
Computer Graphics 1 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

GUDLAVALLERU ENGINEERING COLLEGE 
(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada) 

Seshadri Rao Knowledge Village, Gudlavalleru – 521 356. 
 
 
 
 
 

DEPARTMENT 
OF 

COMPUTER SCIENCE AND ENGINEERING 
 

 

 

 

HANDOUT 

on 

COMPUTER GRAPHICS 

 

 

 



Computer Graphics 2 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

Vision 

To be a Centre of Excellence in computer science and engineering 

education and training to meet the challenging needs of the industry 

and society 

Mission 

 To impart quality education through well-designed curriculum in 

tune with the growing software needs of the industry.  

 To be a Centre of Excellence in computer science and engineering 

education and training to meet the challenging needs of the industry 

and society. 

 To serve our students by inculcating in them problem solving, 

leadership, teamwork skills and the value of commitment to quality, 

ethical behaviour & respect for others.  

 To foster industry-academia relationship for mutual benefit and 

growth. 

 

Program Educational Objectives 

PEO1 :Identify, analyze, formulate and solve Computer Science and 

Engineering    problems both independently and in a team 

environment by using the appropriate modern tools. 

PEO2 : Manage software projects with significant technical, legal, ethical, 

social, environmental and economic considerations. 

PEO3 :Demonstrate commitment and progress in lifelong learning, 

professional development, leadership and Communicate effectively 

with professional clients and the public. 

 

 

 



Computer Graphics 3 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

HANDOUT ON COMPUTER GRAPHICS 

II B.Tech – II Semester                                                            Year: 2018-19 

OPEN ELECTIVE                                                                 Credits: 3 

============================================================ 

Brief History and Scope Of The Subject 

 The precursor sciences to the development of modern computer 

graphics were the advances in electrical engineering, electronics, 

and television that took place during the first half of the twentieth 

century. Screens could display art since the Lumiere brothers' use 

of mattes to create special effects for the earliest films dating from 

1895, but such displays were limited and not interactive. The 

first cathode ray tube, the Braun tube, was invented in 1897 - it in 

turn would permit the oscilloscope and the military control panel - the 

more direct precursors of the field, as they provided the first two-

dimensional electronic displays that responded to programmatic or 

user input.  
 

 Pre-Requisites 

 Basics of C and graphic elements. 

 Equations of geometric elements. 

 Course Objectives: 

 To introduce computer graphics applications and functionalities of 

various graphic systems. 

  To familiarize with 2D and 3D geometrical transformations.  

  To disseminate knowledge on the visible surface detection and 

animation. 

 Course Outcomes: 
Upon successful completion of the course, the students will be able to 

CO1: design a conceptual model for the mathematical model to  

        determine the set of pixels to turn on for displaying an object. 

CO2: analyze the functionalities of various display devices and visible  



Computer Graphics 4 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

         surface detection methods 

CO3: analyze the performance of different algorithms to draw different  

        shapes. 

CO4: choose different transformations and viewing functions on objects. 

CO5: apply raster animations for Engine oil advertisements. 
 

 Program Outcomes: 
Graduates of the Computer Science and Engineering Program will have 

Engineering Graduates will be able to: 
1.Engineering knowledge: Apply the knowledge of mathematics, science, 

engineering fundamentals, and an engineering specialization to the 
solution of complex engineering problems.  

2.Problem analysis: Identify, formulate, review research literature, and 
analyze complex engineering problems reaching substantiated 
conclusions using first principles of mathematics, natural sciences, and 
engineering sciences.  

3.Design/development of solutions: Design solutions for complex 
engineering problems and design system components or processes that 
meet the specified needs with appropriate consideration for the public 
health and safety, and the cultural, societal, and environmental 
considerations.  

4.Conduct investigations of complex problems: Use research-based 
knowledge and research methods including design of experiments, 
analysis and interpretation of data, and synthesis of the information to 
provide valid conclusions.  

5.Modern tool usage: Create, select, and apply appropriate techniques, 
resources, and modern engineering and IT tools including prediction and 
modeling to complex engineering activities with an understanding of the 
limitations.  

6.The engineer and society: Apply reasoning informed by the contextual 
knowledge to assess societal, health, safety, legal and cultural issues and 
the consequent responsibilities relevant to the professional engineering 
practice.  

7.Environment and sustainability: Understand the impact of the 
professional engineering solutions in societal and environmental contexts, 
and demonstrate the knowledge of, and need for sustainable development. 



Computer Graphics 5 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

8.Ethics: Apply ethical principles and commit to professional ethics and 
responsibilities and norms of the engineering practice. 

9.Individual and team work: Function effectively as an individual, and as a 
member or leader in diverse teams, and in multidisciplinary settings. 

10.Communication: Communicate effectively on complex engineering 
activities with the engineering community and wit society at large, such 
as, being able to comprehend and write effective reports and design 
documentation, make effective presentations, and give and receive clear 
instructions. 

11.Project management and finance: Demonstrate knowledge and 
understanding of the engineering and management principles and apply 
these to one’s own work, as a member and leader in a team, to manage 
projects and in multidisciplinary environments. 

12.Life-long learning: Recognize the need for, and have the preparation 
and ability to engage in independent and life-long learning in the broadest 
context of technological change.  

 Mapping of Course Outcomes with Program Outcomes: 

 1 2 3 4 5 6 7 8 9 10 11 12 

CO1  3   2     1   

CO2 2  1 3    2     

CO3      3    2       1  

CO4 2  3     1  2      

CO5 2  3  1       2 

3- High    2- Medium   1-Low 

 Prescribed Text Books 
1. Donald Hearn, M.Pauline Baker, Computer Graphics C version, 

Pearson. 

2. Francis S. Hill, Stephen M. Kelley, “Computer Graphics using 

OpenGL”, 3rd edition, Pearson Education 

 Reference Text Books 

1. Foley, VanDam, Feiner, Hughes, “Computer Graphics Principles and 

Practice”.2nd edition, Pearson Education. 



Computer Graphics 6 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

2.  Rajesh K Maurya, “Computer Graphics with Virtual Reality Systems”, 

Wiley. 

 URLs and Other E-Learning Resources 

 IEEE  -transactions on Computer Graphics 

 http://www.inf.ed.ac.uk/teaching/courses/cg/Web/intro_graphics.p

df 

 http://www.crazyengineers.com/threads/computer-graphics-project-

ideas-topics-for-cs-it-students.58544/ 

 https://www.dgp.toronto.edu/~hertzman/418notes.pdf 

 http://freevideolectures.com/Course/2275/Computer-Graphics/20 

 http://cosmolearning.org/courses/introduction-to-computer-

graphics-521/video-lectures/ 

 Digital Learning Materials: 

1. https://www.youtube.com/watch?v=m5YbqpL7BIY&index=1&list=PLL

OxZwkBK52DkMLAYhRLA_VtePq5wW_N4 

2. https://www.youtube.com/watch?v=D-tV-vZv4Co 

 Lecture Schedule / Lesson Plan 

TOPIC 

No. of Periods 

Theory Tutorial 

UNIT-I: Introduction 
Applications of Computer Graphics 1 

 

Raster Scan Systems, Raster scan display processors 1 
Random scan systems     1 
Points and Lines       1 

Line Drawing Algorithms-DDA 2 
Bresenham,s  Line Drawing Algorithm 1 
Filled Area Primitives: Inside and outside tests  1 

Boundary Fill Algorithm, Flood Fill Algorithm 1 

Scan line polygon fill algorithm 1 

UNIT-II: 2-D Geometrical Transforms 



Computer Graphics 7 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

Translation, Scaling      1 

 

Rotation, Reflection 2 
Shear Transformations 1 

Matrix Representations 1 

Homogenous Coordinates 1 

Composite Transformations 1 

 
UNIT-III: 2-D viewing 

The viewing pipeline  1 

 

Window to viewport coordinate transformation 2 

Viewing Functions 1 
Cohen Sutherland line clipping algorithm 2 

Sutherland Hogeman polygon clipping algorithm 2 

UNIT-IV: 3D Geometric Transformations 
Translation, Scaling     1 

 

Rotation, Reflection 2 

Shear Transformations 1 
Composite Transformations  1 

3D viewing pipeline  1 
Parallel Projections 2 

Perspective projections 2 

UNIT-V: Visible surface Detection Methods 
Classification  1 

 

Back-face Detection 1 
Depth Buffer Method 1 

BSP tree method 1 
Area sub division method 2 

UNIT-VI: Computer Animation 



Computer Graphics 8 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

Design of animation sequence  1 

 Raster Animations 1 
Key frame systems                                                                                                           1 

Graphics programming using OpenGL 1 
 drawing three dimensional objects 1 

drawing three dimensional scenes 2 

Total No. of Periods: 48 0 
 

 Seminar Topics 

 3D Translation 

 3D viewing pipeline 

 Key frame systems 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Computer Graphics 9 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

UNIT – I 
Objective: 
To familiarize with the functionalities of various graphics systems. 

Syllabus: 
Introduction: 

 Applications of Computer Graphics 

 Raster scan systems 

 Random scan systems 

 Raster scan display processors 

Output primitives: 

 Points and lines 

 Line drawing algorithms 

Learning Outcomes: 
Students will be able to  

 Understand the functionalities of raster and random scan systems. 

 Attain a conceptual model understanding of the underlying mathematical   

  model for determining the set of pixels to turn on for displaying an object. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



Computer Graphics 10 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 
Learning Material 
INTRODUCTION 

Computer graphics is an art of drawing pictures on computer screens 

with the help of programming. It involves computations, creation, and 

manipulation of data. In other words, we can say that computer graphics 

is a rendering tool for the generation and manipulation of images. 

Applications of Computer Graphics 

 (1)  Computer Aided Design: 

 A major use of computer graphics is in design processes, particularly 

for engineering and architectural systems, but almost all products are 

now computer designed. 

 Computer-Aided Design methods are  used in the design of buildings, 

automobiles, aircraft, watercraft, spacecraft, computers, textiles, and 

many other products. 

 For some design applications, objects are first displayed in a 

wireframe outline form that shows the overall sham and internal 

features of objects. 

 Wireframe displays also allow designers to quickly see the effects of 

interactive adjustments to design shapes. 

(2)  Presentation Graphics: 

 Presentation graphics, used to produce illustrations for reports using 

projectors. 

 Presentation graphics is commonly used to summarize financial, 

statistical, mathematical, scientific, and economic data for research 

reports, managerial reports, consumer information bulletins, and 

other types of reports. 

 Typical examples of presentation graphics are bar charts, line graphs, 

surface graphs, pie charts, and other displays shows relationships 

between multiple parameters. 

(3) Computer Art: 



Computer Graphics 11 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 Computer graphics methods are widely used in both fine art and 
commercial art applications.  

 Fine artists use a variety of computer technologies to produce images. 

 Commercial art is used for logos and other designs, page layouts 

combining text and graphics, TV advertising spots, and other areas. 

(4) Entertainment: 

 Computer graphics methods am now commonly used in making 

motion pictures, music videos, and television shows.  

 Sometimes the graphics scenes are displayed by themselves, and 

sometimes graphics objects are combined with the actors and live 

scenes. 

(5) Education & Training: 

 Computer-generated models of physical, financial, and economic 

systems are often used as educational aids.. 

 Graphics enhances the way of teaching. 

 For some training applications, special systems are designed. 

Examples of such specialized systems are the simulators for practice 

sessions or training of ship captains, aircraft pilots, heavy-equipment 

operators, and air traffic control personnel.  

(6) Visualization: 

 Scientists, engineers, medical personnel, business analysts, and 

others often need  

to analyze large amounts of information or to study the behaviour of 

certain processes. 

 If the data are converted to a visual form, the trends and patterns are 

often immediately apparent. if the data are converted to a visual form, 

the trends and patterns are often immediately apparent. 

(7) Image Processing: 

 Although methods used in computer graphics and Image processing 

overlap, the two areas concerned with fundamentally different 

operations.  

 In computer graphics, a computer is used to create a picture.  



Computer Graphics 12 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 Image processing, on the other hand. applies techniques to modify or 

interpret existing pictures. 

 Image processing and computer graphics are typically combined in 

many applications. Medicine, for example, uses these techniques to 

model and study physical functions, to design artificial limbs, and to 

plan and practice surgery. This  application is generally referred to as 

computer-aided surgery. 

 (8) GUI(Graphical User Interface): 

 A graphic, mouse-oriented paradigm which allows the user to interact 

with a computer.  

 The advantages of icons are that they take up less screen space than 

corresponding textual descriptions and they can be understood more 

quickly. 

Raster scan systems 

 Interactive Raster graphics systems typically employ several 

processing units. 

 In addition to the CPU, a special-purpose processor called the Video 
Controller or Display Controller is used to control the operation of 

the display device. 

Video Controller: 

 
 A fixed area of the system memory is reserved for the frame buffer, 

and the Video Controller is given direct access to the Frame-Buffer 

Memory. 



Computer Graphics 13 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 Frame-Buffer locations and the corresponding screen positions are 

referred in Cartesian Coordinates. 

 For many graphics monitors, the coordinate origin is defined at the 

lower left screen corner. 

 The basic refresh operations of the Video Controller: 

 
 Two registers are used to store the coordinates of the screen pixels. 

Initially, x register is set to 0 and y is set to ymax.  

 The value stored in the frame buffer for this pixel position is then 

retrieved and used to set the intensity of the CRT beam. 

 Then the x register is incremented by 1 and the process repeated for 

the next pixel on the top scan line. This procedure is repeated for each 

pixel along the scan line. 

 After the last pixel on the top scan line has been processed, the x 

register is reset to 0 and y register is decremented by 1. 

 After cycling through all pixels along the bottom scan line (y = 0), the 

Video Controller resets the registers to the first pixel position on the 

top scan line and the refresh process starts again. 

 Since the screen must be refreshed at the rate of 60 frames per 

second, the cycle time is too slow; this can’t be accommodated by 

typical RAM chips.  



Computer Graphics 14 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 To speed up pixel processing, Video Controllers can retrieve multiple 

pixel values from the refresh buffer on each pass. 

 When that group of pixels has been processed, the next block of pixel 

values is retrieved from the frame buffer. 

 In high-quality systems, 2 frame buffers are often provided so that one 

buffer can be used for refreshing while the other is being filled with 

intensity values. 
Raster-Scan Display Processor 

 Display Processor is also referred as a Graphics Controller or a 

Display Coprocessor.  

 The purpose of the display processor is to free the CPU from the 

graphics chores.  

 In addition to the system memory, a separate display processor 

memory area can also be provided. 

 A major task of the display processor is digitizing a picture definition 

given in an application 

 program into a set of pixel-intensity values for storage in the frame 

buffer. This digitization process is called Scan Conversion. 

 Graphics commands specifying straight lines and other geometric 

objects are scan converted into a set of discrete intensity points. 

 Similar methods are used for scan converting curved lines and 

polygon outlines. 

 For Example, Characters can be defined with rectangular grids or they 

can be defined with curved outlines.  

 



Computer Graphics 15 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 
        Fig : A character defined as a rectangular Grid of Patterns  & Curved 

        Outlines 

 

 The array size for character grids can vary from about 5 by 7 to 9 by 

12 or more for higher-quality displays. 

 Display Processors are also designed to perform a number of 

additional operations. 

 These functions include generating various line styles (dashed, dotted 

or solid), displaying color areas and performing certain 

transformations and manipulations on displayed objects. 

Random scan systems 

 
 An application program is input and stored in the system memory 

along with a graphics package. 

 Graphics commands in the application program are translated by the 

graphics package into a display file stored in the system memory.  

 This display file is then accessed by the display processor to refresh 

the screen.  



Computer Graphics 16 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 The display processor cycles through each command in the display file 

program once during every refresh cycle. 

 Sometimes the display processor in a Random-Scan system is referred 

to as a Display Processing Unit or a Graphics Controller. 

 Graphics patterns are drawn on a random-scan system by directing 

the electron beam along the component lines of the picture.  

 Lines are defined by the values for their coordinate endpoints, and 

these input coordinate values are converted to x and y deflection 

voltages. 

 
 

OUTPUT PRIMITIVES 

 Graphics programming packages provide functions to describe a scene 

in terms of these basic geometric structures, referred to as Output 
Primitives. 

Points and Lines: 

 Point plotting is accomplished by converting a single coordinate 

position furnished by an application program into appropriate 

operations for the output device. 

 A Random-Scan (Vector) System stores point-plotting instructions in 

the display list, and coordinate values in these instructions are 

converted to deflection voltages that position the electron beam at the 

screen locations to be plotted during each refresh cycle. 

 For a black-and-white raster system, a point is plotted by setting the 

bit value corresponding to a specified screen position within the frame 

buffer to 1. Then, as the electron beam sweeps across each horizontal 

scan line, it emits a burst of electrons (plots a point) whenever a value 

of 1 is encountered in the frame buffer. 

 With an RGB system, the frame buffer is loaded with the color codes 

for the intensities that are to be displayed at the screen pixel 

positions. 

 



Computer Graphics 17 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

Line drawing algorithms: 
 Line drawing is accomplished by calculating intermediate positions 

along the line path between two specified endpoint positions. An 

output device is then directed to fill in these positions between the 

endpoints. 

 For a raster video display, the line color (intensity) is then loaded into 

the frame buffer at the corresponding pixel coordinates. Reading from 

the frame buffer, the video controller then "plots" the screen pixels. 

Screen locations are referenced with integer values, so plotted 

positions may only approximate actual line positions between two 

specified endpoints.  

 For example, a computed line position is (10.48, 20.51), it is rounded 

to (10, 21). This rounding of coordinate values to integers causes lines 

to be displayed with a stair step appearance ("the jaggies"), as 

represented below. 

 

 
 This stair step shape is noticeable in low resolution systems. 

 For the raster-graphics device-level algorithms, object positions are 

specified directly in integer device coordinates. 

 To load a specified color into the frame buffer at a position 

corresponding to column x along scan line y, we will assume we 

have available a low-level procedure of 

the form 

        setPixel (x, y) 
 

 Sometimes we want to retrieve the 

current frame-buffer intensity setting 

for a specified location. We 



Computer Graphics 18 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

accomplish this with the low-level function. We use,  getPixel (x, y) 

 The Cartesian slope-intercept equation for a straight line is 

 

 

 

 with m representing the slope of the line     

          and b as they intercept.  

 Given that the two endpoints of a line 

segment are specified at positions (x1, y2) 
and (x2, y2) as shown in Fig. 3-3,  we can 

determine values for the slope m and y 

intercept b with the following calculations: 

 
 Algorithms for displaying straight lines are based on the line equation 

3-1 and the calculations given in Eq: 3-2 and 3-3. 

 For any given x interval Dx along a line, we can compute the 

corresponding y interval from  Eq: 3-2 as  

 
 Similarly, we can obtain the x interval Dx corresponding to a specified 

Dy as 

 
 These equations form the basis for determining deflection voltages in 

analog devices. 

 For lines with slope magnitudes | m | < 1, Dx can be set proportional 

to a small horizontal deflection voltage and the corresponding vertical 

deflection is then set proportional to Dy as calculated from Equation 

3.4. 



Computer Graphics 19 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 For lines whose slopes have magnitudes | m | > 1, Dy can be set 

proportional to a small vertical deflection voltage with the 

corresponding horizontal deflection voltage set proportional to Dx, 

calculated from Equation 3.5. 

 For lines with m = 1, Dx = Dy and the horizontal and vertical 

deflections voltages are equal. In each case, a smooth line with slope 

m is generated between the specified endpoints. 
DDA algorithm 

 The Digital Differential Analyzer (DDA) is a Scan-Conversion line 

algorithm based calculating either Dy or Dx using equations (4) and 

(5). 

