:

a. Registers
b. PTBR
c. TLB

a. Registers:

o Page table is implemented as a set of dedicated registers

o Very high speed- to make the translation efficient.

o Load and modification of these registers are controlled only by the

operating system.

o Example: DEC PDP-11

Operating Systems 13

II Year - II Semester 2019-20 CSE

o If page table is small-It is satisfactory.

o Most of the computers allow page table to be very large(1 Million entries).

b. PTBR
o Page table is placed in main memory

o PTBR points to the page table.

o Changes in page table-changing in PTBR register.

o Drawback: If we want to access location i, we must first index into the

page table, using the value in the PTBR offset by the page number for ‘i’.

o This task requires a memory access.
o It provides us with the frame number, which is combined with the page

offset to produce the actual address.
o We can then access the desired place in memory.

With this scheme, two memory accesses are needed to access a byte

i. one for the page-table entry

ii. One for the byte).

o The memory access is slowed by a factor of 2. This delay would be

intolerable under most circumstances.

c. The solution for this problem is TLB (Translation Look –aside Buffer),

o It is a special, small, fast lookup hardware cache.

o The TLB is used with page tables; it contains only a few of the page-table

entries.

o When a logical address is generated by the CPU, its page number is

presented to the TLB.

Operating Systems 14

II Year - II Semester 2019-20 CSE

Fig: Paging hardware with TLB.

TLB Miss: If the page number is not in the TLB

TLB Hit: If the page number is in the TLB

Hit Ratio:

 The percentage of times that a particular page number is found in the TLB is

called the hit ratio.

 Example: 80-percent hit ratio means that we find the desired page number in

the TLB 80 percent of the time.

o If it takes 20 nanoseconds to search the TLB and 100 nanoseconds to

access memory, then the mapped-memory access takes 120

nanoseconds when the page number is in the TLB.

o If we fail to find the page number in the TLB (20 nanoseconds), then we

must first access memory for the page table and frame number (100

nanoseconds) and then access the desired byte in memory (100

nanoseconds), for a total of 220 nanoseconds.

o To find the effective we weight the case by its probability:

o Effective access time = 0.80 x 120 + 0.20 x 220

 = 140 nanoseconds.

o In this example, we suffer a 40-percent slowdown in memory-access

time (from 100 to 140 nanoseconds).

Operating Systems 15

II Year - II Semester 2019-20 CSE

o For a 98-percent hit ratio,

 effective access time = 0.98 x 120 + 0.02 x 220

 =122 nano seconds

3.3.3. Protection:
 Memory protection in a paged environment is accomplished by protection bits

associated with each page.

 These bits are kept in the page table. One bit can define a page to be

read/write or read-only.

 Every reference to memory goes through the page table to find the correct

frame number.

 At the same time physical address is computed.

 The protection bits are checked to verify that no writes are being made on

read-only page.

 An attempt is treated as a trap to the operating system.

 One mode bit is added to the page table. Valid/ Invalid bit.

 The OS sets this bit for each page to allow or disallow access to that page. Ex:

A 14-bit address space (0 to16383).

 Addresses in page 0, 1, 2, 3, -----5 are mapped normally through the page

table.

 Any attempt to generate an address in page 6 or 7 is a trap to operating

system.

Fig: Valid (v) or invalid (i) bit in a page table.

Operating Systems 16

II Year - II Semester 2019-20 CSE

3.3.4. Shared Pages:
 Another advantage of paging is the possibility of sharing common code (Time

sharing system).

Fig: Sharing of code in a paging environment.
 Consider a system that supports 40 users, each of which executes a text

editor 30K and 5K for data space. We would need 1400K (35*40).

 If the code is reentrant code it could be shared, three-page editor being

shared among three processes. Each process has its own data page.

 If the code is “reentrant” (pure code) then it never changes during execution.

 Two or more processes can execute the same code at the same time.

 Each process has its own copy of registers and data storage to hold the data

for its execution.

 So we need a copy of the editor (30 K), plus 40 copies of the 5 K of data space

for user, total space required is now 230 K.

 Compilers, assemblers, database systems can also be shared.

Operating Systems 17

II Year - II Semester 2019-20 CSE

3.4. Segmentation:
 The user's view of memory is not the same as the actual physical memory.

 The user's view is mapped onto physical memory segmentation is a memory

management scheme which supports the user view of memory.

3.4.1. Basic method
 A logical address space is a collection of segments. Each segment has a name

and offset within the segment.

Fig: User's view of a program.
 We must define an implementation to map two dimensional user-defined

addresses into one-dimensional physical addresses. This mapping is affected

by a segment table.

Fig: Segmentation hardware.

Operating Systems 18

II Year - II Semester 2019-20 CSE

 Logical address consists of two parts: a segment number, s, and an offset

into that segment, d.

 The segment numbers are used as an index to the segment table.

 Each entry of the segment table has a segment base and a segment limit.

 The offset d of the logical addresses must be between 0 and the segment limit.

If it is not, we trap to the operating system.

3.4.2. Hardware:
 If it is legal, it is added to the segment base address to produce the addresses

in physical memory of the desired word.

 The segment table is array of base/limit register pairs.

Fig: Example of segmentation.
 We have five segments the segment table has separate entry for each

segment.

 The segment table contains the beginning address and the limiting address.

Operating Systems 19

II Year - II Semester 2019-20 CSE

 For example, segment 2 is 400 words long a beginning at 4300. So a

reference word 53 of segment 2 is mapped on the physical address as

4300+53=4353.

PART II: Virtual-Memory Management:

 Virtual memory is a technique that allows the execution of processes that

are not completely in memory.

 One major advantage of this scheme is that programs can be larger than

physical memory.

 Virtual memory abstracts main memory into an extremely large , uniform

array of storage, separating logical memory as viewed by the user from

physical memory.

 This technique frees programmers from the concerns of memory storage

limitations.

 Virtual memory also allows processes to share files easily and to implement

shared memory.

 The instructions that are currently executing must be in physical memory.

 In order to meet this requirement the entire logical address space should

placed in physical memory.

 Dynamic loading can help to ease this requirement.

 In many cases the entire program is not needed in main memory. For

instance consider the following.

 Certain options and features of a program may be used rarely.

 Arrays, lists, and tables are often allocated more memory than they

actually need. Example an array may be declared 100 by 100 elements,

even though it uses 10 by 10 elements.

Benefits of virtual memory:

 A program would no longer be constrained by the amount of physical

memory that is available.

Operating Systems 20

II Year - II Semester 2019-20 CSE

 CPU utilization and throughput will be increased and response time or

turnaround time will be decreased.

 Less I/O would be needed to load or swap each user program into memory,

so each user program would run faster.

 Thus, running a program that is not entirely in memory would benefit both

the system and the user:

Fig: Diagram showing virtual memory that is larger than physical memory.

 Virtual memory involves the separation of logical memory from physical

memory.

 This separation, allows an extremely large virtual memory to be provided for

programmers when only a smaller physical memory is available.

 Virtual memory makes the task of programming much easier.

Virtual address space:

 The virtual address space of a process refers to the logical (or virtual) view of

how a process is stored in memory.

Operating Systems 21

II Year - II Semester 2019-20 CSE

 Here a process begins at a certain logical address say, address 0—and exists

in contiguous memory.

 Physical memory may be organized in page frames, that the physical page

frames assigned to a process may not be contiguous.

 Memory management unit (MMU) to map logical pages to physical page

frames in memory.

Fig: Virtual address space

 Here the heap to grow upward direction memory as it is used for dynamic

memory allocation.

 Similarly, we allow for the stack to grow downward in memory through

successive function calls.

 The large blank space (or hole) between the heap and the stack is part of the

virtual address space but will require actual physical pages only if the heap

or stack grows.

 Virtual address spaces that include holes are known as sparse address

spaces.

 Virtual memory also allows files and memory to be shared by two or more

processes through page sharing. This leads to the following benefits:

Operating Systems 22

II Year - II Semester 2019-20 CSE

 System libraries can be shared by several processes through mapping of

the shared object into a virtual address space.

 Virtual memory enables processes to share memory. Virtual memory

allows one process to create a region of memory that it can share with

another process.

 Virtual memory can allow pages to be shared during process creation with

the fork () system call, thus speeding up process creation.

Fig: Shared library using virtual memory.

3.5. Demand paging:
 Initially load pages only as they are needed. This technique is known as

demand paging and is commonly used in virtual memory systems.

 With demand-paged virtual memory, pages are only loaded when they are

demanded during program execution; pages that are never accessed are

thus never loaded into physical memory.

Fig: Transfer of a paged memory to contagious disk space.

Operating Systems 23

II Year - II Semester 2019-20 CSE

 Demand-paging system is similar to a paging system with swapping where

processes reside in secondary memory (usually a disk).

 When we want to execute a process, we swap it into memory. Rather than

swapping the entire process into memory, however, we use a lazy swapper.

 Lazy swapper: It never swaps a page into memory unless that page will be

needed.

 A swapper manipulates entire processes, whereas a pager is concerned with

the individual pages of a process. Here the word pager is used, rather than

swapper, in connection with demand paging.

3.5.1. Basic Concepts:
 What happens if the process tries to access a page that was not brought into

memory?

 Access to a page marked invalid causes a paging hardware, in translating

the address through the page table, will notice that the invalid bit is set,

causing a trap to the operating system.

 This trap is the result of the operating system's failure to bring the desired

page into memory.

Fig: Page table when some pages are not in memory.

Operating Systems 24

II Year - II Semester 2019-20 CSE

Fig: Steps in handling a page fault.

The procedure for handling this page fault is straightforward:

1) We check an internal table (usually kept with the process control block) for

this process to determine whether the reference was a valid or an Invalid

memory access.

2) If the reference was invalid, we terminate the process. If it was valid, but we

have not yet brought in that page, we now page it in.

3) We find a free frame (by taking one from the free-frame list, for example). We

schedule a disk operation to read the desired page into the newly allocated

frame.

4) When the disk read is complete, we modify the internal table kept with the

process and the page table to indicate that the page is now in memory.

5) We restart the instruction that was interrupted by the trap. The process can

now access the page as though it had always been in memory.

Operating Systems 25

II Year - II Semester 2019-20 CSE

6) Restart the instruction that was interrupted. By the illegal address –trap. The

process can now access the page as if it had always been in the memory.

The hardware is same for paging and swapping

 A page table with the ability to mark an entry invalid through a

valid/invalid bit.

 Secondary memory: This memory holds those pages that are not present in

main memory. The secondary memory is usually a high-speed disk. It is

known as the swap device, and the section of disk used for this purpose is

known swap space.

3.5.2. Performance of Demand Paging:

A page fault causes the following sequence to occur:
1. Trap to the operating system.

2. Save the user registers and process state.

3. Determine that the interrupt was a page fault.

4. Check that the page reference was legal and determine the location of the page

on the disk

5. Issue a read from the disk to a free frame:

a. Wait in a queue for this device until the read request is serviced.

b. Wait for the device seek and/ or latency time.

c. Begin the transfer of the page to a free frame.

6. While waiting, allocate the CPU to some other user (CPU scheduling, optional).

7. Receive an interrupt from the disk I/0 subsystem (I/0 completed).

8. Save the registers and process state for the other user (if step 6 is executed).

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show that the desired page is now in

memory.

11. Wait for the CPU to be allocated to this process again.

12. Restore the user registers, process state, and new page table, and then resume

the interrupted instruction.

Operating Systems 26

II Year - II Semester 2019-20 CSE

3.6. Page Replacement:

 While executing a user process, a page fault occurs.

 The hardware traps to the operating system; which checks its internal

tables to see that this page fault and not an illegal memory access.

 This operating system determines where the desired page is residing on the

backing store, but then finds that there are no free frames on the free-frame

list; all memory is in use.

Fig: Need for Page Replacement

3.6.1. Basic Page Replacement:
 If no frame is free, find one which is not currently being used and free it.

 We can free a frame by writing its contents to the backing store, and

changing the page table (and all other tables) to indicate that the page is no

longer in memory.

 The freed frame can now be used to hold the page for which the process

faulted.

1. Find the location of the desired page on disk

Operating Systems 27

II Year - II Semester 2019-20 CSE

2. Find a free frame:

 - If there is a free frame, use it

 - If there is no free frame, use a page replacement algorithm to select a

victim frame

3. Bring the desired page into the (newly) free frame; update the page and frame

tables

4. Restart the process

 This overhead by the use of a dirty bit.
 Each page or frame may have a dirty bit associated with it in the hardware.

 The modify bit for a page is set by the hardware.

 When we select a page for replacement, we examine its dirty bit.

 If the bit is set, we know that the page has been modified since it was read in

from the baking store.

 In this case, we must write that page to the backing store.

Fig: Page Replacement

 With demand paging, the size of the logical address space is no longer

constrained by physical memory.

Operating Systems 28

II Year - II Semester 2019-20 CSE

 If we have a user process of twenty pages, we can execute it in ten frames

simply by using demand paging
 To implement demand paging two problems to be solved frame-allocation

algorithm and a page-replacement algorithm.
 If page replacement is required, we must select the frames that are to be

replaced.
3.6.2. Page Replacement Algorithms:

 We have to select the algorithm which the lowest page-fault rate.

 An algorithm is evaluated by running it on a particular string of memory

references and computing the number of page faults.

 The string of memory references is called a reference string.

 We can generate reference strings artificially (by using a random-number

generator

3.6.2.1. FIFO Page Replacement:T
 The simplest page-replacement algorithm is a first-in, first-out (FIFO)

algorithm.
 A FIFO replacement algorithm associates with each page the time when that

page was brought into memory.
 When a page must be replaced, the oldest page is chosen.
 We can create a FIFO queue to hold all pages in memory.
 We replace the page at the head of the queue. When a page is brought into

memory, we insert it at the tail of the queue.

Fig: FIFO Page-Replacement algorithm

Operating Systems 29

II Year - II Semester 2019-20 CSE

Belady’s Anomaly:
 The page-fault rate may increase as the number of allocated frames increases.

This phenomenon is called Belady’s Anomaly.

 To illustrate the problems that are possible with a FIFO page-replacement

algorithm, we consider the following reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)-9 page faults

 4 frames-10 page faults

3.6.2.2. Optimal Page Replacement:
 Replace the page that will not be used for the longest period of time.

 Optimal Page Replacement has the lowest page-fault rate of all algorithms

and will never suffer from Belady's anomaly.

Fig: Optimal Page-Replacement algorithm

 For example, on our sample reference string, the optimal page-replacement

algorithm would yield nine page faults.

 The first three references cause faults that fill the three empty frames. The

reference to page 2 replaces page 7, because page 7 will not be used until

reference 18, whereas page 0 will be used at 5, and page 1 at 14.

