
Object Oriented Programming Through Java 1

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

GUDLAVALLERU ENGINEERING COLLEGE
(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

 Seshadri Rao Knowledge Village, Gudlavalleru – 521 356.

Department of Computer Science and Engineering

HANDOUT

on

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

Object Oriented Programming Through Java 2

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

Vision

To be a Centre of Excellence in computer science and engineering

education and training to meet the challenging needs of the industry

and society.

Mission

� To impart quality education through well-designed curriculum in tune

with the growing software needs of the industry.

� To serve our students by inculcating in them problem solving,

leadership, teamwork skills and the value of commitment to quality,

ethical behavior & respect for others.

� To foster industry-academia relationship for mutual benefit and growth.

Program Educational Objectives

PEO1 : Identify, analyze, formulate and solve Computer Science and

Engineering problems both independently and in a team

environment by using the appropriate modern tools.

PEO2 : Manage software projects with significant technical, legal, ethical,

social, environmental and economic considerations.

PEO3 :Demonstrate commitment and progress in lifelong learning,

professional development, leadership and Communicate effectively

with professional clients and the public.

Object Oriented Programming Through Java 3

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

HANDOUT ON OBJECT ORITENTED PROGRAMMING THROUGH JAVA
Class & Sem. :II B.Tech – I Semester Year: 2019-20
Branch : CSE Credits: 3

1.Brief History and Scope of the Subject

� The Java platform was developed at Sun in the early 1990s with the

objective of allowing programs to function regardless of the device they

were used on, sparking the slogan "Write once, run anywhere" (WORA).

Java is regarded as being largely hardware- and operating system-

independent.

� Java was initially promoted as a platform for client-side applets running

inside web browsers. Early examples of Java applications were the Hot
Java web browser and

the Hot Java Views suite. However, since then Java has been more

successful on the server side of the Internet.

� The platform consists of three major parts: the Java programming
language, the Java Virtual Machine (JVM), and several Java Application

Programming Interfaces (APIs).

� Java is an object-oriented programming language. Since its introduction
in late 1995, it became one of the world's most popular programming
languages.

� Java programs are compiled to byte code, which can be executed by any

JVM, regardless of the environment.

� The Java APIs provide an extensive set of library routines. These APIs

evolved into the Standard Edition (Java SE), which provides basic

infrastructure and GUI functionality; the Enterprise Edition (Java EE),

aimed at large software companies implementing enterprise-class

application servers; and the Micro Edition (Java ME), used to build

software for devices with limited resources, such as mobile devices.

Object Oriented Programming Through Java 4

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

� On November 13, 2006, Sun announced it would be licensing its Java

implementation under the GNU General Public License; it released its

Java compiler and JVM at that time

� Java 8 was released on 18 March 2014 and included some features that
were planned for Java 7 but later deferred.

2.Pre-Requisites

Basic knowledge on programming language constructs.

3.Course Objectives:

� To familiarize with the concepts of object oriented programming

� impart the knowledge of AWT components in creation of GUI

4.Course Outcomes:

CO1 : apply object oriented approach to design software .

CO2 : create user defined interfaces and packages for a given
 problem

CO3 : develop code to handle exceptions.

CO4 : implement multi tasking with multi threading.

CO5 : develop applets for web applications.

CO6 : design and develop GUI programs using AWT components

5.Program Outcomes:

Graduates of the Computer Science and Engineering Program will have
ability to

a. apply knowledge of computing, mathematics, science and engineering

fundamentals to solve complex engineering problems.

b. formulate and analyze a problem, and define the computing

requirements appropriate to its solution using basic principles of

mathematics, science and computer engineering.

Object Oriented Programming Through Java 5

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

c. design, implement, and evaluate a computer based system, process,

component, or software to meet the desired needs.

d. design and conduct experiments, perform analysis and interpretation of

data and provide valid conclusions.

e. use current techniques, skills, and tools necessary for computing
practice.

f. understand legal, health, security and social issues in Professional

Engineering practice.

g. understand the impact of professional engineering solutions on

environmental context and the need for sustainable development.

h. understand the professional and ethical responsibilities of an engineer.

i. function effectively as an individual, and as a team member/ leader in

accomplishing a common goal.

j. communicate effectively, make effective presentations and write and

comprehend technical reports and publications.

k. learn and adopt new technologies, and use them effectively towards

continued professional development throughout the life.

l. understand engineering and management principles and their

application to manage projects in the software industry.

6.Mapping of Course Outcomes with Program Outcomes:

 a b c d e f g h i j k l
CO1 M H

CO2 M

CO3 M H

CO4 M

CO5 H M M

CO6 H H H H

Object Oriented Programming Through Java 6

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

H- High Level Mapping M- Medium Level Mapping L-Low Level Mapping

7.Prescribed Text Books

a) Herbert Schildt, “Java The Complete Reference”, TMH, 7th edition.

b) Sachin Malhotra, Saurabh choudhary, “Programming in JAVA”, Oxford,

2nd edition.

8.Reference Text Books

a) Joyce Farrel, Ankit R.Bhavsar, “JAVA for Beginners”, Cengage Learning,
4th edition.

b) Y.Daniel Liang, “Introduction to Java Programming”, Pearson, 7th edition.
c) P.Radha Krishna, “Object Oriented Programming Through Java”,

Universities Press
9.URLs and Other E-Learning Resources

CDs :

Subject: object oriented system design

Faculty: Prof. A.K. Mazundar IIT, Kharagpur

Units : 36

Websites:

www.java.sun.com

www.roseindia.net/java

www.javabeginner.com/learn-java/introduction-to-java-programming

www.tutorialspoint.com/java/index.htm

10.Digital Learning Materials:

http://nptel.ac.in/courses/106103115/36

http://www.nptelvideos.com/video.php?id=1472

http://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-00-

Object Oriented Programming Through Java 7

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

introduction-to-computer-science-and-programming-fall-2008/video-
lectures/lecture-14/

http://192.168.0.49/videos/videosListing/435 (our library IP)

11.Lecture Schedule / Lesson Plan

Topic

 No. of
Periods

 UNIT-I:Fundamentals of OOP and Java

 Need of OOP 1

 Principles of OOP Languages 1

Procedural Languages vs OOP 1

 Java Virtual Machine 1

 Java Features 1

 Variables, primitive data types 1

Identifiers, keywords, literals,
operators

1

Arrays, type conversion and
casting 1

 UNIT- II: Class Fundamentals &Inheritance
 Class Fundamentals, Declaring Objects

1

 Methods, Constructors 1

this keyword

1

 Overloading methods and constructors 1

 access control 1

 Inheritance Basics, types 1

Using super keyword

1

 Method overriding, Dynamic method dispatch 1

 Abstract classes, using final with inheritance 1

Object class

1

 UNIT –III: Interfaces and Packages

Interfaces: Defining an interface, Implementing
interfaces 2

Nested interfaces

1

Object Oriented Programming Through Java 8

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

 Variables in interfaces and extending interfaces 1

Packages: Defining, Creating and Accessing a
Package

3

 UNIT – IV: Exception Handling & Multithreading
 Exception-Handling 1

Exception handling fundamentals, uncaught
exceptions 1

Using try and catch, Multiple catch clauses

1

 Nested try statements, throw 1

 throws, finally 1

 User-defined exceptions 1

 Multithreading: Introduction to multi tasking
2

 thread life cycle

 Creating threads 1

 Synchronizing threads 2

 thread groups 1

 UNIT – V: Applets & Event Handling

 Applets: Concepts of Applets 1

Differences between
applets and

applications, life
cycle of an

1

 Applet 1

 Creating applets 1

 Event Handling: Events, Event sources 1

Event classes, Event Listeners, Delegation event
model

2

 Handling mouse and keyboard events 2

Adapter classes

1

 UNIT – VI: AWT

 The AWT class hierarchy 1

 User interface components- label, button 2

Checkbox, checkboxgroup

1

Object Oriented Programming Through Java 9

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

 Choice, list,textfield 1

 Scrollbar 1

 Layout managers – Flow, Border 1

 Grid, Card, GridBag layout 2

 Total No.of Periods: 56

12. Seminar Topics

 � Forms of Inheritance

 � AWT hierarchy

 � Applet life cycle

 � Menu Creation

Object Oriented Programming Through Java 10

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

UNIT – I
Objective:

 To get acquainted with the concepts of object-oriented programming.

Syllabus:

Need of OOP, Principles of OOP Languages, Procedural Languages vs OOP,

Java Virtual Machine, Java Features.

Java Programming constructs: variables, primitive data types, identifiers,

keywords, literals, operators, arrays, type conversion and casting

Learning Outcomes:

At the end of the unit, students will be able to

 Understand the principles of object oriented programming.

 Differentiate between Oriented Programming and Procedural Oriented

Programming.

 Know the Evolution and Features of java.

 Understand Syntax of basic Java Programming Constructs and apply

them in writing simple programs.

 Distinguish between Implicit and Explicit Casting.

LEARNING MATERIAL

 NEED OF OOP

Procedural Languages:

 C, PASCAL, FORTRAN languages are all procedural languages.

 Procedure oriented programming basically consists of writing a list of

instructions for the computer to follow, and organizes these instructions

into groups known as functions.

 Problems with Procedural languages are

o Functions have unrestricted access to global data.

Object Oriented Programming Through Java 11

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

o Cannot model real world problems very well.

o Complexity increases as the length of a program increases.

o Not extensible.

Object Oriented Programming Language:

 The major motivating factor in the invention of object-oriented approach

is to remove some of the flaws encountered in the procedural approach.

 In the real-world situations, we have objects which have some attributes

and behavior.

 OOP can represent the real-world objects.

 Objects are defined by their unique identity, state and behavior.

 The state of an object is identified by the value of its attributes and

behavior by methods.

 Attributes defines the data for an object, as every object has some

attributes. For example, attributes of an Account Holder object are

Name, DoB, Acount_Number, Aadhar_number and PAN.

 Behavior is synonym to functions or methods, called to perform some

task and may manipulate the attributes of an object. For example,

behavior exhibited by a account holder are withDrawMoney(),

checkBalance(), transferFunds().

 OOP organizes a program around its data(i.e., objects) and a set of well-

defined interfaces to that data.

 An object-oriented program can be characterized as data controlling

access to the code.

 The organization of data and function(s) in object-oriented programs is

shown in the figure 1.1.

Object Oriented Programming Through Java 12

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

 The data of an object can be accessed only by the functions associated

with that object. However, functions of one object can access the

functions of other objects.
 PRINCIPLES OF OOP LANGUAGES

The following are the general concepts of OOP

1. Objects

2. Classes

3. Abstraction

4. Encapsulation

5. Inheritance

6. Polymorphism

1. OBJECTS:
• An object is an entity in the real-world that can be distinguishable with

other objects that have some attributes and exhibits some behavior.

• Objects are the basic run time entities in an object-oriented system.

• They may represent a person, a place, a bank account, a table of data or

any item that the program has to handle.

• Objects take up space in the memory and have an associated address.

Fig 1.1: Organization of Data and Functions in OOP

Object Oriented Programming Through Java 13

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• When a program is executed, the objects interact with each other by

sending messages to one another.

• For example, if “customer” and “account” are two objects in a program,

then the customer object may send a message to the account object

requesting for the bank balance.

• Each object contains data and code to manipulate data.

Fig 1.2: Object = Data+Methods

2. CLASSES:

• A class is defined as a blueprint of an object. It serves as a template.

• A class is a combination of common attributes and common behavior,

thus we can represent class a collection of similar type of objects.
• Object is an instance of a class.
• The entire set of data and code of an object can be made a user-defined

data type with the help of class. Objects are variables of the class type.

• Once a class has been defined, we can create any number of objects

belonging to that class. Each object is associated with the data of type

class with which they are created.

• For example Mango, Apple and Orange are objects from class fruit.

• Classes are user-defined data types and behave like the built-in types of

a programming language.

Object Oriented Programming Through Java 14

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

3. ABSTRACTION:
• Abstraction refers to the “act of representing essential features

without including the background details or explanation”.
• Classes use the concept of abstraction and are defined as a list of

abstract attributes and functions operate on these attributes.
• The attributes are called data members because they hold information.
• The functions that operate on these data are called methods or member

functions.
4. ENCAPSULATION:

• The process of binding together code and data it manipulates, to hide

them from the outside world is called Encapsulation.

• Encapsulation is the most striking feature of a class. The data is not

accessible to the outside world, and only those functions which are

wrapped in the class can access the data.
• This insulation of the data from direct access by the program is called

data hiding or information hiding.

5. INHERITANCE:

• Inheritance is the process by which one object acquires the properties
of another object.

• It supports the concept of hierarchical classification.

• For example the bird robin is a part of class ‘flying bird’ which is again a

part of the class ‘bird’. The principal behind this sort of division is that

each derived class shares common characteristics with the class from

which it is derived as illustrated in fig 1.3.

Object Oriented Programming Through Java 15

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

Fig 1.3: Inheritance
• In OOP, the concept of inheritance provides the idea of reusability. This

means that we can add additional features to an existing class without

modifying it. This is possible by deriving a new class(sub class) from the

existing class(super class). The new class will have the combined features

of both the classes.

6. POLYMORPHISM:
• Polymorphism, a Greek term, means the ability to take more than one

form.
• For example, an operation may exhibit different behaviour at different

instances. The behaviour depends upon the types of data used in the

operation.

Bird

Attributes:
Features
Lay eggs

NonFlying Bird

Attributes:

Flying Bird

Attributes:

Swallow

Attributes:

Robin

Attributes:

Penguin

Attributes:

Kiwi

Attributes:

Object Oriented Programming Through Java 16

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

o Consider the operation of addition. For two numbers, the operation

will generate a sum. If the operands are strings, then the operation

would produce a third string by concatenation.
• This is similar to polysemy (a word having different meanings depending

on the context the word is used).

• The figure 1.4 illustrates that a single function name can be used to

handle different number and different types of arguments.

 PROCEDURAL LANGUAGES Vs OOP:

Procedural language Object Oriented language

Separates data from function that
operate on them

Encapsulate data and methods in
a class

Not suitable for defining abstract types Suitable for defining abstract
types

Debugging is difficult Debugging is easier
Difficult to implement change Easier to manage and implement

change
Not suitable for larger
applications/programs

Suitable for larger programs and
applications

Analysis and design not so easy Analysis and Design Made Easier
Faster Slower
Less flexible Highly flexible
Data and procedure based Object oriented
Less reusable More reusable

Shape
Draw()

Circle Object
Draw(circle)

Box Object
Draw(box)

Triangle
Object

Draw(triangle)

Fig 1.4: Polymorphism
:

Object Oriented Programming Through Java 17

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

Only data and procedures are there Inheritance, encapsulation and
polymorphism are key features

Uses top down approach Uses bottom up approach
Only a function calls another function Object communication is there
C, Basic, FORTRAN JAVA,C++, VB.NET, C#.NET

 JAVA VIRTUAL MACHINE (JVM):
• The key that allows Java to solve both the security and portability problems

is that the output of a Java compiler is not executable code rather it is byte
code.

• Byte code is a highly optimized set of instructions designed to be executed

by the Java run-time system, which is called the Java Virtual Machine

(JVM).

• That is, in its standard form, the JVM is an interpreter for byte code.
• Translating a java program into byte code allows us to run a program in a

wide variety of environments because only JVM details will differ from

platform to platform although all understands the same java byte code.
• Just In Time (JIT) compiler is part of the JVM, which compiles selected

portions of the byte code into executable code in real-time, on the fly.
• Only the sequences of byte code that will get benefit from compiling will be

given to JIT, the code that requires run-time check during run-time will be

given to the interpreter.

Object Oriented Programming Through Java 18

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

Fig 1.5: JVM

 JAVA FEATURES

The key considerations were summed up by the Java team in the following list
of buzzwords/features:

• Simple
• Secure
• Portable
• Object-oriented
• Robust
• Multithreaded
• Architecture-neutral
• Interpreted and High performance
• Distributed
• Dynamic

1. Simple:

• Java was designed to be easy for the professional programmer to learn

and use effectively.

• Java inherits the C/C++ syntax and many of the object-oriented features

of C++, most programmers have little trouble in learning Java.

• Many of C & C++ language features that result in unreliable code were

not included in Java

Object Oriented Programming Through Java 19

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

2. Secure:
• Java has several language features that protect the integrity of the

system and prevent several common attacks.

• Security becomes an important issue for a language that is being used

on internet.

• Java provides security through lack of pointer arithmetic.

• Garbage collection makes java program more secure and robust by

automatically freeing the memory.

• Has strict compile-time checking which makes java programs more

robust and avoids run-time errors. The compiler also ensures that a

program does not access any uninitialized variables.

• Java security model focuses on protecting users from hostile programs

downloaded fromuntrusted sources across a network. Programs

downloaded over the internet are executed in a sandbox, cannot take

any action outside of the boundaries specified by the sandbox.

• By using a Java-compatible web browser, applets can be downloaded

from internet without fear of viral infection or malicious intent.

3. Portable:
• Portability is the major aspect of the internet because different types of

computers and operating systems connected to it.

• The output of a Java compiler is not executable code. Rather, it is byte

code.
• Translating a Java program into byte code makes it much easier to run a

program in a wide variety of environments.

• Java Programs can be easily moved from one computer system to

another anywhere and at anytime.

4. Object-Oriented:
• Java is pure object-oriented language, i,e., the outermost level of data

structure in java is the object.

Object Oriented Programming Through Java 20

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• Everything in java (constants, variables and methods) are defined inside

a class and accessed through objects.

• But some constraints violate the purity of java, which was mainly

designed for OOP, but with some procedural elements. For examples,

java supports primitive data types that are not objects.

• Robust: Java is a strictly typed language, it checks the code both at

compile time and runtime.

• The two of the main reasons for program failure are:

(1) Memory Management Mistakes and

(2) Mishandled Exceptional Conditions (that is, Run-Time errors).

• Java virtually eliminates memory Management Mistakes: Deallocation is

completely automatic in Java as it provides garbage collection for unused

objects.

• Java also incorporates the concept of handling the exceptional conditions

that may arise in situations such as division by zero or file not found,

and thus eliminates the abnormal termination of program.
5. Multithreaded:

• Java was designed to meet the real-world requirement of creating

interactive, networked programs.

• To accomplish this, Java supports multithreaded programming, allows

writing a program that does many independent subtasks simultaneously.

• For example, while typing in a word-processor the spell check will also

does it task simultaneously.

6. Architecture-Neutral:
• One of the main problem faced by programmers is that no guarantee

exists that if you write a program today, it will run tomorrow—even on

the same machine.

• Operating system upgrades, processor upgrades, and changes in core

system resources can all make a program malfunction.

Object Oriented Programming Through Java 21

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• The goal of Java designers was “write once; run anywhere, any time,
forever.” To a great extent, this goal was accomplished by bytecode, the

output from java compiler.

7. Interpreted and High Performance:
• Java enables the creation of cross-platform programs by compiling into

an intermediate representation called Java bytecode, leads to impressive

performance.

• This code can be executed on any system that implements the Java

Virtual Machine.

• Also due to the incorporation of multithreading, java improved the overall

execution speed of java programs.

• Java byte code was carefully designed so that it would be easy to

translate it directly into native machine code for very high performance

by using a just-in-time compiler.

8. Distributed:
• Java is designed for the distributed environment of the Internet because

it handles TCP/IP protocols

• Java also supports Remote Method Invocation (RMI). This feature enables

a program to invoke methods across a network.

• This enables multiple programmers at multiple remote locations can

work together on a single project.

9. Dynamic:
• Java programs have run-time type information that is used to verify and

resolve accesses to objects at run time. This makes it possible to

dynamically link code in a safe and convenient manner.

• Java Supports functions written in other languages such as C and C++.

These functions are known as Native Methods, which can be linked

dynamically at Run-time.

Object Oriented Programming Through Java 22

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

JAVA PROGRAMMING CONSTRUCTS
 VARIABLES:

• The variable is the basic unit of storage in a Java program.

• A variable is defined by the combination of an identifier, a type, and an

optional initializer.

• In addition, all variables have a scope, which defines their visibility, and

a lifetime.

Declaring a Variable:
• In Java, all variables must be declared before they can be used. So java

is termed as a strongly typed language.
• The basic form of a variable declaration is shown here:

type identifier [= value][, identifier [= value] ...] ;
• The type is one of Java’s atomic types, or the name of a class or

interface.

• The identifier is the name of the variable.

• To declare more than one variable of the specified type, use a comma

separated list.

Examples:
int a, b, c; // declares three int variables, a, b, and c.

int d = 3, e, f = 5; // declares three int variables, initializing d and f.

byte z = 22; // initializes z.

double pi = 3.14159; // declares and initializes pi.

char x = 'x'; // the variable x has the value 'x'.

Dynamic Initialization:
• Java allows variables to be initialized dynamically, using any expression

valid at the time the variable is declared.

• Example:
classDynInit
{

public static void main(String args[])
{
double a = 3.0, b = 4.0;

Object Oriented Programming Through Java 23

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

double c = Math.sqrt(a * a + b * b);
 // c is dynamically initialized
System.out.println("Hypotenuse is " + c);
}

}
• Here, three local variables—a, b, and c—are declared. The first two a and

b, are initialized by constants. However, c is initialized dynamically to the

length of the hypotenuse

The Scope and Lifetime of Variables:
• Java allows variables to be declared within any block.

• “A block begins with an opening curly brace and ends with a closing

curly brace”. A block defines a scope. Thus, a new scope is created each

time a new block starts.

• “A scope determines what objects are visible to other parts of your

program”. It also determines the lifetime of those objects.

• The scope defined by a method begins with its opening curly brace.

However, if that method has parameters, they too are included within the

method’s scope.

• As a general rule, variables declared inside a scope are not visible (that

is, accessible) to code outside that scope.

• Thus, when we declare a variable within a scope, we are localizing that

variable and protecting it from unauthorized access and/or modification.

• Scopes can be nested. When this occurs, the outer scope encloses the

inner scope. This means that objects declared in the outer scope will be

visible to code within the inner scope. However, the reverse is not true.

Objects declared within the inner scope will not be visible outside it.

• Example:
class Scope
{

public static void main(String args[])
{

int x; // known to all code within main
x = 10;
if(x == 10)

Object Oriented Programming Through Java 24

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

{ // start new scope
int y = 20; // known only to this block
// x and y both known here.
System.out.println("x and y: " + x + " " + y);
x = y * 2;

}
y = 100; // Error! y not known here
System.out.println("x is " + x); // x is still known here.

}
}

• Within a block, variables can be declared at any point, but are valid only

after they are declared.

• Thus, if you define a variable at the start of a method, it is available to all

of the code within that method.

• Conversely, if you declare a variable at the end of a block, it is effectively

useless, because no code will have access to it.

• For example, this fragment is invalid because count cannot be used prior

to its declaration:

// This fragment is wrong!
count = 100; // oops! cannot use count before it is declared!
int count;

• Variables are created when their scope is entered, and destroyed when

their scope is left. This means that a variable will not hold its value once

it has gone out of scope.

• Also, a variable declared within a block will lose its value when the block

is left. Thus, the lifetime of a variable is confined to its scope.

• If a variable declaration includes an initializer, then that variable will be

reinitialized each time the block in which it is declared is entered.

// Demonstrate lifetime of a variable.
class LifeTime
{

public static void main(String args[])
{

int x;
for(x = 0; x < 3; x++)
{

Object Oriented Programming Through Java 25

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

int y = -1; // y is initialized each time block is
entered

System.out.println("y is: " + y); // this always prints -1
y = 100;
System.out.println("y is now: " + y);

}
}

}

 Output:
y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

y is reinitialized to –1 each time the inner for loop is entered. Even though it

is subsequently assigned the value 100, this value is lost.

• Although blocks can be nested, you cannot declare a variable to have the

same name as one in an outer scope.

• For example, the following program is illegal:

// This program will not compile
class ScopeErr
{
public static void main(String args[])
{

int bar = 1;
{ // creates a new scope

int bar = 2; // Compile-time error – bar already defined!
}

}
}

 PRIMITIVE DATA TYPES

• Java defines eight primitive data types they are: byte, short, int, long,
char, float, double, and boolean.

• The primitive types are also commonly referred to as simple types

• These can be put in four groups:

Object Oriented Programming Through Java 26

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

o Integers: This group includes byte, short, int, and long, which are

for whole-valued signed numbers.

o Floating-point numbers: This group includes float and double,

which represent numbers with fractional precision

o Characters: This group includes char, which represents symbols in

a character set, like letters and numbers.

o Boolean: This group includes boolean, which is a special type for

representing true/false values.

• The primitive types represent single values—not complex objects.

• Although Java is otherwise completely object-oriented, the primitive types

are not. They are analogous to the simple types found in most other non–

object-oriented languages. The reason for this is efficiency. Making the

primitive types into objects would have degraded performance too much.

• The following chart summarizes the default values for all the above data
types.

Data Type Default Value (for fields)
byte 0
short 0
int 0

long 0L
float 0.0f

double 0.0d
char '\u0000'

String (or any object) Null
boolean false

1. Integers:

• Java defines four integer types: byte, short, int, and long. All of these are

signed values.

Object Oriented Programming Through Java 27

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• The width and ranges of these integer types vary widely, as shown in this

table:

Name Width(in
bits) Range

long

int
short
byte

64

32
16
8

–9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
–2,147,483,648 to 2,147,483,647
–32,768 to 32,767
–128 to 127

a. byte:

• The smallest integer type is byte. This is a signed 8-bit type that has a

range from –128 to 127.

• Variables of type byte are especially useful while working with

o a stream of data from a network or file.

o raw binary data that may not be directly compatible with Java’s

other built-in types.

• Byte variables are declared by use of the keyword byte.

• Example: byte b, c;

b. short:

• short is a signed 16-bit type.

• It has a range from –32,768 to 32,767. It is probably the least-used Java

type.

• Examples: short s, t;

c. int:
• The most commonly used integer type is int.

• It is a signed 32-bit type that has a range from –2,147,483,648 to

2,147,483,647.

• In addition to other uses, variables of type int are commonly employed to

control loops and to index arrays.

• Examples: int a, b =5;

Object Oriented Programming Through Java 28

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

d. long:
• long is a signed 64-bit type and is useful in cases where an int type is

not large enough to hold the desired value.

• The range of a long is quite large. This makes it useful when big, whole

numbers are needed.

• Examples: long d, s;

Example program for all Integer Types:
public class Demo

{
public static void main(String[] args)
{

byte b =100;
short s =123;
int v = 123543;
int calc = -9876345;
longamountVal = 1234567891;
System.out.println("byte Value = "+ b);
System.out.println("short Value = "+ s);

 System.out.println("int Value = "+ v);
 System.out.println("int second Value = "+ calc);
 System.out.println("long Value = "+ amountVal);
 }
}
Output:

byte Value = 100
short Value = 123
int Value = 123543
int Second value = -9876345
long Value = 1234567891

2. Floating-Point Types:
• Floating-point numbers, also known as real numbers, are used when

evaluating expressions that require fractional precision.

• For example, calculations such as square root, or transcendental such as

sine and cosine, result in a value whose precision requires a floating-

point type.

Object Oriented Programming Through Java 29

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• There are two kinds of floating-point types, float and double, which

represent single- and double-precision numbers, respectively.