 Consider first a line with positive slope, less than or equal to 1, we 

sample at unit intervals (Dx=1) and compute each successive y value 

as 

 
 subscript k takes integer values starting from 1, for the first point, 

and increases by 1 until the final endpoints is reached. Since m can 

be any real number between 0 & 1, the calculated y values must be 

rounded to the nearest integer. 

 For lines with a positive slope greater than 1, we reserve the roles of 

x & y. That is, we sample at unit y intervals (Dy=1) and calculate each 

succeeding x value as 

 

 Equations (6) and (7) are based on the assumption that lines are to be 

processed from the left endpoint to the right endpoint. 

 If this processing is reversed, so that the starting endpoint is that, 

then either we have Dx= -1 and or (when the slope is greater than 1) 

we have y = -1 with Equations (6), (7), (8) and (9) can also be used to 

calculate pixel positions along a line with negative slope.  



Computer Graphics 20 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 If the absolute value of the slope is less than 1 and the start endpoint 

is at the left, we set Dx=1 and calculate y values with equation (6). 

 

 

 When the start endpoint is at the right (for the same slope), we set 

Dx= -1 and obtain y positions from equation (8). Similarly, when the 

absolute value of a negative slope is greater than 1, we use Dy= -1 and 

equation (9) or we use Dy=1 and equation (7). 

 



Computer Graphics 21 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 
Advantages : 

 The DDA algorithm is a faster method for calculating pixel position 

than the direct use of  slope intercept form equation. 

Disadvantages: 

 The accumulation of round off error in successive additions of the 

floating-point increment, however, can cause the calculated pixel 

positions to drift away from the true line path for long line 

segments.  

 Furthermore, the rounding operations and floating-point arithmetic in 

procedure line DDA are still time-consuming. 

 The algorithm is orientation dependent. Hence end point accuracy is 

poor. 

Improvements can be done in this algorithm are : 

 We can improve the performance of the DDA algorithm by separating 

the increments m and 1/m into integer and fractional parts so that all 

calculations are reduced to integer operations. 

Bresenham's Line Algorithm 

 An accurate and efficient raster line-generating algorithm, developed 

by Bresenham, will  scan converts lines using only incrementa1 



Computer Graphics 22 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

integer calculations that can be adapted to display circles and other 

curves. 

 We first consider the scan-conversion process for lines with positive 

slope less than 1. Pixel 

positions along a line path are 

then determined by sampling 

at unit x intervals. Starting 

from the left endpoint (x0, y0) 

of a line, we step to each 

successive column (x position) 

and plot the pixel whose scan-

line y value is closest to the 

line path. 

 The beside 1st figure 

demonstrates the kth step in 

this process.  

 Assuming we have determined 

that the pixel at (xk, yk) is to 

be displayed, we next need to decide which pixel to plot in column 

xk+1.  

 Our choices are the pixels at positions 

(xk+1, yk) and (xk+1, yk+1). 

 At sampling position xk+1, we label vertical pixel separations from the 

mathematical line path as d1 and d2 shown in the besides 2nd figure . 

 The y coordinate on the mathematical line at pixel column position 

xk+1 is calculated as 

         y = m (xk + 1) + b ------------(1) 
 

Then, 

d1 = y - yk 
    = m (xk + 1) + b - yk 

and 



Computer Graphics 23 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

d2 = (yk+1) - y 
     = yk + 1 – m (xk + 1) - b 

 The difference between these two separations is 

d1 - d2 = 2m (xk + 1) - 2yk + 2b – 1  ---------------- (2) 

 A decision parameter pk for the kth step in the line algorithm can 

be obtained by rearranging equation (2) so that it involves only integer 

calculations.  

 We accomplish this by substituting m = Dy / Dx, where Dy and Dx 

are the vertical and horizontal separations of the endpoint positions, 

and defining: 

pk = Dx(d1-d2) 
    = 2Dy.xk - 2Dx . yk + c    -----------------(3) 

 The sign of pk is the same as sign of d1-d2, since Dx > 0 for our 

examples. 

 Parameter c is constant and has the value 2Dy + Dx (2b-1), which is 

independent of pixel position and will be eliminated in the recursive 

calculations for pk. 

 If the pixel at yk is closer to the line path than the pixel at yk+1(i.e., 

d1<d2), then decision parameter pk is negative. In that case, we plot 

the lower pixel; otherwise, we plot the upper pixel. 

 Coordinate changes along the line occur in unit steps in either the x 

or y directions.  

 Therefore, we can obtain the values of successive decision parameters 

using incremental integer calculations.  

 At step k+1, the decision parameter is evaluated from equation (3) as 

pk+1 = 2Dy . xk+1 – 2Dx . yk+1 + c 
Substituting equation (3) from the preceding equation, we have 

pk+1 – pk = 2Dy (xk+1 - xk) - 2Dx (yk+1 - yk) 

 

But xk+1 = xk + 1, so that 

pk+1 = pk + 2Dy - 2Dx(yk+1-yk)   ---------- (4) 
       where the term yk+1 – yk is either 0 or 1, depending on the sign     



Computer Graphics 24 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

       parameter pk. 

 This recursive calculation of decision parameter is performed at each 

integer x position, starting at the left coordinate endpoint of the line.  

 The first parameter, p0, is evaluated from 3 at the starting pixel 

position (x0,y0) and with m evaluated as Dy / Dx: 

p0 = 2Dy - Dx    ----------(5) 

 We can summarize Bresenham line drawing for a line with a positive 
slope less than 1 in the following listed steps: 

 

1. Input 2 endpoints, store left endpoint in (x0, y0). 

2. Load (x0, y0) into frame buffer, i.e. plot the first point. 

3. Calculate constants �x, �y, 2�y, 2�y – 2�x, and initial value  

    of decision parameter: 

p0 = 2�y - �x 

4. At each xk along the line, start at k=0, test: 

if pk < 0, plot (xk+1, yk) and 

pk+1 = pk + 2�y 

   else plot (xk+1, yk+1) and 

pk+1 = pk + 2�y - 2�x 

5. Repeat step (4) �x times. 

 

Example: Draw a line from (20,10) and (30, 18) using Bresenham’s Line 

       Drawing Algorithm 



Computer Graphics 25 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Computer Graphics 26 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

UNIT-I 
Assignment-Cum-Tutorial Questions 

 
 

SECTION-A 
Objective Questions 

1. The number of pixels stored in the frame buffer of a graphics  
    system is known a             [ ]                                                
     a. Resolution  b. Depth c. Resolution d. a & b 
 
2. The application area of computer graphics are               [ ] 
   a. Training    b. Education  
   c. CAD and entertainment  d. All of these 
3. The purpose of display processor is __from the graphics routine task? 

   a. to free the CPU   b. To free the secondary memory 

   c. to free the main memory  d. Both a & c   [ ] 
 
4. CAD means                          [ ] 

  a. Car aided design   b. Computer art design 
  c. Computer aided design  d. None of these 
 
5. What are the components of Interactive computer graphics  [ ] 

                                                                                        
  a. A digital memory or frame buffer  b. A television monitor 
  c. An interface or display controller  d. All of these 
 
6.  A display controller serves to pass the contents of      [ ] 
   a. Frame buffer to monitor   b. Monitor to frame buffer 
    c. Both a & b     d. None of these 
 
7. On a black and white system with one bit per pixel, the frame buffer is 

commonly called as                                         [ ] 
   a. Pix map      b. Multi map  c. Bitmap d. All of the mentioned 
 
8. To store black and white images ,black pixels are represented 

by________in the frame buffer and white pixels by_______  [ ] 
a. Zero and one   b. One and Zero  c. Both a & b d. None of these 
 

9. Examples of Presentation Graphics is                            [ ] 
a. Bar charts b. CAD     c. Line Graphs d. A and C 

 
10. The basic attributes of a straight line segment are     [ ] 

  a. Type  b. Width  c. Color  d. All of these 
  

11. The Cartesian slope-intercept equation for a straight line is [ ] 

    a. y = m.x + b b. y = b.x + m c. y = x.x + m d. y = b + m.m 



Computer Graphics 27 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

 
12. For lines with slope magnitude |m|<1, x can be_________   [         ] 

a. A set corresponding vertical deflection  
    b. A set proportional to a small horizontal deflection voltage  

c. Only a     d. All of these 
 
13. On raster system, lines are plotted with                           [          ] 

    a. Lines   b. Dots  c. Pixels   d. None 
 
14. Aspect ratio means                                                         [          ] 

a. Number of pixels   
    b. Ratio of vertical points to horizontal points 
    c. Ratio of horizontal points to vertical points 
    d. Both b and c 

15. Which algorithm is a faster method for calculating pixel positions?                                         

   a. Bresenham’s line algorithm  b. Parallel line algorithm [ ] 
   c. Mid-point algorithm   d. DDA line algorithm 
 
16. In Bresenham’s line algorithm, if the distances d1 < d2 then decision  
     parameter Pk is______       [ ] 
   a. Positive     b. Equal      c. Negative    d. Option a(or)c 
 
17. A line connecting the points (1, 1) and (5, 3) is to be drawn, using DDA 

algorithm.   Find the value of x and y increments         [          ] 

a. x-increments = 1; y-increments =1  
b. x-increments = 0.5; y-increments =1 
c. x-increments = 1; y-increments =0.5 
d. None of above 
 

18. Raster is a synonym for the term ?                                [ ] 

   a. Array  b. Matrix  c. Model d. All of above 
 
 19.Digitizing a picture definition into a set of intensity values is       
      known as ........                                                           [ ] 

     a. Digitization  b. Scan conversion  c. Refreshing   d. Scanning 
 
 20.................will free the CPU from graphics chores.          [ ] 

    a. Display processor b. Monitor   c. ALU  d. Video controller  
 



Computer Graphics 28 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

21.The ................ simply reads each successive byte of data from        the   
frame buffer.                                                          [ ] 

  a. Digital Controller  b. Data Controller  c. Display Controller d. All of above 
 
22. An accurate and efficient raster line-generating algorithm is  [ ]        

    a.DDA algorithm          b. Mid-point algorithm 
    c. Parallel line algorithm         d. Bresenham’s line algorithm 

SECTION-B 
       SUBJECTIVE QUESTIONS 

1. Define Computer Graphics. List and explain the applications of computer 

Graphics? 

2. Explain about Raster Scan Systems? 

3. What is the purpose of having a separate Display Processor? 

4. How refreshing operations are done using the video controller? 

5. Explain the architecture of Random Scan Systems? 

6. Explain in detail about the DDA scan conversion algorithm? 

7. Explain Bresenham’s line drawing algorithm? 

8. Explain scan line polygon fill algorithm. 

9. Explain the method for determining whether the point is inside or outside 

the region 

SECTION-C 
 

       QUESTIONS AT THE LEVEL OF GATE 

1. How Many k bytes does a frame buffer needs in a 600 x 400 pixel? 

2. Consider two raster systems with the resolutions of 640 x 480 and 1280 

x 1024.How many pixels could be accessed per second in each of these 

systems by a display controller that refreshes the screen at a rate of 60 

frames per second? 



Computer Graphics 29 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   
   

3. Consider three different raster systems with resolutions of 640 x 480, 

1280 x 1024, and 2560 x 2048.  

a. What size is frame buffer (in bytes) for each of these systems to 

store 12 bits per pixel? 

b. How much storage (in bytes) is required for each system if 24 bits 

per pixel are to be stored? 

4. How much time is spent scanning across each row of pixels during 

screen refresh on a raster system with resolution of 1280 X 1024 and a 

refresh rate of 60 frames per second? 

5. Plot the intermediate pixels for a line with endpoints (20,10) and (30,18) 

using Bresenham’s line drawing algorithm. 

6. Digitize the line with endpoints (0,0) and (-8,-4) using DDA line drawing 

algorithm. 

 

 
 



Computer Graphics 1 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

UNIT-II 

Objective: 

To perform different transformation on objects. 

Syllabus: 

2-D geometrical transforms: Translation, Scaling, Rotations, reflection, 

shear transformations, matrix representations and homogenous 

coordinates, composite transformations. 

Learning Outcomes: 

Student will be able to: 

 Explain various geometrical transformations. 

 Understand the representations of transformations 

Learning Material 

2.1 BASIC TRANSFORMATIONS  

 Changes in orientation, size, and shape are accomplished with 

geometric transformations that alter the coordinate descriptions of 

objects.  

 The basic geometric transformations are translation, rotation, and 
scaling.  

 Other transformations that are often applied to objects include 

reflection and shear. 

2.1.1 Translation 

 A translation is applied to an object by repositioning it along a 

straight-line path from one coordinate location to another.  

 We translate a two-dimensional point by adding translation 

distances, tx and ty, to the original coordinate position (x, y) to move 

the point to a new position (x', y').  



Computer Graphics 2 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

x' = x + tx ,  

y' = y + ty  

 The translation distance pair (tx  , ty ) is called a translation vector 
or shift vector.  

 We can express the translation equations as a single matrix equation 

by using column vectors to represent coordinate positions and the 

translation vector: 

 

 

 

 This allows us to write the two-dimensional translation equations in 

the matrix form:   

                                              P′ = P + T  
 Sometimes matrix-transformation equations are expressed in terms of 

coordinate row vectors instead of column vectors. In this case, we 

would write the matrix representations as : 

                                P = [x y] and T = [tx ty ]  
 

 

 

 

 

 Translation is a rigid-body transformation that moves objects 

without deformation, i.e., every point on the object is translated by 

the same amount.  

 Polygons are translated by adding the translation vector to the 

coordinate position of each vertex and regenerating the polygon using 

the new set of vertex coordinates and the current attribute settings. 

Similar methods are used to translate curved objects.  



Computer Graphics 3 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 To change the position of a circle or ellipse, we translate the center 

coordinates and redraw the figure in the new location.  

 We translate other curves (splines) by displacing the coordinate 

positions defining the objects, and then we reconstruct the curve 

paths using the translated coordinate points. 

2.1.2 Scaling 

 A scaling transformation alters the size of an object. This operation 

can be carried out for polygons by multiplying the coordinate values 

(x, y) of each vertex by scaling factors sx and sy to produce the 

transformed coordinates (x', y'): 

        x'=x. sx    y'=y.sy 
 Scaling factor sx, scales objects in the x direction, while sy scales in 

the y direction.  

 The transformation equations can be written in the matrix form as, 

 

 

 

where S is 2 by 2 scaling matrix. 

 Specifying a value of 1 for both sx and sy leaves the size of objects 

unchanged. 

 When sx and sy are assigned the same value, a uniform scaling is 

produced that maintains relative object proportions. 

 Unequal values for sx and sy result in a differential scaling that are 

often used in design applications, when pictures are constructed from 

a few basic shapes that can be adjusted by scaling and positioning 

transformations. 

 

 



Computer Graphics 4 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

2.1.3 Scaling About a fixed point: 

 We can control the location of a scaled object by choosing a position, 

called the fixed point that is to remain unchanged after the scaling 

transformation.  

 Coordinates for the fixed point (xf , yf) can be chosen as one of the 

vertices, the object centroid, or any other position. A polygon is then 

scaled relative to the fixed point by scaling the distance from each 

vertex to the fixed point.  

 For a vertex with coordinates (x, y), the scaled coordinates (x', y') are 

calculated as: 

 

 

 We can rewrite these scaling transformations to separate the 

multiplicative and additive terms: 

 

 

 

 

where the additive terms xf (1-sx), yf (1-sy) are constant for all points in the 

object. 

2.1.4 Rotation 

 A two-dimensional rotation is applied to an object by repositioning it 

along a circular path in the xy plane. To generate a rotation, we 

specify a rotation angle � and the position (x, y) of the rotation point 

(or pivot point) about which the object is to be rotated. 

 Positive values for the rotation angle define counterclockwise 
rotations.  Negative values rotate objects in the clockwise direction. 



Computer Graphics 5 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 We first determine the transformation equations for rotation of a point 

position P when the pivot point is at the coordinate origin. The 

angular and coordinate relationships of the original and transformed 

point 

positions are shown in the diagram. 

 In this figure, r is the constant distance of the point from the origin, 

angle φ is the original angular position of the point from the 

horizontal, and θ is the rotation angle. Using standard trigonometric 

identities, we can express the transformed coordinates in terms of 

angles θ and φ as: 

 

 

 

 The original coordinates of the point in polar coordinates are,  

                               x = r cos φ y = r sin φ 
 Substituting expressions 2nd into 1st, we obtain the transformation 

equations for rotating a point at position (x, y) through an angle θ 

about the origin: 

 

 

 

 We can write the rotation equations in the matrix form:  

                                  P′ = R . P  

where the rotation matrix is    



Computer Graphics 6 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 

 When coordinate positions are represented as row vectors instead of 

column vectors, the matrix product in rotation equation is transposed 

so that the transformed row coordinate vector [x' y'] calculated as: 

 

 

 

where P’T = [x y], and the transpose R T of matrix R is obtained by 

interchanging rows and columns. For a rotation matrix, the transpose 

is obtained by simply changing the sign of the sine terms. 

2.1.5 Rotation of a point about an arbitrary pivot position 

 

 

 

 

 We can generalize to obtain the transformation equations for rotation 

of a point about any specified rotation position (xr, yr): 

 

 

 

 Rotations are rigid-body transformations that move objects without 

deformation. Every point on an object is rotated through the same 

angle. 

  Polygons are rotated by displacing each vertex through the specified 

rotation angle and regenerating the polygon using the new vertices.  



Computer Graphics 7 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 Curved lines are rotated by repositioning the defining points and 

redrawing the curves.  

 A circle or an ellipse, can be rotated about a non central axis by 

moving the center position through the arc that subtends the 

specified rotation angle. An ellipse can be rotated about its center 

coordinates by rotating the major and minor axes. 

2.1.6 Reflection 

 A reflection is a transformation that produces a mirror image of an 

object. The mirror image for a two-dimensional reflection is generated 

relative to an axis of reflection by rotating the object 180" about the 

reflection axis. Some common reflections are as follows: 

x-Reflection:  

 Reflection about the line y = 0, the x axis, is accomplished with the 

transformation Matrix 

 

 

 

 

 

 

 

 

  This transformation keeps x values the same, but "flips" the y values 

of coordinate positions.  

y-Reflection:  

 A reflection about the y axis flips x coordinates while keeping y 

coordinates the same. The matrix for this transformation is: 

 



Computer Graphics 8 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 

 

 

 

 

 

 

Origin-Reflection:  

 We flip both the x and y coordinates of a point by reflecting relative to 

an axis that is perpendicular to the xy plane and that passes through 

the coordinate origin. This transformation, referred to as a reflection 
relative to the coordinate origin, 

has the matrix representation: 

 

 

 

 

Reflection along diagonal y=x:  

 The reflection matrix is: 

 

 

 

 

Reflection along diagonal y=x:  

 To obtain a transformation matrix for reflection about the diagonal y 

= - x, we could concatenate matrices for the transformation sequence:  



Computer Graphics 9 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

(1) clockwise rotation by 45°,  

(2) reflection about the y axis, and  

(3) counterclockwise rotation by 45°.  

 The resulting transformation matrix is: 

 

 

 

  

 

 Reflections about any line y = mx + h in the xy plane can be 

accomplished with a combination of translate-rotate-reflect 

transformations. 

2.1.7 Shear 

 A transformation that distorts (deform or alter) the shape of an object 

such that the transformed shape appears as if the object were 

composed of internal layers that had been caused to slide over each 

other is called a shear.  

 Two common shearing transformations are those that shift coordinate 

x values and those that shift y values. 

x-Shearing: 

 An x-direction shear relative to the x axis is produced with the 

transformation matrix: 
 

 

 

 



Computer Graphics 10 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 This transforms coordinate positions as: 

              x’ = x + shx . y         y’ = y  

 In the following diagram, shx =2, changes the square into a 

parallelogram.  