 The reference to page 3 replaces page 1, as page 1 will be the last of the three

pages in memory to be referenced again.

Operating Systems 30

II Year - II Semester 2019-20 CSE

3.6.2.3. LRU Page Replacement:
 If we use the recent past as an approximation of the near future, then we can

replace then that has not been used for the longest period of time.

 This approach is the approach is known as LRU Page Replacement.

Fig: LRU Page-Replacement algorithm

 The LRU algorithm produces twelve faults.

 The first five faults are the same as those for optimal replacement. When the

reference to page 4 occurs.LRU replacements sees that, of the three frames in

memory, page 2 was used least recently.

 Thus, the LRU algorithm replaces page 2, not knowing that page 2 is about to

be used. When it then faults for page 2, the LRU algorithm replaces page 3,

since it is now the least recently used of the three pages in memory.

 Despite these problems, LRU replacement with twelve faults is much better

than FIFO replacement with fifteen.

3.7. ALLOCATION OF FRAMES:
 Normally, there are fixed amounts of free memory with various processes at

different time in a system.

 The question is how this fixed amount of free memory is allocated among the

different processes.

 The simplest case is the single process system.

 All available memory for user programs can initially be put on the free frame

list (pure demand paging).

Operating Systems 31

II Year - II Semester 2019-20 CSE

 When the user program starts its execution, it will generate a sequence of

page faults.

 The user program would get all free frames from the free frame list.

 As soon as this list was exhausted, and the more free frames are required, the

page replacement algorithm can be used to select one of the in-used pages to

be replaced with the next required page and so on.

 After the program was terminated, all used pages are put on the free frame

list again.

 The frame allocation procedure is more complicated when there are two of

more programs in memory at the same time.

3.7.1. MINIMUM NUMBER OF FRAMES:
 We cannot allocate more than the total number of available frames in the

system.

 On the other hand, there is a minimum number of frames which must be

allocated.

 This minimum number is determined by the instruction architecture.

 It is obvious that we must provide enough frames to hold all the different

pages that any single instruction can reference.

 For example, all memory reference instructions of-a machine have only one

memory address.

 So we need at least one frame for the instruction code and one frame for the

memory reference.

 If one level indirect addressing is allowed, a load instruction on page m can

refer to an address on page. It is an indirect reference to page k.

 We need three pages.

3.7.2. ALLOCATION ALGORITHM:
 The simplest way is to divide m available frames among n processes to give

everyone an equal share, m/n frames.

 This is called equal allocation.

Operating Systems 32

II Year - II Semester 2019-20 CSE

 Various processes will need different amounts of memory. If the equal

allocation is applied, there can be some frames wasted.

 Therefore, other allocation scheme can be used to give available memory to

each process according to its size. This is called, proportional allocation.

 Let the size of the virtual memory for process pi be si, the number of frames

allocated to the process pi be ai, and define

S = ∑ si
 If the total number of available frames is m, then ai can be calculated:

ai = (si/S) * m.
 Of course ai must be adjust to be a integer, greater than the minimum

number of frames required by the instruction set with a sum not exceeding

m.

 In both of these cases, the number of frames allocated to each process may

vary according to the multiprogramming level.
Global versus Local Allocation:

 When it’s necessary to find free page frames, what set of pages should become

candidates for replacement?

 Local replacement policies replace pages that belong to the process that

needs the new frame.

 Global policies consider all unlocked frames. Most systems use global

replacement because it is easy to implement, has minimal overhead, and

performs reasonably well.

 Local Replacement Global Replacement

Fixed

Allocation

Rarely used -A process is given a

fixed number of frames. Page faults

are satisfied from this set.

This combination isn't possible

Variable

Allocation

The process is given a fixed allocation

and pages to be replaced are chosen

from this set. Periodically, the

Replacement pages are chosen

from any page in memory.

Resident set size varies, although

Operating Systems 33

II Year - II Semester 2019-20 CSE

resident, set size is re-evaluated.

Pages can be added or subtracted.

by a blind process. This is the

most common approach

3.8. THRASHING:
 Consider a process which does not have enough frames. It is possible to

reduce the no of allocated frames to the minimum.

 There are some no: of pages that are in active use. if the process does not

have no of frames ,it will very quickly page fault since all of the pages are in

active use.

 It must replace a page which will be needed again a right way,

 Consequently if very quickly faults arrive again and again.

 This high paging activity is called “Trashing”. (A process is trashing if it is

spending more time in paging than executing).

3.8.1. Causes of thrashing
 The OS monitors CPU utilization, if CPU utilization is too low;

 the degree of multiprogramming is increased by introducing a new process to

the system.

 A global page replacement algorithm is used.

 It will create page faults.

 If the graph is drawn between CPU utilization and multiprogramming as the

degree of multiprogramming increases CPU utilization also increases until

maximum reached.

 If degree of multi programming increased further trashing sets and CPU

utilization decreases slowly.

Operating Systems 34

II Year - II Semester 2019-20 CSE

Fig: showing trashing between CPU utilization and degree of
multiprogramming.

 The effect of thrashing can be limited by using a locator priority replacement

algorithm.

 With local replacement if one process starts trashing it cannot steal frames

from another process and cause it to trash also.

 If process are trashing they will be in the queue for paging device most of the

time average service time for page fault increases there by effective access

time increases.

3.8.2. Working-Set Model
   working-set window  a fixed number of page references

Example: 10,000 instruction.

 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent  (varies in time)

1. if  too small will not encompass entire locality

2. if  too large will encompass several localities

3. if  =   will encompass entire program

4. D =  WSSi  total demand frames

 if D > m  Thrashing

 Policy if D > m, then suspend one of the processes

Operating Systems 35

II Year - II Semester 2019-20 CSE

Fig: Working-set model.

 If a page is in active use, it will be in the working set.

 If it is no longer being used, it will drop from the working set 6 time units

after its last reference.

 Thus, the working set is an approximation of the program's locality.

 For example, given the sequence of memory references. If 6 = 10 memory

references, then the working set at time t1 is {1, 2, 5, 6, and 7}.

 By time t2, the working set has changed to {3, 4}.

 The accuracy of the working set depends on the selection of 6. If 6 are too

small, it will not encompass the entire locality; if 6 are too large, it may

overlap several localities

3.8.3. Page-Fault Frequency:
 The specific problem is how to prevent thrashing.
 Thrashing has a high page-fault rate. Thus, we want to control the page-fault

rate.
 When it is too high, we know that the process needs more frames. Conversely,

if the page-fault rate is too low, then the process may have too many frames.
 We can establish upper and lower bounds on the desired page-fault rate
 If the actual page-fault rate exceeds the upper limit, we allocate the process

another frame;
 If the page-fault rate falls below the lower limit, we remove a frame from the

process.
 Thus, we can directly measure and control the page-fault rate to prevent

thrashing.

Operating Systems 36

II Year - II Semester 2019-20 CSE

UNIT-III
Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions
1. An address generated by the CPU is commonly referred as ______________

2. ________________holds smallest legal physical memory address []

A) Limit register B) Relocation register

C) Segment offset D) Segment register

3. _________________specifies size of the range of addresses []

A) Limit register B) Relocation register

C) Segment offset D) Segment register

4. User program never sees the real physical addresses (T/F)

5. ___________ is a solution to external fragmentation. []

A) Compaction B) Blocks C) Thrashing D) frames

6. Breaking physical memory into fixed-sized blocks called []

A) Pages B) Frames C) Partitions D) None

7. Paging Suffers from ______________________ []

A) Internal Fragmentation B) External Fragmentation

C) Both Internal and External Fragmentation D) None

8. Breaking logical memory into blocks of the same size called_____________

9. Segmentation Suffers from ________________________ []

A) Internal Fragmentation B) External Fragmentation

C) Both Internal and External Fragmentation D) None

10. A routine is not loaded until it is called is referred as []

A) Dynamic loading B) Dynamic linking

C) Shared libraries D) Dynamic binding

11. Effective Access Time= ______________________________________

12. In paging logical address is divided into two parts_____________,___________

13. In segmentation logical address is divided into___________,____________

Operating Systems 37

II Year - II Semester 2019-20 CSE

14. Which of the following page replacement algorithms suffers from Belady’s

anomaly? []

A) FIFO B) LRU C) OPTIMAL D) LFU

15. Consider a virtual memory system with FIFO page replacement policy. For an

arbitrary page access pattern, increasing the number of page frames in main

memory will []

A) always decrease the number of page faults

B) always increase the number of page faults

C) sometimes increase the number of page faults

D) never affect the number of page faults (GATE-2001)
16. The optimal page replacement algorithm will select the page that

A) Has not been used for the longest time in the past. []

B) Will not be used for the longest time in the future.

C) Has been used least number of times.

D) Has been used most number of times. (GATE-2002)
17. A virtual memory system uses First In First Out (FIFO) page replacement policy

and allocates a fixed number of frames to a process. Consider the following

statements. []

P: Increasing the number of page frames allocated to a process sometimes

increases the page fault rate.

Q: Some programs do not exhibit locality of reference.

 Which one of the following is TRUE?
A) Both P and Q are true, and Q is the reason for P

B) Both P and Q are true, but Q is not the reason for P.

C) P is false, but Q is true

D) Both P and Q are false (GATE-2007)
18. The essential content(s) in each entry of a page table is / are

A) Virtual page number []

B) Page frame number

C) Both virtual page and page frame number

Operating Systems 38

II Year - II Semester 2019-20 CSE

D) Access right information (GATE-2009)
19. Dirty bit for a page in a page table []

A) helps avoid unnecessary writes on a paging device

B) helps maintain LRU information

C) allows only read on a page

D) None of the above (ISRO 2015)
20. Consider a 32-bit machine where four-level paging scheme is used. If the hit

ratio to TLB is 98%, and it takes 20 nanosecond to search the TLB and 100

nanoseconds to access the main memory what is effective memory access time in

nanoseconds? []

A) 126 B) 128 C) 122 D) 120

 (ISRO 2011)
21. A page fault []

A) Occurs when a program accesses an available page on memory

B) is an error in a specific page

C) is a reference to a page belonging to another program

D) occurs when a program accesses a page not currently in memory

 (ISRO2009)
22. The page replacement algorithm which gives the lowest page fault rate is

 []

A) LRU B) FIFO C) Optimal page replacement D) Second chance algorithm

 (ISRO 2008)
23. Which of the following statements are true? []

a) External Fragmentation exists when there is enough total memory space to

satisfy a request but the available space is contiguous.

b) Memory Fragmentation can be internal as well as external.

c) One solution to external Fragmentation is compaction. (NET 2018)
A) (a) and (b) only B) (a) and (c) only

C) (b) and (c) only D) (a), (b) and (c)

Operating Systems 39

II Year - II Semester 2019-20 CSE

24. Consider the following segment table in segmentation scheme:

Segment Base Limit

0 200 200

1 500 12510

2 1527 498

3 2500 50

What happens if the logical address requested is -Segment Id 2 and offset 1000?
 []

A) Fetches the entry at the physical address 2527 for segment Id2

B) A trap is generated

C) Deadlock

D) Fetches the entry at offset 27 in Segment Id 3 (ISRO2015)

SECTION-B

Descriptive Questions
1. Compare need of swap-in and swap-out operations?
2. Explain about MVT and MFT in detail?
3. Briefly explain the concept of contiguous memory allocation.
4. Classify two Counting-Based page replacement algorithms.
5. Explain paging scheme for memory management, discuss the paging hardware

and paging model.
6. Differentiate Internal and External fragmentation.
7. With a neat diagram explain how segmentation works?
8. What is the necessity of Demand Paging?
9. Illustrate the concepts of demand paging? Why it is called as lazy swappers?
10. Demonstrate in detail Copy-on-Write technique?
11. Summarize various page replacement algorithms?

a) FIFO b) LRU c) LFU d) OPTIMAL
12. Define thrashing. Explain working set window model to handle thrashing
 problem.
13. Compare and Contrast First Fit, Best Fit and Worst Fit.
14. Illustrate the concept of Segmentation with neat Sketch.

Operating Systems 40

II Year - II Semester 2019-20 CSE

Problems:

1. Find the number of page faults in FIFO and LRU page replacement algorithms for
the following reference string;

 7 0 2 1 3 4 2 1 0 2 1 4 3 2 1 0 0 1 2 1 (no. of frames=3)

2. Make use of the reference string 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1. Identify
number of page faults using (Assume that there are 3 page frames which are
initially empty) LRU, Optimal page replacement algorithms.

3. Make use of the reference string 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1. Identify

number of page faults using FIFO page replacement algorithm. Assume that there
are 3 page frames which are initially empty.

4. Explain Optimal page replacement algorithm. Apply the same to find out page
faults for the reference string 1,2,3,4,5,3,2,1,6,7,8,7,6,9,1,2,4,3,5 by assuming
frame size as 4.

5. Consider the following reference 1,2,3,4,5,3,2,1,6,7,8,7,6,9,1,2,4,3,5 String,
How many Page Faults would occur for LRU and FIFO Page Replacement
Algorithms for frame size of 3.

6. Consider a logical address space of 8 pages of 1024 words mapped into memory
of 32 frames. How many bits are there in the logical address?

7. Consider the following page reference string : 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7,
6, 3, 2, 1, 2, 3, 6. Which of the following options, gives the correct number of
page faults related to LRU, FIFO, and optimal page replacement algorithms
respectively, assuming 05 page frames and all frames are initially empty ?

8. A computer has 16 pages of virtual address space but the size of main memory is

only four frames. Initially the memory is empty. A program references the virtual
pages in the order 0, 2, 4, 5, 2, 4, 3, 11, 2, 10. How many page faults occur if
LRU page replacement algorithm is used?

9. Consider a virtual page reference string 1, 2, 3, 2, 4, 2, 5, 2, 3, 4. Suppose LRU
page replacement algorithm is implemented with 3 page frames in main memory.
Then the number of page faults are___.

