

GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521 356.

Department of Computer Science and Engineering

HANDOUT
ON

PYTHON PROGRAMMING

Vision
To be a Centre of Excellence in computer science and engineering

education and training to meet the challenging needs of the industry and

society.

Mission
 To impart quality education through well-designed curriculum in tune

with the growing software needs of the industry.

 To be a Centre of Excellence in computer science and engineering

education and training to meet the challenging needs of the industry

and society.

 To serve our students by inculcating in them problem solving,

leadership, teamwork skills and the value of commitment to quality,

ethical behavior & respect for others.
 To foster industry-academia relationship for mutual benefit and growth

Program Educational Objectives

• Identify, analyze, formulate and solve Computer Science and Engineering

problems both independently and in a team environment by using the

appropriate modern tools.

• Manage software projects with significant technical, legal, ethical, social,

environmental and economic considerations

• Demonstrate commitment and progress in lifelong learning, professional

development, leadership and Communicate effectively with profe-ssional

clients and the public.

HANDOUT ON PYTHON PROGRAMMING

Class & Sem.: I B.Tech – II Semester Year: 2019-20

Branch : CSE Credits: 3
===

1. Brief History and Scope of the Subject

 Python was first developed by Guido van Rossum in the late

80’s and early 90’s at the National Research Institute for Mathematics

and Computer Science in the Netherlands.It has been derived from

many languages such as ABC, Modula-3, C, C++, Algol-68, Small Talk,

UNIX shell and other scripting languages.

There is really a good scope in Python in today's world ,In last few

years Python leads among the programming languages due to some of

the libraries used in the most demanding work in the world like Data

Science, Machine Learning, Artificial Intelligence .By the help of Python

you can do everything you want to do .But mainly due to data science

and machine learning g python is on the top of demanding languages

now a days .Apart from this you can create a webpage , game,

Application … also by using python.

2. Pre-Requisites

 Knowledge on Problem Solving Through Computer Programming.
3. Course Objectives:

 To introduce Scripting Language.

 To explore various problems solving approaches of computer science.

 To develop a basic understanding of Python programming.
4. Course Outcomes:

Upon successful completion of the course, the students will be able to

CO1: Demonstrate the basic elements of Python.

CO2: Implement programs using Python Control Structures.

CO3: Design functions in Python to solve the problems.

CO4: Apply strings, lists and tuples in developing Python programs.

CO5: Implement programs with the help of Dictionaries to solve the

problems.

CO6: Develop python programs by using files.

5. Program Outcomes:

Engineering Graduates will be able to:

a. Engineering knowledge: Apply the knowledge of mathematics,

science, engineering fundamentals, and an engineering specialization to

the solution of complex engineering problems.

b. Problem analysis: Identify, formulate, review research literature, and

analyze complex engineering problems reaching substantiated

conclusions using first principles of mathematics, natural sciences, and

engineering sciences.

c. Design/development of solutions: Design solutions for complex

engineering problems and design system components or processes that

meet the specified needs with appropriate consideration for the public

health and safety, and the cultural, societal, and environmental

considerations.

d. Conduct investigations of complex problems: Use research-based

knowledge and research methods including design of experiments,

analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

e. Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and

modeling to complex engineering activities with an understanding of the

limitations.

f. The engineer and society: Apply reasoning informed by the

contextual knowledge to assess societal, health, safety, legal and cultural

issues and the consequent responsibilities relevant to the professional

engineering practice.

g. Environment and sustainability: Understand the impact of the

professional engineering solutions in societal and environmental

contexts, and demonstrate the knowledge of, and need for sustainable

development.

h. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

i. Individual and team work: Function effectively as an individual, and

as a member or leader in diverse teams, and in multidisciplinary

settings.

j. Communication: Communicate effectively on complex engineering

activities wit the engineering community and wit society at large, such

as, being able to comprehend and write effective reports and design

documentation, make effective presentations, and give and receive clear

instructions.

k. Project management and finance: Demonstrate knowledge and

understanding of the engineering and management principles and apply

these to one’s own work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

l. Life-long learning: Recognize the need for, and have the preparation

and ability to engage in independent and life-long learning in the

broadest context of technological change.

6. Mapping of Course Outcomes with Program Outcomes:

 a b c d e f g h i j k l

CO1 H H

CO2 H H M L

CO3 H H M L

CO4 H H M L

CO5 H H M L

CO6 H H M L

7. Prescribed Text Books

1. Reema Thareja, “Python Programming – Using Problem Solving Approach ",

Oxford University Press, 2014 Edition.

8. Reference Text Books

1. Wesley J. Chun, “Core Python Programming”, Second Edition, Prentice

Hall.

2. Martin C. Brown, “Python: The Complete Reference”, 2001 Edition,

Osborne/Tata McGraw Hill Publishing Company Limited.

3. Kenneth A. Lambert, ‘Fundamentals of Python – first programs”, 2012

Edition, CENGAGE publication.

9. URLs and Other E-Learning Resources

https://pythonprogramming.net/beginner-python-programming-

tutorials/

https://www.tutorialspoint.com/python/

https://www.javatpoint.com/python-tutorial

https://www.learnpython.org/

https://www.programiz.com/python-programming

10. Digital Learning Materials:
http://nptel.ac.in/courses/106106145/5

http://freevideolectures.com/Course/2512/Python-Programming

https://ocw.mit.edu/courses/electrical-engineering-and-computer-

science/6-0001-introduction-to-computer-science-and-programming-in-

python-fall-2016/lecture-videos/

http://onlinevideolecture.com/?subject=python+programming

11. Lecture Schedule / Lesson Plan

Topic No.of Periods
Theory Tutorial

UNIT –1: Basics of Python programming
Features of Python 1

1 History of Python 1
Literal Constants 2
Data Types ,Variables 2
Operators 2

1

Input operation 1
Write a python program to print “Hello World!” on
the screen. 2 Write a Python program to find sum of two
numbers.
Write a Python program to compute distance
between two points taking input from the user.
(use Pythagorean Theorem).

2

Total 9+4 2
UNIT – 2: Decision Control and Looping Statements
Conditional Branching. 2

1
un-conditional Branching. 1
Iterative statements. 2
Nesting of decision control statements. 2
Nesting of loops. 1

1

Write a python program to test whether a given
number is even or odd. 1

Write a Python Program to print out the decimal
equivalents of 1/2, 1/3, 1/4, . . . ,1/10, using a
for loop. 2 Write a Python Program to print a countdown
from the given number to zero. Using a while
loop.
Write a Python Program to find the sum of all the
primes below hundred. 2 Write a Python program to find the factorial of a
given number

Total 8+5 2
UNIT–III: Functions and Strings
Functions-function definition 2

1
Function call , Function return statement
Types of arguments 2
Recursive functions, Modules 2
Strings -Basic string operations 2
String formatting operator 2 1

Built-in functions
Write a function cumulative_product to compute
cumulative product of a list of numbers

1 Write function to compute gcd, lcm of two
numbers. Each function shouldn’t exceed one
line.
Find the sum of the even-valued terms in the
Fibonacci sequence whose values do not exceed
ten thousand. 2 Write a program that accepts a string from a user
and re-displays the same after removing vowels
from it.
Write a program to calculate the length of a
string. 1
Write a function to reverse a given string.

Total 10+4 2
UNIT–IV: Tuples, Lists
Tuples – creating, accessing values. 2

1

Updating, deleting elements in a tuple.
Basic Tuple operations. 2
Lists – accessing, updating values in Lists. 2 Basic List operations.
mutability of lists. 2
Creating Python Lists and deleting some
elements, creating and accessing Python tuple
elements. 2

1

write a program to swap two values using Tuple
assignments
Write a program to sort a Tuple of values

2
Write program that scans an email address and
forms a tuple of user name and domain name.
Write a program to print sum and average of the
elements present in the list.
Write a program that forms a list of first
character of every word present in
another list.

2

Total 8+6 2
UNIT–V: Dictionaries
Dictionaries – Creating a Dictionary. 2

1 Adding an item, Deleting items. 2 Sorting items
Looping over a dictionary 2
Basic Dictionary operations 2

1
Built-in functions 2
Write a program to count the number of
characters in the string and store them in a
dictionary.

2

Write a program to sort keys of a dictionary.
Write a program that prints maximum and
minimum value in a dictionary.

2

Total 10+4 2
UNIT–VI: File Handling
File types, File path. 2

1 File operations-open, close 2
File operations-read,write 2
Types of arguments 2

1

Write a program to print each line of a file in
reverse order

2

Write a program to compute the number of
characters, words and lines in a file.

1

Write a program to copy contents of one file into
another file.

1

Total 8+4 2
Total No of Periods 53+27 12

UNIT–I
Objective:

To explore basic knowledge on Python language basics features.

Syllabus:

Features and History of Python, Literal Constants, Data Types, Variables,

Operators, input operation.

Programs: Write a python program to 1. Print “Hello World!” on the screen.2.

Find sum of two numbers. 3. Compute distance between two points taking

input from the user. (use Pythagorean Theorem)

Learning Outcomes:

At the end of the unit student will be able to

 understand the features and history of python.

 develop algorithms and design logical flow charts for solving problems.

 describe python tokens.

 solve simple formula based problems on computer using Python.

LEARNING MATERIAL
1. Features and History of Python:

1.1Features of Python
 Simple: Reading a program written in Python feels almost like

reading english. The main strength of Python which allows

programmer to concentrate on the solution to the problem rather

than language itself.

 Easy to Learn: Python program is clearly defined and easily

readable. The structure of the program is simple. It uses few

keywords and clearly defined syntax.

 Versatile: Python supports development of wide range of

applications such as simple text processing, WWW browsers and

games etc..
 Free and Open Source: It is a Open Source Software. So, anyone

can freely distribute it, read the source code, edit it, and even use

the code to write new (free) programs.

 High-level Language: While writing programs in Python we do not

worry about the low-level details like managing memory used by

the program.

 Interactive: Programs in Python work in interactive mode which

allows interactive testing and debugging of pieces of code.

Programmer can easily interact with the interpreter directly at the

python prompt to write their programs.

 Portable: It is a portable language and hence the programs behave

the same on wide variety of hardware platforms with different

operating systems.
 Object Oriented: Python supports object-oriented as well as

procedure-oriented style of programming .While object-oriented

technique encapsulates data and functionality with in objects,

Procedure oriented at other hand, builds programs around

procedure or functions.

 Interpreted: Python is processed at runtime by interpreter. So,

there is no need to compile a program before executing it. You can

simply run the program. Basically python converts source program

into intermediate form called byte code.

 Dynamic and strongly typed language: Python is strongly typed

as the interpreter keeps track of all variables types. It's also very

dynamic as it rarely uses what it knows to limit variable usage.

 Extensible: Since Python is an open source software, anyone can

add low-level modules to the python interpreter. These modules

enable programmers to add to or customize their tools to work

more efficiently.

 Embeddable: Programmers can embed Python within their C, C++,

COM, ActiveX, CORBA and Java Programs to give ‘scripting

‘capability for users.

 Extensive Libraries: Python has huge set of libraries that is easily

portable across different platforms with different operating

systems.

 Easy maintenance: Code Written in Python is easy to maintain.

 Secure: This Programming language is secure for tampering.

Modules can be distributed to prevent altering of source code.

Additionally, Security checks can be easily added to implement

additional security features.
 Robust: Python Programmers cannot manipulate memory directly,

errors are raised as exceptions that can be catch and handled by

the program code. For every syntactical mistake, a simple and easy

to interpret message is displayed. All these make python robust.

 Multi-threaded: Python supports executing more than one process

of a program simultaneously with the help of Multi Threading.

 Garbage Collection: The Python run-time environment handles

garbage collection of all python objects. For this, a reference

counter is maintained to assure that no object that is currently in

use is deleted.

1.2 History of Python.
 Python was first developed by Guido van Rossum in the late 80’s

and early 90’s at the National Research Institute for Mathematics

and Computer Science in the Netherlands.
 It has been derived from many languages such as ABC, Modula-3,

C, C++, Algol-68, SmallTalk, UNIX shell and other scripting

languages.
 Since early 90’s Python has been improved tremendously. Its

version 1.0 was released in 1991, which introduced several new

functional programming tools.
 While version 2.0included list comprehension was released in 2000

by the Be Open Python Labs team.
 Python 2.7 which is still used today will be supported till 2020.
 Currently Python 3.6.4 is already available. The newer versions

have better features like flexible string representation e.t.c,
 Although Python is copyrighted, its source code is available under

GNU General Public License (GPL) like that Perl.
 Python is currently maintained by a core development team at the

institute which is directed by Guido Van Rossum.
 These days, from data to web development, Python has emerged as

very powerful and popular language. It would be surprising to

know that python is actually older than Java, R and JavaScript.
1.3 Applications of Python:

 Embedded scripting language: Python is used as an embedded

scripting language for various testing/ building/ deployment/

monitoring frameworks, scientific apps, and quick scripts.

 3D Software: 3D software like Maya uses Python for automating

small user tasks, or for doing more complex integration such as

talking to databases and asset management systems.

 Web development: Python is an easily extensible language that

provides good integration with database and other web standards.

 GUI-based desktop applications: Simple syntax, modular

architecture, rich text processing tools and the ability to work on

multiple operating systems makes Python a preferred choice for

developing desktop-based applications.

 Image processing and graphic design applications: Python is

used to make 2D imaging software such as Inkscape, GIMP, Paint

Shop Pro and Scribus. It is also used to make 3D animation

packages, like Blender, 3ds Max, Cinema 4D, Houdini, Light wave

and Maya.

 Scientific and Computational applications: Features like high

speed, productivity and availability of tools, such as Scientific

Python and Numeric Python, have made Python a preferred

language to perform computation and processing of scientific data.

3D modeling software, such as FreeCAD, and finite element

method software, like Abaqus, are coded in Python.

 Games: Python has various modules, libraries, and platforms that

support development of games. Games like Civilization-IV, Disney's

Toontown Online, Vega Strike, etc. are coded using Python.

 Enterprise and Business applications: Simple and reliable syntax,

modules and libraries, extensibility, scalability together make

Python a suitable coding language for customizing larger

applications. For example, Reddit which was originally written in

Common Lips, was rewritten in Python in 2005. A large part of

Youtube code is also written in Python.

 Operating Systems: Python forms an integral part of Linux

distributions.

 1.4 Keyword in Python:

 Keywords are the reserved words in Python. We cannot use a keyword as

variable name, function name or any other identifier.

 Here's a list of all keywords in Python Programming.

 There are 33 keywords in Python 3.3. This number can vary slightly in

course of time.

 All the keywords except True, False and None are in lowercase and they

must be written as it is. The list of all the keywords are given below.

Keywords in Python Programming Language

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

2. Literal Constants
 In programming constants are referred to variables that cannot be

changed.

 Generally Literal constants are classified in to three types.

Literal Constants

Numeric Literals Boolean Literals String Literals

2.1 Numeric Literals

 The value of a literal constant can be used directly in programs. For

example, 7, 3.9, 'A', and "Hello" are literal constants.

 Numbers refers to a numeric value. You can use four types of numbers

in Python program- integers, long integers, floating point and
complex numbers.

 Numbers like 5 or other whole numbers are referred to as integers.
Bigger whole numbers are called long integers. For example,

535633629843L is a long integer.

 Numbers like are 3.23 and 91.5E-2 are termed as floating point
numbers.

 Numbers of a + bj form (like -3 + 7j) are complex numbers.

2.2 Boolean Literals
 A Literals Boolean type can have one of the two values- True or False.

2.3 String Literals

 A string is a group of characters.
 Using Single Quotes ('): For example, a string can be written as 'HELLO'.
 Using Double Quotes ("): Strings in double quotes are exactly same as

those in single quotes. Therefore, 'HELLO' is same as "HELLO".
 Using Triple Quotes (''' '''): You can specify multi-line strings using triple

quotes. You can use as many single quotes and double quotes as you
want in a string within triple quotes.

Examples:

2.3.1Unicode Strings
 Unicode is a standard way of writing international text. That is,if you

want to write some text in your native language like hindi,then you need

to have a Unicode-enable text editor.

 Python allows you to specify Unicode text by prefixing the string with a u

or U.