 Negative values for shx shift coordinate positions to the left.  

 We can generate x-direction shears relative to other reference lines 

with 

 

 

with coordinate positions transformed as  

            x’ = x + shx ( y – yref ) , y’ = y 
 An example of this shearing transformation is given in the following 

diagram for a shear 

parameter of ½ 

relative to the line 

yref = -1. 

 

 

 

       y-Shearing: 

 A y-direction shear relative to the line x = xref is generated with the 

transformation matrix: 

 

 

which generates transformed coordinate positions 

                      x’ = x                y’ = shy ( x – xref ) + y 



Computer Graphics 11 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 This transformation shifts a coordinate position vertically by an 

amount proportional to its distance from the reference line x = xref.  

 The diagram shows the conversion of a square into a parallelogram 

with shy = ½ and xref = -1. 

 

 

 

 

2.2 Matrix Representation and Homogeneous Coordinates 

 Many graphics applications involve sequences of geometric 

transformations. An animation, for example, might require an object 

to be translated and rotated at each increment of the motion. 

  In design and picture construction applications, we perform 

translations, rotations, and scalings to tit the picture components 

into their proper positions.  

 Each of the basic transformations can be expressed in the general 

matrix form 

                                P' = M1 . P + M2 
with coordinate positions P and P' represented as column vectors. 

 Matrix M1 is a 2 by 2 array containing multiplicative factors, and M2 

is a two-element column matrix containing translational terms. 

 For translation, M1 is the identity matrix. 

 For rotation, M2 contains the translational terms associated with the 

pivot point.  

 For scaling, M2 contains the translational terms associated with the 

fixed point. 

 To produce a sequence of transformations with these equations, such 

as scaling followed by rotation then translation, we must calculate the 

transformed coordinate one step at a time. 



Computer Graphics 12 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

  To express any two-dimensional transformation as a matrix 

multiplication, we represent each Cartesian coordinate position (x, y) 

with the homogeneous coordinate triple (xh, yh, h) where 

 

 

 Thus, a general homogeneous coordinate representation can be 

written as  

                                      (h.x, h.y, h).  
 

 For two dimensional geometric transformations, we can choose the 

homogeneous parameter h to be any nonzero value. A convenient 

choice is simply to set h = 1. Each two-dimensional position is then 

represented with homogeneous coordinates (x, y, 1).  

 When a Cartesian point (x, y) is converted to a homogeneous 

representation (xh, yh, h) equations containing x and y such as f (x, y) 

= 0, become homogeneous equations in the three parameters xh, yh 

and h. Expressing positions in homogeneous coordinates allows us to 

represent all geometric transformation equations as matrix 

multiplications. Coordinates are represented with three-element 

column vectors, and transformation operations are written as 3 by 3 

matrices. 

 For Translation,  

 

 

                                         P' = T (tx, ty) . P 
with T (tx, ty) as the 3 by 3 translation matrix. 

The inverse of the translation matrix is obtained by replacing the 

translation parameters tx and ty with their negatives – tx and – ty . 
 

 For Rotation, equations about the coordinate origin are written as: 



Computer Graphics 13 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 
 

 

 

        P' = R (θ ) . P 

The rotation transformation operator R (θ) is the 3 by 3 matrix with 

rotation parameter θ. We get the inverse rotation matrix when θ is 

replaced with -θ. 

 For Scaling, relative to the coordinate origin: 
 
 

 

 

 

                 where S (sx, sy) is the 3 by 3 matrix with parameters sx and sy. 

Replacing these parameters with their multiplicative inverses (1/sx 

and 1/sy) yields the inverse scaling matrix. 

2.3 Composite Transformations 

 With the matrix representations, we can set up a matrix for any 

sequence of transformations as a composite transformation matrix by 

calculating the matrix product of the individual transformations.  

 Forming products of transformation matrices is often referred to as a 

concatenation, or composition, of matrices.  
 For column-matrix representation of coordinate positions, we form 

composite transformations by multiplying matrices in order from 
right to left, i.e., each successive transformation matrix pre 

multiplies the product of the preceding transformation matrices. 



Computer Graphics 14 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

6.3.1 Translations:  

 If two successive translation vectors (tx1, ty1) and (tx2, ty2) are applied 

to a coordinate position P, the final transformed location P' is 

calculated as  
                              P' = T (tx2, ty2) . {T (tx1, ty1) . P}  

                                  = {T (tx2, ty2) . T (tx1, ty1)} . P}  

where P and P' are represented as homogeneous-coordinate column 

vectors.  

 The composite transformation matrix for this sequence of translations 

is: 

 

 

 

 

                 Two successive translations are additive. 

6.2.2 Rotations: 

 Two successive rotations applied to point P produce the transformed 

position  

                              P' = R (θ2) . {R (θ1) . P}  
                                  = {R (θ2) . R (θ1)} . P 

 By multiplying the two rotation matrices, we can verify that two 
successive rotations are additive: 
                             R (θ2) . R (θ1) = R (θ1 + θ2)  
so that the final rotated coordinates can be calculated with the 

composite rotation matrix as   

                                        P' = R (θ1 + θ2) . P 

 

 



Computer Graphics 15 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

6.2.3 Scaling: 

  Concatenating transformation matrices for two successive scaling 

operations produces the following composite scaling matrix: 

 

 

 

 

 Successive scaling operations are multiplicative. 

6.2.4 General Pivot-Point Rotation: 

 With a graphics package that only provides a rotate function for 

revolving objects about the coordinate origin, we can generate 

rotations about any selected pivot point (xr, yr) by performing the 

following sequence of translate-rotate-translate operations:  

 

1. Translate the object so that the pivot-point position is moved to the 

coordinate origin. 

2. Rotate the object about the coordinate origin.  

3. Translate the object so that the pivot point is returned to its original 

position.  

 The composite transformation matrix for this sequence is obtained 

with the concatenation 

 

 

 

 

 

 



Computer Graphics 16 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

This can be expressed as: 

 

 

6.2.5 General Fixed-Point Scaling: 

 The following diagram illustrates a transformation sequence to 

produce scaling with respect to a selected fixed position (xf , yf ) using 

a scaling function that can only scale relative to the coordinate origin.  

1. Translate object so that the fixed point coincides with the 

coordinate origin.  

2. Scale the object with respect to the coordinate origin.  

3. Use the inverse translation of step 1 to return the object to its 

original position 

 



Computer Graphics 17 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 Concatenating the matrices for these three operations produces the 

required scaling matrix. 

 

 

 

 

  

6.2.6 General Scaling Directions: 

 Parameters sx and sy scale objects along the x and y directions. We 

can scale an object in other directions by rotating  the object to align 

the desired scaling directions with the coordinate axes before applying 

the scaling transformation.  

 If we want to apply scaling factors with values specified by parameters 

sl and s2 in the directions shown in the diagram, to accomplish the 

scaling without changing the orientation of the object, we first perform 

a rotation so that the directions for s1 and s2 coincide with the x and 

y axes, respectively. Then the scaling transformation is applied, 

followed by an opposite rotation to return points to their original 

orientations. The composite matrix resulting from the product of these 

three transformations is, 

 

 

 

 

 

 



Computer Graphics 18 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 

 

 

 

6.8.7 Concatenation Properties:  

 Matrix multiplication is associative. 
 For any three matrices, A, B and C, the matrix product A . B . C can 

be performed by first multiplying A and B or by first multiplying B and 

C:  

A . B . C = (A . B) . C  
                = A . (B . C)  
Therefore, we can evaluate matrix products using either a left-to-right 

or a right-to-left associative grouping.  

 Transformation products may not be commutative:  
The matrix product A . B is not equal to B . A. This commutative 

property holds also for two successive translations or two successive 

scalings.  

Another commutative pair of operations is rotation and uniform 

scaling.  

(sx = sy)  

 

 

 

 

 

 

 

 

 

 



Computer Graphics 19 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

UNIT-II 
Assignment-Cum-Tutorial Questions 

 
 

SECTION-A 

Objective Questions  

1. The most basic transformation that are applied in three-dimensional 

planes are         [ ] 

a. Translation   b. Scaling   c. Rotation   d. All of these 

2. The transformation in which an object can be shifted to any coordinate 

position in three dimensional plane are called    [ ] 

a. Translation  b. Scaling    c.  Rotation    d. All of these 

3.  The transformation in which an object can be rotated about origin as 

well as any arbitrary pivot point are called    [ ] 

a. Translation   b. Scaling   c.  Rotation  d.  All of these 

4.   The transformation in which the size of an object can be modified in x-

direction ,y-direction and z-direction     [ ] 

a. Translation   b. Scaling   c. Rotation   d.  All of these 

5.  Apart from the basic transformation ,________are also used [ ] 

a.Shearing   b.Reflection        c. Both a & b       d. None of these 

6.  In which transformation ,the shape of an object can be modified in any 

of direction depending upon the value assigned to them  [ ] 

a. Reflection               b. Shearing        c. Scaling             d. None of these 

7. In which transformation ,the mirror image of an object can be seen with 

respect to x-axis, y-axis ,z-axis as well as with respect to an arbitrary line 

[ ] 

a. Reflection            b. Shearing         c. Translation     d. None of these 

8. A translation is applied to an object by     [ ] 

a) Repositioning it along with straight line path 

b) Repositioning it along with circular path 

c) Only b 

d) All of the mentioned 

9. We translate a two-dimensional point by adding   [ ] 

a) Translation distances   b) Translation difference  c) X and Y d) None  



Computer Graphics 20 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

10. The translation distances (dx, dy) is called as    [ ] 

a) Translation vector b) Shift vector c) Both a and b d) Neither a nor b 

11. In 2D-translation, a point (x, y) can move to the new position (x’, y’) by 

using the equation        [ ] 

a) x’=x+dx and y’=y+dx   b) x’=x+dx and y’=y+dy 

c) X’=x+dy and Y’=y+dx   d) X’=x-dx and y’=y-dy 

12. To generate a rotation , we must specify    [ ] 

a) Rotation angle �    b) Distances dx and dy  

c) Rotation distance    d) All of the mentioned 

13. Positive values for the rotation angle � defines   [ ] 

a) Counterclockwise rotations about the end points 

b) Counterclockwise translation about the pivot point 

c) Counterclockwise rotations about the pivot point 

d) Negative direction 

14. The original coordinates of the point in polor coordinates are [ ] 

a) X’=r cos (Ф +�) and Y’=r cos (Ф +�)  

b) X’=r cos (Ф +�) and Y’=r sin (Ф +�) 

c) X’=r cos (Ф -�) and Y’=r cos (Ф -�)  

d) X’=r cos (Ф +�) and Y’=r sin (Ф -�) 

15. The transformation that is used to alter the size of an object is 

a) Scaling  b) Rotation   c) Translation  d) Reflection[ ] 

16. The two-dimensional scaling equation in the matrix form is 

a) P’=P+T  b) P’=S*P   c) P’=P*R   d) P’=R+S [ ] 

17. Scaling of a polygon is done by computing 

a) The product of (x, y) of each vertex   b) (x, y) of end points  
c) Center coordinates     d) None 

SECTION-B 
SUBJECTIVE QUESTIONS  

1. Explain the 2D basic transformations with suitable diagrams. 

2. Explain the necessity of homogenous coordinates? 

3. Explain reflection and shear? 



Computer Graphics 21 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

4. Explain about composite transformations? 

5. Perform the following transformations: 

 Scale the image two times in x-direction 5 times in y-direction. 

 Scale the image five times in length 1/5 times in height. 

 Rotate the image 350 in clockwise direction about the horizon. 

 Translate the image 2 units in x-direction and 3 units in y-direction. 

 Translate the image 5 units to the right direction and 3 units up words 

direction. 

 Translate the image 5 units to the left down words direction and 3 units 

down words direction. 

 Rotate in anticlock wise direction about 450 

6. Give a 3 X 3 homogeneous transformation matrix for the following 

a. Scale the image 5 units in x-direction and 3 units in y –direction. 

b. Scale the image 1/3 units in x-direction and 5 units in y –direction. 

c. Scale the image 3 units in x –direction and no change in y. 

d. Scale the length by 2 units and height by 1/5 unit. 

e. Scale the height by 7 units. 

f. Rotate the image in clockwise direction by 30 degrees. 

g. Rotate the image by 45 degrees in anti-clock wise direction. Prove that 

two scaling transformations commute that is S 1 * S2 = S2* S1. 

7. Prove that two 2 D rotations about origin commute that is R1 * R2 = R2 * 

R1 

8. Find the matrix that represents rotation of an object by 30 degrees about 

origin and what are the new coordinates of the point P(2,-4) after the 

rotation. 

9. Write the general form of a scaling matrix with respect to a fixed point P 

(h, k). And         using this magnify the triangle with vertices A (0,0), B 

(1,1) and C(5,2) to twice its size while keeping C(5,2)  fixed. 

10. Show that transformation matrix for a reflection about a line Y=X is 

equivalent to reflection to X-axis followed by counter-clock wise rotation of 

90 degrees. 



Computer Graphics 22 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

11. Perform a 45 degrees rotation of triangle A (0,0) B (1,1) C (5,2) a) about 

the origin and about P (-1,-1). 

12. Give a 3 x 3 transformation matrix for the following: 

a. Translate the image 3 units in X-direction,5 units in Y-direction. 

b. Translate the image 3 units up 7 units left. 

c. Translate the image 5 units right and 4 units downwards. 

d. Translate the image upward direction by 4 units. 

e. Translate image right side by 2 units. 

13. Give a single 3 x 3 homogeneous co-ordinate transformation matrix, 

which will have the same effect as each of the following transformation 

sequences. 

a. Scale the image to be twice as large and then translate it 1 unit to the 

left. 

b. Scale the X-direction to be one half as large and then rotate counter 

clockwise by π/2 about origin. 

c. Rotate counter clock about the origin by 90 degrees and then scale the 

X- direction to be one-half as large. 

d. Translate down 1⁄2 unit and then rotate counter clockwise by 45 

degrees. 

e. Scale the Y co ordinate to make the image twice as tall, shift down 1 

unit and then rotate  counter clock wise by 30 degrees. 

 

 

 

 



Computer Graphics 1 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

UNIT-3 

Objective: 

To familiarize with viewing and clipping 

Syllabus: 2D viewing 

The viewing pipeline, window to viewport coordinate transformation, viewing 

functions, cohen-sutherland line clipping algorithm, Sutherland-Hodgeman 

polygon clipping algorithm. 

Outcomes: 

Students will be able to: 

 Understand window to viewport transformation. 

 Understand an algorithm for clipping a line. 

 Understand the process of clipping a polygon. 

Learning Material 

The viewing pipeline 

 A world-coordinate area selected for display is called a window.  
 An area on a display device to which a window is mapped is called a 

viewport.  
 The window defines what is to be viewed; the viewport defines where 

it is to be displayed. 
 Windows and Viewports are rectangles in standard position, with the 

rectangle edges parallel to the coordinate axes.  

 In general, the mapping of a part of a world-coordinate scene to device 

coordinates is referred to as a viewing transformation. It is also 

called as the window-to-viewport transformation or the windowing 
transformation. 



Computer Graphics 2 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 The term window is referred to an area of a picture that is selected  

for viewing. 

 First, we construct the scene in world coordinates using the output 

primitives and attributes. 

 Next to obtain a particular orientation for the window, we set up a 

two-dimensional viewing-coordinate system in the world-coordinate 

plane, and define a window in the viewing-coordinate system. 

  The viewing-coordinate reference frame is used to provide a method 

for setting up arbitrary orientations for rectangular windows. 

  Once the viewing reference frame is established, we can transform 

descriptions in world coordinates to viewing coordinates.  

 We then define a viewport in normalized coordinates (in the range 

from O to I) and map the viewing-coordinate description of the scene 

to normalized co-ordinates.  

 At the final step, all parts of the picture that are outside the viewport 

are clipped, and the contents of the viewport are transferred to device 

coordinates. 

 

 By changing the position of the viewport, we can view objects at 

different positions on the display area of an output device.  



Computer Graphics 3 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 By varying the size of viewports, we can change the size and 

proportions of displayed objects.  

 We achieve zooming effects by successively mapping different-sized 

windows on a fixed-size viewport. As the windows are made smaller, 

we zoom in on some part of a scene to view details that are not shown 

with larger windows. Similarly, more overview is obtained by zooming 

out from a section of a scene with successively larger windows. 

Panning effects are produced by moving a fixed-size window across 

the various objects in a scene. 

 

 

 

 

 

 

 Viewports are typically defined within the unit square (normalized 

coordinates). This provides a means for separating the viewing and 

other transformations from specific output-device requirements, so 

that the graphics package is largely device independent.  

 Once the scene has been transferred to normalized coordinates, the 

unit square is simply mapped to the display area for the particular 

output device in use at that time. Different output devices can be used 

by providing the appropriate device drivers. 

 When all coordinate transformations are completed, viewport clipping 

can be performed in normalized coordinates or in device coordinates. 

This allows us to reduce computations by concatenating the various 

transformation matrices. 

 

 



Computer Graphics 4 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

Window to viewport transformation 

 Once object descriptions have been transferred to the viewing 

reference frame, we choose the window extents in viewing coordinates 

and select the viewport limits in normalized coordinates. 

 A point at position (xw, yw) in the window is mapped into position (xv, 

yv) in the associated viewport. To maintain the same relative 

placement in the viewport as in the window, we quire that: 

 

 

 

 

 

 

 

 

 Solving these expressions for the viewport position (xv, yv), we have: 

 

 

Where the scaling factors are 

 

 

 From normalized coordinates, object 

descriptions are mapped to the various display devices. Any number 

of output devices can be open in a particular application, and another 



Computer Graphics 5 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

window-to-viewport transformation can be performed for each open 

output device. This mapping, called the workstation transformation. 

 

 

 

 

 

 

 

 

Two Dimensional Viweing functions 

 We define a viewing reference system in a PHIGS application 

program with the following function: 

evaluateViewOrientationMatrix (x0, y0, xv, yv,error, viewMatrix) 

where parameters x0 and y0 are the coordinates of the viewing origin, 

and parameters xv and yv are the world-coordinate positions for the 

view up vector.  

 An integer error code is generated if the input parameters are in 

error; otherwise, the viewMatrix for the world-to-viewing 

transformation is calculated. Any number of viewing transformation 

matrices can be defined in an application. 

 To set up the elements of a window-to-viewport mapping matrix, 

we invoke the function: 

evaluateViewMappingMatrix (xwmin, xwmax,ywmin, ywmax, 
xvmin, xvmax, yvmin, yvmax, error, viewMappingMatrix) 



Computer Graphics 6 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 Here, the window limits in viewing coordinates are chosen with 

parameters xwmin, xwmax, ywmin,  ywmax. Viewport limits are set 

with normalized coordinate positions xvmin, xvmax, yvmin, yvmax. 

 we can store combinations of viewing and window-viewport 
mappings for various workstations in a viewing table with: 

setViewRepresentation (ws, viewIndex, viewMatrlx, 
viewMappingMatrix, xclipmin, xclipmax, yclipmin, yclipmax, 
clipxy) 

where parameter ws designates the output device (workstation), and 

parameter viewIndex sets an integer identifier for this particular 

window-viewport pair. The matrices viewMatrix and 

viewMappingMatrix can be concatenated and referenced by the 

viewIndex. The parameter clipxy is assigned either the value noclip 

or the value clip. This allows us to turn off clipping if we want to view 

the parts of the scene outside the viewport. We can also select noclip 

to speed up processing when we know that all of the scene is included 

within the viewport limits. 