Operating Systems 41

II Year - II Semester 2019-20 CSE

10. A system uses 3 page frames for storing process pages in main memory. It uses

the Least Recently Used (LRU) page replacement policy. Assume that all the page
frames are initially empty. What is the total number of page faults that will occur
while processing the page reference string given below? 4, 7, 6, 1, 7, 6, 1, 2, 7,
2

SECTION-C

I. QUESTIONS AT THE LEVEL OF GATE

1. Suppose that the virtual Address space has eight pages and physical memory

with four page frames. If LRU page replacement algorithm is used, _____ number
of page faults occur with the reference string.0 2 1 3 5 4 6 3 7 4 7 3 3 5 5 3 1 1 1
7 2 3 4 1 []
A) 13 B) 12 C) 11 D) 10 (NET 2016)

2. Consider the data given in above question. Least Recently Used (LRU) page
replacement policy is a practical approximation to optimal page replacement. For
the reference string 1, 2, 1, 3, 7, 4, 5, 6, 3, 1, how many more page faults occur
with LRU than with the optimal page replacement policy? []
A) 0 B) 1 C) 2 D) 3 (GATE 2017)

3. Consider six memory partitions of size 200 KB, 400 KB, 600 KB, 500 KB, 300 KB,
and 250 KB, where KB refers to kilobyte. These partitions need to be allotted to
four processes of sizes 357 KB, 210 KB, 468 KB and 491 KB in that order. If the
best fit algorithm is used, which partitions are NOT allotted to any process?
 []
A) 200 KB and 300 KB B) 200 KB and 250 KB

 C) 250 KB and 300 KB D) 300 KB and 400 KB (GATE 2015)

4. Assume that there are 3 page frames which are initially empty. If the page

reference string is 1, 2, 3, 4, 2, 1, 5, 3, 2, 4, 6, the number of page faults using the
optimal replacement policy is________. []
A) 5 B) 6 C) 7 D) 8 (GATE 2014)

5. Consider the virtual page reference string 1, 2, 3, 2, 4, 1, 3, 2, 4, 1 On a demand
paged virtual memory system running on a computer system that main memory
size of 3 pages frames which are initially empty. Let LRU, FIFO and OPTIMAL

Operating Systems 42

II Year - II Semester 2019-20 CSE

denote the number of page faults under the corresponding page replacements
policy. Then []
A) OPTIMAL < LRU < FIFO B) OPTIMAL < FIFO < LRU
C) OPTIMAL=LRU D) OPTIMAL=FIFO (GATE 2012)

6. Assume that a main memory with only 4 pages, each of 16 bytes, is initially
empty. The CPU generates the following sequence of virtual addresses and uses
the Least Recently Used (LRU) page replacement policy. 0, 4, 8, 20, 24, 36, 44,
12, 68, 72, 80, 84, 28, 32, 88, 92. How many page faults does this sequence
cause? What are the page numbers of the pages present in the main memory at
the end of the sequence? []
A) 6 and 1, 2, 3, 4 B) 7 and 1, 2, 4, 5
C) 8 and 1, 2, 4, 5 D) 9 and 1, 2, 3, 5 GATE2008)

7. A process has been allocated 3 page frames. Assume that none of the pages of the

process are available in the memory initially. The process makes the following
sequence of page references (reference string): 1, 2, 1, 3, 7, 4, 5, 6, 3, 1. If optimal
page replacement policy is used, how many page faults occur for the above
reference string? []
A) 7 B) 8 C) 9 D) 10 (GATE-2007)

8. Consider a fully associative cache with 8 cache blocks (numbered 0-7) and the
following sequence of memory block requests: 4, 3, 25, 8, 19, 6, 25, 8, 16, 35,
45, 22, 8, 3, 16, 25, 7. If LRU replacement policy is used, which cache block will
have memory block 7? []
A) 4 B) 5 C) 6 D) 7 (GATE 2004)

Operating Systems 1

II Year - II Semester 2019-20 CSE

Unit – IV

Deadlocks and Mass-storage structure

Objectives:

• Students will be able to know the problems of deadlock and study the

various avoidance mechanisms
Syllabus: Deadlocks and Mass-storage structure
Deadlocks-

 System model

 Deadlock characterization: Necessary conditions, Resource-Allocation

Graph

 Methods for handling deadlocks:

o deadlock- prevention

o Avoidance: Safe state, Resource-Allocation-Graph, Banker’s

Algorithm

o Detection: single instance of each resource type, several

instances of a resource type

o Recovery

 process termination

 resource pre-emption

Mass-storage structure- Overview (Magnetic disks, Magnetic tapes), Disk

Scheduling (FCFS, SSTF, SCAN, C-SCAN, LOOK, C-LOOK Scheduling), Disk

Management (Disk Formatting, Boot blocks, Bad blocks).

Outcomes:
Students will be able to

• Develop a description of deadlocks, which prevent sets of concurrent

processes from completing their tasks

• Present a number of different methods for preventing or avoiding

deadlocks in a computer system.

Operating Systems 2

II Year - II Semester 2019-20 CSE

Learning Material

4.1. System Model:
Definition of Deadlock:

 In a multiprogramming environment several processors may compete

for a finite number of resources.

 A process requests resources and are not available at that time.

 So the process enters into waiting state sometimes the waiting process

can never change its state.

 This situation is called a deadlock.

Under the normal mode of operation, a process may utilize a resource in

only the following sequence:

 Request:
o The process requests the resource.

o If the request cannot be granted immediately. Then the

requesting process must wait until it can acquire the resource.

 Use:

o The process can operate on the resource (for example, if the

resource is a printer, the process can print on the printer).

 Release: The process releases the resource.

 The resources may be either physical resources (for example, printers,

tape drives, memory space, and CPU cycles) or logical resources (for

example, files, semaphores, and monitors).

Deadlock Examples:
Example 1:

o Consider a system with three CD RW drives.

o Suppose each of three processes holds one of these CD RW

drives.

o If each process now requests another drive, the three processes

will be in a deadlocked state.

Operating Systems 3

II Year - II Semester 2019-20 CSE

Example 2:

oo Consider a system with one printer and one DVD drive.

oo Suppose that process Pi is holding the DVD and process Pj is

holding the printer.

oo If Pi requests the printer and Pj requests the DVD drive, a

deadlock occurs.

4.2. Deadlock Characterization

4.2.1. Necessary Conditions:
There are four conditions that are necessary for the occurrence of a

deadlock:

1. Mutual Exclusion:
o At least one resource must be held in a non-sharable mode;

o If any other process requests this resource, then that process

must wait for the resource to be released.

2. Hold and Wait:
o A process must be simultaneously holding at least one resource

and waiting for at least one resource that is currently being held

by some other process.

3. No preemption:
o Once a process is holding a resource (i.e. once its request has

been granted), then that resource cannot be taken away from

that process until the process voluntarily releases it.

4. Circular Wait:
o A set of processes { P0, P1, P2, . . ., PN } must exist such that

every P[i] is waiting for P[(i + 1) % (N + 1)].

4.2.2. Resource-Allocation Graph:
 In some cases deadlocks can be understood more clearly through

the use of Resource Allocation Graphs.

 RAG contains the following properties:

o A set of resource categories, { R1, R2, R3, . . ., RN }, which

appear as square nodes on the graph.

Operating Systems 4

II Year - II Semester 2019-20 CSE

o Dots inside the resource nodes indicate specific instances of the

resource. (E.g. two dots might represent two laser printers.)

o A set of processes, { P1, P2, P3, . . ., PN }

o Request Edge:
 A set of directed arcs from Pi to Rj, indicating that process

Pi has requested Rj, and is currently waiting for that

resource to become available.

o Assignment Edge:
 A set of directed arcs from Rj to Pi indicating that resource

Rj has been allocated to process Pi, and that Pi is currently

holding resource Rj.

 Note that a request edge can be converted into an

assignment edge by reversing the direction of the arc when

the request is granted.

Note:

 If a resource allocation graph contains no cycles, then the system is

not deadlocked.

 If a resource allocation graph does contain cycles AND each resource

category contains only a single instance, then a deadlock exists.

 If a resource category contains more than one instance, then the

presence of a cycle in the resource allocation graph indicates the

possibility of a deadlock, but does not guarantee one.

Fig: Resource allocation graph

Operating Systems 5

II Year - II Semester 2019-20 CSE

 The content of above resource-allocation graph is represented as

follows:

o The sets P, R and E:

 P == {P1, P2, P3}

 R== {R1, R2, R3}

 E == {Pl Rl, p2 R3, Rl p2, R2p2, R2Pl, R3 P3}

o Resource instances:

 One instance of resource type R1

 Two instances of resource type R2

 One instance of resource type R3

 Three instances of resource typeR4

o Process states:

 Process P1 is holding an instance of resource type R2 and is

waiting for an instance of resource type R1.

 Process P2 is holding an instance of R1 and an instance of R2

and is waiting for an instance of R3.

 Process P3 is holding an instance of R3 .

Fig: Resource allocation graph with a deadlock

Operating Systems 6

II Year - II Semester 2019-20 CSE

Fig: Resource allocation graph with a cycle but no deadlock

 In this example, we also have a cycle However, there is no deadlock.

 Observe that process P4 may release its instance of resource type R2.

 That resource can then be allocated to P3, breaking the cycle.

o If a resource-allocation graph does not have a cycle, then the

system is not in a deadlocked state. If there is a cycle, then the

system may or may not be in a deadlocked state

4.3. Methods for Handling Deadlocks
Generally, the deadlock problem can be handled in one of three ways:

 We can use a protocol to prevent or avoid deadlocks, ensuring that the

system will never enter a deadlocked state.

 We can allow the system to enter a deadlocked state, detect it, and

recover.

 We can ignore the problem altogether and pretend that deadlocks

never occur in the system.

4.3.1. Deadlock- Prevention:
 By ensuring that at least one of these conditions cannot hold, we can

prevent the occurrence of a deadlock.

4.3.1.1. Mutual Exclusion:
 The mutual-exclusion condition must hold for non-sharable

resources. For ex: a printer cannot be simultaneously shared by

several processes.

 Sharable resources, in contrast, do not require mutually exclusive

access and thus cannot be involved in a deadlock.

Operating Systems 7

II Year - II Semester 2019-20 CSE

 Read-only files are a good example of a sharable resource. If several

processes attempt to open a read-only file at the same time, they can

be granted simultaneous access to the file. A process never needs to

wait for a sharable resource.

 We cannot prevent deadlocks by denying the mutual exclusion

condition, because some resources are strictly sharable.

4.3.1.2. Hold and Wait
 To ensure that the hold-and-wait condition never occurs in the

system, we must guarantee that, whenever a process requests a

resource, it does not hold any other resources.

o One protocol that can be used requires each process to request

and be allocated all its resources before it begins execution.

o An alternative protocol allows a process to request resources

only when it has none.

 A process may request some resources and use them.

 Before it can request any additional resources it must release

all the resources that it is currently allocated.

Example:

o To illustrate the difference between these two protocols:

o We consider a process that copies data from a DVD drive to a

file on disk, sorts the file, and then prints the results to a

printer.

According to Protocol 1:

o If all resources must be requested at the beginning of the

process, then the process must initially request the DVD drive,

disk file, and printer.

o It will hold the printer for its entire execution, even though it

needs the printer only at the end.

According to Protocol 2:

o The process to request initially only the DVD drive and disk file.

o It copies from the DVD drive to the disk and then releases both

the DVD drive and the disk file.

Operating Systems 8

II Year - II Semester 2019-20 CSE

o The process must then again request the disk file and the

printer.

o After copying the disk file to the printer, it releases these two

resources and terminates.

Both these protocols have two main disadvantages:

 First, resource utilization may be low, since resources may be

allocated but unused for a long period.

 Second, starvation is possible.

o A process that needs several popular resources may have to

wait indefinitely, because at least one of the resources that it

needs is always allocated to some other process.

4.3.1.3. No Pre-emption
 Pre-emption of process resource allocations can prevent this condition

of deadlocks, when it is possible.

 Approach 1:

o If a process is forced to wait when requesting a new resource,

then all other resources previously held by this process are

implicitly released, forcing this process to reacquire the old

resources along with the new resources in a single request,

similar to the previous discussion.

 Approach 2:

o When a resource is requested and it is not available, then the

system looks to see what other processes currently have those

resources and are blocked itself and waiting for some other

resource.

o If such a process is found, then some of their resources may get

pre empted and added to the list of resources for which the

process is waiting.

o Either of these approaches may be applicable for resources

whose states are easily saved and restored, such as registers

and memory, but are generally not applicable to other devices

such as printers and tape drives.

Operating Systems 9

II Year - II Semester 2019-20 CSE

4.3.1.4. Circular Wait
 One way to avoid circular wait is to number all resources, and to

require that processes request resources only in strictly increasing (or

decreasing) order.

 In other words, in order to request resource Rj, a process must first

release all Ri such that i >=j.

 One big challenge in this scheme is determining the relative ordering

of the different resources.

4.3.2. Deadlock Avoidance:
 The most useful model requires that each process declare the

maximum number of each type that it need.

 We can construct an algorithm that ensure the system will never enter

into deadlock by giving the priori information about the maximum

number of resources of each type that may requested for each

process.

 A deadlock avoidance algorithm dynamically check the resource

allocation state to ensure that the system never enter into a deadlock.

 The resource-allocation state is defined by the number of available

and allocated resources, and the maximum demands of the processes.

4.3.2.1. Safe State

 A state is safe if the system can allocate resources to each process in

some order and still avoid a deadlock.

 A sequence of processes <p1,p2,…….pn> is a safe sequence for all the

current allocation state if , for each pi, the resource that pi can still

request can be satisfied by the current available resource plus the

resources held by all pj, with j<i.

 In this situation the resources that process pi needs are not

immediately available, and then pi can wait until all pj have finished,

Operating Systems 10

II Year - II Semester 2019-20 CSE

pi can obtain all of its needed resources, completed its designated

task, and return it’s all allocated resources, and terminates.

 When pi terminates, pi+1 can obtain its needed resources, and so on. If

no such sequence exists, then system state is said to be unsafe.

Fig: safe, unsafe, and deadlock state space

4.3.2.2. Resource-Allocation Graph Algorithm:
 In addition to request and assignment edges, the other edge is claim

edge.

Fig: Resource-allocation graph for deadlock avoidance

 A claim edge Pi->Rj is represents that process pi may request Rj at

some time in the future. This claim edge is converted to request edge.

 Similarly, when Rj is released by Pi, the assignment edge Rj->Pi is

reconverted to a claim edge Pi->Rj.

Operating Systems 11

II Year - II Semester 2019-20 CSE

 Here note that the resources must be claimed a prior in the system.

That is, before process pi starts executing, all its claim edges must

appear in resource allocation graph.

 We can relax this condition by allowing a claim edge Pi->Rj to be added

to the graph only if all the edges associated with process pi are claim

edges.

 Suppose Pi request resource Rj. The request can be granted only if

converting the edge Pi->Rj to an assignment edge Rj->Pi does not result

in the formation of a cycle in the resource allocation graph.

 If no cycle exists, then the resource allocation will leave the system

safely. If cycle is found the system leads to unsafe state.

 From the below graph, P2 requests R2. Although R2 is currently free,

we cannot allocate it to P2. Since this action will create a cycle in the

graph.

 A cycle that indicates the system is in an unsafe state. If P1 request

R2, and P2 request R1, then a deadlock will occur.