Name Width
in Bit

Approximate Range

double

float

64

32

4.9e–324 to 1.8e+308

1.4e–045 to 3.4e+038

a. float:

• The type float specifies a single-precision value that uses 32 bits of

storage.

• Single precision is faster on some processors and takes half as much

space as double precision, but will become imprecise when the values are

either very large or very small

• Examples: float hightemp, lowtemp;

b. double:
• Double precision, as denoted by the double keyword, uses 64 bits to

store a value.

• Double precision is actually faster than single precision on some modern

processors that have been optimized for high-speed mathematical

calculations. .

• All transcendental math functions, such as sin(), cos(), and sqrt(),

return double values.

• Here is a short program that uses double variables to compute the area

of a circle:

// Compute the area of a circle.

class Area
{

public static void main(String args[])
{

double pi, r, a;
r = 10.8; // radius of circle

Object Oriented Programming Through Java 30

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

pi = 3.1416; // pi, approximately
a = pi * r * r; // compute area
System.out.println("Area of circle is " + a);

 }
}

3. Characters:
• In Java, the data type used to store characters is char.

• In C/C++, char is 8 bits wide. This is not the case in Java.

• Instead, Java uses Unicode to represent characters. “Unicode defines a

fully international character set that can represent all of the characters

found in all human languages”. It is a unification of dozens of character

sets, such as Latin, Greek, Arabic, Cyrillic, Hebrew, Katakana, Hangul,

and many more. For this purpose, it requires 16 bits. Thus, in Java
char is a 16-bit type.

• The range of a char is 0 to 65,535. There are no negative chars.

Example:

// Demonstrate char data type.

classCharDemo
{

public static void main(String args[])
{

char ch1, ch2;
ch1 = 88; // code for X
ch2 = 'Y';
System.out.print("ch1 and ch2: ");
System.out.println(ch1 + " " + ch2);

}
}

Output: ch1 and ch2: X Y

• Although char is designed to hold Unicode characters, it can also be

thought of as an integer type on which you can perform arithmetic

operations.

• For example, you can add two characters together, or increment the

value of a character variable.

Object Oriented Programming Through Java 31

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• Example:
// char variables behave like integers.
class CharDemo2
{

public static void main(String args[])
{

char ch1;
ch1 = 'X';
System.out.println("ch1 contains " + ch1);
ch1++; // increment ch1
System.out.println("ch1 is now " + ch1);

}
}

Output:
 ch1 contains X
 ch1 is now Y
In the program, ch1 is first given the value X. Next, ch1 is
incremented. This results in ch1 containing Y, the next character
in the ASCII (and Unicode) sequence.

4. Boolean:
• Java has a primitive type, called boolean, for logical values.

• It can have only one of two possible values, true or false.

• boolean is also the type required by the conditional expressions that

govern the control statements such as if and for.

• Example:
// Demonstrate boolean values.
class BoolTest {
public static void main(String args[])
{

boolean b;
b = false;
System.out.println("b is " + b);
b = true;
System.out.println("b is " + b);
// a boolean value can control the if statement
if(b) System.out.println("This is executed.");
b = false;
if(b) System.out.println("This is not executed.");
// outcome of a relational operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9));

Object Oriented Programming Through Java 32

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

}
}

Output:
b is false
b is true
This is executed.
10 > 9 is true

 IDENTIFIERS:
• Identifiers are used for class names, method names, and variable names.

• An identifier may be any combination of uppercase and lowercase letters,

digits, or the underscore and dollar-sign characters.

• They must not begin with a digit.

• Java’s reserved words keywords cannot used as identifiers.

• Java is case-sensitive, so VALUE is a different identifier than Value.

• Examples

- valid identifiers are:

AvgTemp count a4 $test this_is_ok

- Invalid identifier names include these:

2count high-temp Not/ok

 LITERALS:
• A constant value in Java is created by using a literal representation of it.

• Different types of literals those can be assigned to a variable are integer,

floating-point, boolean, character and string literals.

• True, false and null are reserved literals in java.

• For example, here are some literals:

100 98.6 'X' "This is a test"

• Left to right, the first literal specifies an integer, the next is a floating-

point value, the third is a character constant, and the last is a string.

Object Oriented Programming Through Java 33

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• A literal can be used anywhere a value of its type is allowed.

 OPERATORS

 An operator performs an action on one or more operands.

 An operator that performs operation on one operand is called a unary

operator(+, -, ++, --) , on two operands called as binary operator(+,-

,/,*,<<,>>,<,> and more) and on 3 operands called as ternary

operator(?:).

Java supports all the three types of operators, in addition to special

operators like instanceof, .(dot), new, (type) casting operators.

1. Arithmetic Operators:
• Arithmetic operators are used in mathematical expressions in the same

way that they are used in algebra. The following table lists the arithmetic

operators:

Operator Result

+

–

*

/

%

++

+ =

– =

*=

/=

%=

– –

Addition

Subtraction (also unary minus)

Multiplication

Division

Modulus

Increment

Addition assignment

Subtraction assignment

Multiplication assignment

Division assignment

Modulus assignment

Decrement

• The operands of the arithmetic operators must be of a numeric type.

• We cannot use them on boolean types, but can use them on char types,

since the char type in Java is, essentially, a subset of int.

Object Oriented Programming Through Java 34

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• Example:
public class Test
{
public static void main(String args[])
 {
int a = 10;
int b = 20;
int c = 25;
int d = 25;
System.out.println("a + b = " + (a + b));
System.out.println("a - b = " + (a - b));
System.out.println("a * b = " + (a * b));
System.out.println("b / a = " + (b / a));
System.out.println("b % a = " + (b % a));
System.out.println("c % a = " + (c % a));
System.out.println("a++ = " + (a++));
System.out.println("b-- = " + (a--));
 // Check the difference in d++ and ++d
System.out.println("d++ = " + (d++));
System.out.println("++d = " + (++d));
 }
}

Output:
a + b = 30
a - b = -10
a * b = 200
b / a = 2
b % a = 0
c % a = 5
a++ = 10
b-- = 11
d++ = 25
++d = 27

2. The Bitwise Operators:
• In Java these will be operated on int and long values.

• If any of the operand is shorter than an int, it is automatically promoted

to int before performing the operations.

• These operators act upon the individual bits of their operands.

• Negative numbers are represented in 2’s complement arithmetic and

then the operators are applied.

Object Oriented Programming Through Java 35

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• They are summarized in the following table:

Operator Result

~
&
|
^
>>
>>>
<<
&=
|=
^=
>>=
>>>=
<<=

Bitwise unary NOT
Bitwise AND
Bitwise OR
Bitwise exclusive OR
Shift right
Shift right zero fill
Shift left
Bitwise AND assignment
Bitwise OR assignment
Bitwise exclusive OR
assignment
Shift right assignment
Shift right zero fill
assignment
Shift left assignment

• Example:
public class Test
{

public static void main(String args[])
{
int a = 60; /* 60 = 0011 1100 in binary*/
int b = 13; /* 13 = 0000 1101 */
int c = 0;

 c = a & b; /* 12 = 0000 1100 */
System.out.println("a & b = " + c);

 c = a | b; /* 61 = 0011 1101 */
System.out.println("a | b = " + c);

 c = a ^ b; /* 49 = 0011 0001 */
System.out.println("a ^ b = " + c);

 c = ~a; /*-61 = 1100 0011 */
System.out.println("~a = " + c);

 c = a << 2; /* 240 = 1111 0000 */
System.out.println("a << 2 = " + c);

Object Oriented Programming Through Java 36

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

 c = a >> 2; /* 15 = 1111 */
System.out.println("a >> 2 = " + c);

 c = a >>> 2; /* 15 = 0000 1111 */
System.out.println("a >>> 2 = " + c);
 }
}

Output:
 a& b = 12

a | b = 61
a ^ b = 49
~a = -61
a << 2 = 240
a>> 15
a>>> 15

3. Relational Operators:
• The relational operators determine the relationship that one operand has

to the other.

• Specifically, they determine equality and ordering. The relational

operators are shown here:

Operator Result
==
!=
>
<
>=
<=

 Equal to
Not equal to
Greater than
Less than
Greater than or equal
to
Less than or equal to

• The outcome of these operations is a boolean value.

• The relational operators are most frequently used in the expressions that

control the if statement and the various loop statements.

• Any type in Java, including integers, floating-point numbers, characters,

and boolean can be compared using the equality test, ==, and the

inequality test, !=.

Object Oriented Programming Through Java 37

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• Example:
public class Test
{
public static void main(String args[])
 {
 int a = 10;
 int b = 20;
 System.out.println("a == b = " + (a == b));
 System.out.println("a != b = " + (a != b));
 System.out.println("a > b = " + (a > b));
 System.out.println("a < b = " + (a < b));
 System.out.println("b >= a = " + (b >= a));
 System.out.println("b <= a = " + (b <= a));
 }
}

 Output:
 a == b = false

a != b = true
a > b = false
a < b = true
b >= a = true
b <= a = false

4. Boolean Logical Operators:

• The Boolean logical operators shown here operate only on boolean

operands or expressions. These operators combine two boolean values to

form a resultant boolean value.

Operator Result
&
|
^
||
&&
!
&=
|=
^=
==
!=
?:

Logical AND
Logical OR
Logical XOR(exclusive OR)
Short-circuit OR
Short-circuit AND
Logical unary NOT
AND assignment
OR assignment
XOR assignment
Equal to
Not equal to
Ternary if-then-else

Object Oriented Programming Through Java 38

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

// Demonstrate the boolean logical operators.

class BoolLogic
{

public static void main(String args[])
{

boolean a = true;
boolean b = false;
boolean c = a | b;
boolean d = a & b;
boolean e = a ^ b;
boolean f = (!a & b) | (a & !b);
boolean g = !a;
System.out.println(" a = " + a);
System.out.println(" b = " + b);
System.out.println(" a|b = " + c);
System.out.println(" a&b = " + d);
System.out.println(" a^b = " + e);
System.out.println("!a&b|a&!b = " + f);
System.out.println(" !a = " + g);

}
}

Output:

a = true
b = false
a|b = true
a&b = false
a^b = true
a&b|a&!b = true
!a = false

5. Short-Circuit Logical Operators:
• These are secondary versions of the Boolean AND (&&) and OR (||)

operators, and are known as short-circuit logical operators, conditionally

evaluate the second operand or expression.

Examples:

(i) In case of AND if the first operand is false, no matter what the second
operand is, the answer is false. No need to evaluate the second
operand.

if (0 == 1 && 2 + 2 == 4)

Object Oriented Programming Through Java 39

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

{
System.out.println("This line won't be printed.");

 }
Java does the following:

1. Evaluate 0 == 1, discovering that 0 == 1 is false.

2. Realize that the condition (0 == 1 && whatever) can't possibly be

true, no matter what the condition happens to be.

3. Return false (without bothering to check if 2 + 2 == 4).

(ii) In case of OR, if the first operand is true, no matter what the second

operand is, the answer is true.
if (2 + 2 == 4 || 0 == 1)

 {
System.out.println("This line will be printed.");

 }
Java does the following:

1. Evaluate 2 + 2 == 4, discovering that 2 + 2 == 4 is true.

2. Realize that the condition (2 + 2 == 4 || whatever) must be true, no

matter what the whatever condition happens to be.

3. Return true (without bothering to check if 0 == 1).

6. The Assignment Operator:
• The assignment operator is the single equal sign i.e. =

• It has this general form:

var = expression;
Here, the type of var must be compatible with the type of expression.

• The assignment operator allows you to create a chain of assignments.

• For example, consider this fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single

statement.

Object Oriented Programming Through Java 40

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

7. The ?: Operator
• Java includes a special ternary (three-way) operator that can replace

certain types of if-then-else statements. This operator is the ?:

• General form:

expression1 ?expression2 : expression3
• Here, expression1 can be any expression that evaluates to a boolean

value. If expression1 is true, then expression2 is evaluated; otherwise,

expression3 is evaluated. The result of the ?operation is that of the

expression evaluated.

• Both expression2 and expression3 are required to return the same type,

which can’t be void.

• Example:
public class Test
{

public static void main(String args[])
{

 int a, b;
 a = 10;
 b = (a == 1) ? 20: 30;
 System.out.println("Value of b is : " + b);

 b = (a == 10) ? 20: 30;
 System.out.println("Value of b is : " + b);
 }
}
Output: Value of b is : 30

Value of b is : 20

 ARRAYS:
• Definition: An array is a memory space allocated that can store multiple

values of same data type in contiguous locations.(ex., array ‘marks’ to

represent set of marks of a group of students).

• This memory space can be accessed with a common name and a specific

element is accessed by using a subscript or an index inside the brackets,

Object Oriented Programming Through Java 41

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

along with the name of the array.(ex., marks[5], stores marks of a fifth

student),each individual value in array called as elements.

• Arrays offer a convenient means of grouping related information.

• Arrays of any type can be created and may have one or more dimensions.
ONE-DIMENSIONAL ARRAYS:

• A one-dimensional array is, essentially, a list of like-typed variables.

• Creating Arrays:
o declare a variable of the desired array type.

o allocate the memory that will hold the array, using new

o initializing/assigning valuesinto an array.

• Declaring: To create an array, you first must create an array variable of

the desired type.

• The general form of a one-dimensional array declaration is

typearray_name[];
• Here, type declares the base type of the array. The base type determines

the data type of each element that comprises the array. Thus, the base

type for the array determines what type of data the array will hold.

• Creating memory location: new is a special operator that allocates

memory.

• The general form of new as it applies to one-dimensional arrays appears

as follows:

Array_name = new type[size];
o Here, type specifies the type of data being allocated,

o size specifies the number of elements in the array,

o andarray_name is the array variable that is linked to the array.

• Initializing: The elements in the array allocated by new will

automatically be initialized to zero.

• To assign values to an array: Array_name[index]=value;
Or type Array_name[]={list of values};

Object Oriented Programming Through Java 42

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• Example: Allocating a 12-element array of integers and links them to

month_days.

month_days = new int[12];

month_days will refer to an array of 12 integers and all

elements in the array will be initialized to zero.

• We can access a specific element in the array by specifying its index

within square brackets. All array indexes start at zero.

• The for loops can be used to assign and access values from an array.

• To obtain the number of elements in an array, use the length property

associated with all the arrays in java. I.e., use array name followed by dot

operator and the variable length.

• Example:
month_days[1] = 28;

// assigns the value 28 to the second element of month_days.

System.out.println(month_days[3]);//displays the value stored at index 3

Example:
// Demonstrate a one-dimensional array.
class Array
{

public static void main(String args[])
{
intmarks[]={9,8,6,5,10};
int n=marks.length;
System.out.println(“marks of a student in a class test are:”);
for(int i=0;i<n;i++)
 System.out.println(marks[i]);
}

 }
Output: marks of a student in a class test are: 9 8 6 5 10

MULTIDIMENSIONAL ARRAYS
• In Java, multidimensional arrays are actually arrays of arrays.

• To declare a multidimensional array variable, specify each additional

index using another set of square brackets.

Object Oriented Programming Through Java 43

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• Suppose to store the marks of students in different subjects, need a 2D

array conceptualized in the form of table, with rows representing marks

of each student and columns represent the subjects.

• For example, the following declares a two dimensional array variable

called marks.

int marks[][] = new int[5][6];
This allocates a 5 by 6 array and assigns it to marks, to store marks of 5

students in 6 subjects. Internally this matrix is implemented as an array

of arrays of int.

• Example:

// Demonstrate a two-dimensional array.
class TwoDArray
{

public static void main(String args[])
{

int twoD[][]= new int[4][5];
int i, j, k = 0;
for(i=0; i<4; i++)
{

for(j=0; j<5; j++)
{

twoD[i][j] = k;
k++;

}
 }

for(i=0; i<4; i++)
{

for(j=0; j<5; j++)
System.out.print(twoD[i][j] + " ");

System.out.println();
}

}
}
Output:

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

Object Oriented Programming Through Java 44

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

Initializing Multidimensional Arrays:
• Enclose each dimension’s initializer within its own set of curly braces.

• The following program creates a matrix where each element contains the

product of the row and column indexes.

// Initialize a two-dimensional array.
class Matrix
{

public static void main(String args[])
{

double m[][] = {{ 0*0, 1*0, 2*0, 3*0 },
{ 0*1, 1*1, 2*1, 3*1 },
{ 0*2, 1*2, 2*2, 3*2 },
{ 0*3, 1*3, 2*3, 3*3 }};

int i, j;
for(i=0; i<4; i++)
{

for(j=0; j<4; j++)
System.out.print(m[i][j] + " ");

System.out.println();
}

}
}

Output:
0.0 0.0 0.0 0.0
0.0 1.0 2.0 3.0
0.0 2.0 4.0 6.0
0.0 3.0 6.0 9.0

Alternative Array Declaration Syntax:
• There is a second form that may be used to declare an array:

type[] var-name;
Here, the square brackets follow the type specifier, and not the name of

the array variable.

• For example, the following two declarations are equivalent:

int al[] = new int[3];

int[] a2 = new int[3];

The following declarations are also equivalent:

Object Oriented Programming Through Java 45

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

char twod1[][] = new char[3][4];

char[][] twod2 = new char[3][4];

• This alternative declaration form offers convenience when declaring

several arrays at the same time.

• For example,

int[] num, num2, num3; // creates three array variables of type int.

 TYPE CONVERSION AND CASTING
• If the two types are compatible, then Java will perform the conversion

automatically.

• For example, it is always possible to assign an int value to a long

variable.

• However, not all types are compatible, and thus, not all type conversions

are implicitly allowed.

• For instance, there is no automatic conversion defined from double to

byte. Fortunately, it is still possible to obtain a conversion between

incompatible types.

• To do so, you must use a cast, which performs an explicit conversion

between incompatible types.
Java’s Automatic Conversions

• When one type of data is assigned to another type of variable, an

automatic type conversion will take place if the following two conditions

are met:

o The two types are compatible.

o The destination type is larger than the source type.

• When these two conditions are met, a widening conversion takes place.

• For example, a smaller box can be placed in short, short in an int, int in

long, and so on. Any value can be assigned to double. Any value except a

double can be assigned to a float. Any whole number can be assigned to

longand int, short, byte and char all can fit inside int.

o byte b=10; //byte variable

Object Oriented Programming Through Java 46

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

o inti=b; // implicit widening byte to int

• For widening conversions, the numeric types, including integer and

floating-point types, are compatible with each other.

• However, there are no automatic conversions from the numeric types to

char or boolean. Also, char and boolean are not compatible with each

other.

• Java also performs an automatic type conversion when storing a literal

integer constant into variables of type byte, short, long, or char.
Casting Incompatible Types

• For example, what if you want to assign an int value to a byte variable?

This conversion will not be performed automatically, because a byte is

smaller than an int.

• For example, a bigger box has to be placed in a small box. Then the small

box has to be chopped(casted) so that the bigger box (which has now

become smaller) can be placed in the small box.

• This kind of conversion is sometimes called a narrowing conversion,

and also termed as casting, since you are explicitly making the value

narrower so that it will fit into the target type.

• To create a conversion between two incompatible types, you must use a

cast.

• A cast is simply an explicit type conversion.

• It has this general form:

(target-type) value
Here, target-type specifies the desired type to convert the specified value

to.

• For example, the following fragment casts an int to a byte. If the integer’s

value is larger than the range of a byte, it will be reduced modulo (the

remainder of an integer division by the) byte’s range.

int a;
byte b;
// ...

Object Oriented Programming Through Java 47

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

b = (byte) a;
• A different type of conversion will occur when a floating-point value is

assigned to an integer type: truncation. As you know, integers do not

have fractional components. Thus, when a floating-point value is

assigned to an integer type, the fractional component is lost.

• For example, if the value 1.23 is assigned to an integer, the resulting

value will simply be 1. The 0.23 will have been truncated.

• The following program demonstrates some type conversions that require

casts:

// Demonstrate casts.
class Conversion
{
public static void main(String args[])
 {

byte b;
int i = 257;
double d = 323.142;
System.out.println("\nConversion of int to byte.");
b = (byte) i;
System.out.println("i and b " + i + " " + b);
System.out.println("\nConversion of double to int.");
i = (int) d;
System.out.println("d and i " + d + " " + i);
System.out.println("\nConversion of double to byte.");
b = (byte) d;
System.out.println("d and b " + d + " " + b);

 }
}
Output:
Conversion of int to byte.
i and b 257 1
Conversion of double to int.
d and i 323.142 323
Conversion of double to byte.
d and b 323.142 67

Automatic Type Promotion in Expressions
• In addition to assignments, there is another place where certain type

conversions may occur: in expressions.

Object Oriented Programming Through Java 48

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• In an expression, the precision required of an intermediate value will

sometimes exceed the range of either operand.

• For example, examine the following expression:

byte a = 40;
byte b = 50;
byte c = 100;
int d = a * b / c;

The result of the intermediate term a*b easily exceeds the range of either

of its byte operands.

• To handle this kind of problem, Java automatically promotes each byte,

short, or char operand to int when evaluating an expression. This means

that the sub expression a*b is performed using integers—not bytes.

Thus, 2,000, the result of the intermediate expression, 50 * 40, is legal

even though a and b are both specified as type byte.

• As useful as the automatic promotions are, they can cause confusing

compile-time errors.

• For example, this seemingly correct code causes a problem: byte b = 50;

b = b * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back

into a byte variable. However, because the operands were automatically

promoted to int when the expression was evaluated, the result has also been

promoted to int. Thus, the result of the expression is now of type int, which

cannot be assigned to a byte without the use of a cast.

The Type Promotion Rules
• Java defines several type promotion rules that apply to expressions.

• They are as follows:

1. All byte, short, and char values are promoted to int

2. If one operand is a long, the whole expression is promoted to long.

3. If one operand is a float, the entire expression is promoted to float.

4. If any of the operands is double, the result is double.

Object Oriented Programming Through Java 49

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

• Example: Demonstrates how each value in the expression gets promoted

to match the second argument to each binary operator:

class Promote
{

public static void main(String args[])
{

byte b = 42;
char c = 'a';
short s = 1024;
int i = 50000;
float f = 5.67f;
double d = .1234;
double result = (f * b) + (i / c) - (d * s);
System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));
System.out.println("result = " + result);

}
}

• Explanation: In the first subexpression, f * b, b is promoted to a

float and the result of the subexpression is float. Next, in the

subexpression i/c, c is promoted to int, and the result is of type int.

Then, in d*s, the value of s is promoted to double, and the type of the

subexpression is double. Finally, these three intermediate values, float,

int, and double, are considered. The outcome of float plus an int is a

float. Then the resultant float minus the last double is promoted to

double, which is the type for the final result of the expression.

Object Oriented Programming Through Java 50

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

UNIT-I
Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1) Java programs are ______________ []

(a) Compiled (b) Interpreted

(c) Both Compiled & Interpreted (d) None of these

2) The outcome of a Java Compiler is _________ file []

(a) .class (b) .obj (c) .exe (d)None of these

3) If an expression contains double, int, float, long, then whole
 expression will promoted into which of these data types? []

(a) long (b) int (c) double (d) float
4) Which of these can be returned by the operator & . []

 (a) int (b)boolean (c)char (d) int or boolean
5) Consider the statement c=a-(b*(a/b)). Here c contains ___ []

(a) Difference of a and b (b)Sum of a and b
(c) Quotient of a/b (d) Remainder of a/b

6) With x = 1, which of the following are legal lines of Java code for

changing the value of x to 2 []
 (1) x++; (2) x=x+1; (3) x+=1; (4)x=+1
 (a) 1, 2 & 3 (b) 1 & 4 (c) 1, 2, 3 & 4 (d) 3 & 2

7) What is the output of the following program? []

class increment
{
public static void main(String args[])
{
double var1 = 1 + 5;
double var2 = var1 / 4;
int var3 = 1 + 5;
int var4 = var3 / 4;
System.out.print(var2 + " " + var4);
}
}
(a) 1 1 (b) 0 1 (c) 1.5 1 (d) 1.5 1.0

Object Oriented Programming Through Java 51

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

8) Consider the following statements

 byte b; // statement1
 int i=100; // statement2
 b=i; // statement3

 Which of the above 3 statements will cause a compilation error:
 (a) statement 1 (b) statement 2 (c) statement 3 (d)none

9) What is the output of the following program? []

class conversion
{
public static void main(String args[])
{
double a = 295.04;
int b = 300;
byte c = (byte) a;
byte d = (byte) b;
System.out.println(c + " " + d);
}
}
(a) 38 43 (b) 39 44 (c) 295 300 (d) 295.04
300

10) What will this code print? []

 int arr[] = new int [5];
 System.out.print(arr);
(a) 0 (b) value stored in arr[0] (c) 00000 (d) None
11) What is the output of this program? []

class bitwise_operator
{
public static void main(String args[])
{
int a = 3;
int b = 6;
int c = a | b;
int d = a & b;
System.out.println(c + " " + d);
}
}
(a) 7 2 (b) 7 7 (c) 7 5 (d) 5 2

12) What is the output of this program? []

class Modulus
{

Object Oriented Programming Through Java 52

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

public static void main(String args[])
{
double a = 25.64;
int b = 25;
a = a % 10;
b = b % 10;
System.out.println(a + " " + b);
}
}
(a)5.640000000000001 5 (b)5.640000000000001
5.0
(c)5 5 (d)5
5.640000000000001

 13) What is the output of this program? []

class Output
{
public static void main(String args[])
{
int a = 1;
int b = 2;
int c;
int d;
c = ++b;
d = a++;
c++;
b++;
++a;
System.out.println(a + " " + b + " " + c);
}
}
(a) 3 2 4 (b)3 2 3 (c)2 3 4 (d) 3 4 4

SECTION-B
 SUBJECTIVE QUESTIONS
1) Summarize the Need of OOP.

2) List and explain the Principles of OOP paradigm

3) Differentiate Procedure Oriented Programming (POP) with Object Oriented
Programming (OOP).

4) List and explain the Features of java.

5) Outline the role of JVM in making Java platform independent.

Object Oriented Programming Through Java 53

II Year - II Semester 2019-20 OE-I(CE,EE,ECE,ME)

6) Consider the statements below:

byte b; // statement1
int a; // statement2
a=b; // statement3
b=a; // statement4
Comment about statement 3 and statement4.

7) Write a java program to do linear search on a list of integers

8) Write a java program to check whether a given number is prime or not.

9) Write a java to multiply 2 numbers without using * operator.
 [HINT: use the operator + and loop statement]

10) Write a java program to sort given list of integers in ascending order.

Object Oriented Programming Through Java 1

II Year - I Semester A.Y.2019-20 CSE

UNIT – II
CLASS FUNDAMENTALS AND INHERITANCE

Objective:

 Develop the code with the concepts of Class and Inheritance.

Syllabus:

 Class Fundamentals, Declaring Objects, Methods, Constructors, This

Keyword, Overloading Methods and Constructors, Access Control.

 Inheritance- Basics, Types, Using Super Keyword, Method Overriding,

Dynamic Method Dispatch, Abstract Classes, Using Final With

Inheritance, Object Class.

Learning Outcomes:

Students will be able to

 Describe how classes, objects, methods and Constructors are created

and applied in java.

 Apply different types of Inheritance and can develop simple programs

using Inheritance.