 The below function selects a particular set of options from the viewing 

table. This view-index selection is then applied to subsequently 

specified output primitives and associated attributes and generates a 

display on each of the active workstations. 

setViewIndex(viewIndex) 

 we apply a workstation transformation by selecting a workstation 

window-viewport pair: 

setWorkstationWindow (ws, xwswindmin, xwswindmax, 
ywswindrnin, ywswindmax) 

setWorksrationViewport (ws, xwsVPortmin, xwsVPortmax, 
ywsVPortmin, ywsVPortmax) 



Computer Graphics 7 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

where parameter ws gives the workstation number. Windowioordinate 

extents are specified in the range from 0 to 1 (normalized space), and 

viewport limits are in integer device coordinates. 

Clipping 

 Any procedure that identifies those portions of a picture that are 

either inside or outside of a specified region of space is called 

“clipping algorithm”, or simply “clipping”. 

 The region against which an object is to clipped is called a “clip 
window”. 

 Applications of clipping include: 

 extracting part of a defined scene for viewing; 

 identifying visible surfaces in three-dimensiona1 views;  

 ant aliasing line segments or object boundaries;  

 creating objects using solid-modelling procedures; 

 displaying a multi window environment;  

 drawing and painting operations that allow parts of a picture to 

be selected for copying, moving, erasing, or duplicating 

 Depending on the application, the clip window can be a general 

polygon or it can even have curved boundaries. 

 For the viewing transformation, we want to display only those picture 

parts that are within the window area.  Everything outside the window 

is discarded.  

 Clipping algorithms can be applied in world coordinates, so that only 

the contents of the window interior are mapped to device coordinates.  

 The following clipping procedures: 



Computer Graphics 8 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 Point Clipping 

 Line clipping (straight-line segments) 

 Area clipping (polygons) 

 Curve Clipping 

 Text Clipping 

Point Clipping 

 Assuming that the clip window is a rectangle in standard position, we 

save a point P = (x, y) for display if the following inequalities are 

satisfied: 

 

where the edges of the clip window (xwmin, ywmin, xwmax, ywmax) can be 

either the world-coordinate window boundaries or viewport 

boundaries.  

If any one of these four inequalities is not satisfied, the point is 

clipped (not saved for display). 

Line Clipping  

 A line clipping procedure involves several parts: 

 First, we can test a given line segment to determine whether it lies 

completely inside the clipping window. If it does not, we try to 

determine whether it lies completely outside the window. Finally, if we 

cannot identify a line as completely inside or completely outside, we 

must perform intersection calculations with one or more clipping 

boundaries. 

 We process lines through the "inside-outside'' tests by checking the 

line endpoints.  



Computer Graphics 9 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 

 A line with both endpoints inside all clipping boundaries, such as the 

line from P1 to P2 is saved.  

 A line with both endpoints outside any one of the clip boundaries, 

such as P3 to P4 is outside the window. 

 All other lines cross one or more clipping boundaries, and may require 

calculation of multiple intersection points. 

 For a line segment with endpoints (x1, y1) and (x2 y2)  and one or both 

endpoints outside the clipping rectangle, the parametric 

representation: 

 

 The above representation could be used to determine values of 

parameter u for intersections with the clipping boundary coordinates.  

 If the value of u for an intersection with a rectangle boundary edge is 

outside the range 0 to 1, the line does not enter the interior of the 

window at that boundary.  

 If the value of u is within the range from 0 to 1, the line segment 

may cross into the clipping area. This method can be applied to each 

clipping boundary edge in turn to determine whether any part of the 



Computer Graphics 10 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

line segment is to be displayed. Line segments that are parallel to 

window edges can be handled as special cases. 

Cohen Sutherland Line Clipping Algorithm 

 This is the oldest and most popular line-clipping procedures.  

 The method speeds up the processing of line segments by 

performing initial tests that reduce the number of intersections 

that must he calculated.  

Region Codes:  

 Every line end point in a picture is assigned a four-digit binary 

code, called a “region code”, that identifies the location of the 

point relative to the boundaries of the clipping rectangle.  

 Regions are set up in reference to the boundaries as shown below: 

 

 

 

 

 Each bit position in the region code is used to indicate one of the 

four relative coordinate positions of the point with respect to the 

clip window: to the left, right, top, or bottom.  

 By numbering the bit positions in the region code as 1 through 4 

from right to left, the coordinate regions can be correlated with the 

bit positons as: 

bit 1: left 
bit 2: right 
bit 3: below 
bit 4: above 



Computer Graphics 11 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 A value of 1 in any bit position indicates that the point is in that 

relative position; otherwise, the bit position is set to 0. If a point is 

within the clipping rectangle, the region code is 0000. A point that is 

below and to the left of the rectangle has a region code of 0101. 

 Bit values in the region code are determined by comparing endpoint 

coordinate values (x, y) to the clip boundaries: 

Bit 1 is set to 1 if x < xwmin 

Bit 2 is set to 1 if x > xwmax 

Bit 3 is set to 1 if y < ywmin 

Bit 4 is set to 1 if x > ywmax 
 Region-code bit values can be determined with the following two steps: 

 (1) Calculate differences between endpoint coordinates and clipping 

boundaries. 

 (2) Use the resultant sign bit of each difference calculation to set the 

corresponding value in the region code.  

Bit 1 is the sign bit of x – xwmin  

Bit 2 is the sign bit of xwmax - x; 
Bit 3 is the sign bit of y – ywmin 

Bit 4 is the sign bit of ywmax - y. 
       Processing the Lines using the region codes: 

 Once we have established region codes for all line endpoints, we can 

quickly determine which lines are completely inside the clip window 

and which are clearly outside.  

 Any lines that are completely contained within the window boundaries 

have a region code of 0000 for both endpoints, they are 
completely inside the clipping rectangle and we accept these 
lines.  

 Any lines that have a 1 in the same bit position in the region 
codes for each endpoint are completely outside the clipping 
rectangle, and we reject these lines. We would discard the line that 



Computer Graphics 12 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

has a region code of 1001 for one endpoint and a code of 0101 for the 

other endpoint. Both endpoints of this line are left of the clipping 

rectangle, as indicated by the 1 in the first bit position of each region 

code.  

 A method that can be used to test lines for total clipping is to perform 
the logical AND operation with both region codes.  

 If the result is not 0000, the line is completely outside the 

clipping region. 

 If the result is 0000, the line is intersecting the clipping 

boundary. 

 We begin the clipping process for a line by comparing an outside 

endpoint to a clipping boundary to determine how much of the line 

can be discarded. Then the remaining part of the line is checked 

against the other boundaries, and we continue until either the line is 

totally discarded or a section is found inside the window. We set up 

our algorithm to check line endpoints against clipping boundaries in 

the order left, right, bottom, top. 

Example: 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



Computer Graphics 13 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 Starting with the bottom endpoint of the line from P1 to P2, we check 

P1 against the left, right, and bottom boundaries in turn and find that 

this point is below the clipping rectangle.  

 We then find the intersection point P11, with the bottom boundary and 

discard the line section from P1 to P11. The line now has been reduced 

to the section from P11 to P2. 

  Since P2 is outside the clip window, we check this endpoint against 

the boundaries and find that it is to the left of the window. 

Intersection point P21 is calculated, but this point is above the 

window. So the final intersection calculation yields P211 and the line 

from P11 to P211 is saved.  

 This completes processing for this line, so we save this part and go on 

to the next line. 

 Point P3 in the next line is to the left of the clipping rectangle, so we 

determine the intersection P31 and eliminate the line section from P3 to 

P3' .By checking region codes for the line section from P31 to P4,  we 

find that the remainder of the line is below the clip window and can be 

discarded also. 

 Intersection points with a clipping boundary can be calculated using 

the slope-intercept form of the line equation. For a line with endpoint 

coordinates (x1, y1) and (x2, y2), the y coordinate of the intersection 

point with a vertical boundary can be obtained with the calculation: 

 
 

where the x value is set either to xwmin or  to xwmax , the slope of 

the line is calculated as 

m = (y2 – y1)/(x2 – x1) 

 For the intersection with a horizontal boundary, the x coordinate can 

be calculated as: 

 

       with y set either to ywmin or to ywmax. 



Computer Graphics 14 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

Polygon Clipping 

 For polygon clipping, we require an algorithm that will generate one or 

more closed areas that are then scan converted for the appropriate 

area fill. The output of a polygon clipper should be a sequence of 

vertices that defines the clipped polygon boundaries.  

 

 

 

Sutherland-Hodgeman polygon Clipping 

 We can correctly clip a polygon by processing the polygon boundary as 

a whole against each window edge.  

 This could be accomplished by processing all polygon vertices against 

each clip rectangle boundary in turn.  

 Beginning with the initial set of polygon vertices, we could first clip 

the polygon against the left rectangle boundary to produce a new 

sequence of vertices. The new set of vertices could then be 

successively passed to a right boundary clipper, a bottom boundary 

clipper, and a top boundary clipper. 

 

 

 

 

 



Computer Graphics 15 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 At each step, a new sequence of output vertices is generated and 

passed to the next window boundary clipper. 

 There are four possible cases when processing vertices in sequence 

around the perimeter of a polygon. As each pair of adjacent polygon 

vertices is passed to a window boundary clipper, we make the 

following tests:  

(1) If the first vertex is outside the window boundary and the second 

vertex is inside, both the intersection point of the polygon edge with 

the window boundary and the second vertex are added to the output 

vertex list.  

(2) If both input vertices are inside the window boundary, only the 

second vertex is added to the output vertex list.  

(3) If the first vertex is inside the window boundary and the second 

vertex is outside, only the edge intersection with the window boundary 

is added to the output vertex list.  

(4) If both input vertices are outside the window boundary, nothing is 

added to the output list. 

  Once all vertices have been processed for one clip window boundary, 

the output list of vertices is clipped against the next window 

boundary. 

Let us consider the following figure: 



Computer Graphics 16 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 

 

 

 

 

 

 Vertices 1 and 2 are found to be on the outside of the boundary. So 

none is saved. 

 Moving along 2 and 3, intersection point 11 and the vertex 3 i.e., 21 is 

saved. 

 Vertex 4 is saved as 31. 

 Vertex 5 is saved as 41. 

 Moving from vertex 5 to vertex 6, the intersection point 51 is saved. 

 Now using the points 11-21-31-41-51 , we would repeat the process for 

the next window boundary. 

 The output list of vertices is stored as the polygon is clipped against 

each window boundary. We can eliminate the intermediate output 

vertex lists by simply clipping individual vertices at each step and 

passing the clipped vertices on to the next boundary. 

 A point (vertex or intersection) is added to the final output vertex list 

only after it has been determined to be inside or on a window 

boundary by all four boundary clippers. 

 



Computer Graphics 17 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



Computer Graphics 18 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

UNIT-III 
Assignment-Cum-Tutorial Questions 

 
 

SECTION-A 

Objective Questions 
 

1.The rectangle portion of the interface window that defines where the image 

will  actually appear are called                                                [ ] 

a) Transformation viewing   c) View port 

b) Clipping window   d) Screen coordinate system 

2. The rectangle space in which the world definition of region is displayed 

     are called                                                                                    [ ] 

a) Screen coordinate system  c) Clipping window or world window 

b) World coordinate system  d) None of these 

3. The object space in which the application model is defined    [ ]         

a)  Screen coordinate system c) Clipping window or world window 

b) World coordinate system  d) None of these 

4. The process of cutting off the line which are outside the window are 

     called                                                                                        [ ] 

     a)Shear    b ) Reflection    c) Clipping     d) Clipping window 

 5. The process of mapping a world window in world coordinate system to 

     viewport are called                                                                    [ ] 

   a) viewing transformation    c) Clipping window   

     b) Viewport d) Screen          d) coordinate system 

6. Coordinates of window are known as ..............                          [ ] 

    a) Screen coordinates          c) World coordinates   

    b) Device coordinates          d) Cartesian coordinates 

7. A method used to test lines for total clipping is equivalent to the__? 

a) logical XOR operator   c) logical OR operator  [ ] 

b) logical AND operator  d) both a and b 

8. ………………………………..clips convex polygons correctly , but in case of 

concave polygon , it displays an extraneous line .           [ ] 



Computer Graphics 19 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

a) sutherland-hodgeman algorithm b) Cohen –Sutherland algorithm 

c )none of above     d) either ( a ) or (b) 

 9. The Cohen-Sutherland line clipping algorithm divides the entire region 

     into      ..............number of sub-regions                                     [ ] 

     a) 4         b) 8         c) 9           d) 10  

10. . ................ number of bits are used for representing each sub-region 

     of   Cohen-Sutherland line clipping algorithm :                          [ ] 

     a) 1           b) 2         c) 3           d) 4 
 

11. The region against which an object is clipped is called a ........    [ ] 

      a) Clip window   b) Boundary   c) Enclosing rectangle   d)Clip square 
 

12.A line with endpoints codes as 0000 and 0100 is ?                      [ ] 

 a) Partially invisible    b) Completely visible 

 c) Completely invisible   d) Trivially invisible 

13. According to Cohen-Sutherland algorithm, a line is completely outside 

the window if ............                                          [ ] 

a) The region codes of line endpoints have a '1' in same bit position. 

b)The endpoints region code are nonzero values 

c) If L bit and R bit are nonzero. 

d) The region codes of line endpoints have a '0' in same bit position. 

14. The result of logical AND operation with endpoint region codes is a 

nonzero value. Which of the following statement is true?    [ ] 

    a) The line is completely inside the window 

    b) The line is completely outside the window 

    c) The line is partially inside the window 

    d) The line is already clipped 

15. The left (L bit ) bit of the region code of a point (X,Y) is '1' if ..... [ ].                                                                               

     a) X > XWMIN     b) X< XWMIN  c) X< XWMAX d) X>XWMAX 

16.The Most Significant Bit of the region code of a point (X,Y) is '1' if .......                                                        

     a) Y > YWMIN      b) Y< YWMIN  c) Y< YWMAX  d) Y>YWMAX[ ] 



Computer Graphics 20 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

17. In a clipping algorithm of Cohen & Sutherland using region codes, a   

line is already clipped if the?              [ ] 
 

a) codes of the end point are same 

b) logical AND of the end point code is not 0000 

c) logical OR of the end points code is 0000 

d) logical AND of the end point code is 0000 

e) A and B 

18. In displaying a clipped picture the efficient method is ?           [ ] 

a. Clipping against the window and then applying the window 
transformation 

b. Applying window transformation and then clipping against the 

viewport 

c. Both A and B have the same efficiency 

d. Efficiency depends on whether the window is an aligned rectangle or 

not 
 

19.In the Cohen-Sutherland line clipping algorithm, if codes of the two 

points P and Q are 0101 and 0001 then the line segment joining the 

points P and Q will be the clipping window                 [ ] 

 (a) Totally outside    (b) Partially outside  

 (c) Totally inside     (d) None of the above  
 

20. 1f XL, .XR, YB, YT represent the four parameters of x-left, x—right, y—

bottom and ytop of a clipping window and (x, y) is a point inside the 

window such that x > XL and x > XL and YB < y < YT, then the code of 

the point (x, y) in Cohen—Sutherland algorithm                                                    

     (a) 1100   (b) 1000   (c) 1110  (d) 0000  [ ] 
 

21. For the figure given below what are the new vertices to be saved as 

output vertices, after clipping with the window boundary    [ ] 

 a) V1', V2 

 b) V2 



Computer Graphics 21 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 c)V1'     d) none 

22. In Sutherland-Hodgeman algorithm for polygon clipping, assume P 

(Present point) lies inside the window and S(Previous point) lies outside 

the window. Then, while processessing through that window boundary, 

we should                                                                      [ ] 

 a) Store the intersection point of the line Ps (S’) only 

 b) store the point P and S’ 

 c) store the point P only 

 d) store the points S and S’ 

23.Perform window to viewport transformation for the point (20,15) Assume 

that (Xwmin, Ywmin) is (0,0), (Xwmax, Ywmax) is (100, 100); (Xvmin, 

Yvmin) is (5,5); (Xvmax, Yvmax) is (20, 20). The value of x and y the 

viewport           [ ] 

 a) x=4, y=4    b) x=3, y=3  c) x=8, y=7.25 d) x=3, y=4 

SECTION-B 
SUBJECTIVE QUESTIONS 

1) What is window-to-viewport (viewing) transformation. Explain the steps 

involved in it. 

2) What are the stages involved in 2D viewing transformation pipeline. 

Explain briefly about each stage. 

3) Give a brief note on 2d viewing functions. Give an example which uses 

2D viewing functions. 

4) Explain the Cohen-Sutherland line clipping algorithm . Demonstrate with 

an example all the three cases of lines. 

5)  Why the Sutherland-Hodgeman is called as re-entrant algorithm. 

Describe Sutherland-Hodgeman algorithm for polygon clipping. 



Computer Graphics 22 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

6) What are the advantages and disadvantages of Cohen-Sutherland out-

code algorithm 

7) Distinguish between Cohen-Sutherland and Sutherland Hodgeman 

algorithms 

8) Justify that the Sutherland-Hodgeman algorithm is suitable for clipping 

concave polygons also. 

 

 



Computer Graphics 1 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

UNIT-IV 
 3D Geometric Transformations 

Objective: To familiarize with the 3D Transformation, viewing, clipping and 

various Projections . 
Syllabus 
 

Translation, Scaling ,Rotation, Reflection ,Shear Transformations ,Composite 

Transformations, Parallel Projections ,Perspective projections 

Learning Outcomes: 

Students will be able to 
 

 Differentiate between 2D and 3D Graphic objects representation 
 

 Perform various 3D-Transformations like translation, scaling, rotation, 

reflection and shearing 
 

 Know the Importance of 3D –Projections in Engineering Applications


4.1.Introduction. 
 

 In the 2D system, we use only two coordinates X and Y but in 3D, an 

extra coordinate Z – axis is added. 3D graphics techniques and their 

application are fundamental to the entertainment, games, and computer-

aided design industries 

 

 Two Coordinate system are available  to use in 3D. 

 

o Left Handed  Coordinate System and 
 

o Right Handed Coordinate System 
 Commonly we will use the Right Coordinate System.



 
 


 

 

 

 

 



Computer Graphics 2 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

4.2 TRANSLATION : 
We now translate an object by specifying a three-dimensional translation vector, 

which determines how much the object is to be moved in each of the three coordinate 

directions. 

Translation of a point : 
In a three-dimensional homogeneous coordinate representation, a point is translated 

(Fig.) from position P = (x, y, z) to position P' = (x', y', z') with the matrix Operation. 

 

 
 
 
 
 
 
 
Parameters tx, ty and tz specifes translation distances for the coordinate directions x, 
y, and z, and they can be assigned any real values. The matrix representation in Eq. 

11-2 is equivalent to the below three equations 

 

X’ =x+tx 

 

Y’=y+ty 

 

Z’=z+tz 

Translation of object : An object is translated in three dimensions by transforming 
each of the defining points of the object. For an object represented as a set of 

polygon surfaces, we translate each vertex of each surface and redraw the polygon 

facets in the new position. 
 

Inverse Translation: 
 

We obtain the inverse of the translation matrix in Eq. 11-1 by negating the 
translation distances tx, ty, and tz. This produces a translation in the opposite 

direction. 
 

T-1. T = Identity Matrix : The product of a translation matrix and its inverse 

produces the identity matrix. 



Computer Graphics 3 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

4.3 ROTATION 
 To generate a rotation transformation for an object, we must designate  

o an axis of rotation (about which the object is to be rotated) and  

o the amount of angular rotation. 
 

 Unlike two-dimensional applications, where all transformations are 

carried out in the xy plane, a three-dimensional rotation can be 

specified around any line in space. 
 

 The easiest rotation axes to handle are those that are parallel to the 

coordinate axes. Also, we can use combinations of coordinate axis 

rotations (along with appropriate translations) to specify any general 

rotation. 
 

 By convention, positive rotation angles produce counter-clockwise 

rotations about a coordinate axis, if we are looking along the positive 

half of the axis toward the coordinate origin (Fig. below). 
 