Fig: An unsafe state in a resource-allocation graph

Note: The resource-allocation-graph algorithm is not applicable to a

resource allocation system with multiple instances of each resource

type.

Operating Systems 12

II Year - II Semester 2019-20 CSE

44..33..22..33.. Banker’s Algorithm::
 The name was chosen because the algorithm could be used in a

banking system to ensure that the bank never allocated its available

cash in such a way that it could no longer satisfy the needs of all its

customers.

 When a new process enters the system, it must declare the maximum

number of instances of each resource type that it may need.

 This number may not exceed the total number of resources in the

system.

 System has M resources and N processes

Data structures:

 Available:
 A vector of length m indicates the number of available resources

of each type.

 If Available[j] equals k, then k instances of resource type Ri are

available.

 Max:
 An n x m matrix defines the maximum demand of each process.

 If Max[i] [j] equals k, then process Pi may request at most k

instances of resource type Rj.

 Allocation:
 An n x m matrix defines the number of resources of each type

currently allocated to each process.

 If Allocation[i][j] equals k, then process Pi is currently allocated k

instances of resource type Rj.

 Need:
 An n x m matrix indicates the remaining resource need of each

process.

 If Need[i][j] equals k, then process Pi may need k more instances

of resource type Rj to complete its task. Note that Need[i][j]

equals Max[i][j]- Allocation [i][j].

Operating Systems 13

II Year - II Semester 2019-20 CSE

4.3.2.3.1. Safety Algorithm
 This algorithm for finding out whether or not a system is in a safe

state. This algorithm can be described as follows:

1. Let Work and Finish be vectors of length m and n, respectively.

Initialize Work= Available and Finish[i] =false for i = 0, 1, ... , n - 1.

2. Find an index i such that both

 a. Finish[i] ==false

 b. Needi <= Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

Go to step 2.

4. If Finish[i] ==true for all i, then the system is in a safe state.

This algorithm may require an order of m x n2 operations to determine

whether a state is safe.

4.3.2.3.2. Resource-Request Algorithm:
 This algorithm for determining whether requests can be safely

granted.

 Let Requesti be the request vector for process Pi.

 If Requesti [j]==k, then process Pi wants k instances of resource type Rj.

 When a request for resources is made by process Pi, the following

actions are taken:

1. If Requesti <=Needi, go to step 2. Otherwise, raise an error condition,

since the process has exceeded its maximum claim.

2. If Requesti <=Available, go to step 3. Otherwise, Pi must wait, since

the resources are not available.

3. Have the system pretend to have allocated the requested resources to

process Pi by modifying the state as follows:

Operating Systems 14

II Year - II Semester 2019-20 CSE

Available= Available- Requesti;

Allocationi =Allocationi +Requesti;

Needi =Needi- Requesti;

 If the resulting resource-allocation state is safe, the transaction is

completed, and process Pi is allocated its resources.

 However, if the new state is unsafe, then Pi must wait for Requesti, and

the old resource-allocation state is restored.

4.3.2.3.3. An Illustrative Example:
 To illustrate the use of the banker's algorithm, consider a system with

 Five processes Po through P4

 Three resource types A, B, and C.

 Resource type A has 10 instances, resource type B has 5

instances, and resource type C has 7 instances.

 Suppose that, at time T0 , the following snapshot of the system

has been taken:

 The system is in a safe state since the sequence < P1, P3, P4, P2,

P0> satisfies safety criteria.

4.3.3. Deadlock Detection:
 If the system does not employ either deadlock prevention or deadlock

avoidance algorithms then Deadlock situation may occur.
 In this situation, the system must provide:

Operating Systems 15

II Year - II Semester 2019-20 CSE

 An algorithm checks the state of the system to determine whether a

deadlock has occurred.

 An algorithm to recover from deadlock.

4.3.3.1. Single Instance of Each Resource Type
 If all resources are only one single instance, then we define a deadlock

detection algorithm that uses wait-for graph.

 We obtain this graph by removing nodes of type resource and

collapsing the appropriate edges.

 An edge from pi to Pj in a wait for graph implies that process Pi is

waiting for process Pj to release a resource that Pi needs.

 An edge Pi->Pj exists in a wait for graph if and only if the

corresponding resource allocation graph contains two edges Pi->Rq

and Rq->Pj for some resource Rq.

 Resource- Allocation Graph Corresponding Wait-for Graph
 A deadlock exists in the system if and only if the wait-for graph

contains a cycle.

 To detect deadlocks, the system needs to maintain the wait-for graph

and periodically to invoke an algorithm that searches for a cycle in the

graph.

 An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph.

Operating Systems 16

II Year - II Semester 2019-20 CSE

4.3.3.2. Several Instances of a Resource Type
 The wait-for graph is not applicable for multiple instances of each

resource type.

 The deadlock detection algorithm is applicable for multiple instances

of a resource type.

 This algorithm uses several data structures that are similar to

banker’s algorithm

 Available: it indicates the number of available resources of each type.

 Allocation: it defines the number of resources of each type currently

allocated to each process.

 Request: it tells the current request of each process.

Detection Algorithm:
1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish[i] == false, for some i, 1  i < n, then the system is in deadlock

state. Moreover, if Finish[i] == false, then Pi is deadlocked.

 Example:

 To illustrate this algorithm, we consider a system with five processes

Po through P4 and three resource types A, B, and C.

 Resource type A has seven instances, resource type B has two

instances, and resource type C has six instances.

 Suppose that, at time T0, we have the following resource-allocation

Operating Systems 17

II Year - II Semester 2019-20 CSE

state:

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

 If P2 requests an additional instance of type C

State of system:

 Can reclaim resources held by process P0, but insufficient resources

to fulfill other processes; requests.

 Deadlock exists, consisting of processes P1, P2, P3, and P4.

4.3.3.3. Detection-Algorithm Usage:
We invoke detection algorithms based on two factors:

1) How often is a deadlock likely to occur?

2) How many processes will be affected by deadlock when it happens?

 If the deadlock occurs frequently, then the detection algorithm should

be invoked frequently.

 Resource allocated to deadlocked processes will be idle until the

deadlock can be broken.

 Deadlocks occur only when some process makes a request that can’t

be granted every time.

Operating Systems 18

II Year - II Semester 2019-20 CSE

 We could invoke detection algorithm every time a request for

allocation cannot be granted immediately.

 In this case we can identify the process not only the set of processes

that is deadlocked but also the specific process that caused the

deadlock.

 Invoking deadlock detection algorithm for every request may incur a

overhead.

 The alternative is invoking the algorithm at less frequent intervals. For

example, once per hour, or whenever CPU utilization drops below 40

percentage.

4.3.4. Recovery from Deadlock:
There are three basic approaches to recovery from deadlock:

1. Inform the system operator, and allow him/her to take manual

intervention.

2. Terminate one or more processes involved in the deadlock

3. Preempt resources

4.3.4.1. Process Termination
 Two basic approaches, both of which recover resources allocated to

terminate processes:

Abort all deadlocked processes: Terminate all processes involved in

the deadlock. This definitely solves the deadlock, but at the expense of

terminating more processes than would be absolutely necessary.

Abort one process at a time until the deadlock cycle is
eliminated: Terminate processes one by one until the deadlock is

broken. This is more conservative, but requires doing deadlock

detection after each step.

 In the second case there are many factors that can go into deciding

which processes to terminate next:

1. Process priorities.

2. How long the process has been running, and how close it is to

finishing.

3. How many and what type of resources is the process holding.

Operating Systems 19

II Year - II Semester 2019-20 CSE

4. How many more resources does the process need to complete.

5. How many processes will need to be terminated?

6. Whether the process is interactive or batch.

7. Whether or not the process has made non restorable changes to

any resource.

4.3.4.2. Resource Pre emption:

 When preempting resources to relieve deadlock,
There are three important issues to be addressed:

Selecting a victim deciding
 Which resources to pre-empt from which processes involves many

of the same decision criteria outlined above.

Rollback
 After preemption of resources from a process, what should be done

with that process?

 It is missing some needed resource. So, it cannot continue its

execution normally.

 We must roll back the process to some safe state and restart it

from that state.

 Unfortunately it can be difficult or impossible to determine what

such a safe state is, and so the only solution is total roll back.

 Abort the process and then restart it, although it is effective to

rollback as necessary to break the deadlock.

Starvation
 How do you guarantee that a process won't starve because its

resources are constantly being pre empted?

 In a system if selecting a victim is based on cost factor, it may

happen that the same process is always picked as a victim.

 We must ensure that a process can be picked as a victim only a

finite number of times.

 Solution: include number of rollbacks in cost factor

Operating Systems 20

II Year - II Semester 2019-20 CSE

PART II: Mass-Storage Structure
4.4. Overview of Mass-Storage Structure
4.4.1. Magnetic Disks
Traditional magnetic disks have the following basic structure:

 It provides the bulk of secondary storage.

 Disks are relatively simple

 Each disk platter has a flat circular shape like CD

 Platter diameter ranges from 1.8 to 5.25

 The two surfaces of a platter are covered with magnetic material.

 We store information by recording magnetically on the platters.

 A read-write head flies just above each surface of every platter.

 Heads are attached to a disk arm that moves all the heads as a unit.

 The surface of a platter is logically divided into circular tracks

 Tracks are subdivided into sectors.

 The set of arcs that are at one arm position makes up a cylinder.

 The storage capacity of common disk drives is measured in giga bytes.

 When disk is in use a drive motor spins at high speed

 Drives rotate at 60 to 250 times per second

 Transfer rate is rate at which data flow between drive and computer

 Positioning time (random-access time) is time to move disk arm to

desired cylinder (seek time) and time for desired sector to rotate

under the disk head (rotational latency)

 Head crash results from disk head making contact with the disk

surface.

 A head crash cannot be repaired; the entire disk must be replaced.

 Disks can be removable

 Drive attached to computer via I/O bus

 Busses vary, including

 EIDE(Enhanced integrated drive electronics),
 ATA(Advanced technology attachment),
 SATA(Serial ATA),
 USB,

Operating Systems 21

II Year - II Semester 2019-20 CSE

 Fiber Channel,
 SCSI.

 Data transfers on a bus are carried out by special electronic
processors called controllers.

 Host controller in computer uses bus to talk to disk controller built

into drive or storage array.

 To perform disk I/O operation,

 Computer  sends command to  host controller  sends that

command via messages to  disk controller Operates the

disk drive hardware to complete the command

Figure 1.1 - Moving-head disk mechanism

4.4.2. Magnetic Tapes
 Magnetic tapes were once used for common secondary storage before

the days of hard disk drives.

 These are relatively permanent and holds large quantities of data

 Today these are used primarily for backup, storage of infrequently-

used data and acts as a medium for transferring information from one

system to another.

 Access time is slow compared to main memory and magnetic disk

Operating Systems 22

II Year - II Semester 2019-20 CSE

 Accessing a particular spot on a magnetic tape can be slow, but once

reading or writing commences, access speeds are comparable to disk

drives.

 Capacities of tape drives can range from 20 to 200 GB, and

compression can double that capacity.

4.5. Disk Scheduling

 One of the responsibilities of operating system is to use the hardware

efficiently.

 For the disk drive meeting this responsibility is having fast access

time and large disk bandwidth.

 Access time= Seek time +Rotational Latency

 Disk Bandwidth=Total number of bits transferred, divided by the total

time between the first request for service and the completion of the

last transfer.

 We can improve both the access time and the bandwidth by

scheduling the servicing of disk I/O requests in a good manner.

 Several algorithms exist to schedule the servicing of disk I/O requests

 We illustrate scheduling algorithms with a request queue (0-19
 Set of requests: 98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53
4.5.1. FCFS Scheduling

 First-Come First-Serve is simple and intrinsically fair, but not very

efficient.

 Consider in the following sequence the wild swing from cylinder 122 to

14 and then back to 124:

Figure: FCFS disk scheduling.

Operating Systems 23

II Year - II Semester 2019-20 CSE

4.5.2. SSTF Scheduling

 Shortest Seek Time First scheduling is more efficient, but may lead

to starvation if a constant stream of requests arrives for the same

general area of the disk.

 SSTF reduces the total head movement to 236 cylinders, down from

640 required for the same set of requests under FCFS.

Figure: SSTF disk scheduling.

4.5.3. SCAN Scheduling

 The SCAN algorithm also known as the elevator algorithm

 The disk arm starts at one end of the disk, and moves toward the

other end, servicing requests until it gets to the other end of the disk,

where the head movement is reversed and servicing continues.

Figure: SCAN disk scheduling.

Operating Systems 24

II Year - II Semester 2019-20 CSE

4.5.4. C-SCAN Scheduling
 The Circular-SCAN algorithm improves upon SCAN by treating all

requests in a circular queue fashion - Once the head reaches the end

of the disk, it returns to the other end without processing any

requests, and then starts again from the beginning of the disk:

Figure: C-SCAN disk scheduling.

4.5.5. LOOK Scheduling
 LOOK scheduling improves upon SCAN by looking ahead at the queue

of pending requests, and not moving the heads any farther towards

the end of the disk than is necessary. The following diagram

illustrates the circular form of LOOK:

4.5.6. C-LOOK Scheduling:
 LOOK a version of SCAN, C-LOOK a version of C-SCAN.

 Arm only goes as far as the last request in each direction, then

reverses direction immediately, without first going all the way to the

end of the disk

Operating Systems 25

II Year - II Semester 2019-20 CSE

Figure: C-LOOK disk scheduling.

4.6. Disk Management:

4.6.1. Disk Formatting:
 Before a disk can be used, it has to be low-level formatted, which

means laying down all of the headers and trailers marking the

beginning and ends of each sector.

 Low-level formatting, or physical formatting — Dividing a new

disk into sectors that the disk controller can read and write

o This formatting fills the disk with a special data structure for

each sector

o Each sector can hold header information + data + Trailer

o Header and trailer contain information used by the disk

controller

 Sector number

 ECC (Error correcting code)

Operating Systems 26

II Year - II Semester 2019-20 CSE

 Controller –Write a sector -Update ECC with a value calculated based

on data.

 Read a sector- recalculate ECC-compare with the stored value

 If stored value mismatch with recalculated value –data is corrupted

in sector-Bad sector

 ECC- contains enough information if a few number of bits are

corrupted.

 Controller can identify which bits are changed and calculate their

correct values.

 The controller automatically does ECC processing whenever a sector

is read or written.

4.6.2. Boot Blocks:
 Computer ROM contains a bootstrap program (OS independent) with

just enough code to find the first sector on the first hard drive on the

first controller, load that sector into memory, and transfer control

over to it.

 The first sector on the hard drive is known as the Master Boot

Record, MBR, and contains a very small amount of code in addition

to the partition table.