 For Example: u”Sample Unicode string”

Note :The ‘U’ prefix specifies that the file contains text written in

language other than English

 2.3.2Escape Sequences
 Some characters (like ", \) cannot be directly included in a string. Such

characters must be escaped by placing a backslash before them.

2.3.2Raw Strings

 If you want to specify a string that should not handle any escape

sequences and want to display exactly as specified then you need to

specify that string as a raw string. A raw string is specified by prefixing r

or R to the string.

3.Data types

 The variables can hold values of different type called Data Type.

 Data type is a set of values and the allowable operations on those values.

 Python has a great set of useful data types. Python's data types are built

in the core of the language. They are easy to use and straightforward.

 Example a person age is stored in a number ,his name is made only with

characters, and his address is made with mixture of numbers and

characters.

 Python ha various standard data types to define the operations possible

on them and storage method for each of them.

 Python supports the following five standard data types

1.Numbers
2.Strings
3.Lists
4.Tuple
5.Dictionary

Note: Python is pure object oriented programming language.it refers to

everything as an object including numbers and strings.

 The Following Diagram shows the classification of Python Data Types.

Data Types

Immutable (Which Can’t be Changed)

Lists Tuples String

Mutable (Which Can be Changed)

Numbers Dictionaries Sets Boolean

3.1.1. Assigning or Initializing Values to Variables

 In Python, programmers need not explicitly declare variables to reserve

memory space. The declaration is done automatically when a value is

assigned to the variable using the equal sign (=). The operand on the left

side of equal sign is the name of the variable and the operand on its right

side is the value to be stored in that variable.

Example: Program to display data of different types using variables and

literal constants.

 In Python , you can reassign variables as many times as you want to

change the value stored in them. You may even store value of one data

type in a statement and other data type in subsequent statement. This is

possible because Python variables do not have specific types, i.e., we can

assign integer to the variable, later we assign string to the same variable.
Example:Program to reassign value to a variable

val = ‘Hello’

print(val)

val = 100

print(val)

val=10.32

print(val)

Output
Hello

100

10.32

3.1.2Multiple Assignments
 Python allows programmers to assign single value to more than one

variable simultaneously.

 For example

>>>sum = flag = a = b = 0

 In the above statement, all four integer variables are assigned a value

0.You can also assign different values to multiple variables

simultaneously as shown below

 For example

>>>sum, a, b, mesg = 0, 3, 5, “Result”

Here, variable sum,a and b are integers(numbers) and mesg is assigned

“Result”.

Note: Removing a variable means that the reference from the name to the

value has been deleted.However, deleted variables can be used again in the

code if and only if you reassign them some value.

3.2 Boolean Type
A variable of Boolean type can have one of the two values- True or False.

Similar to other variables, the Boolean variables are also created while we

assign a value to them or when we use a relational operator on them.

3.3 Tuples

 A tuple is similar to the list as it also consists of a number of values

separated by commas and enclosed within parentheses.

 The main difference between lists and tuples is that you can change the

values in a list but not in a tuple. This means that while tuple is a read

only data type, the list is not.

3.4 Lists
 Lists are the most versatile data type of Python language.

 A list consist of items separated by commas and enclosed within square

brackets The values stored in a list are accessed using indexes.

 The index of the first element being 0 and n-1 as that of the last element,

where n is the total number of elements in the list. Like strings, you can

also use the slice, concatenation and repetition operations on lists.

 Example program to demonstrate operations on lists

list = ['a', 'bc', 78, 1.23]

list1 = ['d', 78]

print(list)

print(list[0])

print(list[1:3])

print(list[2:])

print(list * 2)

print(list + list1)

Output:

['a', 'bc', 78, 1.23]

a

['bc', 78]

[78, 1.23]

['a', 'bc', 78, 1.23, 'a', 'bc', 78, 1.23]

['a', 'bc', 78, 1.23, 'd', 78]

3.5 Dictionary
 Python’s dictionaries stores data in key-value pairs.

 The key values are usually strings and value can be of any data type. The

key value pairs are enclosed with curly braces ({ }).

 Each key value pair separated from the other using a colon (:). To access

any value in the dictionary, you just need to specify its key in square

braces ([]).Basically dictionaries are used for fast retrieval of data.

Example

4. Variables and Identifiers
4.1 Variables
 Variable means its value can vary. You can store any piece of information

in a variable.

 Variables are nothing but just parts of your computer’s memory where

information is stored. To identify a variable easily, each variable is given

an appropriate name.

4.2Identifiers
Identifiers are names given to identify something. This something can be a

variable, function, class, module or other object. For naming any identifier,

there are some basic rules like:

 The first character of an identifier must be an underscore ('_') or a letter

(upper or lowercase).

 The rest of the identifier name can be underscores ('_'), letters (upper or

lowercase), or digits (0-9).

 Identifier names are case-sensitive. For example, myvar and myVar are

not the same.

 Punctuation characters such as @, $, and % are not allowed within

identifiers.

 Examples of valid identifier names are sum, __my_var, num1, r, var_20,

First, etc.

 Examples of invalid identifier names are 1num, my-var, %check, Basic

Sal, H#R&A, etc.,

5. Operators

 Operators are special symbols in Python that carry out arithmetic or
logical computation. The value that the operator operates on is called the
operand.

 For example:
>>> 2+3

 5
Here, + is the operator that performs addition. 2 and 3 are the operands
and 5 is the output of the operation.

 Python supports the following operators
1. Arithmetic operators

2. Comparison (Relational) operators

3. Unary Operators

4. Bitwise operators

5. Shift Operators

6. Logical Operators

7. Membership and Identity Operators

8. Assignment operators

9. Special operators

5.1Arithmetic Operators
 Arithmetic operators are used to perform mathematical operations like

addition, subtraction, multiplication etc.

 This operator will work on two operands.

 Example: If a=100 and b=200 then look at the table below, to see the

result of arithmetic operations.

5.2Comparision (Relational) Operators
 A Relational or Comparison operator checks the relationship between two

operands. If the relation is true, it returns 1; if the relation is false, it

returns value 0

 For Example assuming a=100 and b=2000,we can use the comparison

operators on them as specified in the following table.

5.3Unary Operator
 Unary operators act on single operands. Python supports unary minus

operator.

 Unary minus operator is strikingly different from the arithmetic operator

that operates on two operands and subtracts the second operand from

the first operand.

 When an operand is preceded by a minus sign, the unary operator

negates its value.

 For example, if a number is positive, it becomes negative when preceded

with a unary minus operator. Similarly, if the number is negative, it

becomes positive after applying the unary minus operator. Consider the

given example.

b = 10 a = -(b)

 The result of this expression, is a = -10, because variable b has a positive

value. After applying unary minus operator (-) on the operand b, the

value becomes -10, which indicates it as a negative value.

5.4 Bitwise Operators
 As the name suggests, bitwise operators perform operations at the bit

level.

 These operators include bitwise AND, bitwise OR, bitwise XOR, and shift

operators.

 Bitwise operators expect their operands to be of integers and treat them

as a sequence of bits.

 The truth tables of these bitwise operators are given below.

 Example: If a=60 and b=13 then look at the table below, to see the result

of Bitwise operations.

Operator Description Example

&

Binary AND

Operator copies a bit to the result if it
exists in both operands (a & b) =12

(means 0000 1100)

|

Binary OR

It copies a bit if it exists in either
operand. (a | b) = 61

(means 0011 1101)

^

Binary XOR

It copies the bit if it is set in one
operand but not both. (a ^ b) = 49

(means 0011 0001)

~

Binary Ones
Complement

It is unary and has the effect of
'flipping' bits.

(~a) = -61
(means 1100 0011
in 2's complement

form due to a
signed binary

number.

<<

Binary Left
Shift

The left operands value is moved left
by the number of bits specified by the
right operand.

a << 2 = 240
(means 1111 0000)

>>

Binary Right
Shift

The left operands value is moved right
by the number of bits specified by the
right operand.

a >> 2 = 15
(means 0000 1111)

5.5 Shift Operators
 Python supports two bitwise shift operators. They are shift left (<<) and

shift right (>>).
 These operations are used to shift bits to the left or to the right. The

syntax for a shift operation can be given as follows:

5.6 Logical Operators
 Logical operators are used to simultaneously evaluate two conditions or

expressions with relational operators.
 Logical AND (and) If expressions on both the sides (left and right side) of

the logical operator are true, then the whole expression is true.

For example, If we have an expression (a>b) and (b>c), then the whole

expression is true only if both expressions are true. That is, if b is greater

than a and c.

 Logical OR (or) operator is used to simultaneously evaluate two

conditions or expressions with relational operators. If one or both the

expressions of the logical operator is true, then the whole expression is

true.

For example, If we have an expression (a>b) or (b>c), then the whole

expression is true if either b is greater than a or b is greater than c.

 Logical NOT (not) operator takes a single expression and negates the

value of the expression. Logical NOT produces a zero if the expression

evaluates to a non-zero value and produces a 1 if the expression

produces a zero. In other words, it just reverses the value of the

expression.

For example, a = 10; b = not a; Now, the value of b = 0.

5.7 Membership and Identity Operators
5.7.1. Membership Operator
Python supports two types of membership operators–in and not in. These

operators, test for membership in a sequence such as strings, lists, or tuples.

 in Operator: The operator returns true if a variable is found in the

specified sequence and false otherwise. For example, a in nums returns

1, if a is a member of nums.

 not in Operator: The operator returns true if a variable is not found in

the specified sequence and false otherwise. For example, a not in nums

returns 1, if a is not a member of nums.

5.7.2. Identity Operators

 is Operator: Returns true if operands or values on both sides of the

operator point to the same object and false otherwise. For example, if a is

b returns 1, if id(a) is same as id(b).

 is not Operator: Returns true if operands or values on both sides of the

operator does not point to the same object and false otherwise. For

example, if a is not b returns 1, if id(a) is not same as id(b).

5.8 Assignment Operators

 Assignment operators are used in Python to assign values to variables.

 a = 5 is a simple assignment operator that assigns the value 5 on the

right to the variable a on the left.

 There are various compound operators in Python like a += 5 that adds to

the variable and later assigns the same. It is equivalent to a = a + 5.

Assignment operators in Python

Operator Example Equivatent to

= x = 5 x = 5

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

*= x *= 5 x = x * 5

/= x /= 5 x = x / 5

%= x %= 5 x = x % 5

//= x //= 5 x = x // 5

**= x **= 5 x = x ** 5

&= x &= 5 x = x & 5

|= x |= 5 x = x | 5

^= x ^= 5 x = x ^ 5

>>= x >>= 5 x = x >> 5

<<= x <<= 5 x = x << 5

5.9 Operator Precedence
 The operator precedence in Python are listed in the following table. It is

in descending order, upper group has higher precedence than the lower

ones.

Operator precedence rule in Python

Operators Meaning

() Parentheses

** Exponent

+x, -x, ~x Unary plus, Unary minus, Bitwise NOT

*, /, //, %
Multiplication, Division, Floor division,

Modulus

+, - Addition, Subtraction

<<, >> Bitwise shift operators

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

==, !=, >, >=, <, <=, is,

is not, in, not in
Comparison, Identity, Membership operators

not Logical NOT

and Logical AND

or Logical OR

6. Input Operation
 To take input from the users, Python makes use of the input() function.

The input() function prompts the user to provide some information on

which the program can work and give the result.

 However, we must always remember that the input function takes user’s

input as a string.

7. Comments
 Comments are the non-executable statements in a program. They are

just added to describe the statements in the program code.
 Comments make the program easily readable and understandable by the

programmer as well as other users who are seeing the code. The

interpreter simply ignores the comments.
 In Python, a hash sign (#) that is not inside a string literal begins a

comment. All characters following the # and up to the end of the line are

part of the comment

\
 Note: For writing Multi line comments. Make sure to indent the leading ‘ ‘

‘ appropriately to avoid an Indentation Error
‘ ‘ ‘
This is a multiline
comment.
‘ ‘ ‘

8. Indentation
 Whitespace at the beginning of the line is called indentation. These

whitespaces or the indentation are very important in Python.

 In a Python program, the leading whitespace including spaces and tabs

at the beginning of the logical line determines the indentation level of

that logical line.

9. Expressions
 An expression is any legal combination of symbols (like variables,

constants and operators) that represents a value.

 In Python, an expression must have at least one operand (variable or

constant) and can have one or more operators. On evaluating an

expression, we get a value. Operand is the value on which operator is

applied.

 Generally Expressions are divided into the following types

1. Constant Expressions: One that involves only constants.

Example: 8 + 9 – 2

2. Integral Expressions: One that produces an integer result after

evaluating the expression.

Example:a = 10

3. Floating Point Expressions: One that produces floating point results.

Example: a * b / 2.0

4. Relational Expressions: One that returns either true or false value.

 Example: c = a>b

5. Logical Expressions: One that combines two or more relational

expressions and returns a value as True or False.

Example: a>b and y! = 0

6. Bitwise Expressions: One that manipulates data at bit level.

Example: x = y&z

7. Assignment Expressions: One that assigns a value to a variable.

Example: c = a + b or c = 10

Example Program:

Give the output for the following statements.(April 2018 Regular)

a = 20

b = 10

c = 15

d = 5

print ("a:%d b:%d c:%d d:%d" % (a,b,c,d))

e = (a + b) * c / d

print ("Value of (a + b) * c / d is ", e)

e = ((a + b) * c) / d

print ("Value of ((a + b) * c) / d is ", e)

e = (a + b) * (c / d)

print ("Value of (a + b) * (c / d) is ", e)

e = a + (b * c) / d

print ("Value of a + (b * c) / d is ", e)

Output:
a:20 b:10 c:15 d:5

Value of (a + b) * c / d is 90.0

Value of ((a + b) * c) / d is 90.0

Value of (a + b) * (c / d) is 90.0

Value of a + (b * c) / d is 50.0

10. Operations on Strings
 Like numbers we can also manipulate strings by performing

operations on them.

 Basically there are three operations on strings

1.String concatenation.

2.String repetition or multiplication.

3.String slicing.

10.1String Concatenation
 Like numbers we can add two strings in Python. The process of

combining two strings is called concatenation.

 Two strings whether created using single or double quote are

concatenated in the same way.Look at the codes given in the following

example.

 Example: Codes to demonstrate how easily two strings are concatenated.

>>>print(“hello” + “-world”)

output
hello-world

>>>print(“hello”+’-world’)

output
hello-world

>>print(‘hello’+’-world’)

output
hello-world.

Note:we cannot add string to number which generates an error.

10.2 String Repetition or Multiplication
 You cannot add string and number but we can multiply string and

number with the help of this string repetition.

 When an string is multiplied with an integer n, then the string is repeted

n times.

 Thus, the * operator is also called as string repetition operator.

 The order of string and integer is not important.

Example

>>print(“hello” * 5)

Output
hello hello hello hello hello

>>print(5 * “hello”)

Output
hello hello hello hello hello

Note:We cannot multiply two strings and cannot multiply string with

floating point number.

10.3 Slice Operations on Strings
 You can extract subsets of strings by using the slice operator ([] and [:]).

You need to specify index or the range of index of characters to be

extracted.

 The index of the first character is 0 and the index of the last character is

n-1, where n is the number of characters in the string.

 If you want to extract characters starting from the end of the string, then

you must specify the index as a negative number. For example, the index

of the last character is -1.

 Program to perform slice operation on strings

#string operations
str = ‘Python is easy !!!’
print(str)
print(str[0])
print(str[3:9])
print(str[4:])
print(str[-1])
print(str[:5])
print(str * 2)
print(str + ‘Isn’t gec’)
Output
Python is easy !!!
P
hon is
on is easy
!
Pytho
Python is easy !!! Python is easy !!!
Python is easy !!! Isn’t gec

11.Type Conversion
 In Python, it is just not possible to complete certain operations that

involves different types of data.

 For example, it is not possible to perform "2" + 4 since one operand is an

integer and the other is of string type.

>>>”20” + “30” >>> int(“2”) + int(“3”)

Output Output
‘2030’ 5

 Another situation in which type conversion is must when we want to

accept a non string value(integer or float) as an input.we know that

input function returns string,so we must typecast the input to numbers

to perform calculations on them.