 

 

 

 

 

 

 Therefore, positive rotations in the xy plane are counter-clockwise about 

axes parallel to the z axis. 

Rotations can be performed w.r.t below considerations : 
 

 coordinate axis rotation 
 

 rotation about an axis parallel to one of the coordinate axis 
 

 rotation about an arbitary axis. 

 



Computer Graphics 4 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

4.3.1 Coordinate-Axes Rotations
ROTATION ABOUT Z-AXIS :
 

 The two-dimensional z-axis rotation equations are    
easily extended to three dimensions: 
 

X’=xcosθ-ysinθ [ eq’s 11.4]  
Y’=xsinθ+ycosθ  
Z’=z 
 
 

 

 

 

 

the above matrix can be compactly written as P’=RZ(θ).P 
 

Transformation equations for rotations about the other two coordinate axes 

can be obtained with a cyclic permutation of the coordinate parameters x, y, 

and z in Eqs. 11-4. That is, we use the replacements x-> y -> z -> x 
 

Substituting these permutations in our equations we get 

ROTATION ABOUT X-AXIS as : 
 

 

 

 

 

 

Z’=ysinθ+zcosθ  
X’=x  
P’=Rx(θ).P 
 

 

 

 

 
Y’=ycosθ-zsinθ [eq. 11.8] 



Computer Graphics 5 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 

 

 

 

 

 

 

 

ROTATION ABOUT Y-AXIS 
 
Cyclically permutating eq.11.8 
 

z’=zcosθ-xsinθ  
x’=zsinθ+xcosθ  
y’=y 

 

 

 

 

 

 

 

 

Inverse Rotation Matrix : 
 An inverse rotation matrix is formed by replacing the rotation angle θ  

by -θ. 

 Negative values for rotation angles generate rotations in a clockwise 

direction, so the identity matrix is produced when any rotation matrix is 

multiplied by its inverse. Since only the sine function is affected by the 

change in sign of the rotation angle, the inverse matrix can also be 

obtained by interchanging rows and columns. 

 



Computer Graphics 6 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 That is, we can calculate the inverse of any rotation matrix R by 

evaluating its transpose (R-I = RT). This method for obtaining an inverse 

matrix holds also for any composite rotation matrix. 

 

4.3.2 GENERAL THREE DIMENSIONAL ROTATIONS 
 

 A rotation matrix for any axis that does not coincide with a 
coordinate axis can be set up as a composite transformation involving 

combinations of translations and the coordinate-axes rotations. 
 

 When an object is to be rotated about an axis that is parallel to one 
of the coordinate axes, we can attain the desired rotation with the 

following transformation sequence. 
 

 Translate the object so that the rotation axis coincides with the 

parallel coordinate axis. 
 

 Perform the specified rotation about that axis. 
 

 Translate the object so that the rotation axis is moved back to its 

original position. 

 

 

 

 

 

 

 

Any coordinate position P on the object in this figure is transformed with the 

sequence shown as 

P’ = [T-1. R X(θ) . T]. P 

 



Computer Graphics 7 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

where the composite matrix for the transformation is, R(θ)= T-1. Rx(θ) . T, 

which is of the same form as the two-dimensional transformation sequence for 

rotation about an arbitrary pivot point. 

4.3.3 Rotation about an Arbitrary Axes 

 When an object is to be rotated about an axis that is NOT PARALLEL 
TO ONE OF THE COORDINATE AXES : we need to perform some 

additional transformations. 
 

 In this case, we also need rotations, to align the axis with a selected 

coordinate axis and to bring the axis back to its original orientation. 
 

 Given the specifications for the rotation axis and the rotation angle, we 

can accomplish the required rotation in FIVE STEPS : 
 

1. Translate the object so that the rotation axis pass through the 

coordinate origin. 

2. Rotate the object so that the axis of rotation coincides with one of 

the coordinate axes. 

3. Perform the specified rotation about that coordinate axis. 

4. Apply inverse rotation to bring the rotation axis back to its original 

orientation. 

5. Apply the inverse translation to bring the rotation axis back to its 

original position. 

Note : We can transform the rotation axis onto any of the three coordinate axes. 

The z axis is a reasonable choice. 

 

 

 

 

 

 

 



Computer Graphics 8 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

How to set up the transformation matrices for getting the rotation axis 
onto the z axis and returning the rotation axis to its original position 
(Fig. 11-9). 

A rotation axis can be defined with two coordinate positions, as in Fig. 

11-0, 

OR 

 with one coordinate point and direction angles (or direction 

cosines) between the rotation axis and two of the coordinate 

axes. 
 

 We will assume that 

 the rotation axis is defined by 2 points, as illustrated, and 

 

 that the direction of rotation is to be counter-

clockwise when looking along the axis from P2 to P1. 
 

 An AXIS VECTOR is then defined by the two points as 

V = P2 - P1 = (x2-x1, y2-y1, z2-z1) 
 

 A UNIT VECTOR u is then defined along the axis as 

 

 

 

 

 

 

 

 

 

 

 

 



Computer Graphics 9 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 If the rotation is to be in the opposite direction (clockwise when viewing 

from P2 to PI), then we would reverse axis vector V and unit vector u so 

that they point from P2 to P1. 

 The first step in the transformation sequence for the desired rotation is to 

set up the translation matrix that repositions the rotation axis so that it 

passes through the coordinate origin. 

 For the desired direction of rotation (Fig. 11-10), we accomplish this by 

moving point P1 to the origin. (If the rotation direction had been specified 

in the opposite direction, we would move P2 to the origin.) This translation 

matrix is. 

which repositions the rotation axis and the object, as shown in Fig. 11-11. 

 Now we need the transformations that will put the rotation axis on the z 
axis. 

 We can use the coordinate-axis rotations to accomplish this alignment in 

two steps. There are a number of ways to perform the two steps. 

 We will first rotate about the x axis to transform vector u into the 

xz plane. 

 Then we swing u around to the z axis using a y-axis rotation. 

These two rotations are illustrated in Fig. 11-12 for one possible orientation of 

vector u. 
 

 

 

 

 

 

 

 

 

 



Computer Graphics 10 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 Since rotation calculations involve sine and cosine functions, we can use standard 
vector operations to obtain elements of the two rotation matrices.  

 Dot-product operations allow us to determine the cosine terms, and  
 vector cross products provide a means for obtaining the sine terms.  
 We establish the transformation matrix for rotation around the x axis by determining 

the values for the sine and cosine of the rotation angle necessary to get u into the xz 
plane.  

 This rotation angle is the angle between the projection of 
u in the yz plane and the positive z axis (Fig. 11-13),  

 If we designate the projection of u in the yz plane as the vector u' = (0, b,  
c), then the cosine of the rotation angle α can be 
determined from the dot product of u' and the unit 

vector uz along the z-axis.  
 
 
 
 

= c / d  

where d is the magnitude of u' :   
Similarly, we can determine the sine of α from the cross product of u' and  
uz.  
The coordinate-independent form of this cross product is  

 

 
and the Cartesian form for the cross product gives us  

 
 
 
 

Equating the RHS of both Cross Product values and noting that UZ=1 and U’=d we have  
d Sinα = b  
sinα = b/ d 

 
Now that we have determined the values for cosa and sina in terms of the components of 

vector u, we can set up the matrix for rotation of u about the x axis:  
 
 

 

 

 

 

 

 



Computer Graphics 11 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 

This matrix rotates unit vector u about the x axis into the xz plane. 
 
Next we need to determine the form of the transformation matrix that will 
swing the unit vector in the xz plane counterclockwise around they axis onto 
the positive z axis. The orientation of the unit vector in the xz plane (alter 
rotation about the x axis) is shown in Fig. 11-14. 
 
This vector, labeled u", has the value a for its x component, since rotation 
about the x axis leaves the x component unchanged. 
 
Its z component is d (the magnitude of u'), because vector u' has been rotated 
onto the z axis. And they component of u" is 0, because it now lies in the xz 
plane. 
 
Again, we can determine the cosine of rotation angle P from expressions for 
the dot product of unit vectors u" and uz:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The transformation matrix for rotation about an arbitrary axis then can be expressed as the 
composition of the seven individual transformations  
 
 
 

 



Computer Graphics 12 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 
 

4.4 SCALING 
 
The matrix expression tor the scaling transformation of a position P = (x, y, z) 

relative to the coordinate origin can be written as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where scaling parameters sx, sy, and sz are assigned any positive values. 

 

 Explicit expressions for the coordinate transformations for scaling 

relative to the origin are x'= x. sx 

 y'=y.sy 

 z'=z.sz 

 Scaling an object with transformation 11-42 changes the size of the 

object and repositions the object relative to the coordinate origin. 

 Also, if the transformation parameters are not all equal, relative 

dimensions in the object are changed: We preserve the original shape of 

an object with a uniform scaling (sx=sy = sz). 



Computer Graphics 13 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 The result of scaling an object uniformly with each scaling parameter set 

to 2 is shown in Fig 

 
4.4.1 SCALING RELATIVE TO FIXED POINT :


 Scaling with respect to a selected fixed position (x, y, Z) can be 

represented with the following transformation sequence: 

 

1. Translate the fixed point to the origin. 

2. Scale the object relative to the coordinate origin using Eq. 

3. Translate the fixed point back to its original position. 

 This sequence of transformations is demonstrated in Fig. 

 

 

 

 

 

 

 

 

 

The matrix representation for an arbitrary fixed-point scaling can then be 

expressed as the concatenation of these translate-scale-translate 

transformations as 
 
 
 

 

 

 



Computer Graphics 14 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 

 

Inverse Scaling Matrix by re-placing the scaling parameters sx, sy and sz: 
with their reciprocals. 

The   inverse   matrix   generates   an   opposite   scaling transformation, 

so the concatenation of any scaling matrix and its inverse produces the 

identity matrix. 

4.5 REFELCTIONS 
 

 A three-dimensional retlection can be performed relative to a selected 

reflection axis or with respect to a selected reflection plane. 

 In general, three-dimensional reflection matrices are set up similarly to 

those for two dimensions. 

 Reflections relative to a given axis are equivalent to 180 rotations about 

that axis. 

 Reflections with respect to a plane are equivalent to 180 rotations in 

four-dimensional space. 

 When the reflection plane is a coordinate plane (either xy, xz, or yz), we 

can think of the transformation as a conversion between Left-handed 

and right-handed systems. 

 An example of a reflection that converts coordinate specifications from a 

right-handed system to a left-handed system (or vice versa) is shown in 

Fig. 11-19 

 

 

 

 

 

 

 



Computer Graphics 15 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 This transformation changes the sign of the z coordinates, Ieaving the x 

and y-coordinate values unchanged. 

 The matrix representation for this reflection of points relative to the xy 

plane is 

 

 

 

 

 

 Transformation matrices for inverting x and y values are defined 

similarly, as reflections relative to the yz plane and xz plane, 

respectively. 

 Reflections about other planes can be obtained as a combination of 

rotations and coordinate-plane reflections. 

4.6 SHEAR 

 Shearing transformations can be used to modify object SHAPES. 

 

 

 

 They are also useful in three-dimensional viewing for obtaining general 

projection transformations. 

 

 In two dimensions, we discussed transformations 

relative to the x or y axes to produce distortions in the 

shapes of objects. 

 

 In three dimensions, we can also generate shears 

relative to the z axis. 

 



Computer Graphics 16 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 As an example of three-dimensional shearing. the following 

transformation 

 produces a z-axis shear: 

 

 

 

 

 Parameters a and b can be assigned any real values. The effect of this 

transformation matrix is to alter x- and y-coordinate values by an 

amount that is proportional to the Z value, while leaving the z 

coordinate unchanged. 

 Boundaries of planes that are perpendicular to the z axis are thus 

shifted by an amount proportional to z. 
 An EXAMPLE of the effect of this shearing matrix on a unit cube is 

shown in Fig. 11-20, for shearing values a = b = 1. 

 Shearing matrices for the x axis and y axis are defined similarly. 

 
4.7 3D-COMPOSITE TRANSFORMATIONS 
As  with  two-dimensional  transformations.  We  form  a  composite three 

dimensional transformation by multiplying the matrix representations for the 

individual operations in the transformation sequence. This concatenation is 

carried out from right to left, where the rightmost matrix is the first 

transformation to be applied to an object and the leftmost matrix is the last 

transformation. 
 Examples of 3D-Composite transformation are:  

    i. Fixed Point scale 

    ii. General 3D- Rotations 

 

 

 



Computer Graphics 17 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

3D-Projections 
 

 

 

 

 

 

 

 

 

 

 

 

Projection : 
 

Once a 3D model has been completed, its co-ordinates need to be converted to 2 

dimensions in order to display the scene on a flat computer monitor or to print it on 

paper. This process of converting from 3D to 2D is called projection 

 

Once world-coordinate descriptions of the objects in a scene are converted to viewing 

coordinates, we can project the three-dimensional objects onto the two dimensional 

view plane. 

1. Projection / View Plane : 

The plane where our projection is taken . 

2. View Plane normal vector / Projectors 

The lines emerging from the center of Projection onto the view plane. 

This normal vector is in a direction perpendicular to view plane, that comes from the 

lines that are extended from our 3d object( view volume). 

3. Center of Projection/ view reference : 
The point from where the projection is to be taken. It is the center of viewing 

coordinate system. It is chosen to be close to or on surface of object in a scene. 

There are two basic projection methods. 
 
 



Computer Graphics 18 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

1. Parallel Projection  
2. Perspective Projection 

 
 

 

 

 
 
       

 

S.No
. Parallel Projection 

Perspective 
Projection     

 

    
 

1 
coordinate positions are 
transformed to the 

object positions are transformed to the 
view plane  

 

 view plane along parallel Lines 
along lines that converge to a point 
called the  

 

  
projection reference point (or center of 
projection).  

 

    
 

2 
Projector is represented using a 
projection 

The  projected  view  of  an  object  is  
determined  

 

 vector calculating the intersection of     
 

  
the projection lines with the view 
plane.     

 

3 
preserves relative proportions of 
objects 

does not preserve relative 
proportions     

 

    
 

4 
used in drafting to produce scale 
drawings of   

used to produce images which look 
natural. When we  

 

 three-dimensional objects. 
view scenes in everyday life far away 
items appear  

 

  small relative to nearer items.     
 

5 Accurate views of the various sides 
of an  Produces realistic views     

 

 object are obtained with a parallel      
 

 
projection, but  this  does not  
give us  a      

 

 
realistic representation of the 
appearance of      

 

 a three-dimensional object.      
 

 

Projections of distant objects are smaller than the projections of objects of 

the same size that are closer to the projection plane. 

 



Computer Graphics 19 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

4.11 PARALLEL PROJECTONS 
 
 Parallel projection can be specified with a projection vector that 

defines the DIRECTION (perpendicular / parallel) for the 
projection lines. 

 

 We have two types of parallel projection: 
 

 When the projection is perpendicular to the 

view plane, we have an ORTHOGRAPHIC 

parallel projection. 

 

 Otherwise, we have an OBLIQUE parallel projection. 

 

 Figure 12-17 illustrates the two types of parallel projections 

 

4.11.1 ORTHOGRAPHIC PROJECTIONS 
 

 used to produce the front, side, and top views of an object. 
 

 Engineering and architectural drawings 

commonly employ these orthographic 

projections, because lengths and angles are 

accurately depicted and can be measured from 

the drawings. 
 

 But, to have a view of complete shape of the 

object all views should be combined together, as 

the individual view does not contains the 

sufficient information of our object completely. 

 

 Top orthographic projection is called PLAN VIEW and other views are called 

Elevations. 
 
 Transformation matrix for Orthographic Projection : 



Computer Graphics 20 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 
 

 

 

 4.11.1.1 TYPES OF ORTHOGRAPHIC PROJECTION : 
o AXONOMETRIC PROJECTION : 

 We can also form orthographic projections that display more than one 
face of an object. Such views are called axonometric orthographic 

projections. 

 3 types of Axonometric Projection : 

o Isometric o Dimetric o Trimetric 

 The most commonly used axonometric projection is the ISOMETRIC 
PROJECTION. 

 We generate an isometric projection by aligning the projection plane so 

that it intersects 

o each coordinate axis in which the object is defined (called the 
principal axes) at the same distance from the origin. 

 EXAMPLE :Fig shows an isometric projection for a cube. 
 The isometric projection is obtained by aligning the projection vector with 

the cube diagonal. 

 There are eight positions, one in each octant, for obtaining an isometric 

view. 

 Foreshortening is the difference between the 

Projected length and the length of original 

object length. 

 

 

 
 



Computer Graphics 21 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 All three principal axes are foreshortened equally in an isometric 

projection so that relative proportions are maintained. This is not the 

case in a general axonometric projection, where scaling factors may be 

different for the three principal directions. 

 

 Transformation equations for an orthographic parallel projection are 

straightforward. 

o Dimetric Projection : 
 The direction of Projection makes equal angles with exactly any 2 of the 

principal axes and the foreshortening factor along any 2 axes are equal. 

 

o Trimetric Projections : The direction of Projection makes unequal 
angles with all the 3 principal axes and the foreshortening factor is 

unequal along all the 3 axes i,e., FF is not scaled by same factor. 

 

If the view plane is placed at position zvp along the zv 

axis (Fig.12-20), then any point (x, y, z) in viewing 

coordinates is transformed to projection coordinates as 

 

 
 
 
 
where the original z-coordinate value is preserved for the depth information 

needed in depth cueing and visible-surface determination procedures. 

4.11.2 OBLIQUE PROJECTION 

 

 An oblique projection is obtained by projecting points along parallel lines that 

are not perpendicular to the projection plane. 
 



Computer Graphics 22 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 In some applications packages, an oblique projection vector 

is specified with two angles, as α and φ, as shown in Fig. 12-

21. 

Point (x, y, z) is projected to position (xp, yp) on the view plane. 

Orthographic projection coordinates on the plane are (x, y). The oblique 

projection line from (x, y, z) to (xp, yp) makes an angle α with the line on 

the projection plane that joins (xp, yp) and (x, y). T 

 

This line, of length L, is at an angle φ with the horizontal direction in the 

projection plane. We can express the projection coordinates in terms of 

x, y, L, and φ as 

xp= x+ L cos φ [eq. 12.6] 
yp= y+ L sin φ 

Length L depends on the angle α and the z coordinate of the point to be 

projected: 

Tan α =Z / L 

Thus, L=Z / Tan α 

= ZL1 

Where L1 is the inverse of tan α, which is also the value of L when z = 1. 

We can then write the oblique projection equations 12-6 as 

xp= x+ Z(L1 cos φ) 
yp= y+ Z (L1sin φ) 

 

 

The transformation matrix for producing any parallel projection onto the xv yv 

plane can be written as 

An orthographic projection is obtained when L 1 = 0 (which occurs at a 

projection angle α of 90"). 

 

Oblique projections are generated with nonzero values for L1. 



Computer Graphics 23 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

There are two types of oblique projections Cavalier and Cabinet. 

 

The Cavalier projection makes 45° angle with the projection plane. The 

projection of a line perpendicular to the view plane has the same length as the 

line itself in Cavalier projection. In a cavalier projection, the foreshortening 

factors for all three principal directions are equal. 

 

The Cabinet projection makes 63.4° angle with the projection plane. In 

Cabinet projection, lines perpendicular to the viewing surface are projected at 

½ their actual length. Both the projections are shown in the following figure − 

 

 

 

 

 

 

 

 

PERSEPECTIVE PROJECTIONS 

 When an object is viewed from different directions and at different 

distances, the appearance of the object will be different. Such view is 

called perspective view. 

 Perspective projections mimic what the human eyes see. The CoP is at 

finite distance from the viewing plane. 

 To obtain a perspective projection of a three-dimensional object, we 

transform points along projection lines that meet at the projection 

reference point. 