 The partition table documents how the disk is partitioned into logical

disks, and indicates specifically which partition is

the active or boot partition.

Operating Systems 27

II Year - II Semester 2019-20 CSE

 The boot program then looks to the active partition to find an

operating system, possibly loading up a slightly larger / more

advanced boot program along the way.

 In a dual-boot (or larger multi-boot) system, the user may be given a

choice of which operating system to boot, with a default action to be

taken in the event of no response within some time frame.

 Once the kernel is found by the boot program, it is loaded into

memory and then control is transferred over to the OS.

 The kernel will normally continue the boot process by initializing all

important kernel data structures, launching important system

services (e.g. network daemons, sched, init, etc.), and finally

providing one or more login prompts.

 Boot options at this stage may include single-

user a.k.a. maintenance or safe modes, in which very few system

services are started - These modes are designed for system

administrators to repair problems or otherwise maintain the system.

Figure: Booting from disk in Windows 2000.

4.6.3. Bad Blocks:

 No disk can be manufactured to 100% perfection, and all physical

objects wear out over time.

Operating Systems 28

II Year - II Semester 2019-20 CSE

 For these reasons all disks are shipped with a few bad blocks, and

additional blocks can be expected to go bad slowly over time.

 If a large number of blocks go bad then the entire disk will need to

be replaced, but a few here and there can be handled through

other means.

 In the old days, bad blocks had to be checked for manually.

 Formatting of the disk or running certain disk-analysis tools would

identify bad blocks, and attempt to read the data off of them one

last time through repeated tries.

 Then the bad blocks would be mapped out and taken out of future

service.

 Sometimes the data could be recovered, and sometimes it was lost

forever.

 Modern disk controllers make much better use of the error-

correcting codes, so that bad blocks can be detected earlier and the

data usually recovered.

 Most disks normally keep a few spare sectors on each cylinder, as

well as at least one spare cylinder.

 Sector sparing: Whenever possible a bad sector will be mapped to

another sector on the same cylinder, or at least a cylinder as close

as possible.

 Sector slipping may also be performed, in which all sectors

between the bad sector and the replacement sector are moved

down by one, so that the linear progression of sector numbers can

be maintained.

 If the data on a bad block cannot be recovered, then a hard
error has occurred, which requires replacing the file(s) from

backups, or rebuilding them from scratch.

Operating Systems 29

II Year - II Semester 2019-20 CSE

UNIT-IV
Assignment-Cum-Tutorial Questions

SECTION-A

I. Objective Questions
1. A direct edge Pi---->Rj is called a________________ []

A) Assignment edge C) Request edge

B) Claim edge D) Release edge

2. A direct edge Rj----> Pi is called a________________ []

A) Assignment edge C) Request edge

B) Claim edge D) Release edge

3. Deadlocks can be described in terms of a directed graph called

a___________

A) Directed Acyclic Graph []

B) Resource allocation graph

C) Resource request graph

D) Resource release graph

4. If each resource type has exactly one instance, then a cycle implies

that a deadlock has occurred.

 [T/F]

5. If each resource type has exactly several instances, then a cycle does

not imply that a deadlock has occurred.

 [T/F]

6. The surface of a platter is logically divided into circular______[]

A) Sectors B) Tracks C) platters D) surfaces

7. C-SCAN refers to______________ []

A) Coding SCAN C) Ceil SCAN

B) Circular SCAN D) City SCAN

8. SCAN algorithm is also called as________________ []

A) Circular SCAN B) elevator C) LOOK D)

B) C-LOOK

9. The time to move from the disk arm to the desired cylinder is

called________

Operating Systems 30

II Year - II Semester 2019-20 CSE

A) Rotational latency []

B) Seek time

C) Transfer rate

D) Random-access time

10. The time for the desired sector to rotate to the disk head is

called______.

A) Rotational latency []

B) Seek time

C) Transfer rate

D) Random-access time

11. Which one of the following statement about WAIT-FOR graph is true?

 []

A) An edge Pi->Pj exists in a wait for graph if and only if the

corresponding resource allocation graph contains two edges Pi->Rq

and Rq->Pj for some resource Rq.

B) An edge Pi->Rj exists in a wait for graph if and only if the

corresponding resource allocation graph contains two edges Pi->Rq

and Rq->Pj for some resource Rq.

C) An edge Pi->Pj exists in a wait for graph if and only if the

corresponding resource allocation graph contains two edges Pi-> Pj

and Rq->Pj for someresource Rq.

D) An edge Pi->Pj exists in a wait for graph if and only if the

corresponding resource allocation graph contains two edges Pi->Rq

and Pi ->Pj for some resource Rq.

12. Which of the following approaches are used to recover from dead lock

A) Process termination C)Resource preemption

B) Both of the above methods D) None of the above []

13. Which one of the following wait-for graph is equivalent to the given

Resource Allocation graph? []

Operating Systems 31

II Year - II Semester 2019-20 CSE

A)

B)

C)
D) No wait-for graph for the given RAG

14. Consider a system having 'm' resources of the same type. These

resources are shared by 3 processes A, B, C, which have peak time
demands of 3, 4, 6 respectively. The minimum value of 'm' that
ensures that deadlock will never occur is []

Operating Systems 32

II Year - II Semester 2019-20 CSE

A) 11 B) 12 C) 13 D) 14

15. Which algorithm of disk scheduling selects the request with the least

seek time from the current head positions? []

A) SSTF scheduling C)FCFS scheduling

B) SCAN scheduling D) LOOK scheduling

16. The circular wait condition can be prevented by []

A) Defining a linear ordering of resource types C) Using thread

B) Using pipes D) All of the mentioned

17. For non sharable resources like a printer, mutual exclusion []

A) Must exist C) Must not exist

B) May exist D) None of these

18. The disadvantage of a process being allocated all its resources before

beginning its execution is : []

A) Low CPU utilization C) Low resource utilization

B) Very high resource utilization D) None of these

19. To ensure no preemption, if a process is holding some resources and

requests another resource that cannot be immediately allocated to it :

 []

A) Then the process waits for the resources be allocated to it

B) The process keeps sending requests until the resource is

allocated to it

C) The process resumes execution without the resource being

allocated to it

D) Then all resources currently being held are preempted

20. A system has 12 magnetic tape drives and 3 processes : P0, P1, and

P2. Process P0 requires 10 tape drives, P1 requires 4 and P2 requires

9 tape drives. []

Process

Maximum
needs

Currently
allocated

P0 10 5
P1 4 2
P2 9 2

Operating Systems 33

II Year - II Semester 2019-20 CSE

Which of the following sequence is a safe sequence?

A) P0, P1, P2 C) P1, P2, P0

B) P2, P0, P1 D) P1, P0, P2

21. The content of the matrix Need is : []

A) Allocation – Available C) Max – Available

B) Max – Allocation D) Allocation – Max

22. An edge from process Pi to Pj in a wait for graph indicates that :

A) Pi is waiting for Pj to release a resource that Pi needs. []

B) Pj is waiting for Pi to release a resource that Pj needs.

C) Pi is waiting for Pj to leave the system.

D) Pj is waiting for Pi to leave the system.

23. A computer system has 6 tape drives, with ‘n’ processes competing for

them. Each process may need 3 tape drives. The maximum value of ‘n’

for which the system is guaranteed to be deadlock free is : []

A) 2 B) 3 C) 4 D) 1

24. A system has 3 processes sharing 4 resources. If each process needs a

maximum of 2 units then, deadlock : []

A) Can never occur. C) any occur.

B) Has to occur. D) None of these.

SECTION-B
Descriptive Questions

1. Define deadlock and classify the necessary conditions for deadlock?

2. List and explain different methods used for handling deadlocks?

3. Describe in detail about BANKER’S algorithm?

4. With a neat sketch explain the overview of mass storage structure.

5. Differentiate SCAN, C-SCAN and LOOK, C-LOOK disk scheduling

algorithms with an example?

6. What is sector sparing? Explain how it is useful in identifying bad

blocks in mass storage?

7. Demonstrate in detail about swap-space management?

Operating Systems 34

II Year - II Semester 2019-20 CSE

Problems:
1. Consider the snapshot of a system processes p1, p2, p3, p4, p5,

Resources A, B, C, D

 Allocation[0 0 1 2, 1 0 0 0, 1 3 5 4, 0 6 3 2, 0 0 1 4]

 Max[0 0 1 2, 1 7 5 0, 2 3 5 6, 0 6 5 2, 0 6 5 6]

 Available[1 5 2 0] .

 i. What will be the content of the Need matrix?

 ii.Is the system in safe state? If Yes, then what is the safe

sequence?

2. Consider the following and find out the possible resource allocation

sequence with the help of deadlock detection algorithm processes

p0, p1, p2, p3, p4, Resources A, B, C

Allocation [0 1 0, 2 0 0 , 3 0 3, 2 1 1, 0 0 2]

Max[0 0 0, 2 0 2, 0 0 0, 1 0 0, 0 0 2]

Available[0 0 0].

i. What will be the content of the Need matrix?

ii.Is the system in safe state? If Yes, then what is the safe

sequence?

3. A computer system uses the Banker’s Algorithm to deal with

deadlocks. Its current state is shown in the table below, where P0,

P1, P2 are processes, and R0, R1, R2 are resources types.

 Maximum
Need

 Current
Allocation

 Available

 R0 R1 R2 R0 R1 R2 R0 R1 R2

P0 4 1 2 P0 1 0 2 2 2 0

P1 1 5 1 P1 0 3 1

P2 1 2 3 P2 1 0 2

Operating Systems 35

II Year - II Semester 2019-20 CSE

i. Show that the system can be in safe state?

ii. What will the system do on a request by process P0 for one unit of

resource type R1?

4. Four resources ABCD. A has 6 instances, B has 3 instances, C has

 instances and D has 2 instances.

Process Allocation Max
 ABCD ABCD

P1 3011 4111
P2 0100 0212
P3 1110 4210
P4 1101 1101
P5 0000 2110

i. Is the current state safe?

ii. If P5 requests for (1,0,1,0), can this be granted?

5. Why disk scheduling is needed? Schedule the given requests 98,

183, 37, 122, 14, 124, 65, 67, 10, 150 with the following disk

scheduling algorithms and calculate seek time?

a. FCFS disk scheduling

b. SSTF disk scheduling

c. SCAN disk scheduling

d. C-SCAN disk scheduling

e. LOOK disk scheduling

f. C-LOOK disk scheduling

SECTION-C
Previous GATE/NET questions

1. A system contains three programs and each requires three tape units

for its operation. The minimum number of tape units which the

Operating Systems 36

II Year - II Semester 2019-20 CSE

system must have such that deadlocks never arise is__________

 GATE-CS-2014 []

A) 6 B) 7 C) 8 D) 9

2. A system has 6 identical resources and N processes competing for

them. Each process can request atmost 2 resources. Which one of the

following values of N could lead to a deadlock? GATE-CS-2015

 []

A) 1 B) 2 C) 3 D) 4

3. Considering a system with five processes P0 through P4 and three

resources types A, B, C. Resource type A has 10 instances, B has 5

instances and type C has 7 instances. Suppose at time t0 following

snapshot of the system has been taken: GATE-CS-2014

i. What will be the content of the Need matrix?
ii. Is the system in safe state? If Yes, then what is the safe

sequence?

4. An operating system uses the Banker’s algorithm for deadlock

avoidance when managing the allocation of three resource types X, Y,

and Z to three processes P0, P1, and P2. The table given below

presents the current system state. Here, the Allocation matrix shows

the current number of resources of each type allocated to each

process and the Max matrix shows the maximum number of resources

of each type required by each process during its execution.

Operating Systems 37

II Year - II Semester 2019-20 CSE

There are 3 units of type X, 2 units of type Y and 2 units of type Z still
available. The system is currently in a safe state. Consider the
following independent requests for additional resources in the current
state:
REQ1: P0 requests 0 units of X, 0 units of Y and 2 units of Z
REQ2: P1 requests 2 units of X, 0 units of Y and 0 units of Z
Which one of the following is TRUE? GATE-CS-2014 []

A) Only REQ1 can be permitted.

B) Only REQ2 can be permitted.

C) Both REQ1 and REQ2 can be permitted.

D) Neither REQ1 nor REQ2 can be permitted

5. Which of the following is NOT a valid deadlock prevention scheme?
 GATE CS 2000 []

A) Release all resources before requesting a new resource

B) Number the resources uniquely and never request a lower

numbered resource than the last one requested.

C) Never request a resource after releasing any resource

D) Request and all required resources be allocated before execution

Operating Systems 1

II Year - II Semester 2019-20 CSE

UNIT-V
Synchronization

Objectives:
• Students will be able to introduce the critical-section problem, whose

solutions can be used to ensure the consistency of shared data.

• Students will be able to present both software and hardware solutions

of the critical-section problem.
• To discuss various inter process communication and synchronization

problems.
Syllabus:

The critical section problem, Peterson’s solution, synchronization hardware,

semaphores, classic problems of synchronization (Bounded-Buffer problem,

Readers-Writers problem, Dining-philosophers problem), monitors.

Outcomes:
Students will be able to

• Understand the concepts of critical section problems and its solutions.

• Outline the solutions of critical section problems.

• Develop algorithms for various Inter Process Communication and
Synchronization problems

Operating Systems 2

II Year - II Semester 2019-20 CSE

Learning Material

INTRODUCTION:

 Race condition: The situation where several processes access – and

manipulate shared data concurrently. The final value of the shared

data depends upon which process finishes last.

 To prevent race conditions, concurrent processes must be

synchronized.
5.1. Critical Section Problem:
Definition: Consider a system consisting of n processes {P0, P1, ..., Pn-1}.

Each process has a segment of code, called critical section, in which the

process may be changing common variables, updating a table, writing a file,

and so on.

 The important feature of the system is that, when one process is

executing in its critical section, no other process is to be allowed to

execute in its critical section. That is, no two processes are executing

in their critical sections at the same time.

 Each process must request permission to enter its critical section.

 The section of code implementing this request is the entry section
followed by exit section; the remaining code is the remainder
section.

Figure: General structure of a typical process pi.

 A solution to the critical-section problem must satisfy the following three

requirements:

Operating Systems 3

II Year - II Semester 2019-20 CSE

o Mutual exclusion: If process Pi is executing in its critical section, then

no other processes can be executing in their critical sections.

o Progress: If no process is executing in its critical section and some

processes wish to enter their critical sections, then only those processes

that are not executing in their remainder sections can participate in

deciding which will enter its critical section next, and this selection

cannot be postponed indefinitely.

o Bounded waiting. There exists a bound, or limit, on the number of

times that other processes are allowed to enter their critical sections

after a process has made a request to enter its critical section and

before that request is granted.