 Example1:
x=input(“Enter the first number”)

y=input(“Enter the second number”)

print(x+y)

output
Enter the first number 6

Enter the second number 7

67

 Example2:
x=int(input(“Enterthefirstnumber))

y=int(input(“Enterthesecondnumber))

print(x+y)

Output
Enterthefirstnumber6

Enterthesecondnumber7

13

 Python provides various built-in functions to convert value from one data

type to another datatype.The following are the functions return new

object representing the coverted value. Some of them are given in the

following table.

12Type Casting vs Type Coercion
 we have done explicit conversion of a value from one data type to

another. This is known as type casting.

 However, in most of the programming languages including Python, there

is an implicit conversion of data types either during compilation or

during run-time. This is also known type coercion.

 For example, in an expression that has integer and floating point

numbers (like 21 + 2.1 gives 23.1), the compiler will automatically

convert the integer into floating point number so that fractional part is

not lost.

13 Limitations of Python:
 Parallel processing can be done in Python but not as elegantly as done in

some other languages (like JavaScript and Go Lang).

 Being an interpreted language, Python is slow as compared to C/C++.

Python is not a very good choice for those developing a high-graphic 3d

game that takes up a lot of CPU.

 As compared to other languages, Python is evolving continuously and

there is little substantial documentation available for the language.

 As of now, there are few users of Python as compared to those using C,

C++ or Java.

 It lacks true multiprocessor support.

 It has very limited commercial support point.

 Python is slower than C or C++ when it comes to computation heavy

tasks and desktop applications.

 It is difficult to pack up a big Python application into a single executable

file. This makes it difficult to distribute Python to non-technical.

Procedure for Executing your First Python Program
Step1: Type the program in notepad and save your python program with

the following extension

Filename.py

Step2: To Open Python Shell goto

Start->All Programs->Python 3.4->IDLE(Python GUI)

Step3: To Load your python file in the shell goto

 Select->open->Select the path of the python file where it actually Store.

Output:A Separate window will be opened

Step4: For running your Python program click on run tab on the top of

the separate window in the previous step and select run module or

simply press F5.

1.simplemsg.py
Write a Python program to display the simple message “Hello
World”
print(“Hello World”)

Output
Hello World

2.sumoftwonumbers.py
Write a Python program to add two numbers

num1=int(input("Enter first number"))

num2=int(input("Enter second number"))

res=num1+num2

print(str("The sum of two numbers is"))

print(str(num1)+"+"+str(num2)+"="+str(res))

Output:
Enter first number 10

Enter second number 20

The sum of two numbers is

10+20=30

3.distancebetweentwopoints.py
#Write a Python Program to find distance between two points using
Pythagoras Theorem
x1=(int(input("Enter x1")))
x2=(int(input("Enter y1")))
y1=(int(input("Enter x2")))
y2=(int(input("Enter y2")))
distance=((x2-x1)**2+(y2-y1)**2)**0.5
print("Distance Between two points")
print(distance)
Output:
Enter x1 8
Enter y1 9
Enter x2 10
Enter y2 12
Distance Between two points
2.2360679775

HOW TO INSTALL PYTHON
Step1:In order to use Python, it must first be installed on your computer.

Follow these steps.

Go to the python website www.python.org and click on the 'Download' menu

choice.

Step2: Next click on the Python 3.4.1 (note the version number may change)

Windows Installer to download the installer. If you know you're running a 32-

bit os, you can choose the Windows x86 MSI installer

Step3: Once the installer starts, it will ask who to install the program for.

Usually installing for all users is the best choice.

Step4: Next, it needs to know where to install the file. The default choice is

fine.

Step5: You don't need to install the entire package, but we did.

Step6: It will take a while to install.

Step7: Click 'Finish' to exit the installer

Step8: After installed, you should now have a Python menu choice. Start the

program by choosing IDLE (Python GUI)

Assignment-Cum-Tutorial Questions
Objective Questions

SECTION-A
1. Literal is of the form a+bj is called__________

2. Identify the words which describes Python []

a)Interpreted b)simple c)reliable d)all of these

3. Python allows you to specify Unicode Text by prefixing the string with which character

 []

a)U b)R c)S d)A

4. Which of the following is a valid string literal []

a)”computer” b)’computer’ c)’’’computer’’’ d) all of these

5. Which of this is valid variable name in Python []

a) This is a variable b)This_is_a_variable c)This-is-a-variable d)^var

6. A Comments in python start with which symbol______________

7. All spaces and tabs with in a string are preserved in quotes [True/False]

8. Bitwise Operator can be applied on which datatype []

a)integer b)float c)string d)list

9. Identify valid assignment statements []

a)=b+1 b)a=a+1 c)a+b=10 d)a+1=1

10. __________operator perform logical negation on each bit of the operand.

11. What should be written in the blank to generate ZeroDivisionError in the case of (25+36)/(-

8+__________)

12. Predict the output of the following program []

>>spam=”eggs”

>>print(spam*3)

a)spamspamspam b)eggseggseggs c)”spamspamspam” d)spam*3

13. Which of the following returns true []

a)>>>9=9 and 1==1

b)>>>3==5 and 7==3

c)>>>7!=1 and 5==5

d)>>>4<1 and 1>6

14. Identify the valid numeric literals in Python []

a)5678 b)5,678 c)5678.0 d)0.5678 e)0.56+10

15. You can print string without using print function [True/False]

16. Predict the output of the following program []

 >>>print (format(56.78901,’.3f’))

a)56.789 b)5.6789 c)0.56789 d)56789

17. The following statement will produce ___lines of output []

>>print(‘Good\nMorning\nWorld\n---Bye’)

a)1 b)2 c)3 d)4

18. Identify the correct arithmetic expression in python []

 a)11(12+13) b)(5*6)(7+8) c)4*(3-2) d)5***3

19. Which line of code produce error []

a)”one”+”2” b)’5’+6 c)3+4 d)”7”+’eight’

20. Predict the output of the following program []

>>>print(abs(10-20)*3)

a)-30 b)30 c)-50 d)none of these

SECTION-B

Subjective Questions

1. Describe the features of Python

2. Differentiate between literals and variables in python. (November 2018 Supplementary)

3. What are literals? Explain with the help of suitable examples?

4. Explain the significance of Escape sequences with relevant examples

5. Write briefly about Data types in Python

6. Explain in detail about Membership and Identity Operators.

7. How can the ternary operator used in python? (April 2018 Regular)

8. Give the operator precedence in python. (November 2018 Supplementary)

9. Define Expression? Explain different types of Expressions supported by Python?

10. Differentiate string with slicing operator.

11. What is tuple? What are the different operations performed on tuple? Explain with an

example? (November 2018 Supplementary)

12. Write briefly about Type Conversion process in Python.Write the meaning for the following.

str(x), chr(x), float(x), ord(x) (November 2018 Supplementary)

13. Momentum is calculated as, e=mc2, where m is the mass of the object and c is the velocity.

Write a Python program that accepts object’s mass (in kilograms) and velocity (in meters per

second) and displays its momentum.

14. a)Write a Python Program to convert temperature in Celsius to Fahrenheit

b) Write a Python Program to convert Fahrenheit to Celsius.

15. Write a Python program to calculate the area of triangle using Heron’s formula

Hint: 푠(푠 − 푎)(푠 − 푏)(푠 − 푐)

16. Evaluate the following Expression

a) True and False

b) (100<0) and (100>20)

c) not(true) and false

d) not true and false or true

e) not(100<0 or 100>20)

f)100<0 and not 100>20

17. Give an appropriate boolean expression for the each of the following

a)check if variable v is greater than or equal to 0,and less than 10

b)check if variable v is less than 10 and greater than or equal to 0,or it is equal to 20.

c)check if either the name ‘cse’ or ‘it’ appears in the list of names assigned to variable

last_names.

d)check if the name ‘cse’ appears and the name ‘it’does not appear in the list of last

name assigned to variable last_names.

18. Identify the datatype is best suitable to represent the following data values

a)Number of days in the year

b)The circumference of a rectangle

c)Yours father salary

d)Distance between moon and earth

e)Name of your best friend

f)Whether you go for the party

--------------ooo-----------------

Python 1

I.B.Tech-II-Semester 2019-20 CSE

UNIT-II

Syllabus: Decision Control and Looping Statements

Conditional and un-conditional branching, iterative statements, nesting of

decision Control Statements and loops.

Programs: Write a python program to

1. Test whether a given number is even or odd.

2. Print out the decimal equivalents of ½, 1/3 ,1/4........1/10,using for a

loop.

3. Print a count down from the given number to zero using a while loop.

4. Find the sum of all the primes below hundred.

5. Find the factorial of a given number.

Learning Outcomes:
At the end of the unit student will be able to

 understand the conditional and unconditional Statement.

 describe conditional and unconditional Statements, Decision Control

Statements .

 adapt and combine standard algorithms to solve a given problem

using decision control and looping statements.

 implement programs using python control Structure

Learning Material

Control Statements:

 A control statement is a statement that determines the control flow of a

set of instructions, i.e., it decides the sequence in which the instructions

in a program are to be executed.

 Types of Control Statements —

 Selection/Conditional Control: To execute only a selected set of

statements.

 Iterative Control: To execute a set of statements repeatedly.

Python 2

I.B.Tech-II-Semester 2019-20 CSE

 Un-conditional Control:
1. Selection /Conditional Branching Statements:

 Python language supports different types of conditional branching

statements which are as follows:

 if Statement

 if-else Statement

 Nested if statement

 if-elif-else statement.

1. 1 if Statement:
 An if statement is a selection control statement which is based on the

value of a given Boolean Expression.

Syntax:

if test_expression:
statement 1

.....

statement n

statement x

 if structure may include 1 or n statements enclosed within if block.

 First, test expression is evaluated. If the test expression is true, the

statement of if block (statement 1 to n) are executed, otherwise these

statements will be skipped and the execution will jump to statement x.

Flow chart:

Python 3

I.B.Tech-II-Semester 2019-20 CSE

Example:

1.2 if else Statement:
 The if else statement executes a group of statements when a test

expression is true; otherwise, it will execute another group of

statements.

Syntax:
if (test expression):

statement_block 1

else:
statement_block 2

statement x

 If the condition is true, then it will execute statement block 1 and if

the condition is false then it will execute statement block 2.

Flowchart:

Example: Write a program to determine whether a person is eligible to

vote:

Python 4

I.B.Tech-II-Semester 2019-20 CSE

1.3 Nested if Statements :

 A statement that contains other statements is called a compound

statement.

 To perform more complex checks, if statements can be nested, that is,

can be placed one inside the other.

 In such a case, the inner if statement is the statement part of the

outer one.

 Nested if statements are used to check if more than one conditions are

satisfied.

 if statements can be nested resulting in multi-way selection.

var = 100

if var < 200:

 print("Expression value is less than 200")

 if var == 150:

 print ("Which is 150”)

 elif var == 100:

 print ("Which is 100")

 elif var == 50:

 print ("Which is 50")

 elif var < 50:

 print ("Expression value is less than 50")

else:

 print ("Could not find true expression")

Python 5

I.B.Tech-II-Semester 2019-20 CSE

print ("Good bye!")

Output:-

Expression value is less than 200

Which is 100

Good bye!

1.4 if-elif-else Statement :
 Python supports if-elif-else statements to test additional conditions

apart from the initial test expression.

 The if-elif-else construct works in the same way as a usual if-else

statement.

 If-elif-else construct is also known as nested-if construct.

 A series of if and elif statements have a final else block, which is

executed if none of the if or elif expressions is True.

Syntax:
if (test expression 1):

statement block1
elif (test expression 2):
 statement block2

.

elif(test expression N):
 statement block N

else:
statement block X

Python 6

I.B.Tech-II-Semester 2019-20 CSE

Flowchart:

Program: To test whether a number entered by the user is negative,

positive, or zero

2. Looping Statements/Iterative Structure:

 Iterative statements are decision control statements that are used to

repeat the execution of a list of statements.

 Python supports 2 types of iterative statements-while loop and for loop.

2.1 while Loop :
 The While loop provides a mechanism to repeat one or more

statements while a particular condition is TRUE.

Python 7

I.B.Tech-II-Semester 2019-20 CSE

Syntax:
Statement x

while (condition):
Statement block

Statement y

 In while loop, the condition is tested before any of the statements in

the statement block is executed.

 If the condition is TRUE, only then the statements will be executed

otherwise if the condition is False, the control will jump to statement

y, that is the immediate statement outside the while loop block.

Flowchart:

Example: Program to print first 10 numbers using a while loop

i=0

while(i<=10):

print(i, end=” “)

i=i+1

Output: 0 1 2 3 4 5 6 7 8 9 10

2.2 for Loop:

 For loop provides a mechanism to repeat a task until a particular

condition is True. It is usually known as a determinate or definite

Python 8

loop because the programmer knows exactly how many times the loop

will repeat.

 The for...in statement is a looping statement used in Python to iterate

over a sequence of objects.

Syntax:
for loop_control_var in sequence:

statement block

Flowchart:

2.2.1 for Loop and range() Function :

o The range() function is a built-in function in Python that is used to

iterate over a sequence of numbers.

Syntax:
range(beg, end, [step])

o The range() produces a sequence of numbers starting with beg

(inclusive) and ending with one less than the number end.

o The step argument is option (that is why it is placed in brackets).

By default, every number in the range is incremented by 1 but we

can specify a different increment using step. It can be both

negative and positive, but not zero.

Example: Program to print first n numbers using the range() in a for

Python 9

I.B.Tech-II-Semester 2019-20 CSE

loop

 If range() function is given a single argument, it produces an object with

values from 0 to argument-1. For example: range(10) is equal to writing

range(0, 10).

o If range() is called with two arguments, it produces values from

the first to the second. For example, range(0, 10) gives 0-9.

o If range() has three arguments then the third argument specifies

the interval of the sequence produced. In this case, the third

argument must be an integer. For example, range(1, 20, 3) gives 1,

4, 7, 10, 13, 16, 19.

Example:

1. Program that accepts an integer (n) and computes the value of

n+nn+nnn. (Eg. If n=5, find 5+55+555).

n = int(input("Enter a number: "))
str_n = str(n)
sum = n
sum_str = str(n)
for i in range(1, 3):

sum_str = sum_str + str_n
sum = sum + int(sum_str)

print(sum)

2. Program that accepts a word from the user and reverse it

Python 10

I.B.Tech-II-Semester 2019-20 CSE

s = input("Enter a word: ")
str = ""

for i in s:
str = i + str
print("Reverse of", s, "is:", str)

2.3 Nested Loops :

 Python allows its users to have nested loops, that is, loops that can be

placed inside other loops.

 Although this feature will work with any loop like while loop as well as

for loop.

 A for loop can be used to control the number of times a particular set

of statements will be executed.

 Another outer loop could be used to control the number of times that

a whole loop is repeated.

 Loops should be properly indented to identify which statements are

contained within each for statement.

Example:
1. Program to print the following pattern

2. Program to display multiplication tables from 1 to 10

for i in range(1, 11):

for j in range(1, 11):

print(i, '*', j, '=', i*j)

Python 11

I.B.Tech-II-Semester 2019-20 CSE

2.4 Condition-controlled and Counter-controlled Loops :

2.5 The Break Statement:

 The break statement is used to terminate the execution of the nearest

enclosing loop in which it appears.

 The break statement is widely used with for loop and while loop.

 When compiler encounters a break statement, the control passes to

the statement that follows the loop in which the break statement

appears.

Syntax:
break

Example: Program to demonstrate the break statement

Python 12

I.B.Tech-II-Semester 2019-20 CSE

 Above code is meant to print first 10 numbers using a while loop, but

it will actually print only numbers from 0 to 4. As soon as i becomes

equal to 5, the break statement is executed and the control jumps to

the following while loop.

 Hence, the break statement is used to exit a loop from any point with

in its body, by passing its normal termination expression. Below,

Figure shows the transfer of control when the break statement is

encountered.

2.6 The Continue Statement:
 Like the break statement, the continue statement can only appear in

the body of a loop.

 When the compiler encounters a continue statement then the rest of

the statements in the loop are skipped and the control is

unconditionally transferred to the loop-continuation portion of the

nearest enclosing loop.

Syntax:
Continue

Example: Program to demonstrate continue statement

Python 13

I.B.Tech-II-Semester 2019-20 CSE

 Note that the code is meant to print numbers from 0 to 10.But as

soon as i becomes equal to 5, the continue statement is encountered,

so rest of the statements in the loop are skipped. In the output, 5 is

missing as continue caused early increment of i and skipping of

statement that printed the value of i on screen.