 Differentiate between Method overloading and Method Overriding

 Differentiate between Abstract methods and Concrete methods.

 Demonstrate the importance of this, super and final keywords, and

will be able to distinguish between them.

Object Oriented Programming Through Java 2

II Year - I Semester A.Y.2019-20 CSE

LEARNING MATERIAL

 CLASS FUNDAMENTALS:
 A class is a blueprint or prototype that defines the variables and methods

common to all objects of same kind. A class can be defined as a
user-defined data type and an object as a variable of that data type that
can contain data and methods that manipulates the data.

 Ex:
Bike

boolean kickstart
boolean buttonstart
int gears
accelerate()
applyBrake()
changeGear()

Fig. Bike class
Manufacturers produce many bikes from the same blueprint as every
bike share similar characteristics. There are many objects of same kind
belonging to same classes that share certain characteristics. Bikes have
attributes (speed, engine capacity, number of wheels, number of gears,
brakes) behaviors (braking, accelerating, slowing down and changing
gears).

 A class is a template for an object, and an object is an instance of a
class. Because an object is an instance of a class, you will often see the
two words object and instance used interchangeably.

 A class is declared by use of the class keyword.
 Declaration of class:
 class classname

{
 type instance-variable1;
 type instance-variable2;
 // ...

 type instance-variableN;
 type methodname1(parameter-list)

{
// body of method

}

type methodname2(parameter-list)

{

// body of method

Object Oriented Programming Through Java 3

II Year - I Semester A.Y.2019-20 CSE

}

// ...

type methodnameN(parameter-list) {

// body of method

}

}

 The data, or variables, defined within a class are called instance

variables.

 The code is contained within methods. Collectively, the methods and

variables defined within a class are called members of the class.

 The instance variables are directly accessible by methods defined in the

class.

 Variables defined within a class are called instance variables because

each instance of the class (that is, each object of the class) contains its

own copy of these variables.

 The data for one object is separate and unique from the data for another.

Example of class:

 Create a class structure that may represent the structure of a hospital or
other medical organization, begin with a class called Employee.

 An employee has several characteristics that you can represent as
variables, such as name, salary, and sickDays.

 Write a method details() which consists of three println() statements that
print the values of instance variables. The Employee class can be defined
as follows:

class Employee
{
 String name; // Instance Variables

int salary; // Instance Variables
void details() // Instance Method
{

System.out.println("Name: " + name);
 System.out.println("Salary: " + salary);

}
}

Object Oriented Programming Through Java 4

II Year - I Semester A.Y.2019-20 CSE

 CREATING OBJECTS:

 Object is an instance of a class.

 An object is created by creating an instance of a class. The type of the

object is class itself.

 Creating an object for a class is a two-step process.

o First, declare a variable of the class type. This variable does not

define an object. Instead, it is simply a variable that can refer to

an object.
o Second, acquire an actual, physical copy of the object and

assign it to that variable by using the new operator.

 The new operator dynamically allocates memory for an object and

returns a reference to it. This reference is nothing but the address in

memory of the object allocated by new. This reference is then stored in

the variable declared.
Syntax for creating an Object:
 Classname objectname=new Classname();

Example:
 Employee sam=new Employee();

This statement combines the two steps just described. It can be rewritten

like this to show each step more clearly:

 Employee sam; // declare reference to object

 sam=new Employee(); // allocate a Employee object

 The first line declares sam as a reference to an object of type

Employee.

 After this line executes, sam contains the value null, which indicates

that it does not yet point to an actual object.

 Any attempt to use sam at this point will result in a compile-time

error. The next line allocates an actual object and assigns a reference

to it to sam.

Object Oriented Programming Through Java 5

II Year - I Semester A.Y.2019-20 CSE

 After the second line executes, you can use sam as if it were an

Employee object. But in reality, sam simply holds the memory address

of the actual Employee object.

 The effect of these two lines of code is depicted in Figure :

Statement Effect

Employee sam;

 sam

sam= new Employees(); sam

 Employee

Fig 2.1: Declaring a Object type sam

Example creating an object and accessing class members via an object:

 class Employee

 {
 String name; // person's name // Instance Variables
 double salary; // salary in dollars

 void details() // Instance Method
 {

 System.out.println("Name: " + name);

 System.out.println("Salary: " + salary);

 }

 }

 class Demo

 {

 public static void main(String[] args)

NULL

name

salary

Object Oriented Programming Through Java 6

II Year - I Semester A.Y.2019-20 CSE

 {

 Employee ram = new Employee();

 // may be done on two lines.

 //Employee ram; //Object declaration
 //ram = new Employee(); // Instantiation
 ram.name = "Ram"; // initialization
 ram.salary = 32000;

 // Now print out ram information using details()

 ram.details();

 }

 }

The output produced by this program is shown here:

 Name:Ram
 Salary:32000

new Operator:

 The new operator dynamically allocates memory for an object. The
general form is:

 class-var = new classname();

 class-var is a variable of the class type being created.
 The classname is the name of the class that is being instantiated. The

class name followed by parentheses specifies the constructor for the
class.

 A constructor defines what occurs when an object of a class is
created.

 Most real-world classes explicitly define their own constructors within
their class definition. However, if no explicit constructor is specified,
then Java will automatically supply a default constructor.

 In example, JVM will initialize the instance variables using a default
constructor.

 Java’s primitive types are not implemented as objects and so new
operator is not required for them.

 new allocates memory for an object during run time, so can create as
many or as few objects as needed during the execution.

Object Oriented Programming Through Java 7

II Year - I Semester A.Y.2019-20 CSE

Assigning Object Reference Variables:

Employee s1=new Employee();

Employee s2=s1;

 s2 is assigned a reference to a copy of the object referred to by s1.
s1 and s2 will both refer to the same object.

 With this assignment, s2 refers to the same object as s1. Thus, any
changes made to the object through s2 will affect the object to which s1
is referring, since they are the same object.

 This situation is depicted here:

 s1

 s2 Employee

 A subsequent assignment to s1 will simply unhook s1 from the original
object without affecting the object or affecting s2.

 For example:
Employee s1=new Employee();

Employee s2=s1;

 // ...
s1 = null;

Here, s1 has been set to null, but s2 still points to the original object.

 METHODS:

 Classes usually consist of two things: instance variables and methods.

General form of a method:
type name(parameter-list) {

 // body of method

 }

 type specifies the type of data returned by the method. This can be

any valid type, including class types that we create.

 If the method does not return a value, its return type must be void.

 The name of the method is specified by name. This can be any legal

identifier other than those already used by other items within the

current scope.

Sname

salary

Object Oriented Programming Through Java 8

II Year - I Semester A.Y.2019-20 CSE

 The parameter-list is a sequence of type and identifier pairs separated

by commas.

 Parameters are essentially variables that receive the value of the

arguments passed to the method when it is called.

 If the method has no parameters, then the parameter list will be

empty.

 Methods that have a return type other than void, return a value to the

calling routine using the following form of the return statement:

 return value;
Here, value is the value returned.

 CONSTRUCTORS:

 Whenever an object is created for a class, the instance variables of the

class needs to be given initial values.

 Java allows objects to initialize themselves when they are created. This

automatic initialization is performed through the use of a constructor.

 A constructor is a special method which initializes an object immediately

upon creation. It has the same name as the class in which it resides and

is syntactically similar to a method.

 When a constructor is not defined for a class, Java compiler provides a

default constructor automatically initializes all instance variables to their

default values.

 The constructor is automatically invoked as soon as the object is

instantiated with the new keyword.

 Constructors have no return type, not even void. This is because the

implicit return type of a class’ constructor is the class type itself.

 If any constructor is defined in the class then the JVM will not provide

any constructor.

 Example, a simple constructor that simply sets the dimensions of each

Box to the same values.

/* Here, Box uses a constructor to initialize the dimensions of a box.

class Box {

Object Oriented Programming Through Java 9

II Year - I Semester A.Y.2019-20 CSE

double width;

double height;

double depth;

Box() { // This is the constructor for Box.

System.out.println("Constructing Box");

width = 10;

height = 10;
depth = 10;

 }
double volume() { // compute and return volume

return width * height * depth;
}

}
class BoxDemo6 {

public static void main(String args[]) {
// declare, allocate, and initialize Box objects

Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

 vol = mybox1.volume(); // get volume of first box
System.out.println("Volume is " + vol);
vol = mybox2.volume(); // get volume of second box
System.out.println("Volume is " + vol);

} }
When this program is run, it generates the following results:
Constructing Box

Constructing Box

Volume is 1000.0

Volume is 1000.0

They initialize the details of employee to both mybox1and mybox2.
Parameterized Constructors:

 The Box() constructor in the preceding example initializes all boxes with

the same dimensions.

 Parameters can be passed to a constructor, similar to having parameters

for a method. This makes them much more useful.

Object Oriented Programming Through Java 10

II Year - I Semester A.Y.2019-20 CSE

Example:
// Here, Box uses a parameterized constructor to initialize the dimensions

of a box.

class Box {

double width;

double height;

double depth;

Box(double w, double h, double d)//This is the constructor for Box

{

width = w;

height = h;

depth = d;

 }

 double volume() { // compute and return volume

return width * height * depth;

 }

}

class BoxDemo7 {

public static void main(String args[]) {

 // declare, allocate, and initialize Box objects

 Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 9);

double vol;

vol = mybox1.volume(); //// get volume of first box

System.out.println("Volume is " + vol);

vol = mybox2.volume(); // get volume of second box

System.out.println("Volume is " + vol);

}

}

The output from this program is shown here:
Volume is 3000.0
Volume is 162.0

Object Oriented Programming Through Java 11

II Year - I Semester A.Y.2019-20 CSE

 Each object is initialized with values specified in the parameters to its
constructor.

 For example, in the following line,
 Box mybox1 = new Box(10, 20, 15);
 The values 10, 20, and 15 are passed to the Box() constructor when new

creates the object.Thus, mybox1’s copy of width, height, and depth will
contain the values 10, 20, and 15,respectively.

 ‘this’ KEYWORD:

 Java defines the ‘this’ keyword. this can be used inside any instance

method to refer to the current object.

 this is always a reference to the object on which the method was

invoked.

 Example:

 Box(double w, double h, double d) { // A redundant use of this.

this.width = w;

this.height = h;

this.depth = d;

 }

Instance Variable Hiding

 It is illegal in Java to declare two local variables with the same name

inside the same or enclosing scopes.

 But the names of local variables, including formal parameters to

methods, may overlap with the names of the class’ instance variables.

 So, when a local variable has the same name as an instance variable, the

local variable hides the instance variable.

 This is why width, height, and depth were not used as the names of the

parameters to the Box() constructor inside the Box class.

 Example:

Here is another version of Box(), which uses width, height, and depth for

parameter names and then uses ‘this’ to access the instance variables by

the same name:

 // Use this to resolve name-space collisions.

 Box(double width, double height, double depth) {

Object Oriented Programming Through Java 12

II Year - I Semester A.Y.2019-20 CSE

this.width = width;

this.height = height;

this.depth = depth;

 }

 ‘this’ can be used for constructor chaining, means a constructor can be

called from another constructor.

/* First Constructor */

Box()

{

 //constructor chained

 this(14,12,10);

}

/* Second Constructor */

 Box(double w, double h, double depth) {

width = w;

height = h;

depth = d;

 }

 OVERLOADING METHODS AND CONSTRUCTORS:

 Method overloading is one way of achieving polymorphism in java.

 Each method in a class is uniquely identified by its name and parameter

list, means two or more methods with same name, but with a different

parameter list. This feature called as method overloading.

 Overloaded methods must differ in the type and/or number of their

parameters.

 While overloaded methods may have different return types, the return

type alone is insufficient to distinguish two versions of a method.

 When Java encounters a call to an overloaded method, it simply executes

the version of the method whose number and type of parameters match

the arguments used in the call.

Object Oriented Programming Through Java 13

II Year - I Semester A.Y.2019-20 CSE

// Demonstrate method overloading.

class OverloadDemo

{

void test()

{

System.out.println("No parameters");

}

void test(int a)

{ // Overload test for one integer parameter.

System.out.println("a: " + a);

}

void test(int a, int b)

{ // Overload test for two integer parameters.

System.out.println("a and b: " + a + " " + b);

}

double test(double a)

{ // overload test for a double parameter

System.out.println("double a: " + a);

return a*a;

}

 }

 class Overload

{

public static void main(String args[])

{

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()
ob.test();

Object Oriented Programming Through Java 14

II Year - I Semester A.Y.2019-20 CSE

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

output:
No parameters

a: 10

a and b: 10 20

double a: 123.25

Result of ob.test(123.25): 15190.5625

 test() is overloaded four times. The first version takes no parameters,the

second takes one integer parameter, the third takes two integer

parameters, and the fourth takes one double parameter.

 The fact that the fourth version of test() also returns a value is of no

consequence relative to overloading, since return types do not play a role

in overload resolution.

 overloaded method is called, Java looks for a match between the

arguments used to call the method and the method’s parameters.

 However, this match need not always be exact. In some cases, Java’s

automatic type conversions can play a role in overload resolution.

Example:
// Automatic type conversions apply to overloading.

class OverloadDemo
{

void test()
{

System.out.println("No parameters");
}
void test(int a, int b)
{ // Overload test for two integer parameters.

System.out.println("a and b: " + a + " " + b);

Object Oriented Programming Through Java 15

II Year - I Semester A.Y.2019-20 CSE

}
void test(double a)
{ // overload test for a double parameter

System.out.println("Inside test(double) a: " + a);
}

}

class Overload

{

public static void main(String args[])

{

OverloadDemo ob = new OverloadDemo();

int i = 88;

ob.test();

ob.test(10, 20);

ob.test(i); // this will invoke test(double)

ob.test(123.2); // this will invoke test(double)

}

}

output:
No parameters

a and b: 10 20

Inside test(double) a: 88

Inside test(double) a: 123.2

 OverloadDemo does not define test(int). So java will automatically

convert int to double.

OVERLOADING CONSTRUCTORS:

 Similar to methods constructor can also be overloaded.

 Constructors for a class having the same name as that of class, but

with different signatures I.e., different number of arguments or different

types of arguments.
Example:
class Box

Object Oriented Programming Through Java 16

II Year - I Semester A.Y.2019-20 CSE

{

double width;

double height;

double depth;

Box(double w, double h, double d)

{// This is the constructor for Box.

width = w;

height = h;

depth = d;

}

double volume()

{// compute and return volume

return width * height * depth;

} }

 The Box() constructor requires three parameters. This means that all

declarations of Box objects must pass three arguments to the Box()

constructor.

 For example,the following statement is currently invalid.

 Box ob = new Box();

because Box() requires three arguments.

// Here, Box defines three constructors to initialize the dimensions of a box

various ways.

class Box
{

double width;
double height;
double depth;

Box(double w, double h, double d)
{ //constructor used when all dimensions specified

width = w;
height = h;
depth = d;

}

Box()

Object Oriented Programming Through Java 17

II Year - I Semester A.Y.2019-20 CSE

{ // constructor used when no dimensions specified

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

Box(double len)

{ // constructor used when cube is created

width = height = depth = len;

}

double volume()

{// compute and return volume

return width * height * depth;

}

}

class OverloadCons

{

public static void main(String args[])

{// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

double vol;

vol = mybox1.volume(); // get volume of first box

System.out.println("Volume of mybox1 is " + vol);

vol = mybox2.volume(); // get volume of second box

System.out.println("Volume of mybox2 is " + vol);

vol = mycube.volume(); // get volume of cube

System.out.println("Volume of mycube is " + vol);

}

 }

Object Oriented Programming Through Java 18

II Year - I Semester A.Y.2019-20 CSE

 output:
Volume of mybox1 is 3000.0

Volume of mybox2 is -1.0.

Volume of mycube is 343.0

 The appropriate overloaded constructor is called based upon the

parameters specified when new is executed.

 ACCESS CONTROL:

 Encapsulation links data with the code that manipulates it.
Encapsulation provides another important attribute: access control.

 Through encapsulation, we can control what parts of a program, can
access the members of a class.

 How a member can be accessed is determined by the access specifier
that modifies its declaration. Java supplies a rich set of access specifiers.

Some aspects of access control are related mostly to inheritance or
packages.

 Java’s access specifiers are public, private, and protected. Java also
defines a default access level.

 protected applies only when inheritance is involved.
 A member of a class is modified by the public specifier, then that

member can be accessed by any other code.
 When a member of a class is specified as private, then that member

can only be accessed by other members of its class.
 No access specifier is used, then by default the member of a class is

public within its own package, but cannot be accessed outside of its
package.

 // This program demonstrates the difference betweenpublic and private.
class Test
{

int a; // default access
public int b; // public access
private int c; // private access
// methods to access c
void setc(int i)
{ // set c's value

c = i;
}
int getc()

Object Oriented Programming Through Java 19

II Year - I Semester A.Y.2019-20 CSE

{ // get c's value
return c;

}}

class AccessTest
{

public static void main(String args[])
{

Test ob = new Test();
// These are OK, a and b may be accessed directly
ob.a = 10;
ob.b = 20;
// This is not OK and will cause an error
// ob.c = 100; // Error!
// You must access c through its methods
ob.setc(100); // OK
System.out.println("a, b, and c: " + ob.a + " " +
ob.b + " " + ob.getc());

 }}

 Inside the Test class, a uses default access, which for this example is the
same as specifying public. b is explicitly specified as public.

 Member c is given private access. This means that it cannot be accessed
by code outside of its class.

 So, inside the AccessTest class, c cannot be used directly. It must be
accessed through its public methods: setc() and getc().

INHERITANCE

 BASICS:
 Inheritance is the process by which one class acquires the properties

(instance variables, methods) of another class.
 A deeply inherited subclass (descendent) inherits all of the properties

from each of its ancestors in the class hierarchy.
 Inheritance should create an is-a relationship, meaning the child is a

more specific version of the parent.
 Super class / Base class/ Parent class

 Sub class / Derived class / Child class

 Fig: Inheritance

A

C D B

Object Oriented Programming Through Java 20

II Year - I Semester A.Y.2019-20 CSE

 Main purpose of Inheritance:

1. Reusability.

2. Abstraction.

 “extends” keyword is used to inherit the properties from one class to

another class.
Member Access
 Although a subclass includes all of the members of its superclass, it

cannot access those members of the superclass that have been declared

as private and accessing restrictions are as follows,
 - public: variable/method can be accessed anywhere

 - private: variable/method can be accessed only within

 this class (but NOT within subclasses)

 - protected: variable/method can be accessed:

 – Within this class.

 – Within any class/subclass in the same package.

 – Within any subclass of this class in other package.

 Note: if you do not include an access specifier (default), the

Variable or method has package access.

 TYPES OF INHERITANCE:
There are 5 types of Inheritance

 Single Inheritance.

 Multilevel Inheritance.

 Hierarchical Inheritance.

 Multiple Inheritance

 JAVA does not support, need to use Interface. 'extends' can be

used with only one class.

 Hybrid Inheritance

Object Oriented Programming Through Java 21

II Year - I Semester A.Y.2019-20 CSE

 Fig: Types of Inheritance

 Program for Single Inheritance:
/* simple inheritance */

import java.io.*;

class A

 {

 public int i;

 public A()

 {

 System.out.println("\n \t default constructor A() is called");

 i=10;

 }

 public void Adisplay()

 {

 System.out.println("\n \t in A class i= "+i);

 }

 }

class B extends A

 {

 public int j;

 public B()

 {

 System.out.println("\n \t default constructor B() is called");

Object Oriented Programming Through Java 22

II Year - I Semester A.Y.2019-20 CSE

 j=20;

 }

 public void Bdisplay()

 {

 j=i+1;

 System.out.println("\n \t in B class j= "+j);

 }

 }

class Simple

 {

 public static void main(String ar[])throws IOException

 {

 System.out.println("\n \t start of main()");

 B b=new B();

 b.Adisplay();

 b.Bdisplay();

 System.out.println("\n \t end of main()");

 }

 }

OUTPUT:

 start of main()

 default constructor A() is called

 default constructor B() is called

Object Oriented Programming Through Java 23

II Year - I Semester A.Y.2019-20 CSE

 in A class i= 10

 in B class j= 11

 end of main()

 Program for Multilevel Inheritance:
/* multilevel inheritance */

import java.io.*;

class A

 {

 public int i;

 public A()

 {

 System.out.println("\n \t default constructor A() is called");

 i=10;

 }

 public void Adisplay()

 {

 System.out.println("\n \t in A class i= "+i);

 }

 }

class B extends A

 {

 public int j;

 public B()

 {

 System.out.println("\n \t default constructor B() is called");

 j=20;

 }

 public void Bdisplay()

 {

 j=i+1;

Object Oriented Programming Through Java 24

II Year - I Semester A.Y.2019-20 CSE

 System.out.println("\n \t in B class j= "+j);

 }

 }

class C extends B

 {

 public int k;

 public C()

 {

 System.out.println("\n \t default constructor C() is called");

 k=30;

 }

 public void Cdisplay()

 {

 k=i+j;

 System.out.println("\n \t in C class k= "+k);

 }

 }

 class MulLevel

 {

 public static void main(String ar[])throws IOException

 {

 System.out.println("\n \t start of main()");

 C c=new C();

 c.Adisplay();

 c.Bdisplay();

 c.Cdisplay();

 System.out.println("\n \t end of main()");

 } }

 OUTPUT:

 start of main()

Object Oriented Programming Through Java 25

II Year - I Semester A.Y.2019-20 CSE

 default constructor A() is called

 default constructor B() is called

 default constructor C() is called

 in A class i= 10

 in B class j= 11

 in C class k= 21

 end of main()

A Super class Variable Can Reference a Subclass Object

 A reference variable of a super class can be assigned a reference to

any subclass derived from that super class.

 You will find this aspect of inheritance quite useful in a variety of

situations . For example, consider the following:

// This program uses inheritance to extend Box.

class Box

 {

 double width;

 double height;

 double depth;

// construct clone of an object

 Box(Box ob)

 {

// pass object to constructor

 width = ob.width;

 height = ob.height;

 depth = ob.depth;

 }

// constructor used when all dimensions specified

 Box(double w, double h, double d)

 {

 width = w;

Object Oriented Programming Through Java 26

II Year - I Semester A.Y.2019-20 CSE

 height = h;

 depth = d;

 }

// constructor used when no dimensions specified

 Box()

 {

 width = -1; // use -1 to indicate

 height = -1; // an uninitialized

 depth = -1; // box

 }

 // constructor used when cube is created

 Box(double len)

 {

 width = height = depth = len;

 }

 // compute and return volume

 double volume()

 {

 return width * height * depth;

 }

}

// Here, Box is extended to include weight.

class BoxWeight extends Box

 {

 double weight; // weight of box

 // constructor for BoxWeight

 BoxWeight(double w, double h, double d, double m)

 {

 width = w;

 height = h;

 depth = d;

Object Oriented Programming Through Java 27

II Year - I Semester A.Y.2019-20 CSE

 weight = m;

 }

}

class DemoBoxWeight

 {

 public static void main(String args[])

 {

 BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

 BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

 double vol;

 vol = mybox1.volume();

 System.out.println("Volume of mybox1 is " + vol);

 System.out.println("Weight of mybox1 is " + mybox1.weight);

 System.out.println();

 vol = mybox2.volume();

 System.out.println("Volume of mybox2 is " + vol);

 System.out.println("Weight of mybox2 is " + mybox2.weight);

 }

 }

Output:
Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

 BoxWeight inherits all of the characteristics of Box and adds to them

the weight component. It is not necessary for BoxWeight to re-create all

of the features found in Box. It can simply extend Box to meet its own

purposes.

 A major advantage of inheritance is that once you have created a

superclass that defines the attributes common to a set of objects, it can

be used to create any number of more specific subclasses.

Object Oriented Programming Through Java 28

II Year - I Semester A.Y.2019-20 CSE

 For example, the following class inherits Box and adds a color attribute:

// Here, Box is extended to include color.

class ColorBox extends Box

 {

 int color; // color of box

 ColorBox(double w, double h, double d, int c)

 {

 width = w;

 height = h;

 depth = d;

 color = c;

 }

 }

 Remember, once you have created a superclass that defines the general

aspects of an object, that superclass can be inherited to form specialized

classes. Each subclass simply adds its own, unique attributes.

This is the essence of inheritance.

class RefDemo

 {

 public static void main(String args[])

 {

 BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);

 Box plainbox = new Box();

 double vol;

 vol = weightbox.volume();

 System.out.println("Volume of weightbox is " + vol);

 System.out.println("Weight of weightbox is " +

 weightbox.weight);

 System.out.println();

Object Oriented Programming Through Java 29

II Year - I Semester A.Y.2019-20 CSE

 plainbox = weightbox; // assign BoxWeight reference to Box

reference

 vol = plainbox.volume(); // OK, volume() defined in Box

 System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox does not define a

weight member. */

 // System.out.println("Weight of plainbox is " + plainbox.weight);

 }

}

 What members can be accessed is determined based on the type of the

reference variable, not on the type of the object that it refers to.

 That is, when a reference to a subclass object is assigned to a

superclass reference variable, you will have access only to those parts

of the object defined by the superclass.

 SUPER KEYWORD:

 ‘super’ is used when a subclass wants to refer to its immediate super

class members.

 ‘super’ has two general forms.

 To make a call to the super class constructor from sub class

constructor.

 The second is used to access a member of the superclass that has

been hidden by a member of a subclass.

program for super keyword:
/* super keyword */

import java.io.*;

class A

 {

 public int i;

 public A()

 {

 System.out.println("\n \t default constructor A() is called");

Object Oriented Programming Through Java 30

II Year - I Semester A.Y.2019-20 CSE

 i=10;

 }

 public void display()

 {

 System.out.println("\n \t in A class i= "+i);

 }

 }

class B extends A
 {
 public int i;
 public B()
 { // invoking the super class constructor .
 super(); // always must be first statement and it is default
 System.out.println("\n \t default constructor B() is called");
 this.i=20;
 super.i=30; // points the super class instance variable.
 }
 public void display()
 {
 super.display(); // calling super class method.
 this.i=this.i+super.i;
 System.out.println("\n \t in B class subofi+supofi = "+this.i);
 }
 }

 class Super

 {

 public static void main(String ar[])throws IOException

 {

 System.out.println("\n \t start of main()");

 B b=new B();

 b.display();

 System.out.println("\n \t end of main()");

 }

 }

Object Oriented Programming Through Java 31

II Year - I Semester A.Y.2019-20 CSE

OUTPUT:
 start of main()

 default constructor A() is called

 default constructor B() is called

 in A class i= 30

 in B class subofi+supofi = 50

 end of main

 METHOD OVERRIDING:

 In a class hierarchy, when a method in a subclass has the same name

and type signature as a method in its superclass, then the method in

the subclass is said to override the method in the superclass.