5.2. Peterson’s solution:

 A classic software-based solution to the critical-section problem known

as Peterson's solution.
 Peterson's solution is restricted to two processes that alternate execution

between their critical sections and remainder sections.
 The processes are numbered P0 and P1.
 For convenience, when presenting Pi, we use Pj to denote the other

process; that is, j equals 1 - i.
 Peterson's solution requires the two processes to share two data items:

int turn;

boolean flag[2];

 The variable turn indicates whose turn it is to enter its critical section.

o If turn ==i, then process Pi is allowed to execute in its critical section.

 The flag array is used to indicate if a process is ready to enter its critical

section.

o if flag [i] is true, this value indicates that Pi is ready to enter its critical

section.

 To enter the critical section, process Pi first sets flag [i] to be true and

then sets turn to the value j.

 If both processes try to enter at the same time, turn will be set to both i

and j at roughly the same time.

Operating Systems 4

II Year - II Semester 2019-20 CSE

Figure: The structure of process A in Peterson's solution

 The eventual value of turn determines which of the two processes is

allowed to enter its critical section first.

 We now prove that this solution is correct. We need to show that:

1. Mutual exclusion is preserved.

2. The progress requirement is satisfied.

3. The bounded-waiting requirement is met.

 To prove property 1, we note that each Pi enters its critical section

only if either flag [j] == false or turn == i. If both processes can be

executing in their critical sections at the same time, then flag [0] ==

flag [1] ==true.

 These two observations imply that Po and P1 could not have

successfully executed their while statements at about the same time,

since the value of turn can be either 0 or 1 but cannot be both.

 One of the processes say, Pi -must have successfully executed the

while statement, whereas Pi had to execute at least one additional

statement ("turn== j").

 To prove properties 2 and 3, we note that a process P; can be

prevented from entering the critical section only if it is stuck in the

while loop with the condition flag [j] ==true and turn=== j; this loop is

the only one possible.

Operating Systems 5

II Year - II Semester 2019-20 CSE

 If Pi is not ready to enter the critical section, then flag [j] ==false, and

Pi can enter its critical section. If Pj has set flag [j] to true and is also

executing in its while statement, then either turn === i or turn === j.

If turn == i, then Pi will enter the critical section.

 If turn== j, then Pi will enter the critical section. However, once Pi

exits its critical section, it will reset flag [j] to false, allowing Pi to enter

its critical section.

 If Pi resets flag [j] to true, it must also set turn to i. Thus, since Pi does

not change the value of the variable turn while executing the while

statement, Pi will enter the critical section (progress) after at most one

entry by Pj (bounded waiting).

5.3. Synchronization hardware
 By using locks critical section problem is solved.

 Race conditions are prevented by requiring that critical regions be

protected by locks.

 That is, a process must acquire a lock before entering a critical section;

it releases the lock when it exits the critical section.

Figure: Solution to the critical-section problem using locks.

 If lock= false, then no process is executing in critical section.

5.3.1. Test And Set() :
 Whenever a process is ready to enter in the critical section and it calls

Test And Set() which sets lock=true.

Operating Systems 6

II Year - II Semester 2019-20 CSE

 Here (critical section process is executing) at this condition if any

process want to enter into critical section it should wait until the process

executes in critical section.

Figure: The definition of the TestAndSet () instruction.

 If the machine supports the TestAndSet () instruction, then we can

implement mutual exclusion by declaring a Boolean variable lock,

initialized to false.

 The structure of process Pi is shown below

Figure: Mutual-exclusion implementation with TestAndSet ().

5.3.2. Swap () instruction:
 This instruction, in contrast to the TestAndSet () instruction, operates on

the contents of two words; the common data structures are

 A global Boolean variable lock is declared and is initialized to false.

 In addition, each process has a local Boolean variable key.

Operating Systems 7

II Year - II Semester 2019-20 CSE

Figure: The definition of the Swap () instruction

 The structure of process Pi for is shown below:

Figure: Mutual-exclusion implementation with the Swap() instruction.

 These algorithms satisfy the mutual-exclusion requirement; they

do not satisfy the bounded-waiting requirement.

5.3.3. Modified Test and Set(): proving bounded waiting requirement

 These data structures are initialized to false.

 To prove that the mutual exclusion requirement is met, we note

that process P; can enter its critical section only if either waiting [i]

== false or key == false.

 The value of key can become false only if the TestAndSet () is

executed.

 The first process to execute the TestAndSet () will find key== false;

all others must wait.

 The variable waiting [i] can become false only if another process

leaves its critical section; only one waiting [i] is set to false,

maintaining the mutual-exclusion requirement.

Operating Systems 8

II Year - II Semester 2019-20 CSE

Figure: Bounded-waiting mutual exclusion with TestAndSet ().

5.4. Semaphores:
 Semaphore is nothing but a synchronization tool.

 A semaphore S is an integer variable that, apart from initialization, is

accessed only through two standard atomic operations:

o wait () and signal ().

o The wait () operation was originally termed P (from the Dutch proberen,

"to test");

o signal () was originally called V (from verhogen, "to increment").

 The definition of wait () is as follows:

 The definition of signal () is as follows:

Operating Systems 9

II Year - II Semester 2019-20 CSE

 When one process modifies the semaphore value, no other process can

simultaneously modify that same semaphore value.

5.4.1. Usage:
 Semaphore is of two types:

1. The value of a counting semaphore can range over an unrestricted

domain

2. The value of a binary semaphore can range only between 0 and 1.

a. In some systems, binary semaphores are known as mutex locks,

as they are locks that provide mutual exclusion.

 Semaphores are used to solve various synchronization problems.

 For example, consider two concurrently running processes: P1 with a

statement S1 and P2 with a statement S2.

 Suppose we require that S2 be executed only after S1 has completed.

 We can implement this scheme readily by letting P1 and P2 share a

common semaphore synch, initialized to 0, and by inserting the

statements in process P1 and the statements in process P2.

5.4.2. Implementation:
 By using semaphores we have one disadvantage is busy waiting.
 If one process is executing in critical section the other processes waiting

outside is known as busy waiting.
 Spin Lock: wastage of CPU cycles is known as Spin lock

 Solution to busy waiting:

o Define a semaphore as a record

typedef struct

{

int value;

struct process *L;

Operating Systems 10

II Year - II Semester 2019-20 CSE

} semaphore;

o Assume two simple operations:

✦ block suspends the process that invokes it.

✦ wakeup(P) resumes the execution of a blocked process P.

 Semaphore operations now defined as

o wait(S)
{

S.value--;
if (S.value < 0)
{

add this process to S.L;
block();

}
}

o signal(S)
{

S.value++;
if (S.value <= 0)
{

remove a process P from S.L;
wakeup(P);

}
}

5.4.3. Deadlocks and Starvation:
 The implementation of a semaphore with a waiting queue may result in a

situation where two or more processes are waiting indefinitely for an

event that can be caused only by one of the waiting processes.

 The event in question is the execution of a signal () When such a state is

reached, these processes are said to be deadlocked.

 We consider a system consisting of two processes, P0 and P1, each

accessing two semaphores, S and Q, set to the value 1:

Operating Systems 11

II Year - II Semester 2019-20 CSE

 Suppose that P0 executes wait (S) and then P1, executes wait (Q).

 When P0 executes wait (Q), it must wait until P1, executes signal (Q).

 Similarly, when P1, executes wait (S), it must wait until P0executes

signal(S).

 Since these signal () operations cam1ot be executed, P0 and P1, are

deadlocked.

 We say that a set of processes is in a deadlock state when every process

in the set is waiting for an event that can be caused only by another

process in the set.

 Problem related to deadlocks is indefinite blocking or starvation a

situation in which processes wait indefinitely within the semaphore.

5.5. Classic problems of synchronization
5.5.1. The Bounded-Buffer Problem:

 We assume that the pool consists of n buffers, each capable of holding

one item.

 The mutex semaphore provides mutual exclusion for accesses to the

buffer pool and is initialized to the value 1.

 The empty and full semaphores count the number of empty and full

buffers.

 The semaphore empty is initialized to the value n; the semaphore full

is initialized to the value 0.

 The code for the producer process is shown below

Operating Systems 12

II Year - II Semester 2019-20 CSE

Figure: The structure of the producer process.

 The code for the consumer process is shown below:

Figure: The structure of the consumer process

 The producer producing full buffers for the consumer or as the

consumer producing empty buffers for the producer.

5.5.2. Readers-Writers Problem:

 Suppose that a database is to be shared among several concurrent

processes.

 Some of these processes may want only to read the database, whereas

others may want to update the database.

 These two types of processes are distinguished as readers and writers

 If two readers access the shared data simultaneously, no adverse

effects will result.

 If a writer and some other process (either a reader or a writer) access

the database then problem arises.

 The information in the shared data is read by a process that processor

is known as reader process. This performs in shared lock.

 The writers have exclusive access to the shared database while writing

to the database. This synchronization problem is referred to as the

readers-writers problem.

 In the solution to the first readers-writers problem, the reader

processes share the following data structures:

Operating Systems 13

II Year - II Semester 2019-20 CSE

 The semaphores mutex and wrt are initialized to 1;

 readcount is initialized to 0.

 The semaphore wrt is common to both reader and writer processes.

 The mutex semaphore is used to ensure mutual exclusion when the

variable readcount is updated.

 The readcount variable keeps track of how many processes are

currently reading the object.

 The semaphore wrt functions as a mutual-exclusion semaphore for

the writers.

Figure: The structure of a reader process.

Figure: The structure of a writer process

Operating Systems 14

II Year - II Semester 2019-20 CSE

Reader-writer locks are most useful in the following situations:

 In applications where it is easy to identify which processes only

read shared data and which processes only write shared data.

 In applications that have more readers than writers. This is

because reader writer locks generally require more overhead to

establish than semaphores or mutual-exclusion locks. The

increased concurrency of allowing multiple readers compensates

for the overhead involved in setting up the reader writer lock.

5.5.3. Dining-philosophers problem:

 Consider five philosophers who spend their lives thinking and eating.

 The philosophers share a circular table surrounded by five chairs,

each belonging to one philosopher.

 In the center of the table is a bowl of rice, and the table is laid with

five single chopsticks

Figure: The situation of the dining philosophers

 When a philosopher thinks, she does not interact with her colleagues.

 From time to time, a philosopher gets hungry and tries to pick up the

two chopsticks that are closest to her.

 A philosopher may pick up only one chopstick at a time.

 Obviously, she cannot pick up a chopstick that is already in the hand

of a neighbor.

 When a hungry philosopher has both her chopsticks at the same time,

she eats without releasing her chopsticks.

 When she is finished eating, she puts down both of her chopsticks

and starts thinking again.

Operating Systems 15

II Year - II Semester 2019-20 CSE

 One simple solution is to represent each chopstick with a semaphore.

 A philosopher tries to grab a chopstick by executing a wait () operation

on that semaphore;

 she releases her chopsticks by executing the signal () operation on the

appropriate semaphores.

semaphore chopstick[5];

 The structure of philosopher i is shown below

Figure: The structure of philosopher i.

 Several possible remedies to the deadlock problem are listed next.

 Allow at most four philosophers to be sitting simultaneously at

the table.

 Allow a philosopher to pick up her chopsticks only if both

chopsticks are available (to do this, she must pick them up in a

critical section).

 Use an asymmetric solution; that is, an odd philosopher picks

up first her left chopstick and then her right chopstick, whereas

an even philosopher picks up her right chopstick and then her

left chopstick.

Operating Systems 16

II Year - II Semester 2019-20 CSE

5.6. Monitors:

 Semaphores provide a convenient and effective mechanism for process

synchronization.

 By using them incorrectly can result in timing errors that are difficult

to detect.

 These errors happen only if some particular execution sequences take

place and these sequences do not always occur.

 Suppose that a process interchanges the order in which the

wait() and signal() operations on the semaphore mutex are

executed, resulting in the following execution:

 This sequence violating the mutual-exclusion requirement.

 Suppose that a process replaces signal (mutex) with wait

(mutex). That is, it executes

 In this case, a deadlock will occur.

 Suppose that a process omits the wait (mutex), or the signal

(mutex), or both.

 In this case, either mutual exclusion is violated or a deadlock

will occur.

5.6.1. Usage:

 A monitor type is an ADT which presents a set of programmer-defined

operations that are provided mutual exclusion within the monitor.

Operating Systems 17

II Year - II Semester 2019-20 CSE

 The monitor type also contains the declaration of variables whose

values define the state of an instance of that type, along with the

bodies of procedures or functions that operate on those variables.

Figure: Syntax of a monitor.

Figure: Schematic view of a monitor.

 A programmer who needs to write a tailor-made synchronization

scheme can define one or more variables of type condition:

condition x, y;

 The only operations that can be invoked on a condition variable are

wait () and signal ().

x. wait();

Operating Systems 18

II Year - II Semester 2019-20 CSE

 The operation means that the process invoking this operation is

suspended until another process invokes

x. signal();

 The x. signal () operation resumes exactly one suspended process.

Figure Monitor with condition variables

 Suppose that, when the x. signal () operation is invoked by a process

P, there exists a suspended process Q associated with condition x.

 If the suspended process Q is allowed to resume its execution, the

signaling process P must wait. Otherwise, both P and Q would be

active simultaneously within the monitor.

 Both processes can conceptually continue with their execution. Two

possibilities exist:

1. Signal and wait. P either waits until Q leaves the monitor or waits for

another condition.

2. Signal and continue. Q either waits until P leaves the monitor or

waits for another condition.

Operating Systems 19

II Year - II Semester 2019-20 CSE

5.6.2. Dining-Philosophers Solution Using Monitors:

 Presenting a deadlock-free solution to the dining-philosophers

problem.

 This solution imposes the restriction that a philosopher may pick up

her chopsticks only if both of them are available.

 Data structure to distinguish among three states in which we may

find a philosopher

 Each philosopher, before starting to eat, must invoke the operation

pickup().

 After the successful completion of the operation, the philosopher may

eat.

 The philosopher invokes the put down() operation.