 Below figure illustrates the use of continue statement in loops.

 It can be concluded that the continue statement is somewhat the

 opposite of the break statement. It forces the next iteration of the loop

to take place, skipping any code in between itself and the test

condition of the loop.

 The continue statement is usually used to restart a statement

sequence when an error occurs.

2.7 The Pass Statement:

 Pass statement is used when a statement is required syntactically but

no command or code has to be executed.

 It specified a null operation or simply No Operation (NOP) statement.

Nothing happens when the pass statement is executed.

 The difference between a comment and pass statement is that while

the interpreter ignores a comment entirely, pass is not ignored.

 Comment is not executed but pass statement is executed but nothing

happens.

 Pass is a null statement.

Python 14

I.B.Tech-II-Semester 2019-20 CSE

Example:
1. Program to demonstrate pass statement

2.8 Difference between break, continue and pass

 The break statement terminates the execution of the nearest enclosing

loop in which it appears.

 The continue statement skips the rest of the statements in the loop

transfer the control un-conditionally to the loop-continuation portion

of the nearest enclosing loop.

 The pass statement is a do-nothing statement in a loop. It is just

added to make the loop syntactically correct. i.e, a pass statement is

written as we can not have an empty body of the loop.

2.9 The Else Statement Used With Loops:
 In Python you can have the else statement associated with a loop

statements.

 If the else statement is used with a for loop, the else statement is

executed when the loop has completed iterating.

 But when used with the while loop, the else statement is executed

when the condition becomes false.

Python 15

I.B.Tech-II-Semester 2019-20 CSE

Examples:

3. Programs:

3. 1 Write a python program to Test whether a given number is even or odd.

num = int(input("Enter a number: "))

if (num % 2==0):

 print(num, "is an even number.")

else:

print(num, "is an odd number.")

Output:
Enter a number: 5

5 is an odd number.

3. 2 Write a python program to Print out the decimal equivalents of 1/1,

1/2, 1/3, 1/4........1/10 using for loop.

 i=1

for i in range(1,11):

 value=1.0/i

 print("1/", i, "=", value)

Output:
1/ 1 = 1.0

1/ 2 = 0.5

1/ 3 = 0.333333333333

1/ 4 = 0.25

Python 16

I.B.Tech-II-Semester 2019-20 CSE

1/ 5 = 0.2

1/ 6 = 0.166666666667

1/ 7 = 0.142857142857

1/ 8 = 0.125

 1/ 9 = 0.111111111111

 1/ 10 = 0.1

3. 3. Write a python program to Print a count down from the given number

to zero using a while loop.

 num=int(input("Enter a number: "))

print("count down from ", num, "to 0 :")

while (num >= 0):

print(num)

num = num - 1

Output:

Enter a number: 6

count down from 6 to 0:

6

5

4

3

2

1

0

3.4. Write a python program to Find the sum of all the primes below

hundred.

 sum=0

for j in range(1,100):

for i in range(2,j):

 if (j% i) == 0:

Python 17

I.B.Tech-II-Semester 2019-20 CSE

 break

else:

 sum=sum+j #where j is a prime number

 print("Sum of prime numbers up to 100 is", sum)

Output:
Sum of prime numbers up to 100 is 1061

3. 5. Write a python program to find the factorial of a given number.

num=int(input("Enter a number: "))

fact=1

while (num>0):

fact=fact*num

num=num-1

print("Factorial of", num, "is",fact)

Output:
Enter a number: 6

Factorial of 6 is 720

Python 1

I.B.Tech-II-Semester 2019-20 CSE

UNIT-III

Objective: To learn use of functions and strings in developing programs in

Python language.

Syllabus:
Functions and Strings
Functions-function definition, call, return statement, Types of arguments

Recursive functions, modules.

Strings -Basic string operations, String formatting operator, Built-in

functions.

Programs:

1. Write a function cumulative_product to compute cumulative product of a

list of numbers.

2. Write function to compute gcd, lcm of two numbers. Each function

shouldn’t exceed one line.

3. Find the sum of the even-valued terms in the Fibonacci sequence whose

values do not exceed ten thousand.

4. Write a program that accepts a string from a user and re-displays the

same after removing vowels from it.

5. Write a program to calculate the length of a string.

6. Write a function to reverse a given string.

Learning Outcomes:
At the end of the unit student will be able to

 understand need for functions, variable scope and lifetime.

 identify use of modules

 use various operators in concatenating, appending, and multiplying

strings.

 develop programs using built-in string methods and functions.

Python 2

I.B.Tech-II-Semester 2019-20 CSE

Learning Material

Functions

 A function is a block of organized and reusable program code that

performs a single, specific, and well-defined task.

 Python enables its programmers to break up a program into

functions, each of which can be written more or less independently of

the others. Therefore, the code of one function is completely insulated

from the codes of the other functions.

Figure 1: Calling a function

 In figure 1 which explains how a function func1() is called to perform

a well-defined task. As soon as func1() is called, the program control

is passed to the first statement in the function. All the statements in

the function are executed and then the program control is passed to

the statement following the one that called the function.

Figure 2: Function calling another function

 In figure 2 func1() calls function named func2(). Therefore, func1() is

known as the calling function and func2() is known as the called

function. The moment the compiler encounters a function call, instead

Python 3

I.B.Tech-II-Semester 2019-20 CSE

of executing the next statement in the calling function, the control

jumps to the statements that are a part of the called function. After

called function is executed, the control is returned back to the calling

program.

 It is not necessary that the func1() can call only one function, it can

call as many functions as it wants and as many times as it wants.

For example, a function call placed within for loop or while loop may

call the same function multiple times until the condition holds true.

Need for Functions:

Figure 3: Top-down approach of solving a problem

 Each function to be written and tested separately.

 Understanding, coding and testing multiple separate functions are far

easier than doing the same for one huge function.

 When a big program is broken into comparatively smaller functions,

then different programmers working on that project can divide the

workload by writing different functions.

 All the libraries in Python contain pre-defined and pre-tested

functions which the programmers are free to use directly in their

programs, without worrying about their code details. This speed up

program development.

 Like Python libraries, programmers can also make their own functions

and use them from different points in the main program or any other

Python 4

I.B.Tech-II-Semester 2019-20 CSE

program that needs its functionalities. So code reuse is one of the

most prominent reasons to use functions.

Function Declaration and Definition:

• A function, f that uses another function g, is known as the calling function

and g is known as the called function.

• The inputs that the function takes are known as arguments/parameters.

• When a called function returns some result back to the calling function, it

is said to return that result.

• The calling function may or may not pass parameters to the called

function. If the called function accepts arguments, the calling function

will pass parameters, else not.

• Function declaration is a declaration statement that identifies a function

with its name, a list of arguments that it accepts and the type of data it

returns.

• Function definition consists of a function header that identifies the

function, followed by the body of the function containing the executable

code for that function.

Function Definition

There are two basic types of functions

1. built-in functions eg: dir(), len(), abs() etc.,

2. user defined functions.

 Function blocks starts with the keyword def.

 The keyword is followed by the function name and parentheses (()).

 After the parentheses a colon (:) is placed.

 Parameters or arguments that the function accept are placed within

parentheses.

Python 5

I.B.Tech-II-Semester 2019-20 CSE

 The first statement of a function can be an optional statement - the

docstringdescribe what the function does.

 The code block within the function is properly indented to form the

block code.

 A function may have a return[expression] statement. That is, the

return statement is optional.

 You can assign the function name to a variable. Doing this will allow

you to call same function using the name of that variable.

Figure 4: Program that subtracts two numbers using a function.

Figure 5: The syntax of a function definition.

Function Call

 Defining a function means specifying its name, parameters that are

expected, and the set of instructions.

 The function call statement invokes the function. When a function

is invoked the program control jumps to the called function to

execute the statements that are a part of that function. Once the

called function is executed, the program control passes back to the

calling function.

Python 6

I.B.Tech-II-Semester 2019-20 CSE

Function Parameters

 A function can take parameters which are nothing but some values

that are passed to it so that the function can manipulate them to

produce the desired result. These parameters are normal variables

with a small difference that the values of these variables are defined

(initialized) when we call the function and are then passed to the

function.

 Function name and the number and type of arguments in the function

call must be same as that given in the function definition.

 If the data type of the argument passed does not matches with that

expected in function then an error is generated.

Figure 6: a function that displays string repeatedly.

Figure 7: Program to demonstrate mismatch of name of function parameters

and arguments.

Note: Names of variables in function call and header of function definition

may vary.

Python 7

I.B.Tech-II-Semester 2019-20 CSE

Figure 8: Arguments may be passed in the form of expressions to the called

function.

Figure 9: Program to add two integers using functions

Variable scope and lifetime:

In python, you cannot just access any variable from any part of your

program. Some of the variables may not even exist for the entire duration of

the program. In which part of the program you can access a variable and in

which parts of the program a variable exits depends on how the variable has

been declared. Therefore, we need to understand these two things:

1. Scope of the variable: Part of the program in which a variable is accessible

is called its scope.

2. Lifetime of the variable: Duration for which the variable exits it’s called its

lifetime.

Python 8

I.B.Tech-II-Semester 2019-20 CSE

Local and Global variables:

A variable which is defined within a function is local to that function. A local

variable can be accessed from the point of its definition until the end of the

function in which it is defined. It exists as long as the function is executing.

Function parameters behave like local variables in the function. Moreover,

whenever we use the assignment operator (=) inside a function, a new local

variable is created.

Global variables are those variables which are defined in the main body of

the program file. They are visible throughout the program file. As a good

programming habit, you must try to avoid the use of global variables

because they may get altered by mistake and then result in erroneous

output.

Figure 10: lists the differences between global and local variables.

Comparison between global and local variables

Global variables Local variables

They are defined in the main body of

the program file.

They are defined within a function

and islocalto that function.

Python 9

I.B.Tech-II-Semester 2019-20 CSE

They can be accessed throughout the

program life.

They can be accessed from the point

of its definition until the end of the

block in which it is defined.

Global variables are accessible to all

functions in the program.

They are not related in any way to

other variables with the same names

used outside the function.

Using the Global Statement

To define a variable defined inside a function as global, you must use the

global statement. This declares the local or the inner variable of the function

to have module scope.

Key points to remember:

You can have a variable with the same name as that of a global variable in

the program. In such a case a new local variable of that name is created

which is different from the global variable.

Figure 11: Program to demonstrate the use of global statement.

Python 10

I.B.Tech-II-Semester 2019-20 CSE

Resolution of names

Scope defines the visibility of a name within a block. If a local variable is

defined in a block, its scope is that particular block. If it is defined in a

function, then its scope is all blocks within that function.

When a variable name is used in a code block, it is resolved using the

nearest enclosing scope. If no variable of that name is found, then a

NameError is raised. In the code given below, str is a global string because it

has been defined before calling the function.

Figure 12: Program that demonstrates using a variable defined in global

namespace.

The Return Statement

The syntax of return statement is,

return [expression]

The expression is written in brackets because it is optional. If the expression

is present, it is evaluated and the resultant value is returned to the calling

function. However, if no expression is specified then the function will return

none.

The return statement is used for two things.

• Return a value to the caller

• To end and exit a function and go back to its caller

Python 11

I.B.Tech-II-Semester 2019-20 CSE

Figure 13: Program to write another function which returns an integer to the

caller.

More on defining functions:

In this section we will discuss some more ways of defining a function.

1. Required arguments

2. Keyword arguments

3. Default arguments

4. Variable-length arguments

Required Arguments

In the required arguments, the arguments are passed to a function in

correct positional order. Also, the number of arguments in the function

call should exactly match with the number of arguments specified in the

function definition

Example:

Python 12

I.B.Tech-II-Semester 2019-20 CSE

Keyword Arguments

When we call a function with some values, the values are assigned to the

arguments based on their position. Python also allow functions to be

called using keyword arguments in which the order (or position) of the

arguments can be changed. The values are not assigned to arguments

according to their position but based on their name (or keyword).

Keyword arguments are beneficial in two cases.

• First, if you skip arguments.

• Second, if in the function call you change the order of parameters.

Example:

Default Arguments

Python allows users to specify function arguments that can have default

values. This means that a function can be called with fewer arguments than

it is defined to have. That is, if the function accepts three parameters, but

function call provides only two arguments, then the third parameter will be

assigned the default (already specified) value. The default value to an

argument is provided by using the assignment operator (=). Users can

specify adefault value for one or more arguments.

Example:

Python 13

I.B.Tech-II-Semester 2019-20 CSE

Variable-length Arguments

In some situations, it is not known in advance how many arguments will be

passed to a function. In such cases, Python allows programmers to make

function calls with arbitrary (or any) number of arguments.

When we use arbitrary arguments or variable length arguments, then the

function definition use an asterisk (*) before the parameter name. The

syntax for a function using variable arguments can be given as,

Example:

Lambda Functions or Anonymous Functions

Lambda or anonymous functions are so called because they are not declared

as other functions using the def keyword. Rather, they are created using the

lambda keyword. Lambda functions are throw-away functions, i.e. they are

just needed where they have been created and can be used anywhere a

function is required. The lambda feature was added to Python due to the

demand from LISP programmers.

Lambda functions contain only a single line. Its syntax can be given as,

Python 14

I.B.Tech-II-Semester 2019-20 CSE

Example

Documentation Strings

Docstrings (documentation strings) serve the same purpose as that of

comments, as they are designed to explain code. However, they are more

specific and have a proper syntax.

Example:

Recursive Functions

A recursive function is defined as a function that calls itself to solve a

smaller version of its task until a final call is made which does not require a

call to itself. Every recursive solution has two major cases, which are as

follows:

• base case, in which the problem is simple enough to be solved directly

without making any further calls to the same function.

Python 15

I.B.Tech-II-Semester 2019-20 CSE

• recursive case, in which first the problem at hand is divided into simpler

sub parts.

Recursion utilized divide and conquer technique of problem solving.

Example:

Recursion vs Iteration:

Recursion is more of a top-down approach to problem solving in while the

original problem is divided into smaller sub-problems.

Iteration follows a bottom-up approach that begins with what is known and

then constructing the solution step-by-step.

Pros The benefits of using a recursive program are:

 Recursive solutions often tend to be shorter and simpler than non-

recursive ones.

 Code is clearer and easier to use.

 Recursion uses the original formula to solve a problem.

 It follows a divide and conquer technique to solve problems.

 In some instances, recursion may be more efficient.

Cons The limitations of using a recursive program are:

 For some programmers and readers, recursion is difficult concept.

 Recursion is implemented using system stack. If the stack space on

the system is limited, recursion to a deeper level will be difficult to

implement.

Python 16

I.B.Tech-II-Semester 2019-20 CSE

 Aborting a recursive process in midstream is slow and sometimes

nasty.

 Using a recursive function takes more memory and time to execute as

compared to its non-recursive counterpart.

 It is difficult to find bugs, particularly when using global variables.

Conclusion: The advantages of recursion pays off for the extra overhead

involved in terms of time and space required.

Modules

 We have seen that functions help us to reuse a particular piece of

code. Module goes a step ahead. It allows you to reuse one or more

functions in your programs, even in the programs in which those

functions have not been defined.

 Putting simply, module is a file with a.py extension that has

definitions of all functions and variables that you would like to use

even in other programs. The program in which you want to use

functions or variables defined in the module will simply import that

particular module (or .py file).

 Modules are pre-written pieces of code that are used to perform

common tasks like generating random numbers, performing

mathematical operations, etc.

 The basic way to use a module is to add import module_name as the

first line of your program and then writing module_name.var to access

functions and values with the name var in the module.

The from…import Statement

A module may contain definition for many variables and functions.

When you import a module, you can use any variable or function

defined in that module. But if you want to use only selected variables

or functions, then you can use the from...import statement. For

example, in the aforementioned program you are using only the path

Python 17

I.B.Tech-II-Semester 2019-20 CSE

variable in the sys module, so you could have better written from sys

import path.

Example:

 To import more than one item from a module, use a comma separated list.

For example, to import the value of pi and sqrt() from the math module you

can write,

Making your own Modules

Every Python program is a module, that is, every file that you save as .py

extension is a module.

 Modules should be placed in the same directory as that of the

program in which it is imported. It can also be stored in one of the

directories listed in sys.path.