 When an overridden method is called within a subclass, it will always

refer to the version of that method defined by the subclass. The

version of the method defined by the superclass will be hidden.
Program for Method Overriding:
/* overriding(Run-time polymorphism) */

import java.io.*;

class A

 {

 public int i;

 public A()

 {

 System.out.println("\n \t default constructor A() is called");

 i=10;

 }

 public void display()

 {

 System.out.println("\n \t in A class i= "+i);

 }

 }

class B extends A
 {

Object Oriented Programming Through Java 32

II Year - I Semester A.Y.2019-20 CSE

 public int j;
 public B()
 {
 System.out.println("\n \t default constructor B() is called");
 j=20;
 }
 public void display()
 {
 j=i+1;
 System.out.println("\n \t in B class j= "+j);
 }
 }

 class OverRiding

 {

 public static void main(String ar[])throws IOException

 {

 System.out.println("\n \t start of main()");

 B b=new B();

 b.display(); // display() in B class overrides the display() in A class

 System.out.println("\n \t end of main()");

 }

 }

OUT PUT
 start of main()

 default constructor A() is called

 default constructor B() is called

 in B class j= 21

 end of main

 DYNAMIC METHOD DISPATCH:

 Runtime polymorphism or Dynamic Method Dispatch is a process in

which a call to an overridden method is resolved at runtime rather than

at compile-time.

 Using this feature, java implements Runtime Polymorphism in Java.

Object Oriented Programming Through Java 33

II Year - I Semester A.Y.2019-20 CSE

 “A super class reference variable can refer to a sub class object”, so

resolves call to a overridden method during runtime.

 When an overridden method is called through a super class reference,

java determines which version of overridden method to execute based

upon the type of being refereed to at the time the call occurs.

 It is the type of object being referred to at the time of call occurs, not

the type of reference variable that determines which version of an

overridden method will be executed.

Program for Dynamic method dispatch:
 // Dynamic Method Dispatch

 class A

 {

 void callme()

 {

 System.out.println("Inside A's callme method");

 }

 }

 class B extends A

 {

 // override callme()

 void callme()

 {

 System.out.println("Inside B's callme method");

 }

 }

 class C extends A

 {

 // override callme()

 void callme()

 {

Object Oriented Programming Through Java 34

II Year - I Semester A.Y.2019-20 CSE

 System.out.println("Inside C's callme method");

 }

 }

 class Dispatch

 {

 public static void main(String args[]) {

 A a = new A(); // object of type A

 B b = new B(); // object of type B

 C c = new C(); // object of type C

 A r; // obtain a reference of type A

 r = a; // r refers to an A object

 r.callme(); // calls A's version of callme

 r = b; // r refers to a B object

 r.callme(); // calls B's version of callme

 r = c; // r refers to a C object

 r.callme(); // calls C's version of callme

 }

}

Output:
 Inside A’s callme method

 Inside B’s callme method

 Inside C’s callme method

 This program creates one superclass called A and two subclasses of it,

called B and C. Subclasses B and C override callme() declared in A.

 Inside the main() method, objects of type A, B, and C are declared. Also,

a reference of type A, called r, is declared.

 The program then assigns a reference to each type of object to r and uses

that reference to invoke callme().

 As the output shows, the version of callme() executed is determined by

the type of object being referred to at the time of the call, determined by

Object Oriented Programming Through Java 35

II Year - I Semester A.Y.2019-20 CSE

the type of the reference variable, r, from three calls to A’s callme()
method.

 ABSTRACT CLASS:

 An abstract class contain one or more abstract methods.

 An abstract method is method without a body, i.e., only declared but

not defined.

 The keyword “abstract” is used to indicate a method/class as abstract

ones.

 Abstract classes cannot be instantiated.

 Abstract methods needs to be defined in subclasses of the abstract

class.

Program for abstract class:
 /* abstract keyword */

import java.io.*;

abstract class A

 {

 public int i;

 public A()

 {

 System.out.println("\n \t default constructor A() is called");

 i=10;

 }

 public abstract void add(); // no definition since abstract

 public void Adisplay()

 {

 System.out.println("\n \t in A class i= "+i);

 }

 }

class B extends A

 {

 public int j;

Object Oriented Programming Through Java 36

II Year - I Semester A.Y.2019-20 CSE

 public B()

 {
 System.out.println("\n \t default constructor B() is called");
 j=20;
 }
 public void Bdisplay()
 {
 System.out.println("\n \t in B class j= "+j);
 }
 public void add()
 {
 System.out.println("\n \t in B class add() is called");
 j=j+i;
 }
 }
 class Abstract
 {
 public static void main(String ar[])throws IOException
 {
 System.out.println("\n \t start of main()");

 B b=new B();

 b.add();

 b.Bdisplay();

 System.out.println("\n \t end of main()");

 }

 }

OUTPUT:
 start of main()

 default constructor A() is called

 default constructor B() is called

 in B class add() is called

 in B class j=30

 end of main()

 Note: abstract classes must be inherited.

Object Oriented Programming Through Java 37

II Year - I Semester A.Y.2019-20 CSE

 Note: abstract classes must be override

 USING FINAL WITH INHERITANCE:

 The final keyword is used in three ways

- To variables, those become constants.

- To methods, those should not be override.

- To the class, then that class should not be inherited.

Program which illustrates the usage of final keyword
 /* final keyword to variable, method */
import java.io.*;

class A

 {

 public int i;

 final int SPEED_LIMIT=60;

 public A()

 {

 System.out.println("\n \t default constructor A() is called");

 i=10;

 }

 public final void Aadd() // not overrided since final

 {

 System.out.println("\n \t in A class final add() method is called ");

 i=i+10;

 }

 public void Adisplay()

 {

 System.out.println("\n \t in A class i= "+i);

 }

 }

class B extends A

 {

Object Oriented Programming Through Java 38

II Year - I Semester A.Y.2019-20 CSE

 public int j;

 public B()

 {

 System.out.println("\n \t default constructor B() is called");

 j=20;

 }

 public void Badd()

 {

 System.out.println("\n \t in B class Badd() is called");

 j=j+i;

 }

 public void Bdisplay()

 {

 System.out.println("\n \t in B class j= "+j);

 }

 }

 class FinalMethod

 {

 public static void main(String ar[])throws IOException

 {

 System.out.println("\n \t start of main()");

 B b=new B();

 b.Aadd();

 b.Adisplay();

 b.Badd();

 b.Bdisplay();

 System.out.println("\n \t end of main()");

 }

 }

OUTPUT
 start of main()

Object Oriented Programming Through Java 39

II Year - I Semester A.Y.2019-20 CSE

 default constructor A() is called

 default constructor B() is called

 in A class final add() method is called

 in A class i=20

 in B class Badd() is called

 in B class j=40

 end of main()

1. /* final keyword to class */
import java.io.*;

final class A // not inherited

 {

 public int i;

 public A()

 {

 System.out.println("\n \t default constructor A() is called");

 i=10;

 }

 public final void Aadd() // not overrided since final

 {

 System.out.println("\n \t in A class final add() method is called ");

 i=i+10;

 }

 public void Adisplay()

 {

 System.out.println("\n \t in A class i= "+i);

 }

 }

 class FinalCV

 {

Object Oriented Programming Through Java 40

II Year - I Semester A.Y.2019-20 CSE

 public static void main(String ar[])throws IOException

 {

 System.out.println("\n \t start of main()");

 final int f=100; // like const variable

 System.out.println("\n \t in main() the value of final f= "+f);

 A ob=new A();

 ob.Aadd();

 ob.Adisplay();

 System.out.println("\n \t end of main()");

 }

 }

OUT PUT:
 start of main()

 in main() the value of final f=100

 default constructor A() is called

 in A class final add() method is called

 in A class i=20

 end of main()

 THE OBJECT CLASS:

 There is one special class, Object, defined by Java.

 All other classes are subclasses of Object, Object is a superclass of all

other classes.

 This means that a reference variable of type Object can refer to an

object of any other class

METHOD PURPOSE

protected Object cone() Creates a new object that is same as the object being cloned

boolean equals(Object ob) Determines whether one object is equal to another

protected void finalize() Called before an unused object is recycled

Object Oriented Programming Through Java 41

II Year - I Semester A.Y.2019-20 CSE

final class getClass() Obtains the class of an object at runtime

int hashCode() Returns the hashcode associated with the invoking object

void notify() Resumes execution of a thread waiting on the invoking object

void notifyAll() Resumes execution of all threads waiting on the invoking object

String toString() Returns a string that describes the object

void wait()

Waits on another thread of execution

void wait(long
milliseconds)

void wait(long
milliseconds, int
nanoseconds)

Object Oriented Programming Through Java 42

II Year - I Semester A.Y.2019-20 CSE

UNIT-II
Assignment-Cum-Tutorial Questions

SECTION-A
 Objective Questions

1) Which of the following is the correct syntax for creating Object []

 A)Classname objName=new Classname

 B)Classname objName=new Classname();

 C)Classname objName=Classname();

 D)objName classname=new objName();

2) ____________is a keyword that refers to the current object that invoked

the method.

3) ________ is the process of reclaiming the runtime unused memory

automatically.

4) ______is the process of defining 2 or more methods within same class

that have same name but different parameter declarations. []

 A) Method overriding B) Method overloading

 C) Method hiding D) None of the above

5) Which of these is correct way of inheriting class A by class B? []

A) class B class A { } B) class B inherits class A { }

C) class B extends A { } D) class B extends class A { }

6) Run-time polymorphism is achieved by using______ []

A) Method Overloading B) Constructor Overloading

C) Method Overriding D) this keyword

7) ________ is the Super class for all the classes in Java

8) What is the output of this program? []

class box

{

Object Oriented Programming Through Java 43

II Year - I Semester A.Y.2019-20 CSE

int width;

int height;

int length;

int vol;

box()

{

width = 5;

height = 5;

length = 6;

 }

void volume()

{

vol = width*height*length;

}

}

class constructor_output

{

public static void main(String args[])

{

box obj = new box();

obj.volume();

System.out.println(obj.vol);

Object Oriented Programming Through Java 44

II Year - I Semester A.Y.2019-20 CSE

}

}

A) 100 B) 150 C) 200 D) 250

9) Consider the following code []

class A

{

private int i;

public int j;

}

class B extends A

{

int k;

void show()

{

k=i+j;

System.out.println("sum of " +i+ "and" +j+"="+k);

}

public static void main(String arg[])

 {

B b1=new B();

 }

Object Oriented Programming Through Java 45

II Year - I Semester A.Y.2019-20 CSE

 }

 A) B gets only the member j through inheritance from A

 B) B gets both i, j through inheritance from A

 C) A is the sub class and B is the super class

 D) None of the above

10) what is the output of this program? []

 class overload

{

int x;

int y;

void add(int a)

{

x = a + 1;

}

void add(int a, int b)

{

x = a + 2;

}

}

 class Overload_methods

 {

public static void main(String args[])

Object Oriented Programming Through Java 46

II Year - I Semester A.Y.2019-20 CSE

{

overload obj = new overload();

int a = 0;

obj.add(6,7);

System.out.println(obj.x);

}

 }

a) 5 b)8 c)7 d) 6

11 The following code prints ________ []

 class A

{

int i;

int j;

A()

{

i = 1;

j = 2;

}

 }

class Output

{

public static void main(String args[])

{

A obj1 = new A();

Object Oriented Programming Through Java 47

II Year - I Semester A.Y.2019-20 CSE

System.out.print(obj1.toString());

 }

}

a. true

b. false

c. String associated with object

d. Compilation Error

12 Predict the output of following Java Program. []

 class Grandparent

 {

public void Print()

{

System.out.println("Grandparent's Print()");

}

 }

class Parent extends Grandparent

{

public void Print()

{

System.out.println("Parent's Print()");

System.exit(0);

}

}

class Child extends Parent

Object Oriented Programming Through Java 48

II Year - I Semester A.Y.2019-20 CSE

{

public void Print()

{

super.Print();

System.out.println("Child's Print()");

}

}

public class Main

{

public static void main(String[] args)

{

Child c = new Child();

c.Print();

}

}

A) Grandparent's Print()

B) Parent's Print()

C) Child's Print()

D) Runtime Error

13 What is the output of the following Java program? []

class Test

{

int i;

Object Oriented Programming Through Java 49

II Year - I Semester A.Y.2019-20 CSE

}

class MainDemo

{

public static void main(String args[])

{

Test t = new Test();

System.out.println(t.i);

}

 }

(A)0 (B) garbagevalue
(C) compilererror (D) runtime error

14 What is the output of the following Java program? []

class Point

{

int m_x, m_y;

public Point(int x, int y)

{

m_x = x; m_y = y;

}

public static void main(String args[])

{

Point p = new Point();

Object Oriented Programming Through Java 50

II Year - I Semester A.Y.2019-20 CSE

} }

 (A)1 (B) garbagevalue (C) compilererror (D) runtime error

SECTION-B

 SUBJECTIVE QUESTIONS

1) Define class. Write the steps for creating class and object? Explain it
with an example?

2) Define constructor? Can we overload a constructor? If so, explain

with an example?

3) Explain the usage of following keywords with examples?

 a) this b) super c) final

4) List Different types of Inheritance? Explain with example programs?

5) To read an integer n and then print the nth table as below:

 1 x n = n

 2 x n = 2n

 10 x n = 10n

6) To read the details of a student like name, age, phone number in a

 method called getData() and then write another method called

 putData() to display the details.

7) To find factorial of a given number using recursion?

8) (a) Implement Method overloading with the following example?

(a) To overload a method area() which computes the area of a

geometrical figure based on number of parameters. If number of

parameters is 1 and is of type float it should calculate the area of

circle, if it is of type int it should calculate area of square. If the

number of parameters is 2 and they are of type float calculate area

of triangle, if they are of int calculate area of rectangle.

9) Implement dynamic method dispatch with an example.

Object Oriented Programming Through Java 51

II Year - I Semester A.Y.2019-20 CSE

10) Define Abstract class. Differentiate abstract method and concrete

method?

Object Oriented Programming 1

II Year I Semester 2019-20 CSE

UNIT – III

Objective:

 To get acquainted with the concepts of Interface and Packages.

Syllabus:

Interfaces: Defining an interface, Implementing interfaces, Nested interfaces, Variables in

interfaces and extending interfaces.

Packages: Defining, Creating and Accessing a Package.

Learning Outcomes:

At the end of the unit student will be able to Understand:

 Define and Develop an interface

 Implement the Nested and extending Interfaces

 Describe the creation of Packages and its accessing

 Write a java program using interfaces

 Write a java program using packages

 Create a sample package and use it in another application

Object Oriented Programming 2

II Year I Semester 2019-20 CSE

Learning Material

Interfaces:
 Interfaces specify what a class must do and not how. It is the blueprint of the class.
 An Interface is a collection of abstract methods and constants that one or more

classes of objects will use.

Defining an Interface: Interface definition is same as class except that it consists of the methods

that are declared have no method body. Syntax for an interface is as follows:

Syntax: <access specifier> interface <interface_name>
 {
 Type varname1=value;
 Type varname2=value;
 .

.
returntype methodname1(parameterlist);
returntype methodname2(parameterlist);

 .
.
.
.

 }

Where,

 Access specifier is always public only, public access specifier indicates that the interface
can be used by any class. Otherwise, the interface will accessible to class that are defined
in the same package as in the interface.

 Interface keyword is used to declare the class as an interface
 Interface_name is the name of the interface and it is a valid identifier.

Why do we use interface ?

 It is used to achieve total abstraction.
 Since java does not support multiple inheritance in case of class, but by using interface it

can achieve multiple inheritance .
 It is also used to achieve loose coupling.

Object Oriented Programming 3

II Year I Semester 2019-20 CSE

 Interfaces are used to implement abstraction. So the question arises why use interfaces
when we have abstract classes?The reason is, abstract classes may contain non-final
variables, whereas variables in interface are final, public and static.

Example:
 public interface shape
 {
 int radius=2;
 public void area(int a);
 }

Implementing Interfaces:

 Once an interface has been defined, one or more classes can implement

that interface. “implements” keyword used for implementing the classes. The syntax of

implements is as follows:

Syntax: class class_name implements interface1, interface 2, …….. interface n
 {

 ----------- // interface body

 }

If a class implements more than one interface, the interfaces are separated with a comma

operator. The methods that implement an interface must be declared public. Also type

signature of implementing method must match exactly the type signature specified in the

interface definition.

Example:

interface it1
{
 int x=10, y=20;
 public void add(int a, int b);
 public void sub(int a, int b);
}

Class demo implements it1

Object Oriented Programming 4

II Year I Semester 2019-20 CSE

{
 public void add(int s, int w)
 {
 System.out.println(“Addition=”+(s+w));
 }
 public void sub(int s, int w)

 {
 System.out.println (“Subtraction=”+(s-w));
 }
 public static void main(String args[]) {
 demo2 obj=new demo();
 obj.add(3,4);

obj.sub(5,2);

System.out.println(obj.x + obj.y);

Obj.x=70; // error since x is final variable in interface

 }

Note:

1. interface methods are similar to the abstract classes so, that it cannot be instantiated.

2. interface methods can also be accessed by the interface reference variable which refer
to the object of subclasses. The method will be resolved at run time. This process is
similar to the “super class reference to access a subclass object”.

Example:
interface it1
{

int x=10, y=20;
public void add(int a, int b);
public void sub(int a, int b);

}
Class it2 implements it1
{

public void add(int s, int w)
{

System.out.println(“Addition=”+(s+w));
}
public void sub(int s, int w)
{

Object Oriented Programming 5

II Year I Semester 2019-20 CSE

System.out.println (“Subtraction=”+(s-w));
}
public static void main(String args[])
{

it2 obj=new it2();
it1 ref;
ref=obj;

System.out.println(ref.x + ref.y);
}

3. If a class includes an interface but does not fully implement the methods defined by
that interface, then the class becomes abstract class and must be declared as abstract
in the first line of its class definition.

Example:

 interface it1
{

 int x=10, y=20;
 public void add(int a, int b);
 public void sub(int a, int b);

}
abstract class it2 implements it1
{

 public void add(int s, int w)
 {
 System.out.println(“Addition=”+(s+w));

 }
 }
 Class it3 extends it2

{
 public void sub(int s, int w)

 {
 System.out.println (“Subtraction=”+(s-w));

 }
 public static void main(String args[])

 {
 it3 obj=new it2();

 obj.add(5,6);

Object Oriented Programming 6

II Year I Semester 2019-20 CSE

 }

Nested interfaces:

 An interface that is declared within another interface or class is known as nested interface. The
nested interfaces are used to group related interfaces so that they can be easy to maintain. The
nested interface must be referred by the outer interface or class. It can't be accessed directly.

Points to remember for nested interfaces

o Nested interface must be public if it is declared inside the interface but it can have any
access modifier if declared within the class.

o Nested interfaces are declared static implicitly.

Syntax of nested interface:

interface interface_name
{

...
interface nested_interface_name
{

...
}

}

Example:

In this example, we are going to learn how to declare the nested interface and how we can access
it.

interface Showable
{
 void show();
 interface Message

{
void msg();

}
}
class TestNestedInterface1 implements Showable.Message
{

Object Oriented Programming 7

II Year I Semester 2019-20 CSE

 public void msg()
 {

System.out.println("Hello nested interface");
}

public static void main(String args[])
{
//upcasting here
Showable.Message message=new TestNestedInterface1();
message.msg();
}

}

Variables in interfaces:

 Variables in an interface are implicitly public, final and static and there is no need to

explicitly declare them as public, static and final. As they are final, they need to be assigned a

value compulsorily. Being static, they can be accessed directly with the help of an interface name

and as they are public, we can access them from anywhere. The following example program

shows the usage of variables in an interface

Example:
interface test
{
 int lowerlimit=0;
 int upperlimit=100;
}
class Variable_Test implements test
{
 void limits(int a);
 {
 if(a>lowerlimit && a< upperlimit)
 System.out.println(a+ “lie in between” +Variable_test.lowerlimit +
 “and” +Variable_Test.upperlimit);
 else
 System.out.println(a+ “does not lie in between”
 +Variable_test.lowerlimit +“and” +Variable_Test.upperlimit);
 public static void main(String args[])
 {
 Variable_Test vt= new Variable_Test();
 vt.limits(23);

Object Oriented Programming 8

II Year I Semester 2019-20 CSE

 vt.limits(233);
} }

OUTPUT:
23 lie in between 0 and 100
233 does not lie in between 0 and 100

Extending interfaces:

 Just like normal classes, interfaces can also be extended. An interface can inherit another

interface using the same keyword extends, and not the keyword implements. The following

example program shows how interfaces are extended.

Example:

interface intfA
{
 Void showA();
}
interface B extends intfA
{
 Void showB();
}
class Demo implements B
{
 public void showA()

{
 System.out.println(“Overriden method of interface A”);

}

public void showb()
{

 System.out.println(“Overriden method of interface B”);
 }
 Public static void main(String args[])
 {
 Demo d = new Demo();
 d.showA();
 d.showB();
 }
}
OUTPUT:

Object Oriented Programming 9

II Year I Semester 2019-20 CSE

Overriden method of interface A
Overriden method of interface B

The relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface extends another
interface, but a class implements an interface.

Multiple Inheritance using Interfaces:

 Multiple inheritance enables to derive a class from multiple parent classes. Multiple

Inheritance is not supported by java directly, need to use interfaces. Let A and B are parent

classes and C is the derived class

Java provides interface approach to support the concept of multiple inheritance.

An interface can extend multiple interfaces and a class can implements multiple interfaces.

The following example program will explain the concept of Multiple inheritance.

Object Oriented Programming 10

II Year I Semester 2019-20 CSE

Program: A program in java to show multiple inheritance

class student
{

int rollNumber;
void getNumber(int n)
{

rollNumber=n;
}
void printNumber()
{

System.out.println("RollNo is " +rollNumber);
}

}

class test extends student
{

float part1,part2;
void getMarks(float a, float b)
{

part1=a;
part2=b;

}
void putMarks()
{

System.out.println("Marks Part1 "+part1);
System.out.println("Marks Part2 "+part2);

}
}
interface sports
{

float sportwt=6.0F;
void putwt();

}
class results extends test implements sports
{

float total;
public void putwt()
{

System.out.println("Sports Marks "+ sportwt);
}
void display()
{

Object Oriented Programming 11

II Year I Semester 2019-20 CSE

total=part1+part2+sportwt;
System.out.println("Total marks of " +rollNumber+" is "+total);

}
}
class mainClass
{

public static void main(String srgs[])
{

results a=new results();
a.getNumber(10);
a.printNumber();
a.getMarks(10.0F,25.5F);
a.putMarks();
a.putwt();
a.display();

}}

Packages

 Package: Package is collection of related classes. Each class defines number of methods. Java

packages are classified into 2 types

1. Java API(Application Program Interface) packages (or) Predefined packages (or) Built in

packages. These packages are defined by the system. Some of the example for system

defined packages are java.lang, java.util, java.io etc.,

2. User defined packages: These packages are defined by the users.

Advantage of Java Package

1.Java package is used to categorize the classes and interfaces so that they can be
 easily maintained.

2.Java package provides access protection.

3. Java package removes naming collision.

Example Java Package:

Object Oriented Programming 12

II Year I Semester 2019-20 CSE

Defining, creating and accessing a package:

 To define a package, place “package” keyword as the first statement in the java

source file. So, that any class declared within that file will belong to the specified package. The

syntax of package creation is as follows:

Syntax: package package_name;

Where pack_name is the name of the package.

Example:
 package mypack;
 public class number
 {

 public void add(int a, int b)
 {
 System.out.println(“Sum=”+(a+b));
 }
 }

 The class that is defined in the package must be start with the public access modifier.

So, that it can be accessible by any another of them. If it is not public, it is accessible

only in that package.

Object Oriented Programming 13

II Year I Semester 2019-20 CSE

 Java uses file system directories to store packages. We save the program with

number.java and compile the package is as javac –d number.java. Due to this

compilation mypack directory is automatically created and .class file is stored in that

directory.

 Package creation has completed. The package information is now including in our

actual program by means of “import” statement. “import” is a keyword that links the

package with our program. It is placed before the class definitions.

 import mypack.*;

 Or

 import mypack.number;

 Example program for packages:

 Package mypack; // Package Creation
 Public class number
 {

 Public void add(int a, int b)
 {
 System.out.println(“Sum=”+(a+b));
 }
 }

import mypack.*; // accessing package created
class pack
{
 public static void main(String args[])
 {
 Number obj=new number();
 Obj.add(3,4);
 }
}

Sub packages:

It is also possible to create sub packages for the main package like creating subfolders.

Syntax: package pack1.pack2;

Where pack1 is the main package and pack2 is the sub package.

Object Oriented Programming 14

II Year I Semester 2019-20 CSE

Example:

package pack1;
public class x
{
 public void show()
 {
 System.out.println(“Super”);
 }
}

package pack1.pack2; // creating pack2 under the package pack1
public class y
{
 public void display()
 {
 System.out.println(“sub”);
 }
}
import pack1.x;
import pack1.pack2.y;

class check {
 public static void main(String args[])

 {
 x obj=new x();

 obj.show();
 y obj1=new y();

 obj1.display();
} }

Access Protection:

 Java provides four types access modifiers as public, private, default and protected.

Any variable declared as public, it could be accessed from anywhere. Any variable

Object Oriented Programming 15

II Year I Semester 2019-20 CSE

declared as private cannot be seen outside of its class. Any variable declared as default, it

is visible to subclasses as well as to other classes in the same package. Any variable

declared as protected, it allows a member to be seen outside of current package, but only

to classes that subclasses directly.

Package Access Location Public Private Default Protected

Same class Yes Yes Yes Yes

Sub-class in Same package Yes No Yes Yes

Non sub-class in Same

package
Yes No Yes Yes

Sub-class in Different

package
Yes No No Yes

non sub-class in Different

package
Yes No No No

Class Path:

 A class path is an environmental variable, which tells the java virtual machine and

other java tools(javac, java) where to find the class libraries, including user defined class

libraries. By default java uses the class path as

C:\jdk1.2.1\libv\classes.zip

A user defined class path is set for the environment as

C:\>SET CLASSPATH=%CLASSPATH%;path to the created package

 (or)

C:\>SET PATH = “jdk1.2.1\bin”;

Object Oriented Programming 16

II Year I Semester 2019-20 CSE

UNIT-III
Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions
1) ________________ keyword is used for implement the interface in JAVA

2) Which of the access specifier can be used for an Interface ______________

3) Which of these keywords is used to define interfaces in JAVA []

(a) implement (b) interface (c) Both a & b (d) None of these

4) The methods of interface are _________ by default. []

(a) Abstract (b) static (c) final (d) none of these

5) The variables of interfaces are final and static by default (True / False)

6) A class can implements ____________ interfaces []

(a) only one (b) one or more than one (c) maximum two (d) minimum two

7) An interface contains__________ []

 (a) The method definitions (b) The method declaration

 (c) Both a & b (d) None

 8) Which of the following is correct way of implementing an interface []

 salary by class manager?