 Thus, philosopher i must invoke the operations pickup() and put

down() in the following sequence:

Operating Systems 20

II Year - II Semester 2019-20 CSE

Figure: A monitor solution to the dining-philosopher problem

Operating Systems 21

II Year - II Semester 2019-20 CSE

UNIT-V
Assignment-Cum-Tutorial Questions

SECTION A

Objective Questions
1. When several processes access the same data concurrently and the

outcome of the execution depends on the particular order in which the

access takes place, is called []

a) dynamic condition. b) race condition

c) essential condition d) critical condition

2. If a process is executing in its critical section, then no other processes

can be executing in their critical section. This condition is called

 []

a) mutual exclusion b) critical exclusion

c) synchronous exclusion d) asynchronous exclusion

3. Which one of the following is a synchronization tool? []

a) thread b) pipe

c) semaphore d) socket

4. Mutual exclusion can be provided by the []

a) mutex locks

b) binary semaphores

c) both mutex locks and binary semaphores

d) none of the mentioned

5. To enable a process to wait within the monitor, []

a) a condition variable must be declared as condition

b) condition variables must be used as boolean objects

c) semaphore must be used

d) all of the mentioned

6. The segment of code in which the process may change common

variables, update tables, write into files is known as : []

a) program b) critical section

 c) non – critical section d)synchronizing

Operating Systems 22

II Year - II Semester 2019-20 CSE

7. The following three conditions must be satisfied to solve the critical

section problem : []

a) Mutual Exclusion b) Progress

 c) Bounded Waiting d)All of the mentioned

8. An un-interruptible unit is known as : []

a) single b) atomic

 c) static d)none of the mentioned

9. If the semaphore value is negative : []

a) its magnitude is the number of processes waiting on that

semaphore

b) it is invalid

c) no operation can be further performed on it until the signal

operation is performed on it

d) none of the mentioned

10. The two kinds of semaphores are : []

a) mutex & counting b)binary & counting

 c) counting & decimal d)decimal & binary

11. The bounded buffer problem is also known as : []

a) Readers – Writers problem b) Dining – Philosophers

problem

 c) Producer – Consumer problem d)None of the mentioned

12. In the bounded buffer problem, there are the empty and full

semaphores that :

 []

a) count the number of empty and full buffers

b) count the number of empty and full memory spaces

c) count the number of empty and full queues

d) none of the mentioned

13. To ensure difficulties do not arise in the readers – writers problem,

_______ are given exclusive access to the shared object. []

a) readers b)writers

 c) readers and writers d)none of the mentioned

Operating Systems 23

II Year - II Semester 2019-20 CSE

14. The dining – philosophers problem will occur in case of :

a) 5 philosophers and 5 chopsticks []

b) 4 philosophers and 5 chopsticks

c) 3 philosophers and 5 chopsticks

d) 6 philosophers and 5 chopsticks

15. All processes share a semaphore variable mutex, initialized to 1. Each

process must execute wait(mutex) before entering the critical section

and signal(mutex) afterward.

Suppose a process executes in the following manner :

signal(mutex);
.....
critical section
.....
wait(mutex);
In this situation :

a) a deadlock will occur []

b) processes will starve to enter critical section

c) several processes maybe executing in their critical section

d) all of the mentioned

16. A monitor is characterized by :

a) a set of programmer defined operators []

b) an identifier

c) the number of variables in it

d) all of the mentioned

17. The monitor construct ensures that : []

a) only one process can be active at a time within the monitor

b) n number of processes can be active at a time within the monitor

(n being greater than 1)

c) the queue has only one process in it at a time

d) all of the mentioned

18. The operations that can be invoked on a condition variable are :

a) wait & signal b) hold & wait []

Operating Systems 24

II Year - II Semester 2019-20 CSE

 c) signal & hold d) continue & signal

19. A monitor is a module that encapsulates

a) shared data structures []

b) procedures that operate on shared data structure

c) synchronization between concurrent procedure invocation

d) all of the mentioned

20. To enable a process to wait within the monitor, []

a) a condition variable must be declared as condition

b) condition variables must be used as boolean objects

c) semaphore must be used

d) all of the mentioned

21. Mutual Exclusion can be provided by the []

a) Mutex Locks b) Binary Semaphores

 c) Both (a) and (b) d) None of the Mentioned

22. Process Synchronization can be done on []

a) Hardware Level b)Software Level

 c) Both (a) and (b) d) None of the mentioned

SECTION-B

Descriptive Questions
1. Prove that the Peterson’s Solution for critical section problem is

correct with the help of flag and turn variables.

2. Discuss hardware instructions used for process synchronization.

3. Define the instructions, test and set () and swap ()

4. Explain about Synchronization Hardware.

5. What is a semaphore? What are its operations?

6. What is a Critical Section Problem? Write any two classic problems

of

Synchronization.

7. What is Readers-Writers problem? How it can be considered as

synchronization problem? Explain its solution with Mutex locks.

Operating Systems 25

II Year - II Semester 2019-20 CSE

8. Explain in detail how monitors are used to solve the Dining-

Philosopher problem.

9. How can we use Monitors in Synchronization?

10. What is a bounded-buffer problem? Explain its solution using

mutex locks.

11. Explain about solution to Dining-philosophers problem using wait()

and signal() operations?

SECTION-C
Previous GATE/NET questions

1. A critical section is a program segment GATE-1996 []

a) which should run in a certain specified amount of time

b) which avoids deadlocks

c) where shared resources are accessed

d) which must be enclosed by a pair of semaphore operations, P

and V

2. A solution to the Dining Philosophers Problem which avoids deadlock

is:

a) ensure that all philosophers pick up the left fork before the right

fork

b) ensure that all philosophers pick up the right fork before the left

fork

c) ensure that one particular philosopher picks up the left fork

before the right fork, and that all other philosophers pick up the

right fork before the left fork

d) None of the above GATE-1996 []

3. Consider the methods used by processes P1 and P2 for accessing their

critical sections whenever needed, as given below. The initial values of

shared boolean variables S1 and S2 are randomly assigned.

 Method Used by P1 GATE-2010 []
 Method Used by P2
 while (S1 == S2) ;

Operating Systems 26

II Year - II Semester 2019-20 CSE

 Critica1 Section
 S1 = S2;
 while (S1 != S2) ;
 Critica1 Section
 S2 = not (S1);
 Which one of the following statements describes the properties

 achieved?

a) Mutual exclusion but not progress

b) Progress but not mutual exclusion

c) Neither mutual exclusion nor progress

d) Both mutual exclusion and progress

4. A counting semaphore was initialized to 10. Then 6 P (wait) operations

and 4V (signal) operations were completed on this semaphore. The

resulting value of the semaphore is GATE-1998 []
a) 0 b)8 c)10 d)12

5. Let m[0]…m[4] be mutexes (binary semaphores) and P[0] …. P[4] be

processes.Suppose each process P[i] executes the following:

GATE-2000 []

 wait (m[i]);wait (m[(i+1) mode 4]);

 release (m[i]); release (m[(i+1)mod 4]);
 This could cause

a) Thrashing

b) Deadlock

c) Starvation, but not deadlock

d) None of the above

6. The enter_CS() and leave_CS() functions to implement critical section of

a process are realized using test-and-set instruction as follows:

GATE-2009 []

Operating Systems 27

II Year - II Semester 2019-20 CSE

 void enter_CS(X)
 {
 while test-and-set(X) ;
 }
 void leave_CS(X)
 {
 X = 0;
 }

In the above solution, X is a memory location associated with the

CS and is initialized to 0. Now consider the following statements:

 I. The above solution to CS problem is deadlock-free

 II. The solution is starvation free.

 III. The processes enter CS in FIFO order.

 IV More than one process can enter CS at the same time.

 Which of the above statements is TRUE?

a) I only

b) I and II

c) II and III

d) IV only

7. The following program consists of 3 concurrent processes and 3 binary

semaphores. The semaphores are initialized as S0=1, S1=0, S2=0.

Process P0 Process P1 Process P2

while (true)

{

wait (S0);

print (0);

release (S1);

release (S2);

}

wait (S1);

Release

(S0);

wait (S2);

release (S0);

 How many times will process P0 print '0'? GATE-2010 []
a) At least twice b)Exactly twice

Operating Systems 28

II Year - II Semester 2019-20 CSE

c) Exactly thrice d)Exactly once

8. Fetch_And_Add(X,i) is an atomic Read-Modify-Write instruction that

reads the value of memory location X, increments it by the value i, and

returns the old value of X. It is used in the pseudocode shown below to

implement a busy-wait lock. L is an unsigned integer shared variable

initialized to 0. The value of 0 corresponds to lock being available, while

any non-zero value corresponds to the lock being not available.

 GATE-2012 []
 AcquireLock(L){
 while (Fetch_And_Add(L,1))
 L = 1;
 }
 ReleaseLock(L){
 L = 0;
 }
This implementation

a) fails as L can overflow

b) fails as L can take on a non-zero value when the lock is actually

available.

c) works correctly but may starve some processes

d) works correctly without starvation

9. Consider three concurrent processes P1, P2 and P3 as shown below,

which access a shared variable D that has been initialized to 100.

 GATE 2019 []

Operating Systems 29

II Year - II Semester 2019-20 CSE

The process are executed on a uniprocessor system running a time-

shared operating system. If the minimum and maximum possible

values of D after the three processes have completed execution are X

and Y respectively, then the value of Y–X is __________. []

(A) 80

(B) 130

(C) 50

(D) None of these

Operating Systems 30

II Year - II Semester 2019-20 CSE

Operating Systems 1

II Year - II Semester 2019-20 CSE

UNIT-VI
File system Interface

Objectives:
Students will be able

• To explain concepts of a file
• To discuss file access methods, file sharing, and directory

structures
• To explore file-system protection

Syllabus: File system Interface

Concept of a file (File attributes, file operations), Access Methods (Sequential

access, direct access), Directory structure (overview, single-level, two-level,

tree structured, acyclic-graph), File system mounting, files sharing (multiple

users, remote file systems) and protection

Outcomes:
Students will be able to

 Understand about file operations, file attributes.

 Know the file structure and directory structure.

 Learn about various types of directories and file sharing.

Operating Systems 2

II Year - II Semester 2019-20 CSE

LLeeaarrnniinngg mmaatteerriiaall

66..11.. CCoonncceepptt ooff FFiillee
 A file is a collection of related information that is recorded on

secondary storage.
 A file is a smallest allotment of logical secondary storage that is data

can’t be written to secondary storage unless they are within a file.
 File represent programs (both source and object forms) and data.
 Data file may be numeric, alphabetic, alphanumerical, or binary.
 A file is a sequence of bits, bytes, lines, or records, the meaning of

which is defined by file’s creator and user.
 The information of a file is defined by its creator.
 Many different type of information may be stored in file.
 Examples: source programs, object programs, executable programs,
numeric data, text, payroll records, graphic images, sound recording and

so on.

6.1.1. File Attributes:

 Name: The symbolic file name is the only information kept in human

readable code.

 Identifier: This is unique tag, usually a number, identifies the file

within the file system. It is the non human readable name for the file.

 Type: This information is needed for those systems that support

different type.

 Location: This information is a pointer to a device and to the location

of the file on that device.

 Size: the current size of the file and possibly the maximum allowed

size are included in this attribute.

 Protection: Access-control information determines who can do

reading, writing, executing and so on.

 Time & Date: This information may be kept for creation, last

modification, and last use. These data can be useful for protection,

security and usage monitoring.

Operating Systems 3

II Year - II Semester 2019-20 CSE

66..11..22.. FFiillee OOppeerraattiioonnss::
A file is an abstract data type. Operating system must do for each of

the six basic file operations.

 Creating a file: Two steps are required to create a file. First, space in

the file system must be found for the file. Second, an entry for the new

file must be made in the directory.

 Writing a file: to write a file, we make a system call specifying both

the name of the file and the information to be written to the file.

 Reading a file: to read from a file, we use a system call that specifies

the name of the file and where the next block of the file should be put.

Again, the directory is searched for the associated directory entry, and

the system needs to keep a read pointer to the location in the file

where the next read is take place. Once the read has taken place, the

read pointer is updated.

 Repositioning with in a file: The directory is searched for the

appropriate entry, and the current file position is set to a given value.

 Deleting a file: whatever files want to delete from directory, those files

have to found in directory. If file is found then it will be deleted.

Deleted file space used for store the next file.

 Truncating a file: The file attributes are not changed but the content

of file deleted.

 There are several issues are associated with an open file.

 File pointer: it is a unique pointer for each process operating on file.

 File open count: how many times has the current file has been

opened and not yet closed. When this counter reaches zero the file can

be removed from the table.

 Disk location of the file: most file operations required to modify data

within a file.

 Access right: Each process can open a file in access mode. This

information stored on pre process table. So that the operating system

can allow or deny subsequent I/O operations.

Operating Systems 4

II Year - II Semester 2019-20 CSE

66..22.. FFiillee AAcccceessss MMeetthhooddss
Files contain information. When it is used, this information must be

accessed and read into computer memory. The information of a file can be

accessed in different ways.
6.2.1. Sequential Access:

 It is the simplest access method and it is sequential.

 Information is processed one after another in sequential.

 This mode of access is common and used in editors and compilers.

 The general operations on files are read and write.

 A read operation reads the next portion of the file and automatically

advances the file pointer, which tracks the I/O location.

 A write operation appends to end of the file and advances to the end of

newly written material.

6.2.2. Direct Access:

 Direct access method is also called as relative access.

 A file is made up to a fixed size logical records that allow programs

read and write records in any order.

 Databases and airline reservations are example for this mode.

 The direct access is based on the disk model of a file since disk allows

random access to any file block.

 For direct access, the file is viewed as a numbered sequence of block

or record.

 Thus, we may read block 14 then block 59 and then we can write

block 17.

 There is no restriction on the order of reading and writing for direct

access file.

 A block number provided by the user to the operating system is

normally a relative block number, the first relative block of the file is 0

and then 1 and so on.

Operating Systems 5

II Year - II Semester 2019-20 CSE

6.2.3. Other Access Methods:

 Other access methods can be built on top of a direct access method.

 These methods constructs index for files.

 This index containing pointer to the various blocks.

 With large files, the index file itself may become too large to be kept in

memory.

 There is a solution to create an index for the index file.

 The primary index file would contain pointer to secondary index files,

which would point to the actual data items.

 Example: Indexed sequential access method(ISAM)

66..33.. DDiirreeccttoorryy SSttrruuccttuurree

 The file systems are extensive in computers.

 Some systems store some millions of files on disks.

 To manage all these data, we need to organize them in two parts.

 First, disks are split into one or more partitions also known as mini

disks.

o Each disk on system contains at least one partition, which is

low level structure in which files and directories reside.

 Second, each partition contains information about files within it.

o This information is kept in entries in a device directory or

volume table of contents.

o The device directory records information such as name,

location, size and type for al files on this partition.

Operating Systems 6

II Year - II Semester 2019-20 CSE

Fig: A typical file system organization

When considering a particular directory structure, we need to keep in mind

the operations that are to be performed on a directory.

 Search for a file: we need to be able to search a directory structure to

find the entry for a particular file. Since files have symbolic names

and similar names may indicate a relationship between files, we may

want to be able to find all files whose names match a particular

pattern.

 Create a file: new files needed to be crated and added to the

directory.