 Perspective projections are used to produce images which look natural. 

When we view scenes in everyday life far away items appear small 

relative to nearer items. This is called perspective foreshortening. 



Computer Graphics 24 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 A side effect of perspective foreshortening is that parallel lines appear to 

converge on a vanishing point. 

 Suppose we set the projection reference point at position zprp along 

the zv axis, and we place the view plane zprp at as shown in Fig. 12-

25. 

 

 

 

 

We can write equations describing coordinate positions along this 

perspective projection line in parametric form as :  

x ′ = x – xu 

y′ = y – yu 

z′ = z – (z - zprp) u 

 Parameter u takes values from 0 to 1, and coordinate position (x', y', z') 

represents any point along the projection line. 

 When u = 0, we are at position P = (x,y, z). 

 if u = 1 and we have the projection reference point coordinates (0, 

0, zprp). 

 On the view plane, z' = z , and 

we can solve the z' equation for parameter u 

at this position along the projection line: 

 

 Substituting this value of u into the equations for x' and y', we 

obtain the perspective transformation equations: 

 

 

 

 

 



Computer Graphics 25 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Computer Graphics 26 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 When a three-dimensional object is projected onto a view plane using 

perspective transformation equations, any set of parallel lines in the object 

that are not parallel to the plane are projected into converging lines. 

 Parallel Lines that are parallel to the view plane will be projected as parallel 

lines. 

 The point at which a set of projected parallel lines appears to converge is 

called a vanishing point. 
 Each such set of projected parallel lines will have a separate vanishing 

point; 

 In general, a scene can have any number of vanishing points, depending on 

how many sets of parallel lines there are in the scene. 

 The vanishing point for any set of lines that are parallel to one of the 

principal axes of an object is referred to as a principal vanishing point. 
 We control the number of principal vanishing points (one, two, or three) 

with the orientation of the projection plane, and perspective projections are 

accordingly classified as 

 One-Point Perspective 

If the view plane intersects any one of the principal axes ( x, y or z). 

So we will have one center of Projection and One vanishing point. 

 Two-Point Perspective 

If the view plane intersects exactly two of the principal axes ( in 

general x or y). 

So we will have two center of Projections and two vanishing points 

one on x-axis and other on y-axis. 

 Three-Point Projections. 

If the view plane intersects all three of the principal axes ( in general x 

or y). 

So we will have two center of Projections and two vanishing points 

one on x-axis and other on y-axis. 

 



Computer Graphics 27 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

 The number of principal vanishing points in a projection is determined by 

the number of principal axes intersecting the view plane. 

 

 

 

 

 

 

 

 

 

Ihe number of principal vanishing points is dependent on how the axes of the 

coordinate system are positioned against the image plane. If 2 coordinate axes 

are parallel to the image plane it is called 1-point perspective projection, if 

only one is parallel to the image plane we call it 2- point perspective 

projection, and if none of the three axes is parallel to the image plane it is 

called 3-point perspective projection (because then there are 3 principal 

vanishing points). 

 

 

 

 

 

 

 

 

 

 

 

 



Computer Graphics 28 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

UNIT-IV 
Assignment-Cum-Tutorial Questions 

 
 

SECTION-A 
Objective Questions 
1. The subcategories of orthographic projection are   [ ] 
a. cavalier, cabinet, isometric   b. cavalier, cabinet 

c. isometric, dimetric, trimetric   d. isometric, cavalier, trimetric 

 
2. Engineering drawing commonly applies for ?     [ ] 

a. oblique projection    b. orthographic projection 

c. perspective projection    d. None of above 

 
3. The area of computer that is captured by an application is called 

a. Window      b. View port   [ ] 

c. Display      d. None of these 

4. The process of calculating the product of matrices of a number of 

transformations in sequence is called.......................   [ ] 

 a) Concatenation   b) Continuation   c) Mixing   d) None 

5. The types of projection are       [ ] 

a. Parallel projection and perspective projection          
b. Perpendicular and perspective projection 

c. Parallel projection and Perpendicular projection          d. None of these 

6. The types of parallel projection are     [ ] 

a. Orthographic projection and quadric projection  

b. Orthographic projection and oblique projection 

c. oblique projection and quadric projection  d. None of these 

7. By which technique, we can take a view of an object from different directions 

and different distances        [ ] 

a.Projection   b. Rotation  c. Translation  d. Scaling 



Computer Graphics 29 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

8. The process of extracting a portion of a database or a picture inside or 

outside a specified region are called     [ ] 

 a. Translation   b. Shear  c. Reflection  d. Clipping 

9.In Parallel projection, coordinate positions are transformed to the view plane 

along ______         [ ] 

a. vertical lines     b. Horizontal lines   

c. perpendicular lines    d. parallel lines  

10. Perspective projections have __________points   [ ] 

a. composite  b. Vanishing  c. individual  d. separate  

Multiple Choice Questions 

1. Concatenation of how many basic transformation matrices is required to 

align an arbitrary vector with another vector is 3-D space, if both vectors 

pass through origin        [ ] 

a.5   b. 2    c. 1    d. 7 

2. Concatenation of how many basic transformation matrices is required to 

align an arbitrary vector with another vector is 3-D space, if both vectors not 

pass through origin        [ ] 

a. 5   b.2    c. 1   d. 7 

3. To rotate an object about an arbitrary axis the following operations are 

required What is their correct sequence     [ ] 

    i) Applying actual rotation 

    ii)Rotate the arbitrary vector such that it aligns with one of the principal axis 

   iii)Rotate the vector which is aligned with one of the principal axis to its 

original position 

a. i),ii) and iii) b. ii),i) and iii)  c. ii), iii) and i) d. iii), i) and ii) 



Computer Graphics 30 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

4. To perform the scaling of a 3-D object, with respect to a selected fixed 

position, the following operations are required. What is their correct 

sequence?         [ ] 

i) Translate the fixed point back to its original position 

ii) Translate the fixed point to the origin 

iii) Scale the object relative to coordinate origin 

a. i), ii) and iii  b. i), iii) and ii) c. ii), iii) and i) d. ii), i) and iii) 

5. To perform the mirror reflection of a 3-D object about xy plane, the following 

operations are required. What is their correct sequence?  [ ] 

i) Perform the reflection 

ii) Align the plane normal with z-axis 

iii) Rotate back the plane normal to its original position 

a. ii), i) and iii) b. i), ii) and iii) c. iii), i) and ii) d. ii), iii) and i) 

6. Find the incorrect statement      [ ] 

a. A perspective projection produces realistic views 

b. A perspective projection preserves realistic dimensions 

c. A parallel projection gives realistic representation of 3-D objects 

d. Both B and C  

7. In which projection, the plane normal to the projection has equal angles with 

these three axes        [ ] 

a.Wire frame model  

b. Constructive solid geometry methods 

c.isometric projection      
d Back face removal 

SECTION-B 
SUBJECTIVE QUESTIONS 

1. Describe 3D rotation about x, y ,and  z axes and write the corresponding   

transformation matrices 

2.  Derive the perspective projection transformation matrix 



Computer Graphics 31 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

3. Differentiate between parallel and perspective projections 

4. Derive the transformation matrix for rotation about an arbitrary axis which 

is parallel to any one of the coordinate axes in 3D 

5. Derive the transformation matrix for rotation about an arbitrary axis which 

is not parallel to any one of the coordinate axes in 3D 

6. Give the matrix representation for 3D translation, shearing and scaling 

7. Give the matrix representation for 3D translation, reflection and scaling 

8. Discuss about combined (or) composite 3D transformations 

9. Derive the oblique projection transformation matrix 

10. explain about types of parallel projections. 

Problem 
1. Calculate a 3D homogenous matrix to rotate by 11 degrees about the line 

passing through the point (0,0,0) and  (1,0,1). 

 

2. Derive the transformation matrix for rotation about an arbitrary axis in 3D, 

The arbitrary axis is passes through points A[2,1,1,] and B[3,2,2,1] 

 

3. Determine 3D transformation matrices to scale the line PO in the x direction 

by 3 by keeping point P fixed. Then rotate the line by 45� anti clockwise 

about the z axes. Given P(1,1.5,2) and Q(4.5,6,3). 

 

4. Prove that the multiplication of 3D transformation matrices for each of the 

following sequence of operation is commutative 

i. Any two successive translation 

ii. Any two successive scaling operation 

iii. Any two successive rotation about any one of the coordinate axes 
 

5. Translate a triangle with vertices at original coordinates (10,25,5), (5,10,5), 

(20,10,10) by tx=15, ty=5,tz=5 

 



Computer Graphics 32 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE
   

6. Scale a triangle with vertices at original coordinates (10,25,5), (5,10,5), 

(20,10,10) by sx=1.5, sy=2, and sz=0.5 with respect to the origin 

7. Determine a 3 D transformation matrices to scale the line PQ in the x 

direction by 3 by keeping point P fixed. Then rotate the line by 45� anti 

clockwise about the z axes. Given P (1, 1.5,2) and Q (4.5, 6, 3). 

 

 



Computer Graphics 1 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

Visible Surface Detection Methods 

 

Objective: To familarize with various visible surface detection methods. 

Syllabus: Visible Surface Detection Methods 

Classification, back-face detection, depth-buffer, BSP tree methods and area 

sub-division  

Outcomes: 
Students will be able to: 
 

understand different object space visible surface detection methods. 
 

know the importance of image space visible surface detection methods. 
 

Learning Material 
 

Introduction: 
 

A major consideration in the generation of realistic graphics displays is 

identifying those parts of a scene that are visible from a chosen viewing 

position. 

 

There are many approaches we can take to solve this problem, and 

numerous algorithms have been devised for efficient identification of 

visible objects for different types of applications. 

Some methods require more memory, some involve more processing 

time, and some apply only to special types of objects. 

 

Deciding upon a method for a particular application can depend on such 

factors as 

 

▪ Complexity of the scene. 



Computer Graphics 2 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

 

▪ Type of objects to be displayed. 

 

▪ Available equipment. 

 

▪ and whether static or animated displays are to be generated. 

 

The various algorithms are referred to as visible-surface detection methods. 

 

Sometimes these methods are also referred to as hidden-surface 

elimination methods, although there can be subtle differences between 

identifying visible surfaces and eliminating hidden surfaces. 

 

CLASSIFICATION OF VISIBLE-SURFACE DETECTION ALGORITHMS 

 

Visible-surface detection algorithms are broadly classified into two types 

 

Object-space methods : 

 

▪ These methods deal with object definitions directly. 

▪ An object-space method compares objects and parts of objects to 

each other within the scene definition to determine which 

surfaces, as a whole, we should label as visible. 

Image-space methods: 

 

▪ These methods deal with their projected images. 

 

▪ Visibility is decided point by point at each pixel position on the 

projection plane. 

 



Computer Graphics 3 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

▪ Most visible-surface algorithms use image-space methods. 

 

Various visible-surface detection algorithms use sorting and coherence 

methods to improve performance. 

 

Sorting: arrange the surfaces in particular order of their depths 

 

o It is used to facilitate depth comparisons by ordering 

the individual surfaces in a scene according to their 

distance from the view plane. 

 

Coherence: properties of one part of a scene are related in 

some way to other parts of the scene so that relationship 

can be used to reduce sprocessing. 

 

o These methods are used to take advantage of 

regularities in scene. 

 

o Making use of the results calculated for one part of 

the scene or image for other nearby parts. 

 

o Coherence is the result of local similarity. 

 

o As objects have continuous spatial extent, object 

properties vary smoothly within a small local region in 

the scene. Calculations can then be made 

incremental. 

 

 
 



Computer Graphics 4 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

BACK-FACE DETECTION 

 

A fast and simple object-space method for identifying the back faces 

of a polyhe dron is based on the "inside-outside" tests. 

A point (x, y, z) is "inside" a polygon surface with plane parameters A, 

B, C, and D if Ax+By+Cz+D<0. 

When an inside point is along the line of sight to the surface, the 

polygon must be a back face. 

We can simplify this test by considering the normal vector N to a 

polygon surface, which has Cartesian components (A, B, C). In 

general, if V is a vector in the viewing direction from the eye (or 

"camera") position then this polygon is a back face if V.N>0. 

if object descriptions have been converted to projection coordinates 

and our viewing direction is parallel to the viewing z,. axis, then V = 

(0, 0, VZ) and V.N=Vz.C. So that we only need to consider the sign of 

C, the Z component of the normal vector N. 

 

In a right-handed viewing system with viewing direction along the 

negative zV axis, the polygon is a back face if C < 0. 

 

we can label any polygon as a back face if its normal vector has a z 

component value c<=0. 

 

 

 

 

 

Fig: Vector V in the viewing direction and a back-face 

normal vector N of a polyhedron. 

 



Computer Graphics 5 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

 

 

 

 

 

 

Fig: A polygon surface with plane parameter C < 0 in a right-handed 

viewing coordinate system is identified as a back face when the 

viewing direction is along the negative zV axis. 

 

By examining parameter C for the different planes defining an object, 

we can immediately identify all the back faces. 

For a single convex polyhedron, such as the pyramid, this test 

identifies all the hidden surfaces on the object, since each surface is 

either completely visible or completely hidden. Also, if a scene 

contains only non overlapping convex polyhedra, then again all 

hidden surfaces are identified with the back-face method. 

For other objects, such as the concave polyhedron more tests need to 

be carried out to determine whether there are additional faces that are 

totally or partly obscured by other faces. 

 

A general scene can be expected to View of a concave contain 

overlapping objects along the line of sight. We then need to determine 

polyhedron with one face where the obscured objects are partially or 

completely hidden by other objects. 

 

In general, back-face removal can be expected to eliminate about half 

of the polygon. surfaces in a scene from further visibility tests. 

 

 



Computer Graphics 6 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

DEPTH-BUFFER METHOD 

 

A commonly used image-space approach to detecting visible surfaces 

is the depth-buffer method, which compares surface depths at each 

pixel position on the projection plane. 

 

This procedure is also referred to as the z-buffer method, since object 

depth is usually measured from the view plane along the z axis of a 

viewing system. 

      Each surface of a scene is processed separately, one point at a time      

across the surface. 

 

The method is usually applied to scenes containing only polygon 

surfaces, because depth values can be computed very quickly and the 

method is easy to implement. But the method can be applied to non 

planar surfaces. 

 

With object descriptions converted to projection coordinates, each (x, 

y, Z) position on a polygon surface corresponds to the orthographic 

projection point (x, y) on the view plane. 

Therefore, for each pixel position (x, y) on the view plane, object 

depths can be compared by comparing z values. 

 

Three surfaces at varying distances along the orthographic projection line 

from position (x, 

 

y) in a view plane taken as the xvyv plane. Surface s1, is closest at this 

position, so its surface intensity value at (x, y) is saved. 

 

 



Computer Graphics 7 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We can implement the depth-buffer algorithm in normalized 

coordinates, so that z values range from 0 at the back clipping plane 

to Zmax at the front clipping .The value of zmax can be set either to 1 

(for a unit cube) or to the largest value that can be stored on the 

system. 

 

As implied by the name of this method, two buffer areas are required. 

 

A depth buffer is used to store depth values for each (x, y) 

position as surfaces are processed. 

The refresh buffer stores the intensity values for each position. 

 



Computer Graphics 8 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

Initially, all positions in the depth buffer are set to 0 (minimum 

depth), and the refresh buffer is initialized to the background 

intensity. 

Each surface listed in the polygon tables is then processed, one 

scan line at a time, calculating the depth (z value) at each (x, y) 

pixel position. 

The calculated depth is compared to the value previously stored 

in the depth buffer at that position. 

If the calculated depth is greater than the value stored in the 

depth buffer, the new depth value is stored, and the surface 

intensity at that position is determined and in the same xy 

location in the refresh buffer. 

 

We summarize the steps of a depth-buffer algorithm as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Depth values for a surface position (x, y) are calculated from the plane 

equation for each surface: 



Computer Graphics 9 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

 
 
 
 
 
 
 

For any scan line adjacent horizontal positions across the line differ by 1, 

and a vertical y value on an adjacent scan line differs by 1. 

 

If the depth of position (x, y) has been determined to be z, then the depth 

z' of the next position (x + 1, y) along the scan line is obtained from 

Equation. 

 
 
 
 
 
 

The ratio -A/C is constant for each surface, so succeeding depth 

values across a scan line are obtained from preceding values 

with a single addition. 

On each scan line, we start by calculating the depth on a left edge of the 

polygon that intersects that scan line. 

We first determine the y-coordinate extents of each polygon, and process 

the surface from the topmost scan line to the bottom scan line, Starting 

at a top vertex. we can recursively calculate 

x positions down a left edge of the polygon as x' = x - l/m, 
 



Computer Graphics 10 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

       where m is the slope of the edge. Depth values down the edge are then 

obtained recursively     as 

 
If we are processing down a vertical edge, the slope is infinite and the recursive 

calculations reduce to 

 

 

 

An alternate approach is to use a midpoint method or Bresenham-type 

algorithm for determining x values on left edges for each scan line. 

 

 

 

The method can be applied to curved surfaces by determining depth and 

intensity values at each surface projection point. 

For polygon surfaces, the depth-buffer method is very easy to 

implement, and it requires no sorting of the surfaces in a scene. 

But it does require the availability of a second buffer in addition to the 

refresh buffer. 

 

A system with a resolution of 1024 by 1024, for example, would require 

over a million positions in the depth buffer, with each position 

containing enough bits to represent the number of depth increments 

needed. 

 

One way to reduce storage requirements is to process one section of the 

scene at a time, using a smaller depth buffer. After each view section is 

processed, the buffer is reused for the next section. 

 

 



Computer Graphics 11 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

 
BSP-TREE METHOD 

 

A binary space-partitioning (BSP) tree is an efficient method for 

determining object visibility by painting surfaces onto the screen from back 

to front, as in the painter's algorithm. 

The BSP tree is particularly useful when the view reference point changes, 

but the objects in a scene are at fixed positions. 

Applying a BSP tree to visibility testing involves identifying surfaces that 

are "inside" and "outside" the partitioning plane at each step of the space 

subdivision, relative to the viewing direction. 

 

 

 
 
 
 
 
 
 
 
 
 
Process: 
 

With plane P1,we first partition the space into two sets of objects. 

 

One set of objects is behind, or in back of, plane P1 relative to the 

viewing direction, and the other set is in front of P1. 

 



Computer Graphics 12 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

Since one object is intersected by plane P1, we divide that object into 

two separate objects, labeled A and B. 

Objects A and C are in front of P1 and objects B and Dare behind P1. 

 

We next partition the space again with plane P2 and construct the 

binary tree representation. In this tree, the objects are represented as 

terminal nodes, with front objects as left branches 

 

and back objects as right branches. 

 

For objects described with polygon facets, we chose the partitioning 

planes to coincide with the polygon planes. T 

 

The polygon equations are then used to identify "inside" and "outside" 

polygons, and the tree is constructed with one partitioning plane for 

each polygon face. 

Any polygon intersected by a partitioning plane is split into two parts. 

 

When the BSP tree is complete, we process the tree by selecting the 

surfaces for display in the order back to front, so that foreground 

objects are painted over the background objects. 

 

Fast hardware implementations for constructing and processing BSP trees 

are used in some 

 

systems. 

 
 
 
 



Computer Graphics 13 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

AREA-SUBDIVISION METHOD 

 

This technique for hidden-surface removal is essentially an image-space 

method, but object-space operations can be used to accomplish depth 

ordering of surfaces. 

The area-subdivision method takes advantage of area coherence in a 

scene by locating those view areas that represent part of a single 

surface. 

We apply this method by successively dividing the total viewing area 

into smaller and smaller rectangles until each small area is the 

projection of part of n single visible surface or no surface at all. 