(a) class manager extends salary {} (b) class manager implements salary {}

 (c) class manager imports salary {} (d) None of the mentioned

 9) Is it possible to create object of an interface ? (True / False)

10) Which of these keyword is used to define packages in JAVA ? []

 (a) pkg (b) Pkg (c) package (d) Package

11) Which of the following is correct way of importing an entire package ‘pkg’ ?[]

 (a) import pkg. (b) import Pkg. (c) import pkg.* (d) import Pkg.*

12) Package consists of ? []

 (1) classes (2) methods (3) variables (4) All of the above

 (a) 1and 2 (b) 2 and 3 (c) only 1 (d) 4

Object Oriented Programming 17

II Year I Semester 2019-20 CSE

13) Is it possible to access the private class outside the package ? (True / False)

14) Package is the first statement in java program ? (True / False)

15) What is the output of this program? []

 interface calculate {
 void cal(int item);
 }
 class display implements calculate {
 int x;
 public void cal(int item) {
 x = item * item;
 }
 }
 class interfaces {
 public static void main(String args[]) {
 display arr = new display;
 arr.x = 0;
 arr.cal(2);
 System.out.print(arr.x);
 }
 }

a) 0 b) 2 c) 4 d) None of the mentioned

16) Determine output of the following code:

 interface A { }

class C { }

class D extends C { }

class B extends D implements A { }

public class Test extends Thread{

 public static void main(String[] args){

Object Oriented Programming 18

II Year I Semester 2019-20 CSE

 B b = new B();
 if (b instanceof A)
 System.out.println("b is an instance of A");
 if (b instanceof C)
 System.out.println("b is an instance of C");
 }
}
A) Nothing. B) b is an instance of A.

C) b is an instance of C D) b is an instance of A followed by b is an instance of C

17) Which of the above line will give compilation error? []
interface Test
 {
 int p = 10; //line 1
 public int q = 20; //line 2
 public static int r = 30; //line 3
 public static final int s = 40; //line 4
}

a) 1 b) 3 c) 4 d) None of these

18) What is the output for the below code? []

interface A{
public void printValue();
}
public class Test{
public static void main (String[] args){
A a1 = new A(){
public void printValue(){
System.out.println("A");
}
};

a1.printValue();

} }
A) Compilation fails due to an error on line 3 B) A
C) Compilation fails due to an error on line 8 D) null E) None of these

19) What will be the output for the below code ? []
 public interface TestInf {
 int i =10;

Object Oriented Programming 19

II Year I Semester 2019-20 CSE

 }
 public class Test{
 public static void main(String... args) {
 TestInf.i=12;
 System.out.println(TestInf.i);
 }
 }

A) Compile with error B) 10 C) 12 D) Runtime Exception

20) What is the output of this program? []

 package pkg;
 class output {
 public static void main(String args[])
 {
 StringBuffer s1 = new StringBuffer("Hello");
 s1.setCharAt(1, x);
 System.out.println(s1);
 }
 }

 a) xello b) xxxxx c) Hxllo d) Hexlo

21) What is the output of this program? []

 package pkg;
 class output {
 public static void main(String args[])
 {
 StringBuffer s1 = new StringBuffer("Hello World");
 s1.insert(6 , "Good ");
 System.out.println(s1);}}
Note : Output.class file is not in directory pkg.

a) HelloGoodWorld b) HellGoodoWorld
c) Compilation error d) Runtime error

22) Which of the given statement is not true about an Java Package ? []

A) A package can be defined as a group of similar types of classes and interface.

 B) Package are used in order to avoid name conflicts and to control access of classes and interface.

Object Oriented Programming 20

II Year I Semester 2019-20 CSE

C) A package cannot not have another package inside it.

D) Java uses file system directory to store package
23) You can import only static members of a class present in some other package using ?

A) import keyword B) import static keyword

C) package keyword D) static import keyword
24) Which is a valid declaration within an Interface ?

A) public static short stop = 23; B) protected short stop = 23;
C) transient short stop = 23; D) final void start(short stop);

SECTION-B

 SUBJECTIVE QUESTIONS
1) What is an interface? How it is used to create constants and define functions.
2) Explain about defining and implementing interfaces with example program.
3) Differentiate between class and interfaces
4) Write a short note on i) variable in interfaces ii) Nested interfaces
5) Can we extend interfaces? Support your argument.
6) Can JAVA does support multiple inheritance? Justify your answer.
7) Explain the concept of applying interfaces?
8) Define package? Write the procedure to create and import user defined package.
9) Explain different access specifiers supported by JAVA with an example program.
10) What is CLASSPATH? Explain its role in finding packages.

Write a java program to

1) Compute the area of rectangle using interfaces

2) Implement Multiple Inheritance using interface

3) Show how a class implements two interfaces.

4) show that the variables in an interface are implicitly static and final and methods are

automatically public

5) Implements the extended interfaces

6) Create a package to display the given string in reverse order.

7) Create a package for Book details giving Book Name, Author Name, Price and Year of

Publishing.

8) Write a java program to Create and access a user defined package where the package
contains a class named CircleDemo, which in turn contains a method called circleArea()
which takes radius of the circle as the parameter and returns the area of the circle.

Object Oriented Programming Through Java 1

II Year - I Semester A.Y.2019-20 CSE

UNIT-IV-
Learning Material(R-17)

Exception Handling and Multithreading
Objective:

To familiarize the concepts of Exception Handling and Multithreading.

Syllabus:

Exception Handling- exception-handling fundamentals, uncaught

exceptions, using try and catch, multiple catch clauses, nested try

statements, throw, throws, finally, user-defined exceptions.

Multithreading-Introduction to multitasking, thread life cycle, creating

threads, synchronizing threads, thread groups.

Learning Outcomes

Upon successful completion of the course, the students will be able to

 Understand the concepts and applications of exception handling.

 Apply exception handle mechanism to handle run time errors in java.

 Write a program to handle multiple exception.

 Create user defined exception.

 Understand threads concepts and its life cycle in java.

 Understand how multiple threads can be created within java program.

 Apply threads concept to an application.

Object Oriented Programming Through Java 2

II Year - I Semester A.Y.2019-20 CSE

Learning Material

 EXCEPTION-HANDLING FUNDAMENTALS:
 An exception is an unwanted or unexpected event, which occurs during the

execution of a program i.e at run time, that disrupts the normal flow of the
program’s instructions.

 A Java exception is an object that describes an exceptional (that is,

error) condition that has occurred in a piece of code. When an

exceptional condition arises, an object representing that exception is

created and is thrown in the method that caused the error.

 That method may choose to handle the exception itself, or pass it on.

Either way, at some point, the exception is caught and processed.

 Exceptions can be generated by the Java run-time system, or they can

be manually generated by your code.

 Java exception handling is managed via five keywords: try, catch,

throw, throws, and finally.

 Program statements that you want to monitor for exceptions are

contained within a try block. If an exception occurs within the try
block, it is thrown. Your code can catch this exception (using catch)

and handle it in some rational manner. System-generated exceptions

are automatically thrown by the Java runtime system.

 To manually throw an exception, use the keyword throw. Any

exception that is not being handled must be specified as such by a

throws clause.

 Any code that absolutely must be executed before a method returns is

put in a finally block.

This is the general form of an exception-handling block:

try {

// block of code to monitor for errors

}

catch (ExceptionType1 exOb) {

// exception handler for ExceptionType1

Object Oriented Programming Through Java 3

II Year - I Semester A.Y.2019-20 CSE

}

catch (ExceptionType2 exOb) {

// exception handler for ExceptionType2

}

// ...

finally {

// block of code to be executed before try block ends

}

Here, ExceptionType is the type of exception that has occurred. The

remainder of this chapter describes how to apply this framework.

 All exception types are subclasses of the built-in class Throwable.

Thus, Throwable is at the top of the exception class hierarchy.

 Immediately below Throwable are two subclasses that partition

exceptions into two distinct branches.

 One branch is headed by Exception. This class is used for exceptional

conditions that user programs should catch. This is also the class that

you will subclass to create your own custom exception types. There is

an important subclass of Exception, called RuntimeException.

Exceptions of this type are automatically defined for the programs

that you write and include things such as division by zero and invalid

array indexing.

 The other branch is Error, which defines exceptions that are not

expected to be caught under normal circumstances by your program.

 Exceptions of type Error are used by the Java run-time system to

indicate errors having to do with the run-time environment, itself.

Object Oriented Programming Through Java 4

II Year - I Semester A.Y.2019-20 CSE

 Exceptions are broadly classified into two categories

o Checked Exceptions: Checked Exceptions are those for which

the compiler checks to see whether they have been handled in

your programs or not. These Exceptions are not sub classes of

class RuntimeException.

o Unchecked Exceptions: Run –Time exceptions are not checked

by the compiler. These Exceptions are derived from class

RuntimeException.

 UNCAUGHT EXCEPTIONS
example :
 Program includes an expression that causes a divide-by-zero error.

class Exc0 {

public static void main(String args[]) {

 int d = 0;

 int a = 42 / d;

 }

}

 When the Java run-time system detects the attempt to divide by zero,

it constructs a new exception object and then throws this exception.

This causes the execution of Exc0 to stop, because once an exception

has been thrown, it must be caught by an exception handler and dealt

with immediately.

 Notice how the class name, Exc0; the method name, main; the

filename, Exc0.java; and the line number, 4, are all included in the

simple stack trace.

 The stack trace will always show the sequence of method invocations

that led up to the error. For example, here is another version of the

preceding program that introduces the same error but in a method

separate from main():

class Exc1 {

Object Oriented Programming Through Java 5

II Year - I Semester A.Y.2019-20 CSE

static void subroutine() {

 int d = 0;

 int a = 10 / d;

}

public static void main(String args[]) {

 Exc1.subroutine();

}

}

 The resulting stack trace from the default exception handler shows

how the entire call stack is displayed:

java.lang.ArithmeticException: / by zero

 at Exc1.subroutine(Exc1.java:4)

 at Exc1.main(Exc1.java:7)

 As you can see, the bottom of the stack is main's line 7, which is the

call to subroutine(), which caused the exception at line 4. The call

stack is quite useful for debugging, because it pinpoints the precise

sequence of steps that led to the error.

 USING TRY AND CATCH
 Although the default exception handler provided by the Java run-time

system is useful for debugging, you will usually want to handle an

exception yourself. Doing so provides two benefits. First, it allows you

to fix the error. Second, it prevents the program from automatically

terminating.

 To guard against and handle a run-time error, simply enclose the code

that you want to monitor inside a try block. Immediately following the

try block, include a catch clause that specifies the exception type that

you wish to catch.

 To illustrate how easily this can be done, the following program

includes a try block and a catch clause which processes the

ArithmeticException generated by the division-by-zero error:

class Exc2 {

Object Oriented Programming Through Java 6

II Year - I Semester A.Y.2019-20 CSE

public static void main(String args[]) {

 int d, a;

try { // monitor a block of code.

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

} catch (ArithmeticException e) { // catch divide-by-zero error

 System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

 This program generates the following output:

Division by zero.

After catch statement.

 Notice that the call to println() inside the try block is never executed.

Once an exception is thrown, program control transfers out of the try

block into the catch block. Put differently, catch is not "called," so

execution never "returns" to the try block from a catch.

 Thus, the line "This will not be printed." is not displayed. Once the

catch statement has executed, program control continues with the

next line in the program following the entire try/catch mechanism. A

try and its catch statement form a unit. The scope of the catch clause

is restricted to those statements specified by the immediately

preceding try statement.

 MULTIPLE CATCH CLAUSES

 In some cases, more than one exception could be raised by a single

piece of code. To handle this type of situation, you can specify two or

more catch clauses, each catching a different type of exception.

Object Oriented Programming Through Java 7

II Year - I Semester A.Y.2019-20 CSE

 When an exception is thrown, each catch statement is inspected in

order, and the first one whose type matches that of the exception is

executed.

 After one catch statement executes, the others are bypassed, and

execution continues after the try/catch block.

 The following example traps two different exception types:

// Demonstrate multiple catch statements.

class MultiCatch {

public static void main(String args[]) {

try {

int a = args.length;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

 This program will cause a division-by-zero exception if it is started

with no command-line parameters, since a will equal zero. It will

survive the division if you provide a commandline argument, setting a

to something larger than zero.

Object Oriented Programming Through Java 8

II Year - I Semester A.Y.2019-20 CSE

 But it will cause an ArrayIndexOutOfBoundsException, since the int

array c has a length of 1, yet the program attempts to assign a value

to c[42].

Here is the output generated by running it both ways:

C:\\>java MultiCatch

a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

C:\\>java MultiCatch TestArg

a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException:

42

After try/catch blocks.

 When you use multiple catch statements, it is important to remember

that exception subclasses must come before any of their super

classes.

 This is because a catch statement that uses a super class will catch

exceptions of that type plus any of its subclasses.

 Thus, a subclass would never be reached if it came after its super

class. Further, in Java, unreachable code is an error. For example,

consider the following program:

class SuperSubCatch {

public static void main(String args[]) {

try {

int a = 0;

int b = 42 / a;

} catch(Exception e) {

System.out.println("Generic Exception catch.");

Object Oriented Programming Through Java 9

II Year - I Semester A.Y.2019-20 CSE

}

catch(ArithmeticException e) { // ERROR - unreachable

System.out.println("This is never reached.");

}

}

}

 If you try to compile this program, you will receive an error message

stating that the second catch statement is unreachable.

 Since ArithmeticException is a subclass of Exception, the first catch

statement will handle all Exception-based errors, including

ArithmeticException.

 This means that the second catch statement will never execute. To fix

the problem, reverse the order of the catch statements.

 NESTED TRY STATEMENTS

 The try statement can be nested. That is, a try statement can be

inside the block of another try. Each time a try statement is entered,

the context of that exception is pushed on the stack.

 If an inner try statement does not have a catch handler for a

particular exception, the stack is unwound and the next try

statement's catch handlers are inspected for a match.

 This continues until one of the catch statements succeeds, or until all

of the nested try statements are exhausted. If no catch statement

matches, then the Java run-time system will handle the exception.

Here is an example that uses nested try statements:

Object Oriented Programming Through Java 10

II Year - I Semester A.Y.2019-20 CSE

// An example of nested try statements.

class NestTry {

public static void main(String args[]) {

try {

int a = args.length;

int b = 42 / a;

System.out.println("a = " + a);

try { // nested try block

if(a==1) a = a/(a-a); // division by zero

if(a==2) {

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

}

}

The program works as follows.

 When you execute the program with no command-line arguments, a

divide-byzero exception is generated by the outer try block. Execution

of the program by one command-line argument generates a divide-by-

zero exception from within the nested try block. Since the inner block

does not catch this exception, it is passed on to the outer try block,

Object Oriented Programming Through Java 11

II Year - I Semester A.Y.2019-20 CSE

where it is handled. If you execute the program with two command-

line arguments, an array boundary exception is generated from within

the inner try block. Here are sample runs that illustrate each case:

C:\\>java NestTry

Divide by 0: java.lang.ArithmeticException: / by zero

C:\\>java NestTry One

a = 1

Divide by 0: java.lang.ArithmeticException: / by zero

C:\\>java NestTry One Two

a = 2

Array index out-of-bounds:

java.lang.ArrayIndexOutOfBoundsException: 42

 Nesting of try statements can occur in less obvious ways when method

calls are involved. For example, you can enclose a call to a method

within a try block. Inside that method is another try statement. In this

case, the try within the method is still nested inside the outer try

block, which calls the method. Here is the previous program recoded

so that the nested try block is moved inside the method nesttry():

class MethNestTry {

static void nesttry(int a) {

try { // nested try block

if(a==1) a = a/(a-a); // division by zero

if(a==2) {

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

Object Oriented Programming Through Java 12

II Year - I Semester A.Y.2019-20 CSE

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

}

public static void main(String args[]) {

try {

int a = args.length;

int b = 42 / a;

System.out.println("a = " + a);

nesttry(a);

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

}

}

 THROW:
 It is possible to throw an exception explicitly, not only catching

exceptions that are thrown by the Java run-time system.using the

throw statement. The general form of throw is shown here:

throw ThrowableInstance;

 Here, ThrowableInstance must be an object of type Throwable or a

subclass of Throwable. Simple types, such as int or char, as well as

non-Throwable classes, such as String and Object, cannot be used as

exceptions. There are two ways you can obtain a Throwable object:

using a parameter into a catch clause, or creating one with the new

operator.

Object Oriented Programming Through Java 13

II Year - I Semester A.Y.2019-20 CSE

 The flow of execution stops immediately after the throw statement;

any subsequent statements are not executed. The nearest enclosing

try block is inspected to see if it has a catch statement that matches

the type of the exception.

 If it does find a match, control is transferred to that statement. If not,

then the next enclosing try statement is inspected, and so on. If no

matching catch is found, then the default exception handler halts the

program and prints the stack trace.

 Here is a sample program that creates and throws an exception. The

handler that catches the exception rethrows it to the outer handler.

// Demonstrate throw.

class ThrowDemo {

static void demoproc() {

try {

throw new NullPointerException("demo");

} catch(NullPointerException e) {

System.out.println("Caught inside demoproc.");

throw e; // rethrow the exception

}

}

public static void main(String args[]) {

try {

demoproc();

} catch(NullPointerException e) {

System.out.println("Recaught: " + e);

}

}

}

Object Oriented Programming Through Java 14

II Year - I Semester A.Y.2019-20 CSE

 This program gets two chances to deal with the same error. First,

main() sets up an exception context and then calls demoproc().

 The demoproc() method then sets up another exception-handling

context and immediately throws a new instance of

NullPointerException, which is caught on the next line. The exception

is then rethrown.

 Here is the resulting output:

Caught inside demoproc.

Recaught: java.lang.NullPointerException: demo

throw new NullPointerException("demo");

 Here, new is used to construct an instance of NullPointerException.

All of Java's built-in run-time exceptions have two constructors: one

with no parameter and one that takes a string parameter.

 When the second form is used, the argument specifies a string that

describes the exception. This string is displayed when the object is

used as an argument to print() or println(). It can also be obtained

by a call to getMessage(), which is defined by Throwable.

 THROWS:

 If a method is capable of causing an exception that it does not handle,

it must specify this behaviour so that callers of the method can guard

themselves against that exception. You do this by including a throws
clause in the method's declaration.

Object Oriented Programming Through Java 15

II Year - I Semester A.Y.2019-20 CSE

 A throws clause lists the types of exceptions that a method might

throw. This is necessary for all exceptions(checked), except those of

type Error or RuntimeException, or any of their subclasses.

 All other exceptions that a method can throw must be declared in the

throws clause. If they are not, a compile-time error will result. This is

the general form of a method declaration that includes a throws
clause:

type method-name(parameter-list) throws exception-list

{

// body of method

}

 Here, exception-list is a comma-separated list of the exceptions that a

method can throw. Following is an example of an incorrect program

that tries to throw an exception that it does not catch. Because the

program does not specify a throws clause to declare this fact, the

program will not compile.

// This program contains an error and will not compile.

class ThrowsDemo {

static void throwOne() {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

throwOne();

}

}

Object Oriented Programming Through Java 16

II Year - I Semester A.Y.2019-20 CSE

 To make this example compile, you need to make two changes. First,

you need to declare that throwOne() throws IllegalAccessException.

Second, main() must define a try/catch statement that catches this

exception.

The corrected example is shown here:

// This is now correct.

class ThrowsDemo {

static void throwOne() throws IllegalAccessException {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

try {

throwOne();

} catch (IllegalAccessException e) {

System.out.println("Caught " + e);

}

}

}

output:
inside throwOne

caught java.lang.IllegalAccessException: demo

 FINALLY:
 When exceptions are thrown, execution in a method takes a rather

abrupt, nonlinear path that alters the normal flow through the

method. Depending upon how the method is coded, it is even possible

for an exception to cause the method to return prematurely.

Object Oriented Programming Through Java 17

II Year - I Semester A.Y.2019-20 CSE

 This could be a problem in some methods. For example, if a method

opens a file upon entry and closes it upon exit, then you will not want

the code that closes the file to be bypassed by the exception-handling

mechanism.

 The finally keyword is designed to address this contingency. finally

creates a block of code that will be executed after a try/catch block

has completed and before the code following the try/catch block.

 The finally block will execute whether or not an exception is thrown. If

an exception is thrown, the finally block will execute even if no catch

statement matches the exception.

 Any time a method is about to return to the caller from inside a

try/catch block, via an uncaught exception or an explicit return

statement, the finally clause is also executed just before the method

returns.

 This can be useful for closing file handles and freeing up any other

resources that might have been allocated at the beginning of a method

with the intent of disposing of them before returning.

 The finally clause is optional. However, each try statement requires at

least one catch or a finally clause. Here is an example program that

shows three methods that exit in various ways, none without

executing their finally clauses:

class FinallyDemo
{
 static void procA()
{
 try {

// Execute a try block normally.
static void procC()
{
try {
System.out.println("inside
procC");

Object Oriented Programming Through Java 18

II Year - I Semester A.Y.2019-20 CSE

 In this example, procA() prematurely breaks out of the try by

throwing an exception. The finally clause is executed on the way out.

procB()'s try statement is exited via a return statement.

 The finally clause is executed before procB() returns. In procC(), the

try statement executes normally, without error. However, the finally

block is still executed.

System.out.println("inside
procA");
 throw new
RuntimeException("demo");
 } finally
 {

System.out.println("procA's
finally");
 } }
// Return from within a try
block.

static void procB() {
try {
System.out.println("inside
procB");
return;
} finally
 {
System.out.println("procB's
finally");
}
}

} finally {
System.out.println("procC's
finally");
} }
public static void main(String
args[])
{
try {
procA();
}
catch (Exception e)
{
System.out.println("Exception
caught");
}
procB();
procC();
}
}

Object Oriented Programming Through Java 19

II Year - I Semester A.Y.2019-20 CSE

Note : If a finally block is associated with a try, the finally block will be

executed upon conclusion of the try. Here is the output generated by the

preceding program:

inside procA

procA's finally

Exception caught

inside procB

procB's finally

inside procC

procC's finally.

 USER-DEFINED EXCEPTIONS

 Inside the standard package java.lang, Java defines several exception

classes. The most general of these exceptions are subclasses of the

standard type RuntimeException.

 Since java.lang is implicitly imported into all Java programs, most

exceptions derived from RuntimeException are automatically

available. Furthermore, they need not be included in any method's

throws list.

 In the language of Java, these are called unchecked exceptions

because the compiler does not check to see if a method handles or

throws these exceptions. The unchecked exceptions defined in

java.lang are listed in the Table 1.

 Table 2 lists those exceptions defined by java.lang that must be

included in a method's throws list if that method can generate one of

these exceptions and does not handle it itself. These are called

Object Oriented Programming Through Java 20

II Year - I Semester A.Y.2019-20 CSE

checked exceptions. Java defines several other types of exceptions that

relate to its various class libraries.

Table-1

Java's Unchecked RuntimeException Subclasses
Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero.
ArrayIndexOutOfBoundsException Array index is out-of-bounds.
ArrayStoreException Assignment to an array element of an

incompatible type.

ClassCastException
Invalid cast.

IllegalArgumentException Illegal argument used to invoke a method.
IllegalMonitorStateException Illegal monitor operation, such as waiting on an

unlocked thread.
IllegalStateException

Environment or application is in incorrect state.

IllegalThreadStateException
Requested operation not compatible with current

thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds
NegativeArraySizeException Array created with a negative size.
NullPointerException Invalid use of a null reference.
NumberFormatException Invalid conversion of a string to a numeric format.
SecurityException Attempt to violate security.
StringIndexOutOfBounds Attempt to index outside the bounds of a string
UnsupportedOperationException An unsupported operation was encountered

Object Oriented Programming Through Java 21

II Year - I Semester A.Y.2019-20 CSE

Table-2

 Java's Checked Exceptions Defined in java.lang

Exception Meaning
ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement

the Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or

interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

 Although Java's built-in exceptions handle most common errors, you

will probably want to create your own exception types to handle

situations specific to your applications. This is quite easy to do: just

define a subclass of Exception (which is, of course, a subclass of

Throwable).

 Your subclasses don't need to actually implement anything—it is their

existence in the type system that allows you to use them as

exceptions. The Exception class does not define any methods of its

own. It does, of course, inherit those methods provided by Throwable.

 Thus, all exceptions, including those that you create, have the
methods defined by Throwable available to them. They are shown in
Table below. these methods can be overridden in the created exception
classes.

 The Methods by Throwable

Method Description

Object Oriented Programming Through Java 22

II Year - I Semester A.Y.2019-20 CSE

Throwable fillInStackTrace() Returns a Throwable object that contains

a completed stack trace. This object can

be rethrown.

String getLocalizedMessage() Returns a localized description of the

exception

String getMessage() Returns a description of the exception.

void printStackTrace() Displays the stack trace.

Void

printStackTrace(PrintStream

stream)

Sends the stack trace to the specified

stream.

Void

printStackTrace(PrintWriter

stream)

Sends the stack trace to the specified

stream.

String toString() Returns a String object containing a

description of the exception. This method

is called by println() when outputting

a Throwable object.

 The following example declares a new subclass of Exception and then

uses that subclass to signal an error condition in a method. It

overrides the toString() method, allowing the description of the

exception to be displayed using println().

// This program creates a

custom exception type.

class MyException extends

Exception

class ExceptionDemo

 {

 static void compute(int a) throws

MyException

 {

Object Oriented Programming Through Java 23

II Year - I Semester A.Y.2019-20 CSE

{

private int detail;

MyException(int a)

{

detail = a;

}

public String toString()

 {

return "MyException[" + detail

+ "]";

}

}

System.out.println("Called compute(" +

a + ")");

 if(a > 10)

 throw new MyException(a);

 System.out.println("Normal exit");

}

public static void main(String args[])

{

try {

compute(1);

compute(20);

} catch (MyException e)

{

System.out.println("Caught " + e);

} } }

 This example defines a subclass of Exception called MyException. This

subclass is quite simple: it has only a constructor plus an overloaded

toString() method that displays the value of the exception.

 The ExceptionDemo class defines a method named compute() that

throws a MyException object. The exception is thrown when compute(

)'s integer parameter is greater than 10. The main() method sets up

an exception handler for MyException, then calls compute() with a

legal value (less than 10) and an illegal one to show both paths

through the code.

Output:

Called compute(1)

Object Oriented Programming Through Java 24

II Year - I Semester A.Y.2019-20 CSE

Normal exit

Called compute(20)

Caught MyException[20]

 INTRODUCTION TO MULTITASKING

 A multithreaded program contains two or more parts that can run

concurrently. Each part of such a program is called a thread, and

each thread defines a separate path of execution.

 Thus, multithreading is a specialized form of multitasking.

 However, there are two distinct types of multitasking: process-based

and thread-based.

 A process is, in essence, a program that is executing. Thus, process-

based multitasking is the feature that allows your computer to run

two or more programs concurrently.

 For example, process-based multitasking enables you to run the Java

compiler at the same time that you are using a text editor. In process-

based multitasking, a program is the smallest unit of code that can be

dispatched by the scheduler.

 In a thread-based multitasking environment, the thread is the

smallest unit of dispatchable code. This means that a single program

can perform two or more tasks simultaneously.

 Multitasking threads require less overhead than multitasking

processes. Processes are heavyweight tasks that require their own

separate address spaces.

 Threads, on the other hand, are lightweight. They share the same

address space and cooperatively share the same heavyweight process.

Object Oriented Programming Through Java 25

II Year - I Semester A.Y.2019-20 CSE

 Multithreading enables you to write very efficient programs that make

maximum use of the CPU, because idle time can be kept to a

minimum.

 THREAD LIFECYCLE:

A Thread in its lifetime goes through various states.

New : When we create a thread naturally, it is in “new” state. The thread is

not yet ready to run. The only method can be called from this state is start().

This method moves to the ready state from which it is automatically moved

to runnable state by thread scheduler.

Ready: The thread is ready to run (runnable) and waiting to be assigned to a

processor by the scheduler. When the thread enters this state first time, it

calls start() method from New state.