 Delete a file: when a file is not needed then it removed from

directory.

 List a directory: we need to be able to list the files in a directory, and

the contents of the directory entry for each file in a list.

 Rename a file: the name of a file represents its content to its user,

the name must be changeable when the contents or use of the file

changes.

 Traverse the file system: In file system, every file and every directory

accessed by the user. Save files content and its structure at each

regular interval time. if we are saving like regular interval times then it

is easy to backup in case of system failure.

66..33..11.. SSiinnggllee--LLeevveell DDiirreeccttoorryy
 All files are contained in single directory.

 It has a limitation when number of users is more than one.

Operating Systems 7

II Year - II Semester 2019-20 CSE

 In single level directory all file names are unique.

 If two users call their data file name as test, then unique-name rule is

violated.

Fig: Single-level directory.

66..33..22.. TTwwoo--LLeevveell DDiirreeccttoorryy
 In single-level directory has a problem if two files are same name.

 To overcome the above problem use Two-level directory for each user.

 In Two-level directory structure, each user has own directory called as

user file directory (UFD).

 Each UFD has a similar structure but list of files are different from

one UFD to other UFD.

 When a user job is started, then the system searches in Master File

Directory (MFD).

 In MFD each user has their name and account number.

 When a user wants to refer a particular file then he must search in his

own directory or UFD.

 If a user create or delete files then those operations are done from

their local UFD’s.

Fig: Two-level Directory Structure

Operating Systems 8

II Year - II Semester 2019-20 CSE

66..33..33.. TTrreeee--SSttrruuccttuurreedd DDiirreeccttoorriieess
 The directory structure is a tree with arbitrary heights.

 The tree has a root directory and every file path is unique.

 A directory contains set of files or subdirectories.

 The internal format of each directory is same.

 We are using bits to represent files and directories.

 ‘1’ represents for directories and ‘0’ represents file.

 Tree structure directories are very efficient in search operation.

 An interesting policy decision in a tree-structured directory structure

is how to handle the deletion of a directory.

 Each file has specific path. These paths are divided into two parts.

First one is absolute path, second is relative path.

 Absolute path name begins at the root and follows a path down to the

specified file, giving the directory names on the path.

 A relative path name defines a path from the current directory.

 An interesting policy decision in a tree-structured directory structure

is how to handle the deletion of a directory.

 If a directory is empty, its entry in its containing directory can simply

be deleted.

 Suppose the directory to be deleted is not empty, but contains several

files or subdirectories then one of two approaches can be taken.

 Some systems, such as MS-DOS, will not delete a directory unless it is

empty.

 Thus, to delete a directory, the user must delete all the files in that

directory.

 if any subdirectories exist , this procedure must be applied recursively

to them, so that they can be deleted.

 The other approach taken by UNIX rm command is to provide the

option that, when a request is made to delete a directory, that entire

directory’s files and subdirectories are also to be deleted.

Operating Systems 9

II Year - II Semester 2019-20 CSE

Fig: Tree-structured directory structure

66..33..44.. AAccyycclliicc--GGrraapphh DDiirreeccttoorriieess
 An acyclic graph is, a graph with no cycles that allows directories to

share subdirectories and files.

 The same file or subdirectory may be in two different directories. The

acyclic graph is a natural generalization of the tree-structured

directory scheme.

 An acyclic-graph directory structure is more flexible than is a simple

tree

 Structure, but it is also more complex.

 Several problems are there in acyclic graph:

 First one is a file may have multiple absolute path names.

Consequently, distinct file names may refer to the same file.

 This situation is similar to the aliasing problem for programming

languages.

 If we are trying to traverse the entire file system to find a file, to

accumulate statistics on all files, or to copy all files to backup storage.

 This problem becomes significant, since we do not want to traverse

shared structures more than once.

Operating Systems 10

II Year - II Semester 2019-20 CSE

 Another problem involves deletion. When can the space allocated to a

shared file be de allocated and reused?

 One possibility is to remove the file whenever anyone deletes it, but

this action may leave dangling pointers to the now-nonexistent file.

 If the remaining file pointers contain actual disk addresses, and the

space is subsequently reused for other files, these dangling pointers

may point into the middle of other files.

Fig: Acyclic-graph directory structure

66..33..55.. GGeenneerraall GGrraapphh DDiirreeccttoorryy
If cycles are allowed in the graphs, then several problems can arise:

 Search algorithms can go into infinite loops. One solution is to not

follow links in search algorithms.

 Sub-trees can become disconnected from the rest of the tree and still

not have their reference counts reduced to zero.

 Periodic garbage collection is required to detect and resolve this

problem.

 Fig: General graph directory

Operating Systems 11

II Year - II Semester 2019-20 CSE

66..44.. FFiillee SSyysstteemm MMoouunnttiinngg
 Combining two or more number of files into a large tree structure is

the basic idea of file system mounting.

 In the file system we are using mount command for the purpose of at

which point file has to mount.

 That means it provide a mount point (directory) on which to attach it.

 Once a file system is mounted onto a mount point, any further

references to that directory actually refer to the root of the mounted

file system.

 Any files (or sub-directories) that had been stored in the mount point

directory prior to mounting the new file system are now hidden by the

mounted file system, and are no longer available.

 For this reason some systems only allow mounting onto empty

directories.

 File systems can only be mounted by root, unless root has previously

configured certain file system to be mountable onto certain pre-

determined mount points.

 Anyone can run the mount command to see what file systems is

currently mounted. File systems may be mounted read-only, or have

other restrictions imposed.

((aa)) EExxiissttiinngg.. ((bb)) UUnnmmoouunntteedd PPaarrttiittiioonn

Operating Systems 12

II Year - II Semester 2019-20 CSE

MMoouunntt PPooiinntt

 The traditional Windows OS runs an extended two-tier directory

structure, where the first tier of the structure separates volumes by

drive letters, and a tree structure is implemented below that level.

 Macintosh runs a similar system, where each new volume that is

found is automatically mounted and added to the desktop when it is

found.

 More recent Windows systems allow file systems to be mounted to any

directory in the file system, much like UNIX.

66..55.. FFiillee SShhaarriinngg
6.5.1. MMuullttiippllee UUsseerrss

 On a multi-user system, more information needs to be stored for each

file:

 The owner (user) who owns the file, and who can control its access.

 The group of other user IDs that may have some special access to the

file.

 What access rights are afforded to the owner (User), the Group, and to

the rest of the world.

 Some systems have more complicated access control, allowing or

denying specific accesses to specifically named users or groups.

Operating Systems 13

II Year - II Semester 2019-20 CSE

6.5.2. RReemmoottee FFiillee SSyysstteemmss::
 The advent of the Internet introduces issues for accessing files stored

on remote computers

 The original method was ftp, allowing individual files to be transported

across systems as needed. Ftp can be either account or password

controlled, or anonymous, not requiring any user name or password.

 Various forms of distributed file systems allow remote file systems to

be mounted onto a local directory structure, and accessed using

normal file access commands.

 The WWW has made it easy once again to access files on remote

systems without mounting their file systems, generally using

(anonymous) ftp as the underlying file transport mechanism.

6.5.2.1. The Client-Server Model
 When one computer system remotely mounts a file system that is

physically located on another system, the system which physically

owns the files acts as a server, and the system which mounts them is

the client.

 User IDs and group IDs must be consistent across both systems for

the system to work properly

 The same computer can be both a client and a server.

 There are a number of security concerns involved in this model:

 Servers commonly restrict mount permission to certain trusted

systems only. Spoofing (a computer pretending to be a different

computer) is a potential security risk.

 Servers may restrict remote access to read-only.

 Servers restrict which file systems may be remotely mounted.

Generally the information within those subsystems is limited,

relatively public, and protected by frequent backups.

 The NFS (Network File System) is a classic example of such a system.

Operating Systems 14

II Year - II Semester 2019-20 CSE

6.5.2.2. Distributed Information Systems
 The Domain Name System, DNS, provides for a unique naming system

across the entire Internet.

 Domain names are maintained by the Network Information System,

NIS, which unfortunately has several security issues.

 NIS+ is a more secure version, but has not yet gained the same

widespread acceptance as NIS.

 Microsoft's Common Internet File System, CIFS, establishes a network

login for each user on a networked system with shared file access.

 Older Windows systems used domains, and newer systems (XP, 2000

), use active directories.

 User names must match across the network for this system to be

valid.

 A newer approach is the Lightweight Directory-Access Protocol, LDAP,

which provides a secure single sign-on for all users to access all

resources on a network.

 This is a secure system which is gaining in popularity, and which has

the maintenance advantage of combining authorization information in

one central location.

66..66.. PPrrootteeccttiioonn

 Files must be kept safe for reliability and protection.

 The former is usually managed with backup copies.

 One simple protection scheme is to remove all access to a file.

However this makes the file unusable, so some sort of controlled

access must be arranged.

66..66..11.. TTyyppeess ooff AAcccceessss
The following low-level operations are often controlled:

 Read - View the contents of the file

 Write - Change the contents of the file.

 Execute - Load the file onto the CPU and follow the instructions

contained therein.

Operating Systems 15

II Year - II Semester 2019-20 CSE

 Append - Add to the end of an existing file.

 Delete - Remove a file from the system.

 List -View the name and other attributes of files on the system.

 Higher-level operations, such as copy, can generally be performed

through combinations of the above.

6.6.2. Access Control
 One approach is to have complicated Access Control Lists, ACL,

which specify exactly what access is allowed or denied for specific

users or groups.

 The AFS uses this system for distributed access.

 Control is very finely adjustable, but may be complicated,

particularly when the specific users involved are unknown.

 UNIX uses a set of 9 access control bits, in three groups of three.

 These correspond to R, W, and X permissions for each of the

Owner, Group, and Others. The RWX bits control the following

privileges for ordinary files and directories:

In addition there are some special bits that can also be applied:

 The set user ID (SUID) bit and/or the set group ID (SGID) bits

applied to executable files temporarily change the identity of

whoever runs the program to match that of the owner / group of

the executable program.

 The sticky bit on a directory modifies write permission, allowing

users to only delete files for which they are the owner.

o This allows everyone to create files in /tmp, for example, but

to only delete files which they have created, and not anyone

else's.

Operating Systems 16

II Year - II Semester 2019-20 CSE

 The SUID, SGID, and sticky bits are indicated with an S, S, and T

in the positions for executes permission for the user, group, and

others, respectively.

o If the letter is lower case, (s, s, t), then the corresponding

execute permission is not also given.

o If it is upper case, (S, S, T), then the corresponding execute

permission is given.

6.6.3. Other Protection Approaches and Issues
 Some systems can apply passwords, either to individual files, or to

specific sub-directories, or to the entire system.

 There is a trade-off between the number of passwords that must be

maintained and the amount of information that is vulnerable to a

lost or forgotten password.

 Access to a file requires access to all the files along its path as well.

 In a cyclic directory structure, users may have different access to

the same file accessed through different paths.

Operating Systems 17

II Year - II Semester 2019-20 CSE

UNIT-VI
Assignment-Cum-Tutorial Questions

SECTION-A
Objective Questions

1. ______ is a unique tag, usually a number, identifies the file within the file

system. []

 a) File identifier b) File name c) File type d)None of the mentioned

2. Reliability of files can be increased by : []

a) keeping the files safely in the memory

b) making a different partition for the files

c) by keeping them in external storage

d) by keeping duplicate copies of the file

3. The main problem with access control lists is : []

a) their maintenance

b) their length

c) their permissions

d) all of the mentioned

4. Many systems recognize three classifications of users in connection with

each file (to condense the access control list) : []

a) Owner b) Group c) Universe d) All of the

mentioned

5. To create a file []

a) allocate the space in file system

b) make an entry for new file in director

c) allocate the space in file system & make an entry for new file in

directory

d) none of the mentioned

6. File type can be represented by []

b) file name c) file extension

c) file identifier d) none of the mentioned

7. What is the mounting of file system? []

a) crating of a file system

b) deleting a file system

Operating Systems 18

II Year - II Semester 2019-20 CSE

c) attaching portion of the file system into a directory structure

d) removing portion of the file system into a directory structure

8. Which one of the following explains the sequential file access method?

a) random access according to the given byte number []

b) read bytes one at a time, in order

c) read/write sequentially by record

d) read/write randomly by record

9. Sequential access method ______ on random access devices.

a) works well []

b) doesnt work well

c) maybe works well and doesnt work well

d) none of the mentioned

10. The direct access method is based on a ______ model of a file, as _____

allow random access to any file block. []

a) magnetic tape, magnetic tapes c) tape, tapes

b) disk, disks d) all of the

mentioned

11. For a direct access file : []

a) there are restrictions on the order of reading and writing

b) there are no restrictions on the order of reading and writing

c) access is restricted permission wise

d) access is not restricted permission wise

12. A relative block number is an index relative to :

a) the beginning of the file []

b) the end of the file

c) the last written position in file

d) none of the mentioned

13. For large files, when the index itself becomes too large to be kept in
memory : []
a) index is called
b) an index is created for the index file

c) secondary index files are created

d) all of the mentioned

Operating Systems 19

II Year - II Semester 2019-20 CSE

14. The directory can be viewed as a _________ that translates file names

into their directory entries. []

a) symbol table b) partition c) swap space d) cache

15. In the single level directory : []

a) All files are contained in different directories all at the same level

b) All files are contained in the same directory

c) Depends on the operating system

d) None of the mentioned

16. In the two level directory structure : []

a) each user has his/her own user file directory

b) the system doesn’t its own master file directory

c) all of the mentioned

d) none of the mentioned

17. The disadvantage of the two level directory structure is that :

a) it does not solve the name collision problem []

b) it solves the name collision problem

c) it does not isolate users from one another

d) it isolates users from one another

18. In the tree structured directories: []

a) the tree has the stem directory

b) the tree has the leaf directory

c) the tree has the root directory

d) all of the mentioned

19. Path names can be of two types : []

a) absolute & relative c) local & global

b) global & relative d) relative & local

20. When keeping a list of all the links/references to a file, and the list is

empty, implies that : []

a) the file has no copies c) the file is deleted

b) the file is hidden d) none of the mentioned

Operating Systems 20

II Year - II Semester 2019-20 CSE

SECTION-B
Descriptive Questions

1. Explain different directory structures.

2. What are the operations that can be performed on a file?

3. How Access to files is controlled?

4. What is direct access method for files?

5. Explain various file accessing methods.

6. Write about single level and two level directory Structures.

7. What is a File? Explain about Files Sharing and Protection.

8. Discuss about the Single level directory structure.

9. Discuss about the two level directory structure.

10. Explain about different file attributes?

11. Briefly explain about file system mounting?

12. Explain about file system protection?