 

To implement this method, we need to establish tests that can quickly 

identify the area as part of a single surface or tell us that the area is too 

complex to analyze easily. 

Starting with the total view, we apply the tests to determine whether we 

should subdivide the total area into smaller rectangles. 

 

If the tests indicate that the view is sufficiently complex, we subdivide it. 

 

Next. we apply the tests to each of the smaller areas, subdividing these 

if the tests indicate that visibility of a single surface is still uncertain. 

We continue this process until the subdivisions are easily analyzed as 

belonging to a single surface or until they are reduced to the size of a 

single pixel. 

An easy way to do this is to successively divide the area into four equal 

parts at each step. 

 



Computer Graphics 14 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

This approach is similar to that used in constructing a quad tree. A 

viewing area with a resolution of 1024 by 1024 could be subdivided ten 

times in this way before a subarea is reduced to a point. 

 

Tests to determine the visibility of a single surface within a specified 

area made by comparing surfaces to the boundary of the area. 

There are four possible relationships that a surface can have with a 

specified area boundary. We can describe these relative surface 

characteristics in the following way 

 

Surrounding surface-One that completely encloses the area. 

 

Overlapping surface-One that is partly inside and 

partly outside the area. Inside surface-One that is 

completely inside the area. 

 

Outside surface-One that is completely outside the area. 

 

 
 
 
 
 
 
 
 
 
 
 
 



Computer Graphics 15 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

 
The tests for determining surface visibility within an area can be stated 

in terms of these four classifications. No further subdivisions of a 

specified area are needed if one of the following conditions is true: 

 

1.All surfaces are outside surfaces with respect to the area. 
 

2.Only one inside, overlapping, or surrounding surface is in the area. 
 

3.A surrounding surface obscures all other surfaces within the area 
boundaries. 

Test 1 can be carried out by checking the bounding rectangles of all 

surface against the area boundaries. 
Test 2 can also use the bounding rectangles in the xy plane to 

identify an inside surface. For other types of surfaces, the 

bounding rectangles can be used as an initial check. 
 

If a single bounding rectangle intersects the area in some way, 

additional checks are used to determine whether the surface is 

surrounding, overlapping, or outside. 
Once a single inside, overlapping, or surrounding surface has been 

identified, its pixel intensities are transferred to the appropriate area 

within the frame buffer. 
 

One method for implementing test 3 is to order surfaces according to 

their minimum depth from the view plane. 
 

o For each surrounding surface, we then compute the maximum 

depth within the area under consideration. 
 



Computer Graphics 16 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

o If the maximum depth of one of these surrounding surfaces is closer to the 

view plane than the minimum depth of all other surfaces within the area, test 
3 is satisfied 

 

Another method for carrying out test 3 that does not require depth sorting is 

to use plane equations to calculate depth values at the four vertices of the 

area for all surrounding, overlapping, and inside surfaces. 

 

If the calculated depths for one of the surrounding surfaces are less than the 

calculated depths for all other surfaces, test 3 is true. 

Then the area can be filled with the intensity values of the surrounding 

surface. 

For some situations, both methods of implementing test 3 will fail to identify 

correctly a surrounding surface that obscures all the other surfaces. 

Further testing could be carried out to identify the single surface that covers 

the area, but it is faster to subdivide the area than to continue with more 

complex testing. 

Once outside and surrounding surfaces have been identified for an area, they 

will remain outside and surrounding surfaces for all subdivisions of the area. 

Furthermore, some inside and overlapping surfaces can be expected to be 

eliminated as the subdivision process continues, so that the areas become 

easier to analyze. 

In the limiting case, when a subdivision the size of a pixel is produced, we 

simply calculate the depth of each relevant surface at that point and transfer 

the intensity of the nearest surface to the frame buffer. 

 

 

 

 

 



Computer Graphics 17 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

UNIT-V 
Assignment-Cum-Tutorial Questions 

SECTION-A 
Objective Questions 

1. Depth buffer method is also called as____________   [ ] 

a) Back-face Detection  b)Z-buffer    C) Scan-line Method d) Octree  Method 

2. The method which is based on the principle of comparing objects and parts 

of each other to find which are visible and which are hidden are called. 

[ ] 

a) Object-Space method b) image-space method C)Both a&b d) None 

3. The method which is based on the principle of checking the visibility point at 

each pixel position on the projection plane are called.  [ ] 

a) Object-Space method b) image-space method C)Both a & b d) None 

4. Scan lines are used to scan from      [ ] 

a) Top to Bottom b) Bottom to Top  c) Both a & b d) None 

5. The Z-Buffer algorithm is also referred as    [ ] 

a)Depth Sorting Algorithm b) Depth Buffer Algorithm c) Both a & b d) none 

6. Which one of the following are image space methods?  [ ] 

    a) Scan line Method b) Depth Buffer Method c) Both a & b d) none 

7. Which surface algorithm is based on perspective depth  [ ] 

   a) Depth comparison   c) Z-Buffer or Depth-Buffer Algorithm 

  b)  Sub Division Method  d) Back-Face Removal. 

8. Depth Buffer method is also called as_______________ 

9. BSP Method refers to        [ ] 

 a) Binary Space Partitioning  c) Business Systems Planning 

 b) only c     d) None 

10. if z>depth(x,y) in depth buffer algorithm the     

      1. depth(x,y)=______________    2. Refresh(x,y)=___________ 

11. If N is a normal vector to a polygon surface and V is is a vector in the 

viewing direction from the eye then this polygon is back-face if [ ] 



Computer Graphics 18 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

 a) V.N<0  b) V.N=0  c) V.N>0  d) V.N<=0 

12. Initial values of depth buffer and refresh buffer are   [ ] 

 a) depth(x,y)=1,refresh(x,y)=0  c) depth(x,y)=0,refresh(x,y)=0 

 b) depth(x,y)=1,refresh(x,y)=1  d) depth(x,y)=1,refresh(x,y)=0 

13. Which of the following method is not applicable for cyclically overlapped 

surface.          [ ] 

 a) Depth-Sorting  b) Scan line Method  c) Object-Space method d) none 

14. Which of the following is an efficient method for determining object 

visibility by painting surface onto the screen from back to front [ ] 

 a) Back-Face Detection  c) Area-Sub Division Method 

 b) BSP-Tree Method   d) Z-Buffer 

15. Depth values for a surface position(x,y) are calculated by using the 

following plane equation       [ ] 

 a) Z=-AX-BY    c) Z=AX+BY 

 b) Z=-AX-D    d) Z=-AX-BY-D/C 

16.The following method is using a combination of both image space and object 

space operations        [ ] 

 a) Back-Face Detection  c) Octree 

 b) Scan-Line Method   d) Area-Sub Division Method 

17. No further sub division of a specified area are needed if one of the following 

conditions is true        [ ] 

 a) All Surface are outside surface with respect to area. 

 b) Only one inside, overlapping, or surrounding surface is in the area. 

c) A Surrounding surface obscures all other surfaces within the are 

boundaries. 

d) Any one of the above condition. 

18. Sorting is used to facilitate.      [ ] 

   a) Depth comparisons by ordering the individual surfaces in a scene 

according to their distance from the view plane. 



Computer Graphics 19 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

  b) Depth comparisons by disordering the individual surfaces in a scene 

according to their distance from the view plane. 

  c) Depth comparisons by order the all surfaces in a scene according to 

their distance from the view plane. 

  d) None. 

19. Coherence methods are used.      [ ] 

       a) To Take advantage of regularities in a scene. 

       b) To Take advantage of irregularities in a scene. 

       c) Both of the Above  d) None 

SECTION-B 

Descriptive Questions 

1. Distinguish between object-space and image space methods of visible surface 

detection algorithms. Give example  for each? 

2. Distinguish depth-sort and z-buffer algorithms? 

3. Demonstrate Back-Face Detection methods? 

4. Give a brief explanation about Depth Buffer method? 

5. Discuss Binary space partitioning method? 

6. Explain in detail about area sub division method? 

7. List and explain different cases in area sub division algorithm? 

8. Give the point P1(3,6,20), P2(2,4,6) and P3(2,4,6) a view point C(0.0,-10) 

determine which points obscure the others when viewed from C. 

9. Give the point P1(3,6,20), P2(2,4,8) and P3(2,4,8) a view point C(0.0,-20) 

determine which points obscure the others when viewed from C. 

10. Assuming Z-Buffer algorithm allows 256 depth value level to be used, 

approximately how much memory would a 512X512 pixel require to store the 

Z-Buffer? 

11. Assuming that  allows 224  depth value level to be used, how much memory 

would a 1024X768 pixel require to store the Z-Buffer? 

12. Assuming that  allows 224  depth value level to be used, how much memory 

would a 1024X1024pixel require to store the Z-Buffer? 



Computer Graphics 20 

 

II Year –II-Semester                                                                                 2018-19                                                                          CSE   

13. If the camera viewing directions is V and the surface normal plane is N, 

how to determine whether the surface is visible with respect to viewing 

direction or not? 

 

 

 



Computer Graphics 1 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

Unit – VI 

Introduction: 

 Computer animation generally refers to any time sequence of visual 

changes in a scene. 

 In addition to changing object position with translations or 

rotations, a computer-generated animation could display time 

variations in object size, color, transparency, or surface texture. 

 Applications of computer-generated animation are 

o Entertainment (motion pictures and cartoons) 

o Advertising 

o Scientific and engineering studies 

o Training and education. 

 Animations often transition one object shape into  another: 

transforming a  can of motor oil into  an automobile engine 

 Computer animations can also be generated by changing camera 

parameters, such as position, orientation, focal length and lighting 

effects. 

DESIGN OF ANIMATION SEQUENCES 

 In general, an animation sequence is designed with the following 

steps: 

o Storyboard layout 

o Object definitions 

o Key-frame specifications. 

o Generation of in-between frames 

Storyboard layout 

o It is an outline of the action. 

o It defines the motion sequence as a set of basic events that 



Computer Graphics 2 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

are to take place. 

o Depending on the type of animation to be produced,  the  

storyboard could  consist  of a set of rough sketches or it 

could be a list of the basic ideas for the motion. 

Object definition 

o It is given for each participant in the action. 

o Objects can be defined in terms of basic shapes, such as 

polygons or splines. 

o In addition, the associated movements for each object are 

specified along with the shape. 

Key-frame specifications 

o It is a detailed drawing of the scene at a certain 

time in the animation sequence. 

o Within each key frame, each object is positioned according 

to  the  time  for  that frame. 

o The time interval between key frames is not too great. 

In-between frames 

o These are the intermediate frames between the key frames. 

o The number of in-betweens needed is determined by the 

media to be used to display the animation. 

o Film requires 24 frames per second, and graphics 

terminals are refreshed  at  the  rate of 30 to 60 frames per 

second. 

o Depending on the speed specified for the motion, some  key  

frames  can  be duplicated. 

o For a 1-minute film sequence with no duplication, we 

would need 1440 frames. With five in-betweens for each 

pair of key frames, we would need 288 key frames. 

o There are several other tasks that may be required, 



Computer Graphics 3 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

depending on the application. 

 

o They include motion verification, editing, and production 

and synchronization of a soundtrack. 

o Many of the functions needed to produce general 

animations are now computer- generated. 

GENERAL COMPUTER-ANIMATION FUNCTIONS 

o Some steps in the development of an animation sequence are 

well-suited to computer solution. 

o These include object manipulations and rendering, camera 

motions, and the generation of in-betweens. 

o Animation packages, such as Wave front, for example, provide 

special functions for designing the animation and processing 

individual objects. 

o One function available in animation packages is provided to 

store and manage the object database. 

o Object shapes and associated parameters are stored and 

updated in the database. 

o Other object functions include those for motion generation and 

those for object rendering. 

o Motions can be generated according to specified constraints 

using two-dimensional or three-dimensional transformations. 

o Standard functions can then be applied to identify 

visible surfaces and apply the rendering algorithms. 

o Another typical function simulates camera 

movements. Standard motions are zooming, 

panning, and tilting. 

o Finally, given the specification for the key frames, the in-

between can be automatically generated. 

o Animation functions include a graphics editor, a key-frame 



Computer Graphics 4 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

generator, an in-between generator, and standard graphics 

routines. 

o The graphics editor allows us to design and modify object 

shapes, using spline surfaces, constructive solid-geometry 

methods, or other representation schemes. 

RASTER ANIMATIONS 

 On raster systems, we can generate real-time animation in limited 

applications using raster operations. 

 A simple method for translation in the xy plane is to transfer  a 

rectangular  block of pixel  values from one location to another. 

 Two dimensional rotations in multiples of 90" are also simple to 

perform, although we  can rotate rectangular blocks of pixels 

through arbitrary angles using ant aliasing procedures. 

 To rotate a block of pixels, we need to determine the percent of 

area coverage for those pixels that overlap the rotated block. 

 Sequences of raster operations can be executed to produce real-

time animation of either two- dimensional or three-dimensional 

objects. 

 We can also animate objects along two-dimensional motion paths 

using the color-table transformations. 
 Here we predefine the object at successive positions along the 

motion path. 

 Set the successive blocks of pixel values to color-table entries. 

 We set the pixels at the first position of the object to "on" values, 

and we set the pixels at the other object positions to the 

background color. 

 The animation is then accomplished by changing the color-table 

values so that the object  is  "on" at successively positions along 

the animation path as the preceding position is set to the 

background intensity. 



Computer Graphics 5 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

Fig: Real-time raster color-table animation 

KEY-FRAME SYSTEMS 

 We generate each set of in-betweens from the specification of two (or 

more) key frames. 

 Motion paths can be given with a kinematic description as a set of 

spline curves, or the motions can be physically based by specifying 

the forces acting on the objects to be animated. 

 For complex scenes, we can separate the frames into individual 

components  or  objects called  cels (celluloid transparencies), an 

acronym for cartoon animation. 

 With complex object transformations, the shapes of objects  may 

change  over  time.  Examples are clothes, facial features. 

 If all surfaces are described with polygon meshes, then the number 

of edges per polygon can change from one frame to the next. Thus, 

the total number of line segments can be different in different 

frames. 

Morphing 

 Transformation of object shapes from one form to another is called 

morphing. 

 Morphing methods can be applied to any motion or transition 

involving a change in shape. 

 Given two key frames for an object transformation, we first  adjust  

the object  specification  in one of the frames so  that  the  number 

of polygon edges (or the number of vertices) is the same  for the two 



Computer Graphics 6 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

frames. 

 A straight-line segment in key frame k is transformed into two line 

segments in key frame k+1. Since key frame k + 1 has an extra 

vertex, we add a vertex between vertices 1 and  2  in  key  frame k to 

balance the number of vertices (and edges) in the two key frames. 

 Using linear interpolation to generate the in-betweens. We transition 

the added vertex in key  frame k into vertex 3' along the straight-

line path. 

 

An edge with vertex positions 1 and 2 in key frame k evolves into two 

connected edges in key frame k 

+ 1 

 

Linear interpolation for transforming a line segment in key frame k into two 

connected line segments in key frame k + 1. 

 

 



Computer Graphics 7 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

 

 

Linear interpolation for transforming a triangle into a 

quadrilateral 

 We can state general preprocessing rules for equalizing key frames 

in terms  of  either  the  number of edges or the number of vertices 

to be added b a key frame. 

 Suppose we equalize the edge count, and parameters Lk and LK+1 

denote the number of line segments in two consecutive frames. We 

then define 

 

Lmax= max(Lk,Lk+1) Lmin= 

min(Lk,Lk+1) Ne    = Lmax modLmin

 Ns = 

int(Lmax/Lmin) 

 Then the preprocessing is accomplished by 

1. Dividing Ne edges of keyframemin into Ns + 1 sections. 

2. Dividing the remaining lines of keyframemin into Ns sections. 

 

 As an example, if Lk = 15 and LK+1 = 11, we would divide 4 lines of 

keyframek+1 into 2 sections each. The remaining lines of keyframek+1 

are left intact. 

 If we equalize the vertex count, we can use parameters Vk and Vk+1 

to denote the number of vertices in the two consecutive frames. In 



Computer Graphics 8 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

this case, we define 

Vmax= max(Vk,Vk+1) Vmin= min(Vk,Vk+1) 

 

 

Preprocessing using vertex count is performed by 

1. Adding NP points to Nls line sections of keyframemin. 

2. Adding Np - 1 points to the remaining edges of keyframemin 

 For the triangle-to quadrilateral example, Vk = 3 and Vk+1 = 4. Both 

Np and  Nls are 1, so  we  would add one point to one edge of 

keyframek No  points would be added to the remaining lines  of 

keyframek+1. 

Simulating Accelerations 

 Curve-fitting techniques are often used to specify the animation 

paths between key frames. 

 Given the vertex positions at the key frames, we can fit the positions 

with linear or nonlinear paths. 

 To simulate accelerations, we can adjust the time spacing for the in-

betweens. 

 For constant speed (zero acceleration) we use equal-interval time 

spacing for the in-betweens. 

o Suppose we want n in-betweens for key frames at times t1 

and t2. The time interval between key frames is then divided 

into n +1 subintervals,  yielding  an  in-between spacing of 

o We can calculate the time for any in-between as 



Computer Graphics 9 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

 

and determine the values for coordinate positions, color, and other 

physical parameters. 

o Nonzero accelerations: 

o These are used to produce realistic displays of speed changes, 

particularly at  the  beginning and end of a motion sequence. 

o We can model the start-up and slowdown portions of an 

animation path with spline or trigonometric functions. 

o Parabolic and cubic time functions haw been applied to 

acceleration modeling, but trigonometric functions are more 

commonly used in animation packages. 

o To model increasing speed (positive acceleration), we want the 

time spacing between frames to increase so that greater 

changes in position occur as the object moves faster. 

o We can obtain an increasing interval size with the function 

 

 

o For n in-betweens, the time for the jth in-between would then 

be calculated as 

 

 

 



Computer Graphics 10 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

 
 

o Motions contain both speed-ups and slow-downs. We can 

model a combination of increasing-decreasing speed by first 

increasing the in-between time spacing, then we decrease this 

sparing. A function to accomplish these time changes is 

Graphics programming using OPENGL: 
  OpenGL is a software interface that allows you to access the graphics 

hardware without taking care of the hardware details or which graphics 

adapter is in the system. OpenGL is a low-level graphics library 

specification. It makes available to the programmer a small set of geometric 

primitives - points, lines, polygons, images, and bitmaps. OpenGL provides a 

set of commands that allow the specification of geometric objects in two or 

three dimensions, using the provided primitives, together with commands 

that control how these objects are rendered (drawn).  

Libraries  

OpenGL Utility Library (GLU) contains several routines that use lower-level 

OpenGL commands to perform such tasks as setting up matrices for specific 

viewing orientations and projections and rendering surfaces.  

OpenGL Utility Toolkit (GLUT) is a window-system-independent toolkit, 

written by Mark Kilgard, to hide the complexities of differing window APIs.  



Computer Graphics 11 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

Include Files  

For all OpenGL applications, you want to include the gl.h header file in 

every file. Almost all OpenGL applications use GLU, the aforementioned 

OpenGL Utility Library, which also requires inclusion of the glu.h header 

file. So almost every OpenGL source file begins with: #include <GL/gl.h> 

#include<GL/glu.h> 

 If you are using the OpenGL Utility Toolkit (GLUT) for managing your 

window manager tasks, you should include: 

#include<GL/glu.h> 

 The following files must be placed in the proper folder to run a OpenGL 

Program. 