Running: A thread executing in the JVM is in running state. The state can

be entered from ready state only when scheduled by the scheduler.

Blocked:A thread is blocked waiting for a monitor lock is in this state .A

thread can enter waiting state from running state on any of the following

events, like suspend, sleeping, waiting, joining and blocked.

Dead: The thread is destroyed when its run() method completes either

normally or abnormally or destroy() or stop() method is called from any

state.

Object Oriented Programming Through Java 26

II Year - I Semester A.Y.2019-20 CSE

Thread Life Cycle

The Thread Class and the Runnable Interface

 Java's multithreading system is built upon the Thread class, its

methods, and its companion interface, Runnable. Thread

encapsulates a thread of execution.

 There are 2 ways to create a new thread, either extend the Thread

class or implement the Runnable interface.

 The Thread class defines several methods that help manage threads.

 Method Meaning
getName Obtain a thread's name.

getPriority Obtain a thread's priority.

isAlive Determine if a thread is still running.

join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.

start Start a thread by calling its run method.

Object Oriented Programming Through Java 27

II Year - I Semester A.Y.2019-20 CSE

 CREATING A THREAD:

A thread is created by instantiating an object of type Thread.

Java defines two ways in which this can be accomplished:

• implement the Runnable interface.

• extend the Thread class.

Implementing Runnable

 The easiest way to create a thread is to create a class that implements

the Runnable interface. Runnable abstracts a unit of executable code.

To implement Runnable, a class need only implement a single method

called run(), which is declared like this:

public void run()

 Inside run(), you will define the code that constitutes the new thread.

It is important to understand that run() can call other methods, use

other classes, and declare variables, just like the main thread can.

 The only difference is that run() establishes the entry point for

another, concurrent thread of execution within your program. This

thread will end when run() returns. After you create a class that

implements Runnable, you will instantiate an object of type Thread

from within that class. Thread defines several constructors.

Thread(Runnable threadOb, String threadName)

 In this constructor, threadOb is an instance of a class that

implements the Runnable interface. This defines where execution of

the thread will begin. The name of the new thread is specified by

threadName. After the new thread is created, it will not start running

until you call its start() method, which is declared within Thread. In

essence, start() executes a call to run().

The start() method is shown here: void start()

Here is an example that creates a new thread and starts it running:

Object Oriented Programming Through Java 28

II Year - I Semester A.Y.2019-20 CSE

class NewThread implements

Runnable

{

Thread t;

NewThread()

{

t = new Thread(this, "Demo Thread");

System.out.println("Child thread: " +

t);

t.start();

}

public void run() {

try {

for(int i = 5; i > 0; i—) {

System.out.println("Child Thread: " +

i);

Thread.sleep(500);

}

}

catch (InterruptedException e)

{

System.out.println("Child

interrupted.");

}

System.out.println("Exiting child

thread.");

}

}

class ThreadDemo

{

public static void main(String args[])

{

new NewThread();

try {

for(int i = 5; i > 0; i—)

{

System.out.println("Main Thread: " +

i);

Thread.sleep(1000);

}

} catch (InterruptedException e)

{

System.out.println("Main thread

interrupted.");

}

System.out.println("Main thread

exiting.");

}

}

Object Oriented Programming Through Java 29

II Year - I Semester A.Y.2019-20 CSE

Inside NewThread's constructor, a new Thread object is created by the

following statement:

t = new Thread(this, "Demo Thread");

 Passing this as the first argument indicates that you want the new

thread to call the run() method on this object. Next, start() is called,

which starts the thread of execution beginning at the run() method.

This causes the child thread's for loop to begin.

 After calling start(), NewThread's constructor returns to main(). When

the main thread resumes, it enters its for loop. Both threads continue

running, sharing the CPU, until their loops finish.

The output produced by this program is as follows:

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Exiting child thread.

Main Thread: 2

Main Thread: 1

Main thread exiting.

Object Oriented Programming Through Java 30

II Year - I Semester A.Y.2019-20 CSE

 In a multithreaded program, the main thread must be the last thread

to finish running. If the main thread finishes before a child thread has

completed, then the Java run-time system may "hang."

Extending Thread

 The second way to create a thread is to create a new class that

extends Thread, and then to create an instance of that class. The

extending class must override the run() method, which is the entry

point for the new thread. It must also call start() to begin execution of

the new thread.

Here is the preceding program rewritten to extend Thread:

class NewThread extends Thread

 {

NewThread()

{

super("Demo Thread");

System.out.println("Child thread: " +

this);

start();

}

public void run() {

try {

for(int i = 5; i > 0; i—) {

System.out.println("Child Thread: " +

i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

class ExtendThread

{

public static void main(String args[])

{

new NewThread();

try {

for(int i = 5; i > 0; i—)

{

System.out.println("Main Thread: " +

i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread

interrupted.");

}

System.out.println("Main thread

Object Oriented Programming Through Java 31

II Year - I Semester A.Y.2019-20 CSE

System.out.println("Child

interrupted.");

}

System.out.println("Exiting child

thread.");

}

}

exiting.");

}

}

 This program generates the same output as the preceding version. As

you can see, the child thread is created by instantiating an object of

NewThread, which is derived from Thread.

 The call to super() inside NewThread invokes the following form of the

Thread constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

The Main Thread
 When a Java program starts up, one thread begins running

immediately. This is usually called the main thread of your program,

because it is the one that is executed when your program begins. The

main thread is important for two reasons:

• It is the thread from which other "child" threads will be spawned.

• It must be the last thread to finish execution.

 The main thread is created automatically when program is started,

which can be controlled through a Thread object. To do so, you must

obtain a reference to it by calling the method currentThread(), which

is a public static member of Thread.

Object Oriented Programming Through Java 32

II Year - I Semester A.Y.2019-20 CSE

Its general form is shown here: static Thread currentThread()

 This method returns a reference to the thread in which it is called.

 By default, the name of the main thread is main. Its priority is 5,

which is the default value, and main is also the name of the group of

threads to which this thread belongs.

 A thread group is a data structure that controls the state of a

collection of threads as a whole. This process is managed by the

particular run-time environment

 The sleep() method causes the thread from which it is called to

suspend execution for the specified period of milliseconds.

static void sleep(long milliseconds) throws InterruptedException

 The number of milliseconds to suspend is specified in milliseconds.

This method may throw an InterruptedException.

static void sleep(long milliseconds, int nanoseconds) throws InterruptedException

 The sleep() method has a second form, which allows you to specify

the period in terms of milliseconds and nanoseconds.

You can set the name of a thread by using setName().
You can obtain the name of a thread by calling getName()
These methods are members of the Thread class and are

declared like this:

final void setName(String threadName)

final String getName()

Creating Multiple Threads

Object Oriented Programming Through Java 33

II Year - I Semester A.Y.2019-20 CSE

 In addition to the main thread and one child thread, a program can

spawn as many threads as it needs.

For example, the following program creates three child threads:

class NewThread implements

Runnable

{

String name; // name of thread

Thread t;

NewThread(String threadname)

{

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " +

t);

t.start(); // Start the thread

}

public void run()

 {

try {

for(int i = 5; i > 0; i—) {

System.out.println(name + ": " + i);

Thread.sleep(1000);

}

}

catch (InterruptedException e)

{ System.out.println(name +

"Interrupted");

}

System.out.println(name + "

exiting.");

}

}

class MultiThreadDemo

{

public static void main(String args[])

{

new NewThread("One"); // start

threads

new NewThread("Two");

new NewThread("Three");

 try {

 Thread.sleep(10000);

} catch (InterruptedException e) {

System.out.println("Main thread

Interrupted");

}

System.out.println("Main thread

exiting.");

}

}

Object Oriented Programming Through Java 34

II Year - I Semester A.Y.2019-20 CSE

The output from this program is

shown here:

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

New thread: Thread[Three,5,main]

One: 5

Two: 5

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Three: 3

Two: 3

One: 2

Three: 2

Two: 2

One: 1

Three: 1

Two: 1

One exiting.

Two exiting.

Three exiting.

Main thread exiting.

 As you can see, once started, all three child threads share the CPU.

Notice the call to sleep(10000) in main(). This causes the main thread

to sleep for ten seconds and ensures that it will finish last.

Using isAlive() and join()

 Two ways exist to determine whether a thread has finished. First, you

can call isAlive() on the thread. This method is defined by Thread, and

its general form is shown here:

final boolean isAlive()

 The isAlive() method returns true if the thread upon which it is called

is still running. It returns false otherwise.

 The method more commonly used to wait for a thread to finish is

called join(), shown here:

final void join() throws InterruptedException

Object Oriented Programming Through Java 35

II Year - I Semester A.Y.2019-20 CSE

 This method waits until the thread on which it is called terminates. Its

name comes from the concept of the calling thread waiting until the

specified thread joins it.

class DemoJoin

{

public static void main(String args[])

 {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

NewThread ob3 = new NewThread("Three");

System.out.println("Thread One is alive: "+ ob1.t.isAlive());

System.out.println("Thread Two is alive: "+ ob2.t.isAlive());

System.out.println("Thread Three is alive: "+ ob3.t.isAlive());

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join(); ob2.t.join(); ob3.t.join();

}

catch (InterruptedException e)

{ System.out.println("Main thread Interrupted");

}

System.out.println("Thread One is alive: "+ ob1.t.isAlive());

System.out.println("Thread Two is alive: "+ ob2.t.isAlive());

System.out.println("Thread Three is alive: "+ ob3.t.isAlive());

System.out.println("Main thread exiting.");

}

}

 Sample output from this program is shown here:

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

Object Oriented Programming Through Java 36

II Year - I Semester A.Y.2019-20 CSE

New thread: Thread[Three,5,main]

Thread One is alive: true

Thread Two is alive: true

Thread Three is alive: true

Waiting for threads to finish.

One: 5

Two: 5

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Two: 3

Three: 3

One: 2

Two: 2

Three: 2

One: 1

Two: 1

Three: 1

Two exiting.

Three exiting.

One exiting.

Thread One is alive: false

Thread Two is alive: false

Thread Three is alive: false

Main thread exiting.

 As you can see, after the calls to join() return, the threads have

stopped executing.

Thread Priorities

Object Oriented Programming Through Java 37

II Year - I Semester A.Y.2019-20 CSE

 Thread priorities are used by the thread scheduler to decide when

each thread should be allowed to run.

 Higher-priority threads get more CPU time than lower-priority threads.

But in practice, the amount of CPU time that a thread gets often

depends on several factors besides its priority. (Ex: OS, CPU time.etc)

 To set a thread's priority, use the setPriority() method, which is a

member of Thread. This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread.

 The value of level must be within the range MIN_PRIORITY and

MAX_PRIORITY. Currently, these values are 1 and 10, respectively.

 To return a thread to default priority, specify NORM_PRIORITY,

which is currently 5. These priorities are defined as final variables

within Thread. You can obtain the current priority setting by calling

the getPriority() method of Thread, shown here:

final int getPriority()

 SYNCHRONIZATION
 When two or more threads need access to a shared resource, they

need some way to ensure that the resource will be used by only one

thread at a time. The process by which this is achieved is called

synchronization.

 A monitor is an object that is used as a mutually exclusive lock, or

mutex. Only one thread can own a monitor at a given time. When a

thread acquires a lock, it is said to have entered the monitor.

 All other threads attempting to enter the locked monitor will be

suspended until the first thread exits the monitor. These other threads

are said to be waiting for the monitor. A thread that owns a monitor

can reenter the same monitor if it so desires.

Object Oriented Programming Through Java 38

II Year - I Semester A.Y.2019-20 CSE

Using Synchronized Methods

 To enter an object's monitor, just call a method that has been

modified with the synchronized keyword. While a thread is inside a

synchronized method, all other threads that try to call it (or any other

synchronized method) on the same instance have to wait.

 To exit the monitor and relinquish control of the object to the next

waiting thread, the owner of the monitor simply returns from the

synchronized method.

 The following program has three simple classes. The first one, Callme,

has a single method named call().

 The call() method takes a String parameter called msg. This method

tries to print the msg string inside of square brackets. The interesting

thing to notice is that after call() prints the opening bracket and the

msg String, it calls Thread.sleep(1000), which pauses the current

thread for one second.

 The constructor of the next class, Caller, takes a reference to an

instance of the Callme class and a String, which are stored in target

and msg, respectively. The constructor also creates a new thread that

will call this object's run() method.

 The thread is started immediately. The run() method of Caller calls

the call() method on the target instance of Callme, passing in the msg

string.

 Finally, the Synch class starts by creating a single instance of Callme,

and three instances of Caller, each with a unique message string. The

same instance of Callme is passed to each Caller.

// This program is not

synchronized.

class Callme {

void call(String msg) {

public void run()

 {

target.call(msg);

}

Object Oriented Programming Through Java 39

II Year - I Semester A.Y.2019-20 CSE

System.out.print("[" + msg);

try {

Thread.sleep(1000);

} catch(InterruptedException e) {

System.out.println("Interrupted"

);

}

System.out.println("]");

}

}

class Caller implements

Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String

s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

}

class Synch {

public static void main(String

args[]) {

Callme target = new Callme();

Caller ob1 = new

Caller(target, "Hello");

Caller ob2 = new

Caller(target, "Synchronized");

Caller ob3 = new

Caller(target, "World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException

e) {

System.out.println("Interrupt

ed");

}

}

}

Output: Hello[Synchronized[World]

 By calling sleep(), the call() method allows execution to switch to

another thread.

 This results in the mixed-up output of the three message strings. In

this program, nothing exists to stop all three threads from calling the

Object Oriented Programming Through Java 40

II Year - I Semester A.Y.2019-20 CSE

same method, on the same object, at the same time. This is known as

a race condition, because the three threads are racing each other to

complete the method.

 To fix the preceding program, you must serialize access to call(). That

is, you must restrict its access to only one thread at a time. To do this,

you simply need to precede call()'s definition with the keyword

synchronized, as shown here:

class Callme {

synchronized void call(String msg) {

 ...}

 This prevents other threads from entering call() while another thread

is using it. After synchronized has been added to call(), the output of

the program is as follows:

[Hello]

[Synchronized]

[World]

 Any time that you have a method, or group of methods, that

manipulates the internal state of an object in a multithreaded

situation, you should use the synchronized keyword to guard the state

from race conditions. Remember, once a thread enters any

synchronized method on an instance, no other thread can enter any

other synchronized method on the same instance. However, non

synchronized methods on that instance will continue to be callable.

The synchronized Statement

 While creating synchronized methods within classes that you create is

an easy and effective means of achieving synchronization, it will not

Object Oriented Programming Through Java 41

II Year - I Semester A.Y.2019-20 CSE

work in all cases. Imagine that you want to synchronize access to

objects of a class that was not designed for multithreaded access.

That is, the class does not use synchronized methods.

 Further, this class was not created by you, but by a third party, and

you do not have access to the source code. Thus, you can't add

synchronized to the appropriate methods within the class. How can

access to an object of this class be synchronized? Solution is to place

calls to the methods defined by this class inside a synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {

// statements to be synchronized

}

 Here, object is a reference to the object being synchronized. If you

want to synchronize only a single statement, then the curly braces are

not needed. A synchronized block ensures that a call to a method that

is a member of object occurs only after the current thread has

successfully entered object's monitor.

 Here is an alternative version of the preceding example, using a

synchronized block within the run() method:

// This program uses a synchronized

block.

class Callme

{

void call(String msg)

{

System.out.print("[" + msg);

// synchronize calls to call()

public void run()

{

synchronized(target)

 { // synchronized block

target.call(msg);

}

}

Object Oriented Programming Through Java 42

II Year - I Semester A.Y.2019-20 CSE

try {

Thread.sleep(1000);

} catch (InterruptedException e)

{

System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s)

{

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

}

class Synch1

{

public static void main(String args[])

{

Callme target = new Callme();

Caller ob1 = new Caller(target,

"Hello");

Caller ob2 = new Caller(target,

"Synchronized");

Caller ob3 = new Caller(target,

"World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e)

 {

System.out.println("Interrupted");

}

}

}

 Here, the call() method is not modified by synchronized. Instead, the

synchronized statement is used inside Caller's run() method. This

causes the same correct output as the preceding example, because

each thread waits for the prior one to finish before proceeding.

Inter Thread Communication

Object Oriented Programming Through Java 43

II Year - I Semester A.Y.2019-20 CSE

 Polling is usually implemented by a loop that is used to check some

condition repeatedly. Once the condition is true, appropriate action is

taken. This wastes CPU time

 To avoid polling, Java includes an elegant interprocess

communication mechanism via the wait(), notify(), and notifyAll()

methods. These methods are implemented as final methods in Object,

so all classes have them. All three methods can be called only from

within a synchronized method.

• wait() tells the calling thread to give up the monitor and go to sleep

until some other thread enters the same monitor and calls notify().

• notify() wakes up the first thread that called wait() on the same object.

• notifyAll() wakes up all the threads that called wait() on the same

object. The highest priority thread will run first.

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException

final void notify()

final void notifyAll()

 Additional forms of wait() exist that allow you to specify a period of

time to wait. The following sample program incorrectly implements a

simple form of the producer/consumer problem. It consists of four

classes: Q, the queue that you're trying to synchronize; Producer, the

threaded object that is producing queue entries; Consumer, the

threaded object that is consuming queue entries; and PC, the tiny

class that creates the single Q, Producer, and Consumer.

// An incorrect implementation of public void run()

Object Oriented Programming Through Java 44

II Year - I Semester A.Y.2019-20 CSE

a producer and consumer.

class Q

 {

int n;

synchronized int get()

{

System.out.println("Got: " + n);

return n;

}

synchronized void put(int n)

 {

this.n = n;

System.out.println("Put: " + n);

} }

class Producer implements

Runnable

 {

Q q;

Producer(Q q)

 {

this.q = q;

new Thread(this,

"Producer").start();

}

public void run()

{

int i = 0;

while(true)

 {

q.put(i++);

} } }

{

while(true)

{

q.get();

}

}

}

class PC

 {

public static void main(String args[])

{

Q q = new Q();

new Producer(q);

new Consumer(q);

System.out.println("Press Control-C

to stop.");

}

}

OUTPUT:

Put: 1

Got: 1

Got: 1

Got: 1

Got: 1

Got: 1

Put: 2

Put: 3

Put: 4

Put: 5

Object Oriented Programming Through Java 45

II Year - I Semester A.Y.2019-20 CSE

class Consumer implements

Runnable

 {

Q q;

Consumer(Q q)

{

this.q = q;

new Thread(this,

"Consumer").start(); }

Put: 6

Put: 7

Got: 7

 Although the put() and get() methods on Q are synchronized, nothing

stops the producer from overrunning the consumer, nor will anything

stop the consumer from consuming the same queue value twice.

Thus, you get the erroneous output shown here (the exact output will

vary with processor speed and task load):

 As you can see, after the producer put 1, the consumer started and

got the same 1 five times in a row. Then, the producer resumed and

produced 2 through 7 without letting the consumer have a chance to

consume them.

 The proper way to write this program in Java is to use wait() and

notify() to signal in both directions, as shown here:

// A correct implementation of a

producer and consumer.

class Q {

int n;

boolean valueSet = false;

synchronized int get() {

if(!valueSet)

class Consumer implements

Runnable {

Q q;

Consumer(Q q) {

this.q = q;

new Thread(this,

"Consumer").start();

Object Oriented Programming Through Java 46

II Year - I Semester A.Y.2019-20 CSE

try {

wait();

} catch(InterruptedException e) {

System.out.println("InterruptedException

caught");

}

System.out.println("Got: " + n);

valueSet = false;

notify();

return n;

}

synchronized void put(int n) {

if(valueSet)

try {

wait();

} catch(InterruptedException e) {

System.out.println("InterruptedException

caught");

}

this.n = n;

valueSet = true;

System.out.println("Put: " + n);

notify();

}

}

class Producer implements Runnable {

Q q;

Producer(Q q) {

this.q = q;

new Thread(this, "Producer").start();

}

}

public void run() {

while(true) {

q.get();

}

}

}

class PCFixed {

public static void main(String

args[]) {

Q q = new Q();

new Producer(q);

new Consumer(q);

System.out.println("Press

Control-C to stop.");

}

}

OUTPUT:

Put: 1

Got: 1

Put: 2

Got: 2

Put: 3

Got: 3

Put: 4

Got: 4

Put: 5

Got: 5

Object Oriented Programming Through Java 47

II Year - I Semester A.Y.2019-20 CSE

public void run() {

int i = 0;

while(true) {

q.put(i++);

}

}

}

 Inside get(), wait() is called. This causes its execution to suspend

until the Producer notifies you that some data is ready. When this

happens, execution inside get() resumes. After the data has been

obtained, get() calls notify(). This tells Producer that it is okay to put

more data in the queue. Inside put(), wait() suspends execution until

the Consumer has removed the item from the queue. When execution

resumes, the next item of data is put in the queue, and notify() is

called. This tells the Consumer that it should now remove it. Here is

some output from this program, which shows the clean synchronous

behavior:

 THREADGROUP

 ThreadGroup creates a group of threads. It defines these two

constructors:

ThreadGroup(String groupName)

ThreadGroup(ThreadGroup parentOb, String groupName)

 For both forms, groupName specifies the name of the thread group.

The first version creates a new group that has the current thread as

its parent. In the second form, the parent is specified by parentOb.

 ThreadGroup also included the methods stop(), suspend(), and

resume().

 These have been deprecated by Java 2 because they were inherently

unstable. Thread groups offer a convenient way to manage groups of

Object Oriented Programming Through Java 48

II Year - I Semester A.Y.2019-20 CSE

threads as a unit. This is particularly valuable in situations in which

you want to suspend and resume a number of related threads.

 For example, imagine a program in which one set of threads is used

for printing a document, another set is used to display the document

on the screen, and another set saves the document to a disk file. If

printing is aborted, you will want an easy way to stop all threads

related to printing. Thread groups offer this convenience.

UNIT-IV
Assignment-Cum-Tutorial Questions

SECTION-A
Objective Questions

1. Identify the parent class of all the exception in java is []
a)Throwable b)Throw c) Exception d)Throws

2. What are the two types of exception available in java ? []
a)Checked and compiled b) Un Checked and compiled
c)Checked and Un Checked d) Compiled and non- compiled

3. The two subclasses of Throwable are []
a)Error and AssertionError
b)Error and Exception
c)Checked and UnChecked Exception
d)Error and Runtime Exception

4. Choose the correct option regarding notifyAll() method. []
a) Wakes up one threads that are waiting on this object's monitor
b) Wakes up all threads that are not waiting on this object's monitor
c)Wakes up all threads that are waiting on this object's monitor
c) None of the above

5. Identify the keyword when applied on a method indicates that only
one thread should execute the method at a time. []
a)volatile b) synchronized c) native d) static

6. The built-in base class in Java, which is used to handle all
exceptions is []
a)Raise
b)Exception
c)Error
d)Throwable

Object Oriented Programming Through Java 49

II Year - I Semester A.Y.2019-20 CSE

7. Which of the following exceptions is thrown when one thread has

been interrupted by another thread? []
a)ClassNotFoundException
b)IllegalAccessException
c)InstantiationException
d)InterruptedException
e)NoSuchFieldException

8. Which of the following Exception classes in Java is used to deal with
an exception, where an assignment to an array element is of
incompatible type? []
a)ArithmeticException
b)ArrayIndexOutOfBoundsException
c)IllegalArgumentException
d)ArrayStoreException
e)IllegalStateException

9. A programmer has created his own exception for balance in account
<1000. The exception is created properly, and the other parts of the
programs are correctly defined. Though the program is running but
error message has not been displayed. Why did this happen? []
a)Because of the Throw portion of exception.
b)Because of the Catch portion of exception.
c)Because of the main() portion.

 d)Because of the class portion.
e)None of the above

10. Choose the correct option for the following program []

class demo
{
 void show() throws CalssNotFoundException{}
}
class demo2 extends demo
{
void show() throws IllegalAccessException, classNotFoundException,
ArithmeticException
{
 System.out.println(“In Demo1 show”);
}
 public static void main(String arg[])
{
try{
 demo2 d=new demo2();
 d.show();
 }

Object Oriented Programming Through Java 50

II Year - I Semester A.Y.2019-20 CSE

catch(Exception e) {}
 }
 }
a.Does not compile
b.Compiles successfully
c.Compiles successfully and prints “In Demo1 show”
d.Compiles but does not execute.

11. If the assert statement returns false, what is thrown? []
a)Exception b) Assert c) assertion d) assertion Error

12. Choose the best possible answer for the following program []
class demo
{
 void show() throws ArithmeticException
 { }
}
class demo2 extends demo
{
 void show()
 {
 System.out.println(“In Demo1 show”);
}
public static void main(String arg[])
{
 demo2 d=new demo2();
 d.show();
} }

a.Does not compile
b.Compiles successfully
c.Compiles successfully and prints “In Demo1 show”
b.Compiles but does not execute.

13. How can Thread go from waiting to runnable state? []
a)notify/notifAll
b)bWhen sleep time is up
c)Using resume() method when thread was suspended
d)All

14. Predict the output of the following program []
class A implements Runnable{
 public void run(){
 try{
 for(int i=0;i<4;i++){
 Thread.sleep(100);
 System.out.println(Thread.currentThread().getName());
 }
 }catch(InterruptedException e){

Object Oriented Programming Through Java 51

II Year - I Semester A.Y.2019-20 CSE

 }
 }
}

public class Test{
 public static void main(String argv[]) throws Exception{
 A a = new A();
 Thread t = new Thread(a, "A");
 Thread t1 = new Thread(a, "B");
 t.start();
 t.join();
 t1.start();
 }
}
a) A A A A B B B B b) A B A B A B A B
c) Output order is not guaranteed d) Compilation succeed but Runtime Exception

15. What will be output of the following program code? []

public class Test implements Runnable{

 public void run(){

 System.out.print("go");

 }

public static void main(String arg[]) {

 Thread t = new Thread(new Test())

 t.run();

 t.run();

 t.start();

 }

}

a) Compilation fails.

b) An exception is thrown at runtime

c) go" is printed

d) “gogo" is printed

16. Choose the correct option for Deadlock situation []

a) Two or more threads have circular dependency on an object

b) Two or more threads are trying to access a same object

c)Two or more threads are waiting for a resource

Object Oriented Programming Through Java 52

II Year - I Semester A.Y.2019-20 CSE

d) None of these

17. Predict the output of following Java program []

class Main {

 public static void main(String args[]) {

 try {

 throw 10;

 }

 catch(int e) {

 System.out.println("Got the Exception " + e);

 }

 }

}

a) Got the Exception 10

b)Got the Exception 0

c)Compiler Error

d)None of the above

18. What is the output of the following program []

class Test extends Exception { }

 class Main {

 public static void main(String args[]) {

 try {

 throw new Test();

 }

 catch(Test t) {

 System.out.println("Got the Test Exception");

 }

 finally {

 System.out.println("Inside finally block ");

 }

 }

}

a)Got the Test Exception Inside finally block

Object Oriented Programming Through Java 53

II Year - I Semester A.Y.2019-20 CSE

b)Got the Test Exception
c)Inside finally block
d)Compile error.