Python 18

I.B.Tech-II-Semester 2019-20 CSE

The dir() function

dir() is a built-in function that lists the identifiers defined in a module. These

identifiers may include functions, classes and variables. If no name is

specified, the dir() will return the list of names defined in the current

module.

Example: demonstrate the use of dir() function.

The Python Module:

 We have seen that a Python module is a file that contains some

definitions and statements. When a Python file is executed directly, it is

considered the main module of a program.

 Main modules are given the special name __main__ and provide the basis

for a complete Python program.

 The main module may import any number of other modules which may

in turn import other modules. But the main module of a Python program

cannot be imported into other modules.

Modules and Namespaces

A namespace is a container that provides a named context for identifiers.

Two identifiers with the same name in the same scope will lead to a name

clash. In simple terms, Python does not allow programmers to have two

different identifiers with the same name. However, in some situations we

need to have same name identifiers. To cater to such situations,

namespaces is the keyword. Namespaces enable programs to avoid potential

Python 19

I.B.Tech-II-Semester 2019-20 CSE

name clashes by associating each identifier with the namespace from which

it originates.

Example:

Local, Global, and Built-in Namespaces

During a program’s execution, there are three main namespaces that are

referenced- the built-in namespace, the global namespace, and the local

namespace. The built-in namespace, as the name suggests contains names

of all the built-in functions, constants, etc that are already defined in

Python. The global namespace contains identifiers of the currently executing

module and the local namespace has identifiers defined in the currently

executing function (if any).

When the Python interpreter sees an identifier, it first searches the local

namespace, then the global namespace, and finally the built-in namespace.

Therefore, if two identifiers with same name are defined in more than one of

these namespaces, it becomes masked.

Example: Program to demonstrate name clashes in different namespaces.

Python 20

I.B.Tech-II-Semester 2019-20 CSE

Module Private Variables

 In Python, all identifiers defined in a module are public by default.

This means that all identifiers are accessible by any other module that

imports it. But, if you want some variables or functions in a module to

be privately used within the module, but not to be accessed from

outside it, then you need to declare those identifiers as private.

 In Python identifiers whose name starts with two underscores (__) are

known as private identifiers. These identifiers can be used only within

the module. In no way, they can be accessed from outside the module.

 Therefore, when the module is imported using the import * form

modulename, all the identifiers of a module’s namespace is imported

except the private ones (ones beginning with double underscores).

Thus, private identifiers become inaccessible from within the

importing module.

Advantages of Modules:

 Python modules provide all the benefits of modular software design.

These modules provide services and functionality that can be reused

in other programs.

Python 21

I.B.Tech-II-Semester 2019-20 CSE

 Even the standard library of Python contains a set of modules. It

allows you to logically organize the code so that it becomes easier to

understand and use.

Programs:

1. Write a function cumulative product to compute cumulative product of a

list of numbers.

Program:
def cumulative_product():

 list=[1,2,3,4]

 prod=1

 for i in list:

 prod=prod*i

 print prod

cumulative_product()

Output:

2. Write function to compute gcd, lcm of two numbers. Each function

shouldn’t exceed one line.

Program:
from fractions import gcd

print gcd(5,25)

def lcm():

 a=60

 b=40

 print (a * b) // gcd(a, b)

lcm()

Python 22

I.B.Tech-II-Semester 2019-20 CSE

output:

3. Find the sum of the even-valued terms in the Fibonacci sequence whose

values do not exceed ten thousand.

program:
i=0

j=1

sum=0

while(i<10000):

 i=i+j

 j=i-j

 if(i%2==0):

 sum+=i

print sum

output:

Python 23

I.B.Tech-II-Semester 2019-20 CSE

Strings

 Python treats strings as contiguous series of characters delimited by

single, double or even triple quotes. Python has a built-in string class

named "str" that has many useful features. We can simultaneously

declare and define a string by creating a variable of string type. This

can be done in several ways which are as follows:

 name = "India" graduate = 'N' country = name nationality =

str("Indian")

 Indexing: Individual characters in a string are accessed using the

subscript ([]) operator. The expression in brackets is called an index.

The index specifies a member of an ordered set and in this case it

specifies the character we want to access from the given set of

characters in the string.

 The index of the first character is 0 and that of the last character is n-

1 where n is the number of characters in the string. If you try to

exceed the bounds (below 0 or above n-1), then an error is raised.

 Traversing a String: A string can be traversed by accessing

character(s) from one index to another. For example, the following

program uses indexing to traverse a string from first character to the

last.

Example:

Python 24

I.B.Tech-II-Semester 2019-20 CSE

Concatenating, Appending and Multiplying Strings

Example: Program to concatenate two strings using + operator

Example: Program to repeat a string using * operator

Example: Program to append a string using += operator

Strings are Immutable

Python strings are immutable which means that once created they cannot

be changed. Whenever you try to modify an existing string variable, a new

string is created.

Example:

Python 25

I.B.Tech-II-Semester 2019-20 CSE

String Formatting Operator

 The % operator takes a format string on the left (that has %d, %s, etc)

and the corresponding values in a tuple on the right. The format

operator, % allow users to construct strings, replacing parts of the

strings with the data stored in variables. The syntax for the string

formatting operation is:

 "<Format>" % (<Values>)

Example:

Python 26

I.B.Tech-II-Semester 2019-20 CSE

Built-in String Methods and Functions

Python 27

I.B.Tech-II-Semester 2019-20 CSE

Programs:

1. Write a program that accepts a string from a user and re-displays the

same after removing vowels from it.

Program:
while True:

 print('Enter x for exit.')

 string = raw_input('Enter any string: ')

 if string == 'x':

 break

 else:

 newstr = string

Python 28

I.B.Tech-II-Semester 2019-20 CSE

 print("\nRemoving vowels from the given string...")

 vowels = ('a', 'e', 'i', 'o', 'u')

 for x in string.lower():

 if x in vowels:

 newstr = newstr.replace(x,"")

 print("New string after successfully removing all vowels!")

 print(newstr,"\n")

output:

2. Write a program to calculate the length of a string.

Program:
string=raw_input("Enter string:")

count=0

for i in string:

 count=count+1

print("Length of the string is:")

print(count)

Python 29

I.B.Tech-II-Semester 2019-20 CSE

output:

3. Write a function to reverse a given string.

Program:

def reverse(text):

 lst = []

 count = 1

 for i in range(0,len(text)):

 lst.append(text[len(text)-count])

 count += 1

 lst = ''.join(lst)

 return lst

print reverse('Python Programming')

output:

Python 30

I.B.Tech-II-Semester 2019-20 CSE

UNIT-III

Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

1. User-defined functions are created by using the __________ keyword.

2. The _______ is used to uniquely identify the function.

3. The return statement is optional [Yes/No]

4. DRY principle makes the code []

 a) Reusable b) Loop forever c)Bad and repetitive d)
Complex

5. ________ of a variable determines the part of the program in which it is
accessible []

 a) Scopeb) Lifetime c) Data Type d) Value

6. Arbitrary arguments have which symbol in the function definition before
the parameter name? []

 a) & b) # c) % d) *

7. _____dir()____ is built-in function that lists the identifiers defined in a
module.

8. Arguments may be passed in the form of expressions to the called
functi
on
[yes/
No]

9. In Python a string is appended to another string by using which operator?
 []

 a) + b)* c)[] d)+=

10. Which error is generated when a character in a string variable is
modified?
[]

Python 31

I.B.Tech-II-Semester 2019-20 CSE

a) IndexError b) NameError c) TypeError d)BoundError

11. The code will print how many numbers? []

def display(x):

fori in range(x):

print(i)

return

display(10)

a) 0 b) 1 c) 9 d) 10

12. How many times will the print() execute in the code given below? []

 def display():

 print(‘a’)

 print(‘b’)

 return

 print(‘c’)

 print(‘d’)

 a) 1 b) 2 c) 3 d)4

13. What is the output of this code? []

 import random as r

 print(random.randomint(1,10))

 a) An error occurs b) 1 c) 10 d) any random value.

14. Identify the correct way of calling a function named display() that prints
Hello on the screen.

 a) print(display) b) displayHello []

 c) result = display() d) displayHello()

15. Find the error in following Python code. []

 Def func():

Python 32

I.B.Tech-II-Semester 2019-20 CSE

 Print(“Hello world”)

a) Hello world b) “Hello world” c) no function call d) none of the

above

16. Find the output of the following Python code. []

 deffunc(var):

 var+=1

 var *=2

 print(var)

 func(9)

 print(var)

a) 20 20 b) 20 c) 9 d) 20'var' is not defined

17. Find the output in following Python code. []

 Def func():

 global x

 print(“x=”,x)

 x=100

 print(‘x is now = ‘,x)

 x=10

 func()

 print(‘x =’,x)

 a) 100 10 100 b) 100 10 10

 c) NameError: name 'x' is not defined d) Error 100 10

18. Find the output in following Python code. []

 def display(name, deptt, sal):

 print(“Name:”, name)

 print(“Department: “, deptt)

Python 33

I.B.Tech-II-Semester 2019-20 CSE

 print(“Salary: “, sal)

 display (sal = 100000, name=”Tavisha”, deptt = “sales”)

 display (deptt = “HR”, name=”Dev”, sal = 50000)

a) Name: Tavisha c) Name: Tavisha

Department: sales Department: sales

 Salary: 100000 Salary: 100000

Name: Dev Sequence Error:

Department: HR

Salary: 50000

b) Name: Tavisha d) Indentation Error:

Department: sales

 Salary: 100000

Department: HR

Name: Dev

Salary: 50000

19. “Cool” become “COOL”, which two functions must have been applied?

 a) strip() and upper() b) strip() and lower() []

 c) strip() and capitalize() d) lstrip() and rstrip()

20. Find the error in following Python code. []

 str = “Hello world”

 str[6] = ‘w’

 print(str)

a) Hello world c) in line 2 use double

quotes

b) 'str' object does not support item assignment d) Hello wworld

Python 34

I.B.Tech-II-Semester 2019-20 CSE

SECTION-B

Subjective Questions

1. Define function and give its advantages.

2. Differentiate between local and global variables.

3. What are modules? How do you use them in your programs?

4. Write short notes on

a) Keyword arguments

b) Default arguments

5. What are docstrings?

6. Write short note on format operator.

7. With the help of an example, explain how we can create string variables

in Python.

8. What are user-defined functions? Explain with the help of example.

9. Briefly describe String formatting operator with an example.

10. List out Advantages and disadvantages of Recursion.

11. Write a python program to find the factorial of a given number using

recursion.

12. Write any 5 Built-in string methods and functions usage and example.

Python Programming UNIT4

Departments of CSE and IT. Page 1

Unit-4

Tuples and Lists

Objective:

 To familiarize concepts of tuples and lists in Python programming.

Outcome:

Apply lists and tuples in developing Python programs.

Syllabus

Tuples – creating, accessing values, updating, deleting elements in a tuple, Basic Tuple operations.

Lists – accessing, updating values in Lists, Basic List operations, mutability of lists.

Programs: Write a python program to

1. swap two values using Tuple assignments.

2. sort a Tuple of values.

3. scans an email address and forms a tuple of user name and domain name.

4. print sum and average of the elements present in the list.

5. forms a list of first character of every word present in another list.

Learning Outcomes:

At the end of the unit student will be able to

1. demonstrate creating, accessing elements in a tuples and lists.

2. describe updating and deleting elements in a tuple.

3. apply various operations on lists and tuple.

4. develop programs using lists and tuples.

Python Programming UNIT4

Departments of CSE and IT. Page 2

Learning Material

Tuple Definition:

1. A tuple is a sequence of immutable objects. That is, you can change the value of one or more items in a

 list; you cannot change the values in a tuple.

2. Tuples use parenthesis to define its elements. Whereas lists use square brackets.

Creating a Tuple:

Creating a tuple is as simple as putting different comma-separated values. Optionally you can put these

comma-separated values between parentheses.

Syntax: Tup1=(val1,val2,….)

 Where val (or values) can be an integer, a floating number, a character, or a string.

Examples:

1) Tup1=() #creates an empty tuple.

print(Tup1)

output:

note: no ouput will be displayed.

2) Tup1=(5) #creates a tuple with single element

print(Tup1)

Output:

 5

3) Tup1=(1,2,3,4,5) #creates a tuple of integers

print (Tup1)

Tup2=(‘a’,’b’,’c’,’d’) #creates a tuple of characters

print(Tup2)

Tup3=(“abc”,”def”,”ghi”) #creates a tuple of strings

print(Tup3)

Python Programming UNIT4

Departments of CSE and IT. Page 3

Tup4=(1.2,2.3,3.4,4.5,5.6) #creates a tuple of floating point numbers

print(Tup4)

Tup5=(1,”abc”,2.3,’d’) #creates a tuple of mixed values

print(Tup5)

Output:

1,2,3,4,5

‘a’,’b’,’c’,’d’

‘abc’,’def’,’ghi’

1.2,2.3,3.4,4.5,5.6

1,’abc’,2.3,’d’

4) A Tuple with parenthesis

print(‘a’,”bcd”,2,4.6)

Output:

A bcd2 4.6

5) Default Tuple without parenthesis

a,b=10,20

print(a,b)

Output:

10 20

Accessing values of tuples:

 Like strings and lists tuples indices also starts with 0.

 The operations performed are slice, concatenate etc.,

 To access values in tuple, slice operation is used along with the index.

Example :

1) Tup1=(1,2,3,4,5,6,7,8,9,10)

print(“Tup[3:6]=”,Tup1[3:6])

print(“Tup[:8]=”,Tup1[:4])

Python Programming UNIT4

Departments of CSE and IT. Page 4

print(“Tup[4:]=”,Tup1[4:])

print(“Tup[:]=”,Tup1[:])

Output:

Tup[3:6]=(4,5,6)

Tup[:8]=(1,2,3,4)

Tup[4:]=5,6,7,8,9,10)

Tup[:]=(1,2,3,4,5,6,7,8,9,10)

The tuple values can be accessed using square brackets:

2) Tuple =(1,2,3,4,5.5,’str’)

Input:

1.print tuple

2.print tuple[5]

3.print tuple[1:5]

Output:

1.1,2,3,4,5.5,’str’

2.’str’

3.2,3,4,5.5

Updating tuples:

As we all know tuples are immutable objects so we cannot update the values but we can just extract the

values from a tuple to form another tuple.

Example:

1) Tup1=(1,2,3,4,5)

Tup2=(6,7,8,9,10)

Tup3=Tup1+Tup2

Python Programming UNIT4

Departments of CSE and IT. Page 5

print(Tup3)

Output:

(1,2,3,4,5,6,7,8,9,10)

2) Tup1=(1,2,3,4,5)

Tup2=(‘sree’,’vidya’,’ram’)

Tup3=Tup1+Tup2

print Tup3

Output:

(1,2,3,4,5,’sree’,’vidya’,’ram’)

Deleting elements of a tuple:

1.Deleting a single element in a tuple is not possible as we know tuple is a immutable object.

Hence there is another option to delete a single element of a tuple i.e..,you can create a new tuple that has

all elements in your tuple except the ones you don’t want.

Example:

1) Tup1=(1,2,3,4,5)

del Tup1[3]

print Tup1

Output:

Traceback (most recent call last):

File "test.py", line 9, in <module>

del Tup1[3]

Type error: ‘tuple’ object doesn’t support item deletion

2) however, you can always delete the entire tuple by using del statement.

Tup1=(1,2,3,4,5)

Python Programming UNIT4

Departments of CSE and IT. Page 6

del Tup1

print Tup1

Output:

Traceback (most recent call last):

File "test.py", line 9, in <module>

print Tup1;

NameError: name 'Tup1' is not defined

Key Note: Note that exception is raised because you are now trying to print a tuple that has already been

deleted.

Basic tuple operations:

Like strings and lists,you can also perform operations like concatenation, repetition,etc. on tuples. The

only difference is that a new tuple should be created when a change is required in an existing tuple.