Libraries (place in the lib\ subdirectory of Visual C++)  

 opengl32. 

 lib glu32. 

 lib glut32.lib  

Include files (place in the include\GL\ subdirectory of Visual C++) 

 gl.h  

 glu.h 

 glut.h  

Dynamically-linked libraries (place in the \Windows\System subdirectory)  

 opengl32.dll  

 glu32.dll  

 glut32.dll 

 

 



Computer Graphics 12 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

Working with OpenGL: 

Opening a window for Drawing: 

1. The First task in making pictures is to open a screen window for drawing. 

The following five functions initialize and display the screen window in our 

program.  

glutInit (&argc, argv) 

The first thing we need to do is call the glutInit () procedure. It should be 

called before any other GLUT routine because it initializes the GLUT library. 

The parameters to glutInit () should be the same as those to main (), 

specifically main (int argc, char** argv) and glutInit (&argc, argv). 

2. glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB) The next thing we 

need to do is call the glutInitDisplayMode () procedure to specify the display 

mode for a window. We must first decide whether we want to use an RGBA 

(GLUT_RGB) or color-index (GLUT_INDEX) color model. The RGBA mode 

stores its color buffers as red, green, blue, and alpha color components. 

Color-index mode, in contrast, stores color buffers in indices. And for special 

effects, such as shading, lighting, and fog, RGBA mode provides more 

flexibility. In general, use RGBA mode whenever possible. RGBA mode is the 

default. 

3. glutInitWindowSize(640,480) : 

We need to create the characteristics of our window. A call to 

glutInitWindowSize() will be used to specify the size, in pixels, of our initial 

window. The arguments indicate the height and width (in pixels) of the 

requested window. 

 4. glutInitWindowPosition (100,15)  

Similarly, glutInitWindowPosition() is used to specify the screen location for 

the upper left corner of our initial window. The arguments, x and y, indicate 

the location of the window relative to the entire display. This function 



Computer Graphics 13 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

positioned the screen 100 pixels over from the left edge and 150 pixels down 

from the top. 

 5. glutCreateWindow (“Example”)  

To create a window, the with the previously set characteristics (display 

mode, size, location, etc), the programme uses the glutCreateWindow () 

command. The command takes a string as a parameter which may appear 

in the title bar.  

6. glutMainLoop ()  

The window is not actually displayed until the glutMainLoop () is entered. 

The very last thing is we have to call this function 

Event Driven Programming: 

 The method of associating a call back function with a particular type of 

event is called as event driven programming. OpenGL provides tools to assist 

with the event management. There are four Glut functions available. 

1. glutDisplayFunc (mydisplay) 

The glutDisplayFunc() procedure is the first and most important event call-

back function. A call-back function is one where a programmer-specified 

routine can be registered to be called in response to a specific type of event. 

For example, the argument of glutDisplayFunc(mydisplay) is the function 

that is called whenever GLUT determines that the contents of the window 

needs to be redisplayed. Therefore, we should put all the routines that you 

need to draw a scene in this display call-back function 

2. glutReshapeFunc(myreshape)  

The glutReshapeFunc () is a call-back function that specifies the function 

that is called whenever the window is resized or moved. Typically, the 

function that is called when needed by the reshape function displays the 

window to the new size and redefines the viewing characteristics as desired.  



Computer Graphics 14 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

3. glutKeyboardFunc (my keyboard) GLUT interaction using keyboard inputs 

is handled. The command glutKeyboardFunc() is used to run the call-back 

function specified and pass as parameters, the ASCII code of the pressed 

key, and the x and y coordinates of the mouse cursor at the time of the 

event. Special keys can also be used as triggers. The key passed to the call-

back function, in this case, takes one of the following values (defined in 

glut.h). Special keys can also be used as triggers. The key passed to the call-

back function, in this case, takes one of the following values (defined in 

glut.h). 

 

4. glutMouseFunc (mymouse) GLUT supports interaction with the computer 

mouse that is triggered when one of the three typical buttons is presses. A 

mouse call-back fuction can be initiated when a given mouse button is 

pressed or released. The command glutMouseFunc () is used to specify the 

call-back function to use when a specified button is is a given state at a 

certain location. This buttons are defined as GL_LEFT_BUTTON, 

GL_RIGHT_BUTTON, or GL_MIDDLE_BUTTON and the states for that 

button are either GLUT_DOWN (when pressed) or GLUT_UP (when released).  

 

  

 



Computer Graphics 15 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

Basic graphics primitives  

OpenGL Provides tools for drawing all the output primitives such as points, 

lines, triangles, polygons, quads etc and it is defined by one or more 

vertices. To draw such objects in OpenGL we pass it a list of vertices. The 

list occurs between the two OpenGL function calls glBegin() and glEnd(). The 

argument of glBegin() determine which object is drawn. 

 These functions are 

 glBegin(int mode);  

glEnd( void );  

The parameter mode of the function glBegin can be one of the following: 

GL_POINTS 

GL_LINES 

GL_LINE_STRIP 

GL_LINE_LOOP 

GL_TRIANGLES GL_TRIANGLE_STRIP 

GL_TRIANGLE_FAN GL_QUADS 

GL_QUAD_STRIP 

GL_POLYGON 

glVertex( ) : The main function used to draw objects is named as glVertex. 

This function defines a point (or a vertex) and it can vary from receiving 2 up 

to 4 coordinates. 

Example 

//the following code plots three dots  

glBegin(GL_POINTS);  



Computer Graphics 16 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

glVertex2i(100, 50); 

 glVertex2i(100, 130); 

 glVertex2i(150, 130); glEnd( ); 

 // the following code draws a triangle  

glBegin(GL_TRIANGLES);  

glVertex3f(100.0f, 100.0f, 0.0f);  

glVertex3f(150.0f, 100.0f, 0.0f);  

glVertex3f(125.0f, 50.0f, 0.0f);  

glEnd( );  

// the following code draw a lines  

glBegin(GL_LINES);  

glVertex3f(100.0f, 100.0f, 0.0f);// origin of the line  

glVertex3f(200.0f, 140.0f, 5.0f);// ending point of the line  

glEnd( ); 

OpenGl State : 

OpenGl keeps track of many state variables, such as current size of a point, 

the current color of a drawing, the current background color, etc.  

The value of a state variable remains active until new value is given.  

glPointSize() : The size of a point can be set with glPointSize(), which takes 

one floating point argument. 

Example:           glPointSize(4.0);  



Computer Graphics 17 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

glClearColor () : establishes what color the window will be cleared to. The 

background color is set with glClearColor (red, green, blue, alpha), where 

alpha specifies a degree of transparency. 

Example :  glClear(GL_COLOR_BUFFER_BIT)  

glColor3f() : establishes to use for drawing objects. All objects drawn after 

this point use this color, until it�s changed with another call to set the 

color. 

 Example:  

glColor3f(0.0, 0.0, 0.0); //black  

glColor3f(1.0, 0.0, 0.0); //red  

glColor3f(0.0, 1.0, 0.0); //green  

glColor3f(1.0, 1.0, 0.0); //yellow  

glColor3f(0.0, 0.0, 1.0); //blue  

glColor3f(1.0, 0.0, 1.0); //magenta  

glColor3f(0.0, 1.0, 1.0); //cyan  

glColor3f(1.0, 1.0, 1.0); //white 

Example : White Rectangle on a Black Background (3-Dimension co-
ordinates)  

#include "stdafx.h"  

#include "gl/glut.h" 

 #include<gl/gl.h> 

 Void Display(void) { 

 glClearColor (0.0, 0.0, 0.0, 0.0);  

glClear (GL_COLOR_BUFFER_BIT);  



Computer Graphics 18 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

glColor3f (1.0, 1.0, 1.0);  

glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);  

glBegin(GL_POLYGON); 

 glVertex3f (0.25, 0.25, 0.0);  

glVertex3f (0.75, 0.25, 0.0);  

glVertex3f (0.75, 0.75, 0.0);  

glVertex3f (0.25, 0.75, 0.0);  

glEnd();  

glFlush();  

}  

int main (int argc, char **argv)  

{ 

 glutInit(&argc, argv);  

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);  

glutInitWindowSize(640,480);  

glutCreateWindow("Intro");  

glClearColor(0.0,0.0,0.0,0.0);  

glutDisplayFunc(Display);  

glutMainLoop();  

return 0; 

 } 

 



Computer Graphics 19 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

Making Line Drawings  

OpenGL makes it easy to draw a line: use GL_LINES as the argument to 

glBegin(), and pass it the two end points as vertices. Thus to draw a line 

between (40,100) and (202,96) use: 

 glBegin(GL_LINES); // use constant GL_LINES here  

glVertex2i(40, 100);  

glVertex2i(202, 96);  

glEnd();  

OpenGL provides tools for setting the attributes of lines. A line�s color is set 

in the same way as for points, using glColor3f(). To draw thicker lines use 

glLineWidth(4.0). The default thickness is 1.0 To make stippled (dotted or 

dashed) lines, you use the command glLineStipple() to define the stipple 

pattern, and then we enable line stippling with glEnable(). 

glLineStipple(1, 0x3F07);  

glEnable(GL_LINE_STIPPLE); 

Drawing Polylines and Polygons: 

 Polyline is a collection of line segments joined end to end. It is described by 

an ordered list of points, 

In OpenGL a polyline is called a “line strip”, and is drawn by specifying the 

vertices in turn between glBegin(GL_LINE_STRIP) and glEnd(). 



Computer Graphics 20 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

 

Attributes such as color, thickness and stippling may be applied to Polylines 

in the same way they are applied to single lines. If it is desired to connect 

the last point with the first point to make the polyline into a polygon simply 

replace GL_LINE_STRIP with GL_LINE_LOOP.  

Polygons drawn using GL_LINE_LOOP cannot be filled with a color or 

pattern. To draw filled polygons we have to use glBegin (GL_POLYGON). 

3. Drawing three dimensional objects & Drawing three dimensional 
scenes: 

 OpenGL has separate transformation matrices for different graphics 

features glMatrixMode (GLenum mode), where mode is one of:  

 GL_MODELVIEW - for manipulating model in scene 

 GL_PROJECTION - perspective orientation  

 GL_TEXTURE - texture map orientation  

glLoadIdentity (): loads a 4-by-4 identity matrix into the current matrix  

glPushMatrix() : push current matrix stack  

glPopMatrix() : pop the current matrix stack  



Computer Graphics 21 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

glMultMatrix () : multiply the current matrix with the specified matrix  

glViewport() : set the viewport  

Example: glViewport(0, 0, width, height); 

 gluPerspective() : function sets up a perspective projection matrix. 

  Format : gluPerspective(angle, as ratio, ZMIN, ZMAX);  

Example : gluPerspective(60.0, width/height, 0.1, 100.0);  

gluLookAt() - view volume that is centered on a specified eye point. 

 Example: gluLookAt (3.0, 2.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); 

 glutSwapBuffers () : glutSwapBuffers swaps the buffers of the current 

window if double buffered.  

Example for drawing three dimension Objects: 

 glBegin (GL_QUADS); // Start drawing a quad primitive  

glVertex3f (-1.0f, -1.0f, 0.0f); // The bottom left corner 

 glVertex3f (-1.0f, 1.0f, 0.0f); // The top left corner  

glVertex3f (1.0f, 1.0f, 0.0f); // The top right corner  

glVertex3f (1.0f, -1.0f, 0.0f); // The bottom right corner  

glEnd(); 

//Triangle  

glBegin( GL_TRIANGLES ); 

 glVertex3f( -0.5f, -0.5f, -10.0 );  

glVertex3f( 0.5f, -0.5f, -10.0 );  

glVertex3f( 0.0f, 0.5f, -10.0 ); 



Computer Graphics 22 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

 glEnd();  

// Quads in different colours  

glBegin(GL_QUADS);  

glColor3f(1,0,0); //red  

glVertex3f(-0.5, -0.5, 0.0);  

glColor3f(0,1,0); //green  

glVertex3f(-0.5, 0.5, 0.0);  

glColor3f(0,0,1); //blue  

glVertex3f(0.5, 0.5, 0.0);  

glColor3f(1,1,1); //white  

glVertex3f(0.5, -0.5, 0.0);  

glEnd();  

GLUT includes several routines for drawing these three-dimensional objects: 

 cone  

icosahedrons  

teapot  

cube  

octahedron  

tetrahedron  

dodecahedron  

sphere  

torus  



Computer Graphics 23 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

OpenGL Functions for drawing the 3D Objects  

glutWireCube (double size);  

glutSolidCube (double size);  

glutWireSphere (double radius, int slices, int stacks);  

glutSolidSphere (double radius, int slices, int stacks);  

glutWireCone (double radius, double height, int slices, int stacks);  

glutSolidCone (double radius, double height, int slices, int stacks);  

glutWireTorus (double inner radius, double outer radius, int sides, int 

rings);  

glutSolidTorus (double inner radius, double outer radius, int sides, int 

rings);  

glutWireTeapot (double size); 

 glutSolidTeapot (double size); 

3D Transformation in OpenGL  

glTranslate (): multiply the current matrix by a translation matrix  

glTranslated(GLdouble x, GLdouble y, GLdouble z); 

 void glTranslatef(GLfloat x, GLfloat y, GLfloat z); 

 x, y, z - Specify the x, y, and z coordinates of a translation vector. 

 If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all 

objects drawn after a call to glTranslate are translated. Use glPushMatrix 

and glPopMatrix to save and restore the untranslated coordinate system. 

 glRotate() : multiply the current matrix by a rotation matrix void 

glRotated(GLdouble angle, GLdouble x, GLdouble y, GLdouble z); void 

glRotated(GLfloat angle, GLfloat x, GLfloat y, GLfloat z); angle : Specifies the 



Computer Graphics 24 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

angle of rotation, in degrees. x, y, z : Specify the x, y, and z coordinates of a 

vector, respectively.  

glScale() : multiply the current matrix by a general scaling matrix 

voidglScaled(GLdouble x, GLdouble y, GLdouble z); void glScalef(GLfloat x, 

GLfloat y, GLfloat z); x, y, z : Specify scale factors along the x, y, and z axes, 

respectively 

 



Computer Graphics 25 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

 

 

 

 

 



Computer Graphics 26 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

UNIT-VI 

Assignment-Cum-Tutorial Questions 

SECTION-A 

Objective Questions 

1.The animation can be defined as a collection of images played in    [ ] 

a) Not sequence   b) Defined sequence  c) Both a & b  d) None  

2.To equalize vertex count in morphing no of points Np is calculated as  

[ ] 

a)int(Vmax-1/Vmin-1)     b) int(Vmax+1/Vmin-1) 

c) int(Vmax-1/Vmin+1)    d)int(Vmax+1/Vmin+1) 

3. ___________consist of a set of rough sketches or it could be a list of the 

basic ideas for the motion.                                                                          

[          ] 

a)Story board layout    b) Object definitions  

c) Key-frame system    d) In-between frames 

 

4. To equalize vertex count in morphing no of line sections Nls is calculated 

as                                                                                               [ ] 

a) (Vmax-1)mod(Vmin-1)   b) (Vmax+1)mod(Vmin-1)  

c) (Vmax-1)mod(Vmin+1)   d) (Vmax+1)mod(Vmin+1) 

 

5. We can also animate objects along two-dimensional motion paths using 

 

a)color-table transformations        b) key-frames    [ ] 

c) languages                                d) functions 



Computer Graphics 27 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

 

6. To equalize the edge count, and parameters Lk and Lk+1 denote the 

number of line segments in two consecutive frames. We then define                  

a) Lmax=max(Lk,Lk-1), Lmin=min(Lk,Lk-1)  

b)Lmax=max(Lk,Lk+2),Lmin=min(Lk,Lk+2) 

c) Lmax=min(Lk,Lk+1), Lmin=max(Lk,Lk+1)  

d) Lmax=max(Lk,Lk+1), Lmin=min(Lk,Lk+1)    [ ] 

 

7. To equalize the vertex count, and parameters Vk and Vk+1 denote the         

number of vertices in two consecutive frames. We then define  [ ]                                     

a) Vmax=max(Vk,Vk-1), Vmin=min(Vk,Vk-1)  

b) Vmax=max(Vk,Vk+2), Vmin=min(Vk,Vk+2) 

c) Vmax=min(Vk,Vk+1), Vmin=max(Vk,Vk+1)  

d) Vmax=max(Vk,Vk+1), Vmin=min(Vk,Vk+1) 

8.Divide Ne edges of keyframemin into ______________sections in 

preprocessing of morphing using edge count                                                              

a)Ns+1   b) Ns-1   c) Ns+2   d) Ns-2 [ ] 

 

9. Divide the remaining lines of key frame min into ___ sections in  [ ] 

preprocessing of morphing using edge count                                                                    

a)Ns+1   b) Ns-1   c) Ns+2   d) Ns 

10. Adding _____points to remaining edges of keyframem  in preprocessing of 

morphing using vertex count                                                   [ ] 

a) Np+1   b) Np-1   c) Np+2   d) Np 



Computer Graphics 28 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

11. ____________are used to produce realistic displays of speed changes, 

particularly at the beginning and end of a motion sequence.      [ ] 

a) Zero acceleration          b) Non Zero acceleration  

c) constant acceleration    d) increasing acceleration 

 

12.___________________ generally refers to any time sequence of visual 

changes in a scene. 

 

13. Computer animations can also be generated by                          [ ] 

 a) Changing camera position           b) Changing camera orientation 

c) Changing camera focal length      d) all of the above 

14. An animation sequence is designed with which one of the following step 

a) Storyboard layout                     c)Object definitions  [ ] 

b) Both a and c                      d)none of the above 

 

15. ________________ is given for each participant in the action       [  ] 

a) Storyboard layout     b) Object definition 

c) key-frame systems    d) generation of in-between frames 

 

16. ___________________ is an outline of the action. 

 

17. ____________________is a detailed drawing of the scene at a certain time 

in the animation sequence. 

18. _______________________are the intermediate frames between the key 

frames 



Computer Graphics 29 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

19. Animation functions includes                 [ ] 

a) Graphics editor    b) a key-frame generator 

c) An in-between generator   d) all the above 

 

20. List applications of computer animation? 

 

21. When animating, OpenGL provides                                        [ ] 

a) A complete suite of tools and downloadable applications for making 

classic 2D and 3D animation right out of the box 

b) FBOs, VBOs, VAOs and integer-related functions such as glFrameNumber 

and glMovieType 

c) Accumulation buffers, frame-buffer objects, VBOs, depth and stencil 

buffers, blending modes, and other types of buffers that allow a developer 

to achieve the desired effect 

d)No way to draw pixels on the screen 

22. Generally, what primitive polygon is used for creating a mesh to 

represent a complex object?                [ ]                                                           

a) Square  b) Circle   c) Triangle  d) Rectangle 

23.OpenGL stands for                                           [ ]                      

a)Open General Liability     b) Open Graphics Library  

c) Open Guide Line      d) Open Graphics Layer 

 

 

 

 



Computer Graphics 30 

 

II Year –II-Semester                                                                                  2018-19                                                                          CSE

   

SECTION-B 

 Descriptive Questions 

1. What are the steps in design of animation sequence? Describe about each 

step briefly. 

2. Discuss about general purpose languages used for animation. 

3. Discuss about general computer animation functions 

4. Write short note on raster animation 

5. Define the term morphing and explain its use in key frame systems of 

animation 

6. Describe linear list notation of animation languages 

7. Explain about key frame systems in detail 

8. Explain about motion specifications in animation 

9. Explain in detail about Simulating Accelerations 

10.Discuss how to equalize edge count and vertex count during 

preprocessing steps of morphing? 

Problems 

1. Consider Lk = 15 and Lk+1 = 11 specify preprocessing rules for equalizing 

key  frames in terms of edges? 

2. Consider Vk = 3 and Vk+1 = 4 specify preprocessing rules for equalizing 

key frames in  terms of vertices?. 

3. Consider Lk = 18 and Lk+1 = 12 specify preprocessing rules for equalizing 

key frames in  terms of edges? 

4. Consider Vk = 6 and Vk+1 = 7 specify preprocessing rules for equalizing 

key frames in  terms of vertices?.  