19. What is the output of the following program []
 class Test
{
 public static void main(String[] args)
 {
 try
 {
 int a[]= {1, 2, 3, 4};
 for (int i = 1; i <= 4; i++)
 {
 System.out.println ("a[" + i + "]=" + a[i] + "n");
 }
 }

 catch (Exception e)
 {
 System.out.println ("error = " + e);
 }

 catch (ArrayIndexOutOfBoundsException e)
 {
 System.out.println ("ArrayIndexOutOfBoundsException");
 }
 }
}
a) Compiler error
b)Run time error
c)ArrayIndexOutOfBoundsException
d)Error Code is printed
e)Array is printed

20. Predict the output of the following program. []
class Test
{ int count = 0;

 void A() throws Exception
 {
 try
 {
 count++;

 try
 {
 count++;

Object Oriented Programming Through Java 54

II Year - I Semester A.Y.2019-20 CSE

 try
 {
 count++;
 throw new Exception();

 }

 catch(Exception ex)
 {
 count++;
 throw new Exception();
 }
 }

 catch(Exception ex)
 {
 count++;
 }
 }

 catch(Exception ex)
 {
 count++;
 }

 }

 void display()
 {
 System.out.println(count);
 }

 public static void main(String[] args) throws Exception
 {
 Test obj = new Test();
 obj.A();
 obj.display();
 }
}
a)4 b)5 c)6 d)Compile Error

SECTION-B

 Descriptive Questions

1. Define Exception? What are the three categories of exceptions? Also

discuss the advantages of exception handling

Object Oriented Programming Through Java 55

II Year - I Semester A.Y.2019-20 CSE

2. Explain the keywords used in exception handling.

3. Implement a multiple exception handling for the following problem

Read n+1 strings to string array and prints their lengths to get

ArrayIndexOutOfBoundsException and NullPointerException

4. Write a java program to calculate the student total marks and

percentage for class test with six subjects. The marks should be 0 to

10 only, if marks entered not in the range then raise an exception

MarksNotInRangeException.(Create user defined exception and throw

it).

5. Can a try block be written without a catch block? Justify.
6. Can we nest a try statement inside another try statement. Write the

necessary explanation and example for this.

7. Differentiate multi tasking and multithreading.

8. Draw a neat sketch of thread life cycle.
9. What is synchronization and how do we use it in java.

10. Write a Java program to create two threads from main such that one

thread calculates the factorial of a given number and another thread

checks whether the given number is prime or not.

11. Write a Java program to print the messages in the following sequence

For every 3 seconds “ Welcome” message
For every 2 seconds “Hello” message
For every 5 seconds “ Bye” message

Object Oriented Programming 1

II B.Tech-I-Semester A.Y.2019-20 CSE

APPLETS AND EVENT HANDLING
Objective:

 To get acquainted with the concepts of Applet and Event Handling.

Syllabus:

Applets: Concepts of Applets, Differences between applets and

applications, life cycle of an applet, creating applets.

Event Handling: Events, Event sources, Event classes, Event Listeners,

Delegation event model, Handling mouse and keyboard events,

Adapter classes.

Learning Outcomes:

 Students will be able to

 Understand the concept of Applet.

 Differentiate between Applets and Application.

 Understand the lifecycle of an applet

 Learn how applets are Created and executed.

 Understand what are events, sources and listeners.

 Know about their event classes and associated listeners.

 Know the Fundamentals of Event Handling

 Understand how the Mouse and Keyboard Events are handled.

 Know the uses of Adapter Classes.

Object Oriented Programming 2

II B.Tech-I-Semester A.Y.2019-20 CSE

Learning Material

5.1 Applets:

 Applets are small programs that are primarily used in internet

programming.

o Applet programs are either developed in local systems or in remote

systems

o Applet programs are executed by either a java compatible “web

browser” or “appletviewer”.

 Applets are classified into two types as Local Applet and Remote

Applet.

 An applet developed locally and stored in a local system is known as a

Local Applet.
o When a Web page is trying to find a local applet, it does not need

to use the Internet and therefore the local system does not require

the Internet connection.

 An Applet developed by someone else and stored on a remote

computer is known as Remote Applet.
o If our system is connected to the Internet, we download the remote

applet onto our system via Internet and run it.

o In order to locate the remote applet, we must know the applets

address on the Web. This address is known as Uniform Resource

Locator (URL).

5.1.1 Advantages of Applet:
There are many advantages of applet. They are as follows:

 It works at client side so less response time.

 Secured

 It can be executed by browsers running under many platforms,

including Linux, Windows, Mac Os etc.

5.1.2 Drawback of Applet :

 Plug-in is required at client browser to execute applet.

Object Oriented Programming 3

II B.Tech-I-Semester A.Y.2019-20 CSE

5.1.3 Differences between applets and applications, life cycle of
an applet

Applet Application

1. Small Program Large Program

2. Used to run a program on client

Browser

Can be executed on standalone

computer system

3. Applet is portable and can be

executed by any JAVA supported

browser.

Need JDK, JRE, JVM installed on

client machine.

4. Applet applications are executed in a

Restricted Environment

Application can access all the

resources of the computer

5. Applets are created by extending the

java.applet.Applet

Applications are created by writing

public static void main(String[] s)

method.

6. Applet application has 5 methods

which will be automatically invoked

on occurrence of specific event

Application has a single start point

which is main() method

7. Example:

import java.awt.*;
import java.applet.*;
public class Myclass extends Applet
{
 public void init() { }
 public void start() { }
 public void stop() {}
 public void destroy() {}
 public void paint(Graphics g) {}
}

public class MyClass

{

 public static void main(String args[])

 {

 }

}

Object Oriented Programming 4

II B.Tech-I-Semester A.Y.2019-20 CSE

5.1.4 Hierarchy of Applet:

5.1.5 Life cycle of an applet:

 Every java applet inherits a set of default behaviors from the Applet

class defined in java.applet package.

 When an applet is loaded, it undergoes a series of changes in its

states.

 The important states of the Applet cycle is

1. Applet is initialized.

2. Applet is started.

3. Applet is painted.

4. Applet is stopped.

5. Applet is destroyed.

Object Oriented Programming 5

II B.Tech-I-Semester A.Y.2019-20 CSE

Figure 5.1 Applet Life Cycle

 Five methods in the Applet class give you the framework on which you

build any serious applet:

o Initialization State: Applet enters the initialization state when it

is first loaded. This is achieved by calling init() method of Applet
class. The initialization occurs only once in the applet life cycle.

Generally all the initialization variables are to be placed in the init

() method.

Syntax:
public void init ()
{

 ------(Action)
}

o Running State: Applet enters the running state when the system

calls the start() method of Applet class. This occurs automatically

after the applet is initialized. Starting can also occurs if the applet

is already in “Stopped State”. The start () method may be called

more than once.

Syntax:
 public void start()

{
 ----- (Action)

}

Object Oriented Programming 6

II B.Tech-I-Semester A.Y.2019-20 CSE

o Idle or Stopped State: An Applet becomes idle when it is stopped

from running. Stopping occurs automatically when we leave the

page containing the currently running applet. This can also done

by calling the stop () method explicitly.

Syntax:
public void stop ()
{

 ----- (Action)
 }

o Dead or Destroyed State: An applet is said to be dead when it is

removed from memory. This occurs automatically by invoking the

destroy() method when we quit the browser. Destroying stage

occurs only once in the applet life cycle.

Syntax:
 public void destroy ()

{
 ------- (Action)
 }

o Display state: Display state is useful to display the information on

the output screen. This happens immediately after the applet

enters into the running state. The paint () is called to accomplish

this task. Almost every applet will have a paint () method.

Syntax:
 public void paint(Graphics g)

{

 ------ (Display statements)
 }
5.1.6 Creating applets:

 To create an Applet program follow the steps:
1. Building an applet code (.java file)
2. Creating an executable applet (.class file)
3. Create HTML page with the <APPLET>tag.
4. Testing the Applet code with applet viewer or browser.

Object Oriented Programming 7

II B.Tech-I-Semester A.Y.2019-20 CSE

Example
//First.java
import java.applet.Applet;
import java.awt.Graphics;
public class First extends Applet
{
 public void paint(Graphics g)
 {
 g.drawString("welcome",150,150);
 }
}
//myapplet.html
<html>
 <body>
 <applet code="First.class" width="300" height="300">
 </applet>
 </body>
</html>

 To run the Applet in browser:

o create an applet that contains applet tag in comment and
compile it.

javac First.java
o Double click on the HTML file. It will open the Applet in

browser.
//First.java
/*
<applet code="First.class" width="300" height="300">
</applet>
*/ import java.applet.Applet;
import java.awt.Graphics;
public class First extends Applet
{
 public void paint(Graphics g)
 {
 g.drawString("welcome to applet",150,150);
 }
}

 To execute the applet by appletviewer tool:

o create an applet that contains applet tag in comment and

compile it.

Object Oriented Programming 8

II B.Tech-I-Semester A.Y.2019-20 CSE

 javac First.java
o After that run it by:

 appletviewer First.java.
5.2 Event Handling:

5.2.1 Events:

 An event is an object that describes a state change in a source.

 Even driven is a consequence interaction of the user with the GUI.

Some of the common interactions are moving the mouse, clicking the

mouse, clicking a button, typing in a textfield etc.,

5.2.2 Event Sources:

 A source is an object that generates an event. This occurs when the

internal state of that object changes in some way.

 Source may generate more than one type of event.

5.2.3 Event Classes:

 Event classes are used to handle java event handling mechanism.

 At the root of the java event class hierarchy is EventObject, which is

in java.util package. It is the superclass for all events. It provides a

constructor as EventObject(Object x)

 Methods provided by the class are

1. Object getSource(): returns the source of the event

2. String toString (): returns the string equivalent of the event.

 The class AWTEvent, defined within the java.awt package, is subclass

of EventObject.

 It is the super class of all AWT-based events used by the delegation

model.

 Commonly used Event classes are

ActionEvent,
AdjustmentEvent,
ComponentEvent,
ContainerEvent,
FocusEvent,
InputEvent,
ItemEvent,

Object Oriented Programming 9

II B.Tech-I-Semester A.Y.2019-20 CSE

KeyEvent,
MouseEvent,
MouseWheelEvent,
TextEvent,
WindowEvent.

5.2.4 Event Listeners:

 A listener is an object that is notified when an event occurs. It has two

requirements

 It must have been registered with one or more sources to receive

notifications about the specific type of events.

 It must implement methods to receive and process the notifications.

The methods that receive and process events are defined in a set of

interfaces found in java.awt.event package.

 Commonly used Event Listener Interfaces are

ActionListener,
AdjustmentListener
ComponentListener
ContainerListener
FocusListener
ItemListener
KeyListener
MouseListener
MouseMotionListener
TextListener
WindowFocusListener
WindowListener

5.2.5 Delegation Event Model:

 The Event Delegation Model defines a consistent mechanism to

generate and process the events.

 The process is: a source generates an event and sends it to one or

more listeners.

 In this scheme, the listener simply waits until it receives an event.

 Once an event is received, the listener processes the event and then

returns.
5.2.6 Mouse Events:

5.2.6.1 MouseEvent Class:

Object Oriented Programming 1

II B.Tech-I-Semester A.Y.2019-20 CSE

o The MouseEvent class defines 8 types of mouse events. It defines

the following integer constants that can be used to identify them:

1. MOUSE_CLICKED : The user clicked the mouse

2. MOUSE_DRAGGED : The user dragged the mouse

3. MOUSE_ENTERED : The mouse entered a component

4. MOUSE_EXITED : The mouse exited from a component

5. MOUSE_MOVED : The mouse moved

6. MOUSE_PRESSED : The mouse was pressed

7. MOUSE_RELEASED : The mouse was released

8. MOUSE_WHEEL : The mouse wheel was moved

o Methods of MouseEvent Class:
1. int getX(): returns the X coordinates of the mouse when an

event occurred

2. int getY(): returns the Y coordinates of the mouse when an

event occurred.

3. Point getPoint(): returns the coordinates of the mouse.

5.2.6.2 MouseListener Interface:
o This interface defines five methods:

1. void mouseClicked(MouseEvent me): it invokes if the mouse

is pressed and released at the same point
2. void mouseEntered(MouseEvent me): it invokes when the

mouse enters a component.
3. void mouseExited(MouseEvent me): it invokes when the

mouse leaves the component.
4. void mousePressed(MouseEvent me): it invokes when the

mouse is pressed.
5. void mouseReleased(MouseEvent me): it invokes when the

mouse is released.

Object Oriented Programming 1

II B.Tech-I-Semester A.Y.2019-20 CSE

5.2.6.3 MouseMotionListener Interface:
o This interface defines two methods:

1. void mouseDragged(MouseEvent me): it invokes when

multiple times as the mouse is dragged.

2. void mouseMoves(MovesEvent me): it invokes when multiple

times as the mouse is moved

Example program to Display the position of x and y co-ordinates of
the cursor movement using mouse

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/* <applet code="Mouse" width=500 height=500>
 </applet> */
public class Mouse extends Applet implements MouseListener,

MouseMotionListener
{
 int X = 0, Y = 20;
 String msg = "MouseEvents";
 public void init()
 {
 addMouseListener(this);
 addMouseMotionListener(this);
 setBackground(Color.black);
 setForeground(Color.red);
 }
 public void mouseEntered(MouseEvent m)
 {
 setBackground(Color.magenta);
 showStatus("Mouse Entered");
 repaint();
 }
 public void mouseExited(MouseEvent m)
 {
 setBackground(Color.black);
 showStatus("Mouse Exited");
 repaint();
 }
 public void mousePressed(MouseEvent m)
 {

Object Oriented Programming 1

II B.Tech-I-Semester A.Y.2019-20 CSE

 X = 10;
 Y = 20;
 msg = "GEC";
 setBackground(Color.green);
 repaint();
 }
 public void mouseReleased(MouseEvent m)
 {
 X = 10;
 Y = 20;
 msg = "Engineering";
 setBackground(Color.blue);
 repaint();
 }
 public void mouseMoved(MouseEvent m)
 {
 X = m.getX();
 Y = m.getY();
 msg = "College";
 setBackground(Color.white);
 showStatus("Mouse Moved");
 repaint();
 }
 public void mouseDragged(MouseEvent m)
 {
 msg = "CSE";
 setBackground(Color.yellow);
 showStatus("MouseMoved" + m.getX() + " " + m.getY());
 repaint();
 }
 public void mouseClicked(MouseEvent m)
 {
 msg = "Students";
 setBackground(Color.pink);
 showStatus("Mouse Clicked");
 repaint();
 }
 public void paint(Graphics g)
 {
 g.drawString(msg, X, Y);
 }
}

Object Oriented Programming 1

II B.Tech-I-Semester A.Y.2019-20 CSE

5.2.7 KeyEvents:
5.2.7.1 KeyEvent Class:
o A KeyEvent is generated when keyboard input occurs. There are

three types of key events, which are identified by these integer

constants:

1. KEY_PRESSED

2. KEY_RELEASED

3. KEY_TYPED

o The first two events are generated when any key is pressed or

released. The last event occurs when a character is generated.

o Methods of KeyEvent Class:
1. char getKeyChar() : returns the character that was

enterd

2. int getKeyCode() : returns the character code.
5.2.7.2 KeyListener Interface:
o The interface defines three methods:

1. void keyPressed(KeyEvent ke): it invokes when a key is

pressed.

2. void keyReleased(KeyEvent ke): it invokes when a key

is released.

3. void keyTyped(KeyEvent ke): it invokes when a key is

typed.

Example program to handle keyboard events, which echoes keystrokes
to the applet window and shows the status of each key event in the
status bar

/* <applet code="Key.class" width=4000 height=4000>
 </applet> */
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
public class Key extends Applet implements KeyListener
{
 String msg = "";

Object Oriented Programming 1

II B.Tech-I-Semester A.Y.2019-20 CSE

 public void init()
 {
 setBackground(Color.green);
 addKeyListener(this);
 }
 public void keyPressed(KeyEvent k)
 {
 showStatus("Key pressed");
 if(k.getKeyCode() == KeyEvent.VK_ENTER)
 showStatus("Enter key is pressed:");
 repaint();
 }
 public void keyReleased(KeyEvent k)
 {
 showStatus("Key Up or Key Released");
 }
 public void keyTyped(KeyEvent k)
 {
 msg += k.getKeyChar();
 repaint();
 }

 public void paint(Graphics g)
 {
 g.setFont(new Font("Arial", Font.BOLD, 30));
 g.drawString("Key Typed is:" + msg, 20, 300);
 }
}
5.2.8 Adapter classes:

 An adapter class provides an empty implementation of all methods in

an event listener interface.

 Adapter classes are useful when we want to receive and process only

some of the events that are handled by a particular event listener

interface.

 For this, we can define a new class to act as an event listener by

extending one of the adapter classes and the MouseMotionAdapter
class has two methods, mouseDragged() and mouseMoved().

 If we are interested in only mouse drag events, then we extend

mouseMotionAdapter and implement mouseDragged(). The empty

Object Oriented Programming 1

II B.Tech-I-Semester A.Y.2019-20 CSE

implementation of mouseMoved() would handle the mouse motion

events.

 Adapter classes are provided by java.awt.event package. Some of the

Adapter classes are

Adapter Class Listener Interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter FocusListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener

Example program
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code=“AdapterDemo.class” width=100 height=100>
 </applet>
*/
public class AdapterDemo extends Applet
{
 public void init()
 {
 addMouseListener(new my(this));
 addMouseMotionListener(new mtadd(this));
 }
}
class My extends MouseAdapter
{
 AdapterDemo a;
 public My(AdapterDemo p) {
 This.a = p;
 }
 public void mouseClicked(MouseEvent me)
 {

Object Oriented Programming 1

II B.Tech-I-Semester A.Y.2019-20 CSE

 a.showStatus(“Mouse Clicked”);
 }
}
class MyAdd extends MouseMotionAdapter
{
 AdapterDemo a;
 public MyAdd(AdapterDemo p)
 {
 this.p;
 }
 public void mouseDragged(MouseEvent me)
 {
 a.showStatus(“Mouse Dragged”);
 }
}

Object Oriented Programming 1

II B.Tech-I-Semester A.Y.2019-20 CSE

UNIT-V

Assignment-Cum-Tutorial Questions

Section - A

Objective Questions

1) A Java __________ is a program that is executed by a Web browser

2) An HTML document uses the __________ tag to identify Java applets

3) What is the name of the method that is only called once whenever an

applet is loaded into the Java Virtual Machine? []

A. start B. Applet C. ActionEvent D. init

4) The __________ method of an applet is used to draw graphics and is

invoked automatically when the applet runs.

5) A __________ has methods that tell what will happen when it receives an

event

 6) When the user clicks a button, the event will be handled by an

 object of type __________. []

A)ActionListener B)EventHandler

C) ButtonListener D)ActionHandler

7)__________ class provides an empty implementation of all methods in an

event listener interface.

8)Which of these packages contains all the event handling interface []

 A) java.lang B) java.awt C) java.awt.event D) java.event

9)The Applet class is in_package []

A) java.applet B) java.awt C) java.io D) java.util

10) Which of these methods are used to register a keyboard event listener?

 []

A) KeyListener() B) addKistener()

 C) addKeyListener() D) eventKeyboardListener()

Object Oriented Programming 1

II B.Tech-I-Semester A.Y.2019-20 CSE

11) Which of these methods are used to register a mouse motion listener

A) addMouse() B) addMouseListener()

 C) addMouseMotionListner() D) eventMouseMotionListener()

12) Which of these events will be generated if we close an applet’s

window?

 A) ActionEvent B) ComponentEvent []

 C) AdjustmentEvent D) WindowEvent

13) Which of these is super class of all Adapter classes? []

 A) Applet B) ComponentEvent

 C) Event D) InputEvent

SECTION -B

SUBJECTIVE QUESTIONS

1) Explain about the lifecycle of an applet with an example

2) Differentiate between applets and applications.

3) Write the steps involved in creating an applet with an example

4) Can we pass parameters to an Applet? If so, justify your answer with an

 example.

5) Explain in detail about Delegation event model and various events,

 event sources that are available in Java?

6) Demonstrate keyboard event handling with an example

7) Explain MouseEvent Class in detailed with an example

Object Oriented Programming 1

II B.Tech-I-Semester A.Y.2019-20 CSE

8) Write about Adapter classes and their importance in Event Handling

9) Write a program to Pass the parameters: Employee Name and ID

Number to an applet

10) Create an Applet that displays the message like ”Hai Friends How are

you..?” using <param >tag.

11) Create an applet having the background color as black and the

foreground color as white.

Object Oriented Programming Through Java 1

II Year - II Semester 2019-20 CSE

UNIT –VI

AWT

Syllabus: The AWT class hierarchy, User interface components- label, button,

Checkbox, checkboxgroup, Choice, list, textfield, Scrollbar. Layout managers-

Flow, Border , Grid, Card , GridBag layout.

Objective: Design and implement an effective GUI for various applications

Learning Outcomes:

Students will be able to

 Create various AWT components like Buttons, Chechboxes, and List etc.

 Design a GUI containing various AWT Components

 Write Code to Handle events raised by the AWT components

 Apply Various Layout Managers to the GUI being designed.

Object Oriented Programming Through Java 2

II Year - II Semester 2019-20 CSE

6.1 Introduction to AWT:

 Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-

based application in java.

 Java AWT components are platform-dependent i.e. components are

displayed according to the view of operating system.

 AWT is heavyweight i.e. its components uses the resources of system.

 The java.awt package provides classes for AWT API such as TextField, Label,

TextArea, RadioButton, CheckBox, Choice, List etc.

Java AWT Hierarchy

a. Component

 At the top of the AWT hierarchy is the Component class.
 Component is an abstract classthat encapsulates all of the attributes of a

visual component.
 Except for menus, all user interface elements that are displayed on the

screen and that interact with the user are subclasses of Component.

Object Oriented Programming Through Java 3

II Year - II Semester 2019-20 CSE

 Methods of Component class :

Method Description
public void add(Component c) inserts a component on this component.
public void setSize(int width,
 int height)

sets the size (width and height) of the
component.

public void
setLayout(LayoutManager m)

defines the layout manager for the
component.

public void setVisible(boolean
status)

changes the visibility of the component, by
default false.

b. Container

 The Container class is a subclass of Component.
 A container is responsible for laying out (that is, positioning) any

components that it contains
c. Window

 The Window class creates a top-level window.
 A top-level window is not contained within any other object; it sits

directly on the desktop.
 Generally, Window objects are not created directly.

d. Panel
 The Panel class is a concrete subclass of Container.
 Panel is a window that does not contain a title bar, menu bar, or border.
 Panel is the superclass for Applet.
 Other components can be added to a Panel object by its add() method

(inherited from Container).
 Once these components have been added, you can position and resize

them manually using the setLocation(), setSize(), setPreferredSize(), or
setBounds() methods defined by Component.

e. Frame
 Frame encapsulates what is commonly thought of as a “window.”
 It is a subclass of Window and has a title bar, menu bar, borders, and

resizing corners.
 The precise look of a Frame will differ among environments

Object Oriented Programming Through Java 4

II Year - II Semester 2019-20 CSE

6.2 User Interface Components

 The java.awt package provides an integrated set of classes to manage user
interface-components.

 The simplest form of Java AWT component is the basic User Interface
Component.

 We can create and add these to your applet as it is an AWT container.
 We can put other AWT components, such as UI components or other

containers, in it.
 The following table gives a list of all the Controls in Java AWT and their

respective functions.

AWT Component Function

Label

Button

TextField

Checkbox

CheckboxGroup

Choice

List

Scrollbar

 In order to add a control to a container, you need to perform the following

two steps.
1. Create an object of the control by passing the required arguments to the

constructor.
2. Then add it to the window by calling add().

6.2.1 Label:
 A label is an object of type Label, and it contains a string, which it displays.
 Labels are passive controls that do not support any interaction with the

user.

Object Oriented Programming Through Java 5

II Year - II Semester 2019-20 CSE

Constructors:
Label()
throws HeadlessException

creates a blank label

Label(String str)
throws HeadlessException

creates a label that contains the string specified
by str. This string is left-justified.

Label(String str, int how)
throws HeadlessException

creates a label that contains the string specified
by str using the alignment specified by how. The
value of how must be one of these three integer
constants:

• Label.LEFT,
• Label.RIGHT, or
• Label.CENTER.

Methods:
void setText(String str) to change the label of the button

String getText() to retrieve the caption.

Example:

import java.awt.*;
import java.applet.*;
/*
<applet code= “LabelDemo.class” Width = 500 Height = 100> </applet>
*/
public class LabelDemo extends Applet
{
 Label l1,l2,l3;
 public void init()
 {
 l1 = new Label("One",Label.LEFT);
 l2 = new Label("Two",Label.CENTER);
 l3 = new Label("Three", Label.RIGHT);
 add(l1);
 add(l2);
 add(l3);

Object Oriented Programming Through Java 6

II Year - II Semester 2019-20 CSE

 }
}

OUTPUT:

6.2.2 Button:
 A button is a component that contains a label and that generates an event

when it is pressed.
 Each time a button is pressed, an action event is generated.
 This is sent to ActionListener which calls actionPerformed(ActionEvent ae)

method.
 It contains both a reference to the button that generated the event and a

reference to the action command string associated with the button.
 By default, the action command string is the label of the button.

Constructors:
Button()
throws HeadlessException

creates an empty button

Button(String str)
throws HeadlessException

creates a button that contains str as a label.

Methods:

void setLabel(String str) creates an empty button

String getLabel() creates a button that contains str as a label.

String getActionCommand()

Object Oriented Programming Through Java 7

II Year - II Semester 2019-20 CSE

voidsetActionCommand(String
str)

Example:
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="ButtonDemo" width=250 height=150>
</applet>
*/
public class ButtonDemo extends Applet implements ActionListener
{
 String msg = "";
 Button yes, no, maybe;
 public void init()

{
 yes = new Button("Yes");
 no = new Button("No");
 maybe = new Button("Undecided");
 add(yes);
 add(no);
 add(maybe);
 yes.addActionListener(this);
 no.addActionListener(this);
 maybe.addActionListener(this);
 }
 public void actionPerformed(ActionEvent ae)

{
 String str = ae.getActionCommand();
 if(str.equals("Yes"))
 msg = "You pressed Yes.";
 else if(str.equals("No"))
 msg = "You pressed No.";
 else
 msg = "You pressed Undecided.";
 repaint();
 }

Object Oriented Programming Through Java 8

II Year - II Semester 2019-20 CSE

 public void paint(Graphics g) {
 g.drawString(msg, 6, 100);
 }
}

OUTPUT:

6.2.3 TextField:
 The TextField class implements a single-line text-entry area, usually called

an Edit Control.
 Text fields allow the user to enter strings and to edit the text using the

arrow keys, cut and paste keys, and mouse selections.
 It is able to generate ActionEvent and TextEvent.

Constructors:

TextField() throws
HeadlessException

creates a default text field.

TextField(int numChars) throws
HeadlessException

creates a text field that is numChars
characters wide.

TextField(String str) throws
HeadlessException

initializes the text field with the string
contained in str.

TextField(String str, int numChars)
throws HeadlessException

initializes a text field and sets its width.

Object Oriented Programming Through Java 9

II Year - II Semester 2019-20 CSE

Methods:

Method Description

String getText()
Gets the number of columns in this

text field.

void setText(String str)
Gets the character that is to be used

for echoing.