Operation Expression Output

Length len((1,2,3,4,5,6)) 6

Concatenation (1,2,3)+(4,5,6) (1,2,3,4,5,6)

Repetition (‘Good..’)*3 ‘Good ..Good..Good’

Membership 5 in (1,2,3,4,5,6,7,8,9) True

Iteration for i in (1,2,3,4,5,6,7,8,9,10):

 print(i,end=’ ‘)

1,2,3,4,5,6,7,8,910

Comparision(Use >,<,==) Tup1=(1,2,3,4,5)

Tup2=(1,2,3,4,5)

print(Tup1>Tup2)

False

Maximum max(1,0,3,8,2,9) 9

Python Programming UNIT4

Departments of CSE and IT. Page 7

Minimum min(1,0,3,8,2,9) 0

Convert to tuple(converts a

sequence into a tuple)

tuple(“Hello”)

tuple([1,2,3,4,5])

(‘H’,’e’,’l’,’l’,’o’)

(1,2,3,4,5)

Sorting(The sorted() function

takes elements in a tuple and

returns a new sorted list (does

not sort the tuple itself)).

t=(4,67,9)

sorted(t)

[4, 9, 67]

1) Length of the tuple:

Ex:

Input:

Tup1= (1,2,3,4,5)

print len (Tup1)

Output:

5

2) Concatenation:

Ex:

Input:

Tup1=(1,2,3,4)

Tup2=(5,6,7)

print tup1+tup2

Output:

(1,2,3,4,5,6,7)

3) Repetition:

Python Programming UNIT4

Departments of CSE and IT. Page 8

Ex:

Input:

Tuple1=(‘my’)

print tuple1*3

Output:

(‘my’,’my’,’my’)

4) Membership:

Ex:

Input:

Tuple1=(1,2,3,4,6,7)

5) Iteration:

Ex:

Input:

For i in (1,2,3,4,5,6,7,8,9,10):

print (i,end=’ ‘)

Output:

1,2,3,4,5,6,7,8,9,10

6) Comparison:

Ex:

Input:

Tup1 = (1,2,3,4,5)

Tup2 =(6,7,8,9,10)

Python Programming UNIT4

Departments of CSE and IT. Page 9

print(Tup1<tup2)

Output:

True

7) Maximum:

Ex:

Input:

Max(1,2,6,5,4)

Output:

6

8) Minimum:

Ex:

Input:

Min(1,2,3,4,5)

Output:

1

9) Convert to tuple:

Ex:

Input:

Tuple(“vidya”)

Output:

(‘v’,’i’,’d’,’y’,’a’)

LISTS

Python Programming UNIT4

Departments of CSE and IT. Page 10

The most basic data structure in Python is the sequence. Each element of a sequence is assigned a

number - its position or index. The first index is zero, the second index is one, and so forth. There are

certain things you can do with all sequence types. These operations include indexing, slicing, adding,

multiplying, and checking for membership.

Creating a List:

 Creating a list is as simple as putting different comma-separated values between square brackets.

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

Syntax:

List_variable = [val1,val2,…]

Example:

1) list_A =[1,2,3,4]

print(list_A)

Output

 [1,2,3,4]

2) list_C=[‘Good”,”Going”]

print(list_C)

Output

 [‘Good’,’Going’]

Accessing values in lists:

 Similar to strings, lists can be sliced and concatenated.

 To access values in lists, square brackets are used to slice along with index or indices to get value

stored at that index.

 syntax

s=list[start:stop:step]

For Example:

Python Programming UNIT4

Departments of CSE and IT. Page 11

Seq=List[::2] # get every other element, starting with index 0.

Seq=List[1::2] # get every other element, starting with index 1.

 Example 1:

num_list=[1,2,3,4,5,6,7,8,9,10]

print(“num_list is:”,num_list)

print(“first elemnent in the list is”,num_list[0])

print(“num_list[2:5]=”,num_list[2:5])

print(“num_list[::2]=”,num_list[::2])

print(“num_list[1::3]=”,num_list[1::3])

Output:

 num_list is: [1,2,3,4,5,6,7,8,9,10]

first elemnent in the list is 1

num_list[2:5]= [3,4,5]

num_list[::2]= [1,3,5,7,9]

num_list[1::3]= [2,5,8]

Updating values in the lists:

 once created, one or more elements of a list can be easily updated by giving the slice on the left-

hand side of the assignment operator.

 You can also append new values in the list and remove existing values from the list using the

append() method and del statement respectively.

Example:

1) num_list= [1,2,3,4,5,6,7,8,9,10]

print(“list is:”,num_list)

num_list[5]=100

print(“List after updation is:”,num_list)

Python Programming UNIT4

Departments of CSE and IT. Page 12

num_list.append(200)

print(“List after appending a value is: “,num_list)

del num_list[3]

print(“List after deleting a value is:”,num_list)

Output:

list is: [1,2,3,4,5,6,7,8,9,10]

List after updation is: [1,2,3,4,5,100,7,8,9,10]

List after appending a value is: [1,2,3,4,5,100,7,8,9,10,200]

List after deleting a value is: [1,2,3,5,100,7,8,9,10,200]

Basic list operations:

Operation Description Example Output

len Returns length of list len([1,2,3,4,5,6,7,8,9,10]) 10

concatenati

on

Joins two lists [1,2,3,4,5]+[6,7,8,9,10] [1,2,3,4,5,6,7,8,9,10]

repetition Repeats elements in the lists “Hello”,”World”*2 [‘Hello’,’World’,’Hello’,’Wo

rld’]

in Checks if the value is present

in the list

‘a’ in[‘a’,’e’,’i’,’o’,’u’] True

not in Checks if the value is not

present in the list

3 not in [0,2,4,6,8] True

max Returns maximum value in

the list

num_list=[6,3,7,0,1,2,4,9]

print(max(num_list))

9

min Returns minimum value in the

list

num_list=[6,3,7,0,1,2,4,9]

print(min(num_list))

0

sum Adds the values in the list that

has numbers

num_list=[1,2,3,4,5,6,7,8,9

,10]

print(“SUM=”,sum(num_li

SUM=55

Python Programming UNIT4

Departments of CSE and IT. Page 13

st))

all Returns True if all elements

of the list are true(or if the list

is empty)

num_list=[0,1,2,3]

print(all(num_list))

False

any Returns True if any element

of the list is true. if the list is

empty return false

num_list=[6,3,7,0,1,2,4,9]

print(any(num_list))

True

list Converts

iterable(tuple,string,set,dictio

nary)

list1=list(“HELLO”)

print(list1)

[‘H’,’E’,’L’,’L’,’O’]

sorted Returns a new sorted list. The

original list not sorted

list1=[3,4,1,2,7,8]

list2=sorted(list1)

print(list2)

[1,2,3,4,7,8]

Mutability of lists:

 Unlike strings, lists are mutable.

 This means we can change an item in a list by accessing it directly as part of the assignment

statement.

 Using the indexing operator (square brackets) on the left side of an assignment, we can update one

of the list items.

Example:

fruit = ["banana", "apple", "cherry"]

print(fruit)

fruit[0] = "pear"

fruit[-1] = "orange"

print(fruit)

Python Programming UNIT4

Departments of CSE and IT. Page 14

Output:

['banana', 'apple', 'cherry']

['pear', 'apple', 'orange']

Functional Programming:

 Functional Programming decomposes a problem into a set of functions. The map(),filter(), and

reduce() functions.

1) map() Function:

The map() function applies a particular function to every element of a list.

 Syntax:

map(function,sequence)

 After applying the specified function in the sequence, the map() function returns the

modified list.

Ex: Program that adds 2 to every value in the list.

 def add_2(x):

 x+=2

 return x

 num_list=[1,2,3,4,5,6,7]

 print(“original list is:”,num_list)

 new_list=list(map(add_2,num_list))

 print(“modified list is:”,new_list)

output:

original list is: [1,2,3,4,5,6,7]

modified list is:[3,4,5,6,7,8,9]

Python Programming UNIT4

Departments of CSE and IT. Page 15

2) reduce ():

The reduce() function with syntax as given below returns a single value generated by

calling the function on the first two items of the sequence, then on the result and the next

item and so on.

Syntax: reduce(function,sequence)

Ex: Program to calculate the sum of values in a list using the reduce() function.

 import functools # functools is a module that contains the function reduce()

 def add(x,y):

 return x+y

 num_list=[1,2,3,4,5]

 print(“sum of values in list=”)

 print(functools.reduce(add,num_list))

Output:

 sum of values in list= 15

3) filter() function:

It constructs a list from those elements of the list for which a function returns True.

 Syntax:

 filter(function,sequence)

 As per the syntax filter() function returns a sequence that contains items from the sequence for

which the function is True. If sequence is a string, Unicode, or a tuple, then the result will be the same

type;

 Ex: Program to create a list of numbers divisible by 2 or 4 using list comprehension.

 def check(x):

 if(x%2==0 or x%4 ==0):

 return 1

Python Programming UNIT4

Departments of CSE and IT. Page 16

 #call check() for every value between 2 to 21

 evens=list(filter(check,range(2,22))

 print(evens)

 Output:

 [2,4,6,8,10,12,14,16,18,20]

 programs:

1. Write a program to swap two values using Tuple assignments.

Program: (val1,val2,val3)=(1,2,3)

(tup1,tup2,tup3)=(4,5,6)

(a,b,c)=(val1,val2,val3)

(val1,val2,val3)=(tup1,tup2,tup3)

(tup1,tup2,tup3)=(a,b,c)

print (val1,val2,val3)

print (tup1,tup2,tup3)

Output:

(4, 5, 6)

(1, 2, 3)

2. Write a program to sort a Tuple of values.

Program: tup=[5,1,40,8,6,2,1]

print(sorted(tup))

Output:

[1, 1, 2, 5, 6, 8, 40]

Python Programming UNIT4

Departments of CSE and IT. Page 17

3. Write program that scans an email address and forms a tuple of user name and domain name.

Program:

 addr =input('Enter email address:')

(uname, domain) = addr.split('@')

print('Username:',uname)

print('domain name:',domain)

Output:

 Enter email address:gec@gmail.com

Username: gec

domain name: gmail.com

4. Write a program to print sum and average of the elements present in the list.

Program:

lst = []

num = int(input('How many numbers: '))

for n in range(num):

 numbers = int(input('Enter number '))

 lst.append(numbers)

print("Sum of elements in given list is :", sum(lst))

avg=sum(lst)/num

print(avg)

Output:

How many numbers: 7

Enter number 1

Enter number 2

Enter number 3

Python Programming UNIT4

Departments of CSE and IT. Page 18

Enter number 4

Enter number 5

Enter number 6

Enter number 7

Sum of elements in given list is : 28

4

5. Write a program that forms a list of first character of every word present in another list.

Program:

 b= []

l= ["gudlavalleru","engineering","college"]

for item in l:

 b.append(item[0])

print(b)

Output: [‘g’,’e’,’c’]

Python Programming UNIT4

Departments of CSE and IT. Page 19

Assignment-Cum-Tutorial Questions

A) Objective Questions

1. If list=[1,2,3,4,5] then the list[5] will result in-------------------- []

(a) 4 (b) 3 (c) 2 (d) Index Error

2. If List=[1,2,3,4,5] and rewrite List[3]=List[1], then what will be the List[3] []

(a) 1 (b) 3 (c) 2 (d) 4

3. In lists index value starts from Zero. [True/False] []

4. print len((1,2,3,4,5,6)) is []

(a) 5 (b) 6 (c) 21 (d) 7

5. Tuple is immutable and list is mutable. [True/False]

6. It is possible to add, edit, and delete elements from a list. [True/False]

7. list=['a','b','c','d','e'] output for print list[2:5] = ['c', 'd', 'e'].

8. tuple=('abcd',23,2.4,1)

print tuple[:3] what is the output? []

a) ('abcd',23,2.4) b) (1) c) (23,2.4,1) d) ('abcd',23,2.4,1)

9. what is the output of print tuple[2:] if tuple=('abcd',786,2.23,1,2) []

a) (cd,786,2.23,1,2) b) (2.23,1,2) c) (786,2.23,1,2) d) (1,2)

10. Suppose t = (1, 2, 4, 3), which of the following is incorrect? []

 a) print(t[3]) b) t[3] = 45

 c) print(max(t)) d) print(len(t))

 11. What is the output of the program: []
 for fruit in ['apple','banana','mango']:

 print("I like",fruit)

a) [apple’,’banana’,’mango’] b) I like ‘apple’ c) I like apple d) I like

 I like ‘banana’ I like banana I like

 I like ‘mango’ I like mango I like

Python Programming UNIT4

Departments of CSE and IT. Page 20

12. What is the output of the program []

my_list = ['p','r','o','b','l','e','m']

print('p' in my_list)

print('a' in my_list)

print('c' not in my_list)

a) True b)True c)False d) False

False True True True

True False False True

 13. What is the output of the program []

my_tuple = ('p','e','r','m','i','t')

print(my_tuple[-1])

print(my_tuple[-6])

a) t b) t c) p d) t

p t p NULL

14. What is the output of the program []

 my_tuple = ('p','r','o','g','r','a','m','i','z')

 print(my_tuple[1:4])

 print(my_tuple[:-7])

 print(my_tuple[7:])

 print(my_tuple[:])

a) ('r', 'o', 'g') b) (‘p’,’r’,’o’)

('p', 'r') (‘r’,’p’)

('i', 'z') (‘z’,’’i’)

('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z') ('p','r','o','g','r','a','m','i','z')

c)('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z') d) ('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z')

('r', 'o', 'g') ('i', 'z')

Python Programming UNIT4

Departments of CSE and IT. Page 21

('p', 'r') ('p', 'r')

 ('i', 'z') ('r', 'o', 'g')

 15. What is the output of the program []

print((1, 2, 3) + (4, 5, 6))

print(("Repeat",) * 3)

a) (1, 2, 3, 4, 5, 6) b) (‘Repeat’,Repeat’,’Repeat’)

('Repeat', 'Repeat', 'Repeat') (1,2,3,4,5,6)

 c)(1,2,3)+(4,5,6) d) (“Repeat”,)*3

 “Repeat” (1,2,3)+(4,5,6)

 16. What is the output of the program []

my_tuple = ('a','p','p','l','e',)

print(my_tuple.count('p'))

print(my_tuple.index('l'))

a) 2 b) 2 c) 3 d) 3

3 2 2 3

 17. What is the output of the program []

 pow2 = [2 ** x for x in range(10)]

 print(pow2)

 a) [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

 b) [512,256,128,64,32,16,8,4,2,1]

 c) [1,2,3,4,5,6,7,8,9,10]

 d) [1,3,5,7,9]

 18. What is the output of the program []

 my_list = ['p','r','o','b','e']

 print(my_list[-1])

 print(my_list[-5])

 a) e b) e c) p d) e

 NULL p e e

Python Programming UNIT4

Departments of CSE and IT. Page 22

 19. What is the output of the program []

 odd=[1,3,5]

 Print(odd+[9,7,5])

 Print([“re”]*3)

 a) [1,3,5,9,7,5] b) [1,3,5,9,7]

 [“re”,”re”,”re”] [“re”,”re”,”re”]

c) (odd+[9,7,5]) d) [1,3,5]

 ([“re”]*3) ([“re”]*3)

 20. What is the output of the program []

 odd = [1, 9]

 odd.insert(1,3)

 print(odd)

 odd[2:2] = [5, 7]

 print(odd)

a) [1, 3, 9] b) [1,3,5,7,9] c) [1,9,3] d) [1,9,1,3]

[1, 3, 5, 7, 9] [1,3,5,7,9] [1,9,3,5,7] [1,9,1,3,5,7]

B) Subjective Questions

1. What is negative index in list and tuple? [April-2018]

2. What is tuple? What are the different operations performed on tuple? Explain with an example? [

NOV-2018]

3. Illustrate the ways of creating the tuple and the tuple assignment with suitable programs. [April-

2018]

4. Summarize basic List operations with examples. [NOV-2018]

5. How can you access and update values in a list?

6. Explain mutability of lists?

7. Write a set of commands that covers at least five tuple functions and five list functions?

8. Write a program to find sum of all even numbers in a list?

Python Programming UNIT4

Departments of CSE and IT. Page 23

9. Write a program that reverses a list using a loop?

10. Write a program to find whether a particular element is present in the list?

11. Write a program that finds the sum of all the numbers in a list using a while loop?

12. Write a program that forms a List of first character of every word present in another List. [NOV-

2018]

13. Write a program that creates a list[‘a’,’b’,’c’], then create a tuple from that list.

14. Write a program that converts a list of characters into their corresponding ASCII values using

map() function.