String getSelectedText()
Sets the number of columns in this

text field.

void select(int startIndex, int endIndex)
Sets the echo character for this text

field.

booleanisEditable()

Sets the text that is presented by this
text component to be the specified

text.

void setEditable(Boolean canEdit)

void setEchoChar(char ch)

booleanechoCharIsSet()

char getEchoChar()

Example:
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="TextFieldDemo" width=380 height=150>
</applet>
*/
public class TextFieldDemo extends Applet implements ActionListener {
 TextField name, pass;
 public void init() {
 Label namep = new Label("Name: ", Label.RIGHT);
 Label passp = new Label("Password: ", Label.RIGHT);
 name = new TextField(12);
 pass = new TextField(8);
 pass.setEchoChar('?');
 add(namep);
 add(name);
 add(passp);

Object Oriented Programming Through Java 10

II Year - II Semester 2019-20 CSE

 add(pass);
 // register to receive action events
 name.addActionListener(this);
 pass.addActionListener(this);
 }
 // User pressed Enter.
 public void actionPerformed(ActionEvent ae) {
 repaint();
 }
 public void paint(Graphics g) {
 g.drawString("Name: " + name.getText(), 6, 60);
 g.drawString("Selected text in name: " + name.getSelectedText(), 6,80);
 g.drawString("Password: " + pass.getText(), 6, 100);
 }
}
OUTPUT:

6.2.4 Checkbox:
 A check box is a control that is used to turn an option on or off.
 It consists of a small box that can either contain a check mark or not.
 There is a label associated with each check box that describes what option

the box represents.
 The state of a check box can be changed by clicking on it.
 Each time a check box is selected or deselected, an item event is generated
 The ItemListener interface defines the itemStateChanged(ItemEvent ie)

method which contains information about the event.

Object Oriented Programming Through Java 11

II Year - II Semester 2019-20 CSE

Constructors
Checkbox()
throws HeadlessException

creates an unchecked check box whose
label is initially blank

Checkbox(String str)
throws HeadlessException

creates an unchecked check box whose
label is specified by str.

Checkbox(String str, boolean on)
throws HeadlessException

It allows you to set the initial state of the
check box. If on is true, the check box is
initially checked; otherwise, it is cleared

Methods
Boolean getState()
void setState(boolean on)
String getLabel()
void setLabel(String str)

Example:

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="CheckboxDemo" width=240 height=200>
</applet>
*/
public class CheckboxDemo extends Applet implements ItemListener
{
 String msg = "";
 Checkbox windows, android, solaris, mac;
 public void init()
 {
 windows = new Checkbox("Windows", null, true);
 android = new Checkbox("Android");
 solaris = new Checkbox("Solaris");
 mac = new Checkbox("Mac OS");
 add(windows);
 add(android);

Object Oriented Programming Through Java 12

II Year - II Semester 2019-20 CSE

 add(solaris);
 add(mac);
 windows.addItemListener(this);
 android.addItemListener(this);
 solaris.addItemListener(this);
 mac.addItemListener(this);
 }
 public void itemStateChanged(ItemEvent ie)
 {
 repaint();
 }
 // Display current state of the check boxes.
 public void paint(Graphics g)
 {
 msg = "Current state: ";
 g.drawString(msg, 6, 80);
 msg = " Windows: " + windows.getState();
 g.drawString(msg, 6, 100);
 msg = " Android: " + android.getState();
 g.drawString(msg, 6, 120);
 msg = " Solaris: " + solaris.getState();
 g.drawString(msg, 6, 140);
 msg = " Mac OS: " + mac.getState();
 g.drawString(msg, 6, 160);
 }
}

OUTPUT:

Object Oriented Programming Through Java 13

II Year - II Semester 2019-20 CSE

6.2.5 CheckboxGroup:
 It is a set of mutually exclusive check boxes in which one and only one

check box in the group can be checked at any one time.
 These are called radio buttons, because they act like the station selector on

a car radio—only one station can be selected at any one time.
 Check box groups are objects of type CheckboxGroup.
 Only the default constructor is defined, which creates an empty group.

Methods:
CheckboxGroup() Creates a new instance

of CheckboxGroup.
Checkbox getSelectedCheckbox() Gets the current choice from this

check box group.

Void
setSelectedCheckbox(Checkbox box)

Sets the currently selected check box
in this group to be the specified
check box.

Example:
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="CBGroup" width=250 height=200>
</applet>

Object Oriented Programming Through Java 14

II Year - II Semester 2019-20 CSE

*/
public class CBGroup extends Applet implements ItemListener
{

String msg = "";
Checkbox winXP, winVista, solaris, mac;
CheckboxGroup cbg;
public void init()
 {

cbg = new CheckboxGroup();
winXP = new Checkbox("Windows XP", cbg, true);
winVista = new Checkbox("Windows Vista", cbg, false);
solaris = new Checkbox("Solaris", cbg, false);
mac = new Checkbox("Mac OS", cbg, false);
add(winXP);
add(winVista);
add(solaris);
add(mac);
winXP.addItemListener(this);
winVista.addItemListener(this);
solaris.addItemListener(this);
mac.addItemListener(this);

}
public void itemStateChanged(ItemEvent ie)
{

repaint();
}
public void paint(Graphics g)
{

msg = "Current selection: ";
msg += cbg.getSelectedCheckbox().getLabel();
g.drawString(msg, 6, 100);

}
}

OUTPUT:

Object Oriented Programming Through Java 15

II Year - II Semester 2019-20 CSE

6.2.6 Choice:
 Choice control is a form of menu
 The Choice class is used to create a pop-up list of items from which the user

may choose.
 When inactive, a Choice component takes up only enough space to show the

currently selected item.
 When the user clicks on it, the whole list of choices pops up, and a new

selection can be made.
 Each item in the list is a string that appears as a left-justified label in the

order it is added to the Choice object.
 Only one item from the list can be selected at one time and the currently

selected element is displayed.
 Choice defines only the default constructor, which creates an empty list.
 Each time a choice is selected, an item event is generated.
 This is sent to ItemListener interface which defines the

itemStateChanged(ItemEvent ie) method

Methods:

Choice() Creates an instance of Choice
add(String item) Adds an item to this choice menu

getItem(int index)
Gets the string at the specified index in this
choice menu

Object Oriented Programming Through Java 16

II Year - II Semester 2019-20 CSE

getItemCount() Gets the number of items in this choice menu
getSelectedIndex() Gets the index of the currently selected item

getSelectedItem()
Gets the string representation of the currently
selected item

insert(String item,int index)
Inserts an item into this choice menu at the
specified position

remove(int position)
Removes an item from this choice menu
(overloaded)

select(int position)
void select(String name)

Selects the specified item within this choice
menu (overloaded)

Example:

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

/*
<applet code="ChoiceDemo" width=300 height=180>
</applet>
*/
public class ChoiceDemo extends Applet implements ItemListener
 {
 Choice os, browser;
 String msg = "";
 public void init()
 {
 os = new Choice();
 browser = new Choice();
 os.add("Windows XP");
 os.add("Windows Vista");
 os.add("Solaris");
 os.add("Mac OS");
 browser.add("Internet Explorer");
 browser.add("Firefox");
 browser.add("Opera");

 add(os);
 add(browser);

 os.addItemListener(this);
 browser.addItemListener(this);
 }

Object Oriented Programming Through Java 17

II Year - II Semester 2019-20 CSE

 public void itemStateChanged(ItemEvent ie)
 {
 repaint();
 }
 public void paint(Graphics g)
 {
 msg = "Current OS: ";
 msg += os.getSelectedItem();
 g.drawString(msg, 6, 120);
 msg = "Current Browser: ";
 msg+=browser.getSelectedItem();
 g.drawString(msg, 6, 140);
 }
}
OUTPUT:

6.2.7 List:
 The List class provides a compact, multiple-choice, scrolling selection list.
 The list can be configured to that user can choose either one item or

multiple items.
 Each time a List item is double-clicked, an ActionEvent object is generated.

Its getActionCommand() method can be used to retrieve the name of the
newly selected item.

 Also, each time an item is selected or deselected with a single click, an
ItemEvent object is generated. Its getStateChange() method can be used to
determine whether a selection or deselection triggered this event.

Constructors :

Object Oriented Programming Through Java 18

II Year - II Semester 2019-20 CSE

List() throws HeadlessException creates a List control that allows
only one item to be selected at any
one time.

List(int numRows)

throws HeadlessException

the value of numRows specifies
the number of entries in the list
that will always be visible (others
can be scrolled into view as
needed).

List(int numRows, boolean multipleSelect)

throws HeadlessException

If multipleSelect is true, then the
user may select two or more items
at a time.

Methods:

void add(String item) Adds a new item to the list.
void add(String item, int index) Adds a new item at the specified position.
void addItem(Sring item) Adds a new item to the list.
void addItem(String item, int
index)

Adds a new item at the specified position.

String getItem(int index) Gets the item at the specified index.
int getItemCount() Gets the number of elements in the list
String [] getItems() Gets an array of the element names.
int getRows() Gets the number of lines that are currently

visible.
int getSelectedIndex() Gets the index of the selected item.
int [] getSelectedIndexes() Gets a list of items that are all selected.
String getSelectedItem() Gets the string that represents the text of the

selected item.
String [] getSelectedItems() Gets a list of the strings that represent the

selected items.
Object [] getSelectedObjects() Gets a list of selected strings as Objects.
int getVisibleIndex() Gets the index of the item that was last made

visible by the makeVisible() method.
boolean isIndexSelected (int
index)

Indicates if the specified index represents a
selected element.

Object Oriented Programming Through Java 19

II Year - II Semester 2019-20 CSE

boolean isMultipleMode() Indicates if multiple elements can be
simultaneously selected.

void makeVisible(int index) Makes the item at the specified index visible.
void remove(int position) Removes the item at the specified position.
void remove(String item) Removes the first occurrence of the item that

matches the string.
void removeAll() Removes all items from this list.
void replaceItem(String
newValue, int index)

Replaces the item at the specified position
with the new item.

void select(int index) Selects the item at the specified position.
void setMultipleMode (boolean
b)

Makes this list use a multiple selection policy.

Example:

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="ListDemo" width=300 height=180>
</applet>
*/
public class ListDemo extends Applet implements ActionListener
{
 List os, browser;
 String msg = "";
 public void init()
 {
 os = new List(4, true);
 browser = new List(4, false);
 os.add("Windows XP");
 os.add("Windows Vista");
 os.add("Solaris");
 os.add("Mac OS");
 browser.add("Internet Explorer");
 browser.add("Firefox");
 browser.add("Opera");
 browser.select(1);
 add(os);
 add(browser);
 os.addActionListener(this);
 browser.addActionListener(this);
 }

Object Oriented Programming Through Java 20

II Year - II Semester 2019-20 CSE

 public void actionPerformed(ActionEvent ae)
 {
 repaint();
 }
 // Display current selections.
 public void paint(Graphics g)
 {
 int idx[];
 msg = "Current OS: ";
 idx = os.getSelectedIndexes();
 for(int i=0; i<idx.length; i++)
 msg += os.getItem(idx[i]) + " ";
 g.drawString(msg, 6, 120);
 msg = "Current Browser: ";
 msg += browser.getSelectedItem();
 g.drawString(msg, 6, 140);
 }
}
OUTPUT:

6.2.8 Scroll Bars:
 Scroll bars are used to select continuous values between a specified

minimum and maximum.
 Scroll bars may be oriented horizontally or vertically.
 A scroll bar is actually a composite of several individual parts. Each end has

an arrow that you can click to move the current value of the scroll bar one
unit in the direction of the arrow.

 The current value of the scroll bar relative to its minimum and maximum
values is indicated by the slider box (or thumb) for the scroll bar.

 The slider box can be dragged by the user to a new position. The scroll bar
will then reflect this value.

Object Oriented Programming Through Java 21

II Year - II Semester 2019-20 CSE

 In the background space on either side of the thumb, the user can click to
cause the thumb to jump in that direction by some increment larger than 1.
Typically, this action translates into some form of page up and page down.

 Scroll bars are encapsulated by the Scrollbar class.
 Each time a user interacts with a scroll bar, an AdjustmentEvent object is

generated.
 The types of adjustment events are as follows:

Adjustment Event Description

BLOCK_DECREMENT A page-down event has been generated.

BLOCK_INCREMENT A page-up event has been generated.

TRACK An absolute tracking event has been generated.

UNIT_DECREMENT The line-down button in a scroll bar has been pressed.

UNIT_INCREMENT The line-up button in a scroll bar has been pressed.

Constructors and Methods:

Scrollbar() Constructs a new vertical scroll bar.

Scrollbar(int) Constructs a new scroll bar with the
specified orientation.

Scrollbar(int, int, int, int, int)
Constructs a new scroll bar with the
specified orientation, initial value, page
size, and minimum and maximum values.

int getMaximum() Gets the maximum value of this scroll
bar.

int getMinimum() Gets the minimum value of this scroll bar.

int getValue() Gets the current value of this scroll bar.
void
setMinimum(int newMaximum) Sets the minimum value of this scroll bar.

void
setMaximum(int newMaximum) Sets the maximum value of this scroll bar.

void setValue(int newValue) Sets the value of this scroll bar to the
specified value.

void setValues(int value,int visible,
int minimum, int maximum)

Sets the values of four properties for this
scrollbar: value, visibleAmount, minimum,

Object Oriented Programming Through Java 22

II Year - II Semester 2019-20 CSE

and maximum.

Example:

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="SBDemo" width=300 height=200>
</applet>
*/
public class SBDemo extends Applet implements AdjustmentListener,
MouseMotionListener {

String msg = "";
Scrollbar vertSB, horzSB;
public void init()
{

int width = Integer.parseInt(getParameter("width"));
int height = Integer.parseInt(getParameter("height"));
vertSB = new Scrollbar(Scrollbar.VERTICAL,0, 1, 0, height);
horzSB = new Scrollbar(Scrollbar.HORIZONTAL,0, 1, 0, width);
add(vertSB);
add(horzSB);
vertSB.addAdjustmentListener(this);
horzSB.addAdjustmentListener(this);
addMouseMotionListener(this);

}
public void adjustmentValueChanged(AdjustmentEvent ae)
{

repaint();
}
// Update scroll bars to reflect mouse dragging.
public void mouseDragged(MouseEvent me)
{

int x = me.getX();
int y = me.getY();
vertSB.setValue(y);
horzSB.setValue(x);
repaint();

}
// Necessary for MouseMotionListener
public void mouseMoved(MouseEvent me) {
}
// Display current value of scroll bars.
public void paint(Graphics g)

Object Oriented Programming Through Java 23

II Year - II Semester 2019-20 CSE

 {
msg = "Vertical: " + vertSB.getValue();
msg += ", Horizontal: " + horzSB.getValue();
g.drawString(msg, 6, 160);
g.drawString("*", horzSB.getValue(), vertSB.getValue());

 }
}
OUTPUT:

6.3 LAYOUT MANAGER:

 A layout manager is an instance of any class that implements the
LayoutManager interface.

 The layout manager is set by the setLayout() method.
 If no call to setLayout() is made, then the default Layout Manager is used.
 Whenever a container is resized (or sized for the first time), the layout

manager is used to position each of the components within it.
 The setLayout() method has the following general form:

void setLayout(LayoutManager layoutObj)
 Here, layoutObj is a reference to the desired layout manager.
 To disable the layout manager and position components manually, pass

null for layoutObj.

Object Oriented Programming Through Java 24

II Year - II Semester 2019-20 CSE

 Each layout manager keeps track of a list of components that are stored by
their names.

 The layout manager is notified each time you add a component to a
container.

 Whenever the container needs to be resized, the layout manager is
consulted via its minimumLayoutSize() and preferredLayoutSize()
methods.

 Each component that is being managed by a layout manager contains the
getPreferredSize() and getMinimumSize() methods.

 Layouts are following types:
 Flow Layout.
 Border Layout
 Grid Layout
 Card Layout
 Grid Bag Layout

6.3.1 FlowLayout:
 FlowLayout is the default layout manager.
 It implements a simple layout style, which is similar to how words flow in

a text editor.
 Components are laid out from the upper-left corner, left to right and top

to bottom.
 When no more components fit on a line, the next one appears on the next

line.
 A small space is left between each component, above and below, as well

as left and right.
 The constructors for FlowLayout:

 FlowLayout()
 FlowLayout(int how)
 FlowLayout(int how, int horz, int vert)

 The first form creates the default layout, which centers components and
leaves fivepixels of space between each component.

 The second form lets you specify how each line is aligned.
 Valid values for how are as follows:

 FlowLayout.LEFT
 FlowLayout.CENTER
 FlowLayout.RIGHT

 These values specify left, center, and right alignment respectively.

Object Oriented Programming Through Java 25

II Year - II Semester 2019-20 CSE

 The third form allows you to specify the horizontal and vertical space left
between components in horz and vert respectively.

Example:

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*<applet code="FlowDemo" width=233 height=232 >
</applet>*/
public class FlowDemo extends Applet
{
 Button b1,b2,b3;
 public void init()

{
 b1=new Button("ONE");
 b2=new Button("TWO");
 b3=new Button("THREE");
 setLayout(new FlowLayout(FlowLayout.RIGHT,25,100));
 add(b1);
 add(b2);
 add(b3);
 }
}

Output:

6.3.2 Border LayOut:
 The BorderLayout class implements a common layout style for top-level

windows.
 It has four narrow, fixed-width components at the edges and one large

area in the center.

Object Oriented Programming Through Java 26

II Year - II Semester 2019-20 CSE

 The four sides are referred to as north, south, east, and west. The middle
area is calledthe center.

 Here are the constructors defined by BorderLayout:
 BorderLayout()
 BorderLayout(int horz, int vert)

 The first form creates a default border layout.
 The second allows you to specify the horizontal and vertical space left

between components in horz and vert, respectively.
 BorderLayout defines the following constants that specify the regions:

 BorderLayout.CENTER
 BorderLayout.SOUTH
 BorderLayout.EAST
 BorderLayout.WEST
 BorderLayout.NORTH

 When adding components, you will use these constants with the
following form of add(), which is defined by Container:

void add(Component compObj, Object region);
 Here, compObj is the component to be added, and region specifies where

the component will be added.
Example:

import java.awt.*;
import java.applet.*;
/*<applet code="BorderDemo" width=233 height=232 ></applet>*/
public class BorderDemo extends Applet
{
 Button b1,b2,b3,b4,b5;
 public void init()

{
 b1=new Button("North");
 b2=new Button("South");
 b3=new Button("East");
 b4=new Button("West");
 b5=new Button("CENTER");
 setLayout(new BorderLayout(20, 20));
 add(b1, BorderLayout.NORTH);
 add(b2, BorderLayout.SOUTH);

 add(b3, BorderLayout.EAST);
 add(b4, BorderLayout.WEST);
 add(b5, BorderLayout.CENTER);

Object Oriented Programming Through Java 27

II Year - II Semester 2019-20 CSE

 }
}

Output:

6.3.3 GridLayout:
 GridLayoutlays out components in a two-dimensional grid.
 When you instantiate a GridLayout, you define the number of rows and

columns.
 The constructors supported by GridLayout are shown here:

 GridLayout()
 GridLayout(int numRows, int numColumns)
 GridLayout(int numRows, int numColumns, int horz, int vert)

 The first form creates a single-column grid layout.
 The second form creates a grid layout with the specified number of rows

and columns.
 The third form allows you to specify the horizontal and vertical space left

between components in horz and vert respectively.
 Either numRows or numColumns can be zero. Specifying numRows as

zero allows for unlimited-length columns. Specifying numColumns as
zero allows for unlimited-length rows.

 Here is a sample program that creates a 4×4 grid and fills it in with 15
buttons

Object Oriented Programming Through Java 28

II Year - II Semester 2019-20 CSE

Example:
import java.awt.*;
import java.applet.*;
/*<applet code="GridDemo" width=233 height=232 ></applet>*/
public class GridDemo extends Applet {
 public void init() {
 int k=1;
 setLayout(new GridLayout(4, 4));
 for(int i=0;i<4;i++) {
 for(int j=0;j<4;j++) {
 add(new Button(""+k));
 k++;
 }
 }
 }
}

Output:

6.3.4 CardLayout
 The CardLayout class is unique among the other layout managers in

that it stores several different layouts.
 Each layout can be thought of as being on a separate index card in a

deck that can be shuffled so that any card is on top at a given time.
 This can be useful for user interfaces with optional components that can

be dynamically enabled and disabled upon user input.

Object Oriented Programming Through Java 29

II Year - II Semester 2019-20 CSE

 You can prepare the other layouts and have them hidden, ready to be
activated when needed.

 CardLayout provides these two constructors:
 CardLayout()
 CardLayout(int horz, int vert)

 The first form creates a default card layout.
 The second form allows you to specify the horizontal and vertical space

left between components in horz and vert, respectively.
 When card panels are added to a panel, they are usually given a name.
 Thus, most of the time, you will use this form of add() when adding

cards to a panel:
 void add(Component panelObj, Object name);

 Here, name is a string that specifies the name of the card whose panel is
specified by panelObj.

 After you have created a deck, your program activates a card by calling
one of thefollowing methods defined by CardLayout:

 void first(Container deck)
 void last(Container deck)
 void next(Container deck)
 void previous(Container deck)
 void show(Container deck, String cardName)

 Here, deck is a reference to the container (usually a panel) that holds the
cards, andcardNameis the name of a card.

 Calling first() causes the first card in the deck to be shown.
 To show the last card, call last().
 To show the next card, call next().
 To show the previous card, call previous().
 Both next() and previous() automatically cycle back to the top or bottom

of the deck, respectively.
 The show() method displays the card whose name is passed in

cardName.
Example:

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*<applet code="CardDemo" width=233 height=232 ></applet>*/
public class CardDemo extends Applet implements ActionListener {
 Button b1, b2;
 CardLayout cl;

Object Oriented Programming Through Java 30

II Year - II Semester 2019-20 CSE

 Checkbox c1, c2, c3, c4, c5;
 Panel p;
 public void init() {
 b1=new Button("windows");
 b2=new Button("others");
 add(b1);
 add(b2);
 cl=new CardLayout();
 p=new Panel();
 p.setLayout(cl);
 Panel p1=new Panel();
 c1=new Checkbox("XP");
 c2=new Checkbox("Windows 7");
 c3=new Checkbox("Vista");
 p1.add(c1);
 p1.add(c2);
 p1.add(c3);
 Panel p2=new Panel();
 c4=new Checkbox("mac Os");
 c5=new Checkbox("Linux");
 p2.add(c4);
 p2.add(c5);
 p.add(p1,"wcard");
 p.add(p2,"ocard");
 add(p);
 b1.addActionListener(this);
 b2.addActionListener(this);
 }
 public void actionPerformed(ActionEvent ae) {
 String s=ae.getActionCommand();
 if(s.equals("windows")) {
 cl.first(p);
 }
 else if(s.equals("others"))
 cl.show(p,"ocard");
 }
}

Output:

Object Oriented Programming Through Java 31

II Year - II Semester 2019-20 CSE

6.3.5 GridBagLayout
 GridBagLayout is a layout manager that lays out a container’s

components in a grid of cells with each component occupying one or
more cells, called its display area.

 The display area aligns components vertically and horizontally, without
requiring that the components be of the same size.

 GridBagLayout constructor:
 GridBagLayout()

Example :
public class GridBagDemo extends Applet {
 Button b1,b2,b3;
 public void init() {
 b1=new Button("One");
 b2=new Button("Two");
 b3=new Button("Three");
 GridBagLayout gb= new GridBagLayout();
 setLayout(gb);
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.ipadx=20;
 gbc.gridx = 0;
 gbc.gridy = 0;
 l.setConstraints(b1, gbc);
 gbc.gridx = 1;
 gbc.gridy = 0;
 l.setConstraints(b3, gbc);
 gbc.fill = GridBagConstraints.HORIZONTAL;
 gbc.gridx = 0;
 gbc.gridy = 1;

Object Oriented Programming Through Java 32

II Year - II Semester 2019-20 CSE

 gbc.gridwidth=2;
 gb.setConstraints(b2, gbc);
 add(b1);
 add(b2);
 add(b3);
 }
}

Output:

Object Oriented Programming Through Java 33

II Year - II Semester 2019-20 CSE

UNIT-VI

Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1. AWT stands for []

 (a) Applet Windowing Toolkit

 (b) Abstract Windowing Toolkit

 (c) Absolute Windowing Toolkit

 (d) None of the above

2. Which object can be constructed to show any number of choices in the

visible window? []

(a) Labels (b) Choice (c) List (d) Checkbox

3. Which class provides many methods for graphics programming?

(a) java.awt (b) java.Graphics

(c) java.awt.Graphics (d) None of the above

4. _______Layout arranges the components as a deck of cards such that only

one component is visible at a time []

(a) CardLayout (b)Borderlayout (c)FlowLayout (d)GridLayout

5. At the top of the AWT hierarchy is the______________ class. []

(a) Window (b) Component (c) Panel (d)Frame

6. AWT classes are contained in the __________ package []

(a) java.awt (b) java.Awt

(c) java.classes.awt (d) java.pacakge.awt

7. BorderLayout class has __regions to add components to it []

(a) 4 (b)7 (c)5 (d)8

8. By default FlowLayout uses __________justification. []

(a)Left (b)Right (c)Center (d)Top

Object Oriented Programming Through Java 34

II Year - II Semester 2019-20 CSE

9. By default page-up and page-down increment of scrollbar is__ []

(a)5 (b)10 (c)7 (d)6

In each of the following questions, choose the layout manager(s) most
naturally suited for the described layout.

11) The container has one component that should take up as much space as
possible []

a). BorderLayout b). GridLayout c). GridBagLayout d). a and b e). b and c

12). The container has a row of components that should all be displayed at the
same size, filling the container’s entire area. []

a). FlowLayout b). GridLayout c). BoxLayout d). a and b

13) The container displays a number of components in a column, with any
extra space going between the first two components. []

Object Oriented Programming Through Java 35

II Year - II Semester 2019-20 CSE

a). FlowLayout b). BoxLayout

c). GridLayout d). BorderLayout

14) The container can display three completely different components at
different times, depending perhaps on user input or program state. Even if
the components’ sizes differ, switching from one component to the next
shouldn’t change the amount of space devoted to the component.
 []

a). SpringLayout b). BoxLayout

c). CardLayout d). GridBagLayout

SECTION-B

Descriptive Questions

1) Explain in detail AWT class hierarchy.

2) Explain the following Components with an example

A) Label B) Button

3) Differentiate between Checkbox and ChechboxGroup. Explain them with

an Example

Object Oriented Programming Through Java 36

II Year - II Semester 2019-20 CSE

4) Explain with an example how to add Choice and List Controls to the

container.

5) Explain with an example the following Scrollbar user Interface

component

6) What are layout managers? Explain their importance and List them.

7) Explain with an example Border Layout layout Manager

8)Write a short note on Flow and Card Layouts. Give examples

9)Write an AWT program to create checkboxes for different courses belonging

to a university such that the courses selected would be displayed.

10)Create a list of vegetables. If you click on one of the items of the list, the

item should be displayed

11)Write a java program to show how the radio buttons can be used to
change the background color of the applet window