15. Write a program using filter function to list cubes of numbers from 1-10.

16. Write a code snippet in Python to Access Elements of a Tuple. [NOV-2018]

17. Write code snippets in Python for modifying and deleting Elements of Tuple. [NOV-2018]

18. “Tuples are immutable”. Explain with examples. [April-2018]

Unit-V

Dictionaries

Objective:

 To familiarize concepts of dictionaries in Python programming.

Outcome:

Apply dictionaries in developing Python programs.

Syllabus:

 Dictionaries-creating a Dictionary, adding an item, deleting items, sorting

items, looping over a dictionary, basic dictionary operations, built in functions.

Lab Programs:

1. Write a program to count number of characters in the string and store them in dictionary.

2. Write a program to sort keys of Dictionary.

3. Write a program that prints maximum and minimum value in a dictionary.

Learning Outcomes:

At the end of the unit student will be able to

1. Understand creating, accessing elements in dictionaries.

2. Describe updating and deleting elements in dictionaries.

3. Discuss various dictionaries operations.

4. Implement programs using dictionaries.

Learning Material:

 Dictionary:

o It is a data structure in which we store values as a pair of key and value.

o Each key is separated from its value by a colon (:), and consecutive items are

separated by commas.

o The entire items in a dictionary are enclosed in curly brackets ({}).

Syntax:

dictionary_name = {key_1: value_1, key_2: value_2, key_3: value_3}

If there are many keys and values in dictionaries, then we can also write

just one key-value pair on a line to make the code easier to read and understand. This is

shown below.

dictionary_name = {key_1: value_1, key_2: value_2, key_3: value_3 , ….}

o Keys in the dictionary must be unique and be of any immutable data type (like

Strings, numbers, or tuples), there is no strict requirement for uniqueness and type

of values.

o Values of a key can be of any type.

o Dictionaries are not Sequences, rather they are mappings.

o Mappings are collections of objects that are store objects by key instead of by

relative position.

Creating a Dictionary:

o The Syntax to create an empty dictionary can be given as:

Dictionary_variable= { }

o The Syntax to create a dictionary with key-value pair is:

Dictionary_variable= {key1:val1, key2:val2……}

o A dictionary can be also created by specifying key-value pairs separated by a

colon in curly brackets as shown below.

o Note that one key value pair is separated from the other using a comma.

Example:

d= {'roll_no':'18/001','Name:':'Arav','Course':'B.tech'}

print(d)

Output: {'Name:': 'Arav', 'Course': 'B.tech', 'roll_no': '18/001'}

Accessing Values:

 In Dictionary, through key accessing values,

 Example:

 d={'Name': 'Arav', 'Course': 'B.tech', 'roll_no': '18/001'}

print('d[Name]:',d['Name'])

print('d[course]:',d['Course'])

print('d[roll_no]:',d['roll_no'])

output:

d[Name]: Arav

d[course]: B.tech

d[roll_no]: 18/001

 Adding and Modifying an Item in a Dictionary:

 To add a new entry or a key-value pair in a dictionary, just specify the key-value pair as

you had done for the existing pairs.

Syntax: dictionary_ variable[key]= val

 Example:

1. Program to add a new item in the dictionary

d={'Name': 'Arav', 'Course': 'B.tech', 'roll_no': '18/001'}

d['marks']=99 #new entry

print('d[Name]:',d['Name'])

print('d[course]:',d['Course'])

print('d[roll_no]:',d['roll_no'])

print('d[marks]:',d['marks'])

 Output:

d[Name]: Arav

d[course]: B.tech

d[roll_no]: 18/001

d[marks]: 99

 Modifying an Entry:

 To modify an entry, just overwrite the existing value as shown in the following example:

1. program to modify an item in the dictionary

d={'Name': 'Arav', 'Course': 'B.tech', 'roll_no': '18/001'}

d['marks']=99 #new entry

print('d[Name]:',d['Name'])

print('d[course]:',d['Course'])

print('d[roll_no]:',d['roll_no'])

print('d[marks]:',d['marks'])

d[‘Course’]=’BCA’ #Updated entry

print('d[course]:',d['Course'])

 Output:

d[Name]: Arav

d[course]: B.tech

d[roll_no]: 18/001

d[marks]: 99

d[course]: BCA

 Deleting Items :

 You can delete one or more items using the del keyword.

 To delete or remove all the items in just one statement, use the clear () function.

 Finally, to remove an entire dictionary from the memory, we can gain use the del

statement as del Dict_name.

 The syntax to use the del statement can be given as,

del dictionary_variable[key]

Example:

1. Program to demonstrate the use of del statement and clear() function

 Keys must have unique values.

 Not even a single key can be duplicated in a dictionary. If you try to add a duplicate key,

then the last assignment is retained.

 In a dictionary, keys should be strictly of a type that is immutable. This means that a key

can be of strings, numbers, or tuple type but it cannot be a list which is mutable.

 In case you try to make your key of mutable type, then a Type error will be granted.

 Tuples can be used as keys only if they contain immutable objects like strings, numbers,

or other tuples.

 If a tuple used as key contains any mutable object either directly or indirectly, then an

error is generated.

 The in keyword can be used to check whether a single key is present in the dictionary.

 Sorting Items in a Dictionary:

 The keys() method of dictionary returns a list of all the keys used in the dictionary in

a arbitrary order.

 The sorted() function is used to sort the keys as shown below:

Example:

1. Program to sort keys of a dictionary

 d={'roll_no':653,'name':'python','course':'b.tech'}

 print(sorted(d.keys()))

 output:

 ['course', 'name', 'roll_no']

 Looping Over a Dictionary:

You can loop over a dictionary to access only values, only keys,and both using the

for loop as shown the code given below:

1. Program to access

 d={'roll_no':653,'name':'python','course':'b.tech'}

print("KEYS:",end=' ')

for key in d:

 print(key,end=' ')

print("\n VALUES:",end=' ')

for val in d.values():

 print(val,end=' ')

print("\n Dictionary:",end=' ')

for key,val in d.items():

 print(key,val,end=';')

output:

 KEYS: course name roll_no

 VALUES: b.tech python 653

 Dictionary: course b.tech;name python;roll_no 653;

 Built-in Dictionary Functions and Methods:

 Nested Dictionaries :

Dictionary with in another dictionary is called Nested dictionary.

 Example:

students={'cse1':{'c':90,'ds':89,'python':98},

 'cse2':{'c':90,'ds':99,'python':98},

 'cse3':{'c':99,'ds':99,'python':98}}

for key,value in students.items():

 print(key,value)

 Output:

 cse3 {'python': 98, 'c': 99, 'ds': 99}

cse2 {'python': 98, 'c': 90, 'ds': 99}

cse1 {'python': 98, 'c': 90, 'ds': 89}

 Difference between a List and a Dictionary:

 First, a list is an ordered set of items. But, a dictionary is a data structure that is used for

matching one item (key) with another (value).

 Second, in lists, you can use indexing to access a particular item. But, these indexes

should be a number. In dictionaries, you can use any type (immutable) of value as an

index. For example, when we write Dict['Name'], Name acts as an index but it is not a

number but a string.

 Third, lists are used to look up a value whereas a dictionary is used to take one value and

look up another value. For this reason, dictionary is also known as a lookup table.

 Fourth, the key-value pair may not be displayed in the order in which it was specified

while defining the dictionary. This is because Python uses complex algorithms (called

hashing) to provide fast access to the items stored in the dictionary. This also makes

dictionary preferable to use over a list of tuples.

 String Formatting with Dictionaries:

Python also allows you to use string formatting feature with dictionaries. So you can use

%s, %d, %f, etc. to represent string, integer, floating point number, or any other data.

Example:

Program that uses string formatting feature to print the key-value pairs stored in the

dictionary.

d={"cse":98,"ece":99,"eee":90}

for key,value in d.items():

 print("%s branch:%d"%(key,value))

output:

ece branch:99

cse branch:98

eee branch:90

Lab Programs:

5a.Write a program to count the number of characters in the string and store them in dictionary

n=int(input("Enter the number"))

i=0;

dict1={}

while(i<n):

 str1=input("Enter the string")

 length=len(str1)

 dict1[str1]=length

 i=i+1;

print('Entered dictionary elements are')

print(dict1)

Output

Enter the number2

Enter the stringhari

Enter the stringchennai

Entered dictionary elements are

{'hari': 4, 'chennai': 7}

5b.Write a program to sort keys in a Dictionary

Dict1={'Course':'B.Tech','Rollno':'565','Address':'GDV'}

for key in sorted(Dict1):

 print("%s%s"%(key,Dict1[key]))

Output

AddressGDV

CourseB.Tech

Rollno565

5c.Write a Program that prints maximum and minimum value in a dictionary

Dict1={'Course':'B.Tech','Rollno':'565','Address':'GDV'}

print('Minimum value is ',min(Dict1.values()))

print('Maximum value is',max(Dict1.values()))

Output

>>>

Minimum value is 565

Maximum value is GDV

Assignment-Cum-Tutorial Questions

I) Objective Questions
 1) Which of these about a dictionary is false? []

a) The values of a dictionary can be accessed using keys

b) The keys of a dictionary can be accessed using values

c) Dictionaries aren’t ordered

d) Dictionaries are mutable

2) Which of the following statements create a dictionary? []

 a) d = {}

b) d = {“john”:40, “peter”:45}

c) d = {40:”john”, 45:”peter”}

d) All of the mentioned

3) Which of the following is not a declaration of the dictionary? []

 a) {1: ‘A’, 2: ‘B’}

 b) dict ([[1,”A”],[2,”B”]])

 c) {1,”A”,2,”B”}

 d) { }

 4) What is the output of the following code? []

 A = {1:"A",2:"B",3:"C"}

 for i,j in a.items():

 print(i,j,end=" ")

 a) 1 A 2 B 3 C b) 1 2 3 c) A B C d) 1:”A” 2:”B” 3:”C”

 5) Which of the following isn’t true about dictionary keys? []

 a) More than one key isn’t allowed

b) Keys must be immutable

c) Keys must be integers

d) When duplicate keys encountered, the last assignment wins

6) Suppose d = {“john”:40, “peter”:45}, to delete the entry for “john” what command do

we use []

 a) d.delete(“john”:40)

b) d.delete(“john”)

c) del d[“john”].

d) del d(“john”:40)

7) Suppose d = {“john”:40, “peter”:45}, what happens when we try to retrieve a value

using the expression d[“susan”]? []

a) Since “susan” is not a value in the dictionary, Python raises a KeyError

exception

b) It is executed fine and no exception is raised, and it returns None

c) Since “susan” is not a key in the dictionary, Python raises a KeyError exception

d) Since “susan” is not a key in the set, Python raises a syntax error

 8) What gets printed? []

 foo = {1:'1', 2:'2', 3:'3'}

del foo[1]

foo[1] = '10'

del foo[2]

print(len(foo))

a) 1 b) 2 c) 3 d) 4 e) An Exception is thrown

9) If Dict = {1:2, 3:4, 4:11, 5:6, 7:8}, then print(Dict(Dict[3])) will print ? []

 a) 2 b) 8 c) 11 d) 6

10) Which Data type does not support indexing? []

 a) List b) Tuple c) Dictionary d) Set

11) Which function is used to delete all entries in the dictionary ___________________?

12) Which methods will return all the keys and Values in a Dictionary ______________?

13) What are the Data types supported for Key in Dictionary Data type _____________?

14) Fill in the blanks to create a Dictionary.

 Dict = dict(1 ___ “abc” __ 2__”hai”)

 Dict1=__1:”abc”,2:”hai”__

15) Find the output of the below program?

 D={"India":"Delhi", "Nepal":"Kathmandu", "USA":"DC"}

del D["Nepal"]

for key,val in D.items():

print(key)

II) Subjective Questions

1) Explain the importance of Dictionary data type in python? (Nov-2018)

2) List-out various operations can be performed on Dictionary Data type?

(Nov-2018)

3) List-out the Built-in functions and methods of Dictionary Data type in python?

(Nov-2018)

4) Write a Python program to check if all dictionaries in a list are empty or not.

 (Nov-2018)

5) How to delete items from a dictionary? Explain with an example.(April-2008)

6) Write a Python script to sort (ascending and descending) a dictionary by value.

7) Write a Python script to generate and print a dictionary that contains a number

(between 1 and n) in the form (x, x*x).

Sample:

Dictionary (n = 5):

Expected Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

8) Write a Python script to print a dictionary where the keys are numbers between 1 and

15 (both included) and the values are square of keys.

Sample Dictionary:

{1: 1, 2: 5, 3: 9, 4: 15, 5: 25, 6: 36, 7: 49, 80: 64, 9: 80, 90: 100, 11: 121, 12: 144, 13:

169, 14: 200, 105: 225}

9) Write a Python program to map two lists into a dictionary.

10) Write a python program to check if all dictionaries in a list are empty or not?

11) Write a Python program to combine two dictionary adding values for common keys.

 d1 = {'a': 100, 'b': 200, 'c':300}

d2 = {'a': 300, 'b': 200,’d’:400}

Sample output: {'a': 400, 'b': 400,’d’: 400, 'c': 300}

12) Write a Python program to create and display all combinations of letters, selecting

each letter from a different key in a dictionary

Sample data: {'1':['a','b'], '2':['c','d']}

Expected Output:

ac

ad

bc

bd

13) Write a Python program to get the top three items in a shop.

Sample data: {'item1': 45.50, 'item2':35, 'item3': 41.30, 'item4':55, 'item5': 24}

Expected Output:

item4: 55

item1: 45.5

item3: 41.3

Page 1 of 21

UNIT-VI

File Handling

Syllabus:

File types, File path, File operations-open, close, read, write, Types of

arguments.

Programs: Write a python program to

1. Write a program to print each line of a file in reverse order.

2. Write a program to compute the number of characters, words and lines

in a file.

3. Write a program to copy contents of one file into another file.

Learning Outcomes:

At the end of the unit student will be able to

 Understand various File Types.

 Describe File Paths like Absolute and Relative.

 Understand various operations on files.

 Implement programs on Files.

Page 2 of 21

Learning Material

1. Introduction to Files:

 When a program is being executed,its data is stored in RAM.Though

RAM can be accessed faster by the CPU,it is also volatile,which means

when the program ends, or the computer shuts down, all the data is

lost.If you want to use the data in future,then you need to store this data

on a permanent or non-volatile storage media such as hard disk, USB

drive and DVD e.t.c.,

 A file is a collection of data stored on a secondary storage device like

hard disk.

 A file is basically used because real-life applications involve large

amounts of data and in such situations the console oriented I/O

operations pose two major problems:

 First, it becomes cumbersome and time consuming to handle huge

amount of data through terminals.

 Second, when doing I/O using terminal, the entire data is lost when

either the program is terminated or computer is turned off. Therefore, it

becomes necessary to store data on a permanent storage (the disks) and

read whenever necessary, without destroying the data.

2. File Types

 Like C and C++,Python also supports two types of files

1.ASCII Text Files

 2.Binary Files

2.1ASCII Text Files

 A text file is a stream of characters that can be sequentially processed

by a computer in forward direction. For this reason a text file is usually

opened for only one kind of operation (reading, writing, or appending) at

any given time.

 Because text files can process characters, they can only read or write

data one character at a time. In Python, a text stream is treated as a

special kind of file.

 Depending on the requirements of the operating system and on the

operation that has to be performed (read/write operation) on the file, the

newline characters may be converted to or from carriage-return/linefeed

combinations.

Page 3 of 21

 Besides this, other character conversions may also be done to satisfy the

storage requirements of the operating system. However, these

conversions occur transparently to process a text file. In a text file, each

line contains zero or more characters and ends with one or more

characters.

 Another important thing is that when a text file is used, there are

actually two representations of data- internal or external. For example,

an integer value will be represented as a number that occupies 2 or 4

bytes of memory internally but externally the integer value will be

represented as a string of characters representing its decimal or

hexadecimal value.

Note: In a text file, each line of data ends with a newline character. Each

file ends with a special character called end-of-file (EOF) Marker.

2.2 Binary Files

 A binary file is a file which may contain any type of data, encoded in

binary form for computer storage and processing purposes. It includes

files such as word processing documents, PDFs, images, spreadsheets,

videos, zip files and other executable programs.

 Like a text file, a binary file is a collection of bytes. A binary file is also

referred to as a character stream with following two essential differences.

 A binary file does not require any special processing of the data and each

byte of data is transferred to or from the disk unprocessed.

 Python places no constructs on the file, and it may be read from, or

written to, in any manner the programmer wants.

 While text files can be processed sequentially, binary files, on the

other hand, can be either processed sequentially or randomly

depending on the needs of the application.

Note:Binary files store data in the internal representation format.Therefore,

an integer value will be stored in binary form as 2 byte value.The same

format is used to store data in memory as well as in files.Like Text

files,Binary files also ends with an EOF Marker

Page 4 of 21

3.File Path:

 Files that we use are stored on a storage medium like the hard disk in

such a way that they can be easily retrieved as and when required.

 Every file is identified by its path that begins from the root node or the

root folder. In Windows, C:\ (also known as C drive) is the root folder but

you can also have a path that starts from other drives like D:\, E:\, etc.

The file path is also known as pathname.

 In order to access a file on a particular disk we have two paths.

1. Absolute Path

2. Relative Path

 While an absolute path always contains the root and the complete

directory list to specify the exact location the file.

Example:To access BTech_CS.docx,The absolute path is

C:\Students\Under Graduate\BTech_CS.docx

 Relative path needs to be combined with another path in order to

access a file. It starts with respect to the current working directory and

therefore lacks the leading slashes.

Example: Suppose you are working on current directory Under

Graduate in order to access BTech_CS.docx,The Relative path is

Under Graduate\BTech_CS.docx

Page 5 of 21

4.File Operations

 When we want to read from or write to a file we need to open it first.

When we are done, it needs to be closed, so that resources that are tied

with the file are freed.

 Python has many in-built functions and methods to manipulate

files.These

 Hence, in Python, a file operation takes place in the following order.

1. Open a file

2. Read or write (perform operation)

3. Close the file

4.1 Opening A File

 Before reading from or writing to a file, you must first open it using

Python’s built-in open() function. This function creates a file object,

which will be used to invoke methods associated with it.

 The Syntax of open() is:

fileObj = open(file_name [, access_mode])

Where file_name is a string value that specifies name of the file

that you want to access. access_mode indicates the mode in which the

file has to be opened, i.e., read, write, append, etc.

 Example:Write a Program to print the details of file object

Note:Access mode is an optional parameter and the default file access mode is

read(r).

Page 6 of 21

4.1.1.Access modes

 Python supports the following access modes for opening a file those are

4.1.2The File Object Attributes

 Once a file is successfully opened, a file object is returned. Using this file

object, you can easily access different type of information related to that

file. This information can be obtained by reading values of specific

attributes of the file.

 The Following table shows list attributes related to file object.

 Example: Program to open a file and print its attribute values.

Page 7 of 21

4.2 Closing A File

 The close() method is used to close the file object. Once a file object is

closed, you cannot further read from or write into the file associated with

the file object.

 While closing the file object the close() flushes any unwritten information.

Although, Python automatically closes a file when the reference object of

a file is reassigned to another file, but as a good programming habit you

should always explicitly use the close() method to close a file.

 The syntax of close() is

fileObj.close()

 The close() method frees up any system resources such as file

descriptors, file locks, etc. that are associated with the file.

 Once the file is closed using the close() method, any attempt to use the

file object will result in an error.

Example2: Write a Python program to assess if a file is closed or not..

 (April 2018 Regular)

file = open('File1.txt','wb')

print('Name of the file :',file.name)

print('File is closed:',file.closed)

print('File is now being closed')

Page 8 of 21

file.close()

print('File is closed',file.closed)

print(file.read())

Output:

Name of the file : File1.txt

File is closed: False

File is now being closed

File is closed True

Traceback (most recent call last):

 File "D:/Python/sample.py", line 7, in <module>

 print(file.read())

io.UnsupportedOperation: read

4.3 Writing A File

 The write() method is used to write a string to an already opened file. Of

course this string may include numbers, special characters or other

symbols.

 While writing data to a file, you must remember that the write() method

does not add a newline character ('\n') to the end of the string.

 The syntax of write() method is:

fileObj.write(string)

Example:Program that writes a message in the file,data.txt

file=open('data.txt','w')

file.write('hello cse we are learning python programming')

file.close()

print('file writing successful')

Output:

file writing successful

data.txt

hello cse we are learning python programming

Page 9 of 21

4.3.1 writeline() method:

 The writelines() method is used to write a list of strings.

Example:Program to write to afile using the writelines() method

file=open('data.txt','w')

lines=['hello','cse','hope to enjoy','learning','python programming']

file.writelines(lines)

file.close()

print('file writing successful')

Output:

file writing successful

4.3.2 append() method:

 Once you have stored some data in a file,you can always open that file

again to write more data or append data to it.

 To append a file, you must open it using ‘a’ or ‘ab’ mode depending on

whether it is text file or binary file.

 Note that if you open a file with ‘w’ or ‘wb’ mode and then start writing

data into it, then the existing contents would be overwritten.

Example:Program to append data to an already existing file

file=open('data.txt','a')

file.write('\nHave a nice day')

file.close()

print('Data appended successful')

Output:

Data appended successful

data.txt

hellocsehope to enjoylearningpython programming

data.txt

hellocsehope to enjoylearningpython programming

Have a nice day

Page 10 of 21

4.4 Reading A File

 The read() method is used to read a string from an already opened file.As

said before, the string can include, alphabets, numbers, characters or

other symbols.

 The syntax of read() method is

fileObj.read([count])

Where In the above syntax, count is an optional parameter which if

passed to the read() method specifies the number of bytes to be read from

the opened file.

 The read() method starts reading from the beginning of the file and if

count is missing or has a negative value then, it reads the entire contents

of the file (i.e., till the end of file).

Example1:Program to print the first 8 characters of the file data.txt

file=open('data.txt','r')

print(file.read(8))

file.close()

Output:

hellocse

Example2:Program to display the content of file using for loop

file=open('data.txt','r')

for line in file:

 print(line)

file.close()

Output:

hellocsehope to enjoylearningpython programming

Have a nice day

Note:read() methods returns a newline as ‘\n’

data.txt

hellocsehope to enjoylearningpython programming

Have a nice day

data.txt

hellocsehope to enjoylearningpython programming

Have a nice day

Page 11 of 21

4.4.1readline() Method

 It is used to read single line from the file.

 This method returns an empty string when end of the file has been

reached.

ExampleProgram to demonstrate the usage of readline() function

file=open('data.txt','r')

print('firtsline:',file.readline())

print('second line:',file.readline())

print('third line:',file.readline())

file.close()

Output:

firtsline: hellocsehope to enjoylearningpython programming

second line: Have a nice day

third line:

4.4.2 readlines() Method

 readlines() Method is used to read all the lines in the file.

Example:Program to demonstrate readlines() function

file=open('data.txt','r')

print(file.readlines())

file.close()

Output:

['hellocsehope to enjoylearningpython programming\n', 'Have a nice day']

4.4.3 list() Method

 list() method is also used to display entire contents of the file.you need to

pass the file object as an argument to the list() method.

data.txt

hellocsehope to enjoylearningpython programming

Have a nice day

data.txt

hellocsehope to enjoylearningpython programming

Have a nice day

Page 12 of 21

Example: Program to display the contents of the file data.txt using the

list() method

file=open('data.txt','r')

print(list(file))

file.close()

Output:

['hellocsehope to enjoylearningpython programming\n', 'Have a nice day']

4.4.4Opening a file using with keyword:

 It is good programming habit to use the with keyword when working

with file objects.

 This has the advantage that the file is properly closed after it is used

even if an error occurs during read or write operation or even when you

forget to explicitly close the file.

Note: When you open a file for reading, or writing, the file is searched in the

current directory. If the file exists somewhere else then you need to specify the

path of the file.

4.4.5 Splitting Words:

 Python allows you to read line(s) from a file and splits the line (treated as

a string) based on a character. By default, this character is space but

you can even specify any other character to split words in the string.

Example: Program to split the line into series of words and use space to

perform the split operation

with open('data.txt','r') as file:

data.txt

hellocsehope to enjoylearningpython programming

Have a nice day

data.txt

hellocsehope to enjoylearningpython programming

Page 13 of 21

 line=file.readline()

 words=line.split()

 print(words)

Output:

['hellocsehope', 'to', 'enjoylearningpython', 'programming']

4.5 Some Other Useful File Methods:

 The following are some of additional methods which will work on files

Page 14 of 21

4.6 File Positions:

 With every file, the file management system associates a pointer often

known as file pointer that facilitates the movement across the file for

reading and/ or writing data.

 The file pointer specifies a location from where the current read or write

operation is initiated. Once the read/write operation is completed, the

pointer is automatically updated.

 Python has various methods that tells or sets the position of the file

pointer.

 For example, the tell() method tells the current position within the file at

which the next read or write operation will occur. It is specified as

number of bytes from the beginning of the file.

 When you just open a file for reading, the file pointer is positioned at

location 0, which is the beginning of the file.

 The syntax for seek() function is

seek(offset[, from])

 The offset argument indicates the number of bytes to be moved and the

from argument specifies the reference position from where the bytes are

to be moved.

Example: Program that tells and sets the position of file pointer

File1.txt

Hello All,

Hope you are enjoying learning python

Page 15 of 21

4.7 Renaming and Deleting Files:

 The os module in Python has various methods that can be used to

perform file-processing operations like renaming and deleting files. To

use the methods defined in the os module, you should first import it in

your program then call any related functions.

 The rename() Method: The rename() method takes two arguments, the

current filename and the new filename.

Its syntax is: os.rename(old_file_name, new_file_name)

 The remove() Method: This method can be used to delete file(s). The

method takes a filename (name of the file to be deleted) as an argument

and deletes that file.

Its syntax is: os.remove(file_name)

Example: Program to rename file ‘File1.txt’ to ‘student.txt’

Example: Program to delete a file named File1.txt

5.Types of Arguments

5.1 Command line Arguments:

 The Python sys module provides access to any command-line arguments

via the sys.argv. This serves two purposes −

 sys.argv is the list of command-line arguments.

Page 16 of 21

 len(sys.argv) is the number of command-line arguments.

 Here sys.argv[0] is the program ie. script name.

Example1:Write a Python program to demonstrate the usage of Command

Line Arguments

sample11.py

#!/usr/bin/python

import sys

print ('Number of arguments:', len(sys.argv), 'arguments.')

print ('Argument List:', str(sys.argv))

Output:

Example2: Write a Python program to copy the content of one file to

another using command line arguments.

sample12.py

#!/usr/bin/python

import sys

print ('Number of arguments:', len(sys.argv), 'arguments.')

with open(str(sys.argv[1])) as f:

 with open((sys.argv[2]), "w") as f1:

 for line in f:

 f1.write(line)

print('File Copied Success')

input.txt

Hello hi

How are you

output.txt

Hello hi

How are you

Page 17 of 21

6. File Handling Programs

1.Write a program to print each line of a file in reverse order

Program:

with open('input.txt','r') as fp:

 for line in fp:

 print (line[::-1])

Output:

ih olleH

uoy era woH

2. Write a program to compute the number of characters, words and lines

in a file

Program:

fname = "data.txt"

num_lines = 0

num_words = 0

num_chars = 0

with open(fname, 'r') as f:

 for line in f:

 words = line.split()

 num_lines += 1

 num_words += len(words)

 num_chars += len(line)

print('The no of lines in a given file is',num_lines)

print('The no of words in a given file is',num_words)

print('The no of chars in a given file is',num_chars)

Output:

The no of lines in a given file is 2

The no of words in a given file is 8

The no of chars in a given file is 63

input.txt

Hello hi

How are you

data.txt

hellocsehope to enjoylearningpython programming

Have a nice day

Page 18 of 21

3. Write a program to copy contents of one file to another file

Program:

with open("data.txt") as f:

 with open("out.txt", "w") as f1:

 for line in f:

 f1.write(line)

Output:

4. Write a Python Program to count number of Vowels and Number of

Consonants in a given file. (November 2018 Supplementary)
Program:

infile = open("data.txt", "r")

vowels = set("AEIOUaeiou")
cons = set("bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ")

countV = 0

countC = 0
for c in infile.read():

 if c in vowels:

 countV += 1

 elif c in cons:
 countC += 1

print("The no of Vowels are",countV)
print("The no of Consonants are",countC)

data.txt

hellocsehope to enjoylearningpython programming

Have a nice day

out.txt

hellocsehope to enjoylearningpython programming

Have a nice day

Page 19 of 21

Assignment-Cum-Tutorial Questions

A. Objective Questions

1. Identify The right way to close a file []

a)File.close() b)close(file) c)close(“file”) d)File.closed

2. _____________ is an example of volatile memory

3. A file is stored in _______________ memory []

a)primary b)secondary c)cache d)volatile

4. What will happen when a file is opened in write mode and then

immediately closed. []

a)Filecontentsaredeleted

b) Nothing Happens

c) A Blank Line is written to the file

d)an error occurs

5. The default access mode of the file is _____________

6. If a file opened in ‘w’ mode does not exist, then []

a) nothing will happen

b) File will be created

c) Data will be written to a afile that has a name similar to the specified

name

d) Error will be generated

7. Identify the delimiter in the Solaris file system []

a)/ b)\ c): d)|

8. By default a new file is created in which directory []

a)root b)current working c)Python directory d)D Drive

9. which method is used to read a single line from the file []

a)read() b)readline() c)readlines() d)reads()

10. When you open a file for appending that does not exist, then a new file is

created [True/False]

11. Identify the correct way to write “Welcome to Python” in a file []

a)write(file,”Welcome to python”)

b)write(“Welcome to Python”,file)

c)file.write(“Welcome to Python”)

d)”Welcome to Python”.write(file)

12. If the file.txt has 10 lines written in it,what will the result? []

len(open(‘file.txt’).readlines())

a)1 b)0 c)10 d)2

13. Identify the sub folder in the path []

C:\Students\UnderGraduates\B.Tech_CS.docx

Page 20 of 21

a)C: b) Students c)B.Tech_CS.docx d) UnderGraduates

14. Which method returns a string that includes everything specified in the

path? []

a)os.path.dirname(path)

b)os.path.basename(path)

c)os.path.relpath()

d)os.path.abs()

15. if count is missing or has a negative value in the read() method then, no

contents are read from the file. [True/False]

16. os.path.abs() method accepts a file path as an argument and returns

True if the path is an absolute path and False otherwise

 [True/False]

17. How many characters would be printed by this code (One character is

one byte)________________________

file=open(“file.txt”,”r”)

for i in range(100):

print(file.read(10))

file.close()

18. Fill in the blank to open a file,read its content and prints its length

file=_______(“file.txt”,”r”)

text=file.__________()

print(_________(text))

file.close()

19. Predict the output of the following program []

f = None

for i in range (5):

 with open("data.txt", "w") as f:

 if i > 2

 break

print(f.closed)

a)True b) False c) None d) Error

20. Predict the output of the following program []

with open("hello.txt", "w") as f:

f.write("Hello World how are you today")

with open('hello.txt', 'r') as f:

data = f.readlines()

for line in data:

words = line.split()

print (words)

f.close()

Page 21 of 21

a. Runtime Error

b. Hello World how are you today

c. [‘Hello’, ‘World’, ‘how’, ‘are’, ‘you’, ‘today’]

d. Hello

B. Descriptive Questions

1. Define file. Explain about the importance of files in Python.

2. Define path. Distinguish between absolute and relative path with an

example.

3. Discuss briefly about various types of file.

4. Write in detail about various modes of file.

5. Give an overview of File positions.

6. Explain different file operations with suitable programming examples.

 (April 2018 Regular and November 2018 Supplementary)

7. What is the purpose of opening a file using with keyword.

8. Write a Python program to count number of vowels and consonants in a

given text file

9. Write a Python program that reads data from a file and Calculates the

percentage of vowels and consonants in the file

10. Write a Python program that copies one file to another in such away

that all comment lines are skipped and not copied in the destination file

11. Write a python program to find no of lines, words and characters in a

given text file

12. Write a Python program to combine each line from first file with the

corresponding line in second file.

13. Write a program that accepts file name as an input from the user. Open

the file and count number of times a character appears in the file.

14. Write a program that tells and sets the position of the file pointer.

-----------OOO-----------

